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Summary 

A theoretical melting curve for iron is determined in the pressure range of 
the Earth's core by a relation derived from the Ross-Lindemann melting 
criterium. On this basis the melting point of pure iron is estimated to be 
about 4800°C at the mantle-core boundary, and 6600°C at the inner 
core-outer core boundary with a melting point gradient of about 0-8 
deglkm. 

The problem treated in this paper is that of determining the melting temperature 
of iron, particularly under the conditions which prevail in the Earth's core. 

Alder (1966), using the Lindemann law, wherein melting is assumed to occur wllei: 
thc root-mean-square amplitude of atomic vibrations becomes some critical fraction 
of the nearest-neighbour distance, has estimated the melting temperature of iron under 
core-mantle boundary conditions to be about 4400°C, and under inner-outer core 
boundary conditions to be about 7450°C. 

Quite different results have been obtained more recently by Higgins & Kennedy 
(1971 ; see also, Kennedy & Higgins 1973), who assumed that the melting temperature 
of iron is given by a linear function of compression of the solid and extrapolated the 
melting curve to core conditions using the Kraut-Kennedy melting law (Kraut & 
Kennedy 1966). They have estimated that the temperature of iron at pressures equi- 
valent to the inner-outer core boundary is c. 4250°C with a melting point gradient of 
approxiniately 500°C through the outer core. 

However the hundred-fold linear extrapolation of Higgins & Kennedy (1971) for 
the melting curve of iron has been criticized by Verhoogen (1973) on various grounds, 
and by Boschi (1974) who pointed out that the Kraut-Kennedy melting law does not 
give the correct asymptotic behaviour. Verhoogen's (1973) views are mainly based on 
the significant structure calculations of the iron melting curve by Leppaluoto (1972) 
who has obtained figures closer to those of Alder (1966) and, namely, about 4700°C 
at mantle-core boundary and about 6700°C at the inner-outer core boundary. How- 
ever some ambiguities inherent to the significant structure theory, when applied to 
melting phenomena pointed out by Tuerpe & Keeler (1967), lead to a lack of credibility 
on Leppaluoto's results. 

Birch (1972) has discussed the validity of the procedure used by Higgins & Ken- 
nedy (1971) stressing the fact that iron exists in four crystalline forms and that present 
knowledge of the thermodynamic properties of the two denser phases, which are those 
most likely to be applicable in the core of tile Earth, is extremely rudimentary. 

In this paper we will use a melting equation which can be derivcd from the Ross- 
Li~demann melting criterium (Ross 1969) or, independently, from the ideal 'three- 
phase model' by Hiwatari & Matsuda (1972a, b) using the results of Monte Carlo 
calculations by Hoover et al. (1970). For its simplicity and elegance, we will describe 
in detail the Ross-Lindemann melting criterium. 

(*) On leave from Istituto di Geofisica, Universith di Bologna and Dipartimento di Scienze della 
Terra, Universiti di Ancona. 
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Ross has generalized the Lindemann melting law by reformulating it in terms of the 
statistical-mechanical partition function. In statistical mechanics, the configurational 
partition function Q for a system of N particles is written as: 

where rl is the position vector of the i-th particle, U is the energy or  thi: system, 
P = l/kT, k is the Boltzmann constant and T is the temperature. 

-+ -+ 
Defining a set of reduced co-ordinates, A = r/Vl-3, where V is the volume of the 

entire system, we may rewrite the configurational partition function as: 

where U(0) is the energy of the system with all atoms in their lattice sites and Q* is a 
reduced configurational partition function given by: 

+ + -+ - + +  + 

Q* = 1 . . . l exp { - [U(Al,Az, . . . AN) - U(O)l~}dA~dh~ . . . dhh (3) 

with the integration performed over the reduced configuration space. 
Ross (1969) has reformulated the Lindemann principle by stating that for a given 

substance, at all points along its melting curve, the solid always occupies the sanle 
fraction of configurational phase space. In  other words, in configuration space we 
would always see the same scaled picture at all points along the melting curve. In 
statistical inechanical language it is required that Q" be a constant at all melting 
temperatures T, and all volumes Vm along the melting curve, and this is formally 
written as : 

QyTm, V,) = constant. (4) 

The solid is represented by means of the single-particle cell model, in which the 
volun~e V is divided up into a lattice of N cells with one particle in each cell. In this 
approximation the configurational partition function, now denoted as @l), may be 
written (Hill 1960) as : 

where vf  is the one-particle free volume given by: 

where the integral is over v, the volun~e of the cell. E(r) is the potential field in which 
the particle moves, and E(0) is the potential at the centre of the cell. Defining a set of 

+ + 
reduced co-ordinates A = r/vll" enables us to express vf as: 

Here vf is the volume of configuration space that a single particle moving in its cell will 
occupy. Then v** is the dinlensionless reduced volume occupied by a single particle 
and is the cell-analogue of the function Q:?. Consequently, in terms of the cell model, 
Ross melting principle is postulated as: 

vf"(Tm,um) = constant. (8) 
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Consider now the case in which the atoms of the solid interact by pairwise additive 
repulsive forces of the inverse power form: 

The Z nearest neighbours surrounding an atom in its cage are considered to be 
smeared over that shell, then the potential in which the atom in the cell moves is given 
by (Hill 1960; Barker 1963) 

where r*, E, and rz are constants, and v" = r*3/d; d depends on the crystal structure 
I(h2) is a polinomial expansion in h2 and can be written in closed form. 

In the limit of harmonic approximation, it can be shown that: 

where a, is a constant depending on the crystal srtucture and the nun~ber of neigli- 
bouring shells included 

To satisfy the inelting condition of equation (8), it is necessary that: 

(Z~/kT,)(v*/u~)"/~an = constant. 
Let us write: 

Cm = uo - AV 

substituting in equation (12), we get: 

Z E V" n13 [v~(i~m] U,, = constant. 

We may evaluate the constaut at AV = 0 for which T,, = TO and c, = uo, where 
To and vo refer to some point of the melting curve. We obtain: 

which is the equation which we will use to determine the inelting curve of iron. 
Equation (14) can be derived in an independent way in the framework of the 'ideal 

three-phase model' proposed by Hiwatari 8r Matsuda (1972a, b), using the results of 
Monte Carlo calculations of Hoover et al. (1970; see also, Hansen 1970; Hoover & 
Ross 1970; Ree 1971). The Hiwatari-Matsuda inodel is characterized by the pair 
potential : 

@(r)  = Air" - aB3 exp(- Br) 

where n(>3) ,  A(>O), and a(>O) are the constant parameters specifying the substaace 
in the scheme of the model. The positive constant B is a quantity to be made to tend to 
zero after having take11 the thermodynamic limit. This model has considerable merit 
because of its simple scaling properties (Matsuda 1969). 

A series expansion of equation (14) leads to the following relationship: 

which is similar to the one proposed by Kraut & Keniledy (1966): 

Tm = To(1 + CAV~VO). 

An inspection of the ratio of the quadratic to the linear term in equation (15) reveals 
that for any reasonable value of n the quadratic term becomes 10 per cent of the linear 
at Avlvo of about 0.05. Therefore for transition metals such as iron in which core-core 
interaction are important, equation (l5), with higher order terms neglected, appears to 
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be a much more adequate description of melting phenomena than the Kraut-Kennedy 
relationship. However Kraut & Kennedy (1966) claim that alkali metals obey their 
linear expression up to compressions of 0.4, wherein quadratic and higher terms, if 
present, should have begun to manifest themselves. Nevertheless it is well known that 
at normal densities there is no appreciable core-core interaction in the alkali metals 
(Royce 1967). Consequently equation (IS), which is derived froin a potential that is 
appropriate to a system in which strong core-core repulsions dominate, should not 
be applicable to  the alkali metals. Ross (1969) has also derived a melting law using 
potential that is more appropriate to such systems. 

To obtain the melting curve of iron we use for n the value 8.4, obtained by Hiwatari 
& Matsuda (1972) studying the isothermal compression in the solid phase. 

En passant, we inay observe that if we accept the following relation: 

2 d log T m  - - 2y = ------- 
3 d log V D  

where y is Griineisen's parameter, we obtain y = 1.6, since in our case d log T/d  log 
E ,  is - r 2 / 3 .  Equation (16) has been obtained by Knopoff & Shapiro (1969) in their 
study of the various methods of computing Griineisen's parameter taking also into 
account the effects of melting and fluidity. 

COPvlPRESSlQN 
FIG. 1. Melting temperature of iron versus Avlao. Curve I : Higgins-Kennedy (1971) 
of the Kraut-Kennedy melting law. Curve 2: present work. 

Fig. 1 shows the plot of our melting temperatures of iron versus the compression 
v/vo, compared with those of Higgins & Kennedy (1971). Fig. 2 shows the plot of the 
melting curve of iron versus pressure, where use has been made of the pressure-density 
plot for iron derived by Higgins & Kennedy (1971) from shock-wave data (Van Thiel 
1966). At a pressure of 1.4 Mbar (core-mantle boundary) the melting temperature of 
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pure iron is about 4800°C, and at a pressure of 3.2 Mbar (inner-outer core boundary) 
the melting temperature is about 6600°C. 

An interpretation which has found favour for many reasons is that the inner core 
is the solid phase corresponding to the liquid outer core (Birch 1943, 1952; Bullen 
1946, 1949, 1950; Ramsey 1950). Recent analyses of the periods of free osciliations 

0 1 2 3 4 

M E G A B A R S  

FIG. 2 Melting temperature of iron versus pressure. Curve l : IIiggins-Kennedy (1971) 
Cuive 2: present work. A and B correspond to the pressures of mantle-core 

boundary and inner-outer core boundary respectively. 

(Pekeris, Alterman & Jarosh 1962; Alsop 1963; Derr 1969; Jordan & Franklin 1971; 
Dziewonski & Gilbert 1971, 1972; Dziewonski 1971; Julian, Davies & Sheppard 
1972) appear to support this idea. Thus it is generally postulated that the temper- 
ature at the boundary, at the depth of 5120 km, lies on the melting curve of core 
material. Though argument continues concerning the amount and the nature of 
alloying elements, there remains little ground for doubting that both inner and outer 
core consists mainly of iron. However, it is generally believed that iron is too dense 
to meet the requirement of the outer core (Birch 1952, 1964; MacDonald & Knopoff 
1958; Knopoff & MacDonald 1960; McQueen, Fritz & Marsh 1954; Boschi & 
Caputo 1969, 1970, 1972) and of possible alloying elements, silicon and sulphur 
have been proposed as suitably abundant and likely to  enter a phase composed 
mainly of iron. Birch (1972) has discussed the influence of this alloying element on 
the melting point of iron and has concluded that to estimate the temperatures in the 
real core, the melting temperature of iron at the inner-outer core boundary must be 
lowered by no more than 1000°C. 

However, here, we have to mention that recei~tly Cook (1972) has estimated the 
values of the bulk-modulus and the density for the inner core as a consequence of the 
observation of Bolt & Qamar (1970) and of the determination of the velocity of shear 
waves, concluding that there may be some indication that the material of the inner core 
differs in composition from that of the core. 

Concluding, in Table 1 we compare some of the existing estimates of the melting 
temperature of iron at the mantle-core boundary conditions. 
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Table P 

Method 

Simon equation with different 
values of the empirical 
parameters 

Lindemann equation wit11 
semi-empirical consideiations 
Kraut-Kennedy equation 
Significant structure theory 
Ross-Lindemann criterium 

Iron melting 
temperature 
at 1.4 Mbar 

("C) 

3120 
2950 
2810 
3320 
2950 
4610 
3920 
3360 
2340 
4750 
4000 
4250 
4400 
3750 
4700 
4800 

Reference 

Gilvarry (1 956) 

Strong (1959) 
Birch (1963) 
Valle (1 955) 
Zharkov (1959) 
Alder (1966) 
Higgins & Kennedy (1971) 
Leppaluoto (1972) 
Present work 
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