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Abstract

The Monte Orfano Conglomerate (MOC), exposed in the foothills of the Southern Alps 

(northern Italy), is one of the few outcrops of sediments documenting the Cenozoic 

tectonic evolution of the Alpine retrowedge. Calcareous nannofossil biostratigraphy 

allowed us to constrain the upper part of the MOC, formerly attributed to the Early-Middle 

Miocene in the type-locality, to the earliest Miocene (Neogene part of the NN1 nannofossil 

zone). A likely latest Oligocene age is therefore suggested for the bulk of the underlying 

conglomerates, whose base is not exposed. Deposition of the MOC can be framed into 

the post-collisional tectonic uplift of the Alps, documented in the Lake Como area by the 
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Como Conglomerate (CC) at the base of the Gonfolite Lombarda Group, and supports the 

correlation with Upper Oligocene clastic sediments cropping out further to the East, in the 

Lake Garda and in the Veneto-Friuli areas (“molassa”). The remarkable difference in 

petrographic composition between the western (CC) and eastern (MOC) clastics 

deposited in the Alpine retro-foreland basin highlights the synchronous tectonic activity of 

two structural domains involving different crustal levels. Whilst the bulk of the CC, that 

straddles the Oligocene/Miocene boundary, records the tectonic exhumation of the Alpine

axial chain crystalline complexes, the coeval MOC consists of detritus deriving from the 

Alpine retrowedge superficial crustal section (Triassic to Paleogene sedimentary rocks), 

and constrains the onset of the post-collisional deformation phase of the Southern Alps as 

not younger than the latest Oligocene.

Key-words: Southern Alps; Cenozoic; calcareous nannofossil biostratigraphy; clastic 

provenance; shelf fan-delta; retro-foreland basin.

Introduction

Foreland basins are important natural archives of geological information; they are 

particularly useful to reconstruct the evolution of mountain belts by recording events 

occurring within the range. Often such events are not preserved in the range itself due to 

subsequent orogenic uplift and erosion. Thrusting and folding of the foredeep sediments 

during the late evolution of the orogen commonly exposes them in a belt of foothills.

The present paper focuses on the Alpine retro-foreland basin (Bertotti et al., 1998), that 

developed since the Oligocene as an effect of the continental collision between the 

Adriatic and the European plates. Persistent compressional stress after collision caused 

retro-wedging in the Alpine orogen (Willet et al., 1993; Schmid et al., 1996), backthrusting 

the Southern Alps towards the Adriatic foreland and implication of the Variscan 

metamorphic basement and its Permian to Mesozoic sedimentary cover into the post-

collisional mountain belt.

Timing of tectonic evolution and deformation in the Southern Alps can be constrained by 

studying the retro-foreland basin clastic sediments, that recorded the uplift of the Alps at 
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its southern margin for nearly 20 My, from the Oligocene to the latest Miocene (Pieri & 

Groppi 1981; Dalla et al. 1992; Schumacher et al. 1997; Sciunnach & Tremolada 2004).

The Monte Orfano Conglomerate (MOC), exposed between Lake Iseo and the city of 

Brescia (northern Italy), represents one of the few outcropping deposits of the Alpine retro-

foreland basin, allowing the study of the Cenozoic evolution of the Southern Alps. The 

MOC has been often correlated to more or less equivalent clastic sediments cropping out 

to the west (Gonfolite Lombarda Group: Cita 1957; Gunzenhauser 1985; Bersezio et al. 

1993; Schumacher et al. 1997) and to the east (“Lake Garda clastics” in Gunzenhauser 

1985; “molassa” veneto-friulana of Massari et al. 1986; Stefani et al. 2007), but 

unfortunately it has not been exhaustively studied for over 50 years after a thorough 

description by Vecchia and Cita (1954). Therefore, more precise correlations have been 

hampered by the poor resolution of the biostratigraphic data available for the MOC in the 

literature, that suggested a general Early to Middle Miocene age (Vecchia and Cita 1954).

New field work, undertaken within the mapping project of the Italian Geological Survey 

(Sheet 099 “Iseo” at the 1: 50 000 scale: Cassinis et al. 2009), was complemented in the 

present work with the measurement of stratigraphic sections, sampling of muddy and 

sandy intervals, and the collection of macrofossils. Analytical work includes arenite 

petrography as well as calcareous nannofossil and foraminiferal biostratigraphy.

The aim of the present paper is threefold: 1) to refine the biostratigraphic ages for the 

MOC through the analysis of calcareous nannoplankton, a reliable stratigraphic tool never 

employed in the study area; 2) to reconstruct a paleotectonic scenario, by defining the 

structural levels involved in the drainage basin and the depositional setting of the MOC; 

and 3) to frame the MOC into the regional setting of the Alpine retro-foreland basin, 

documented by the coeval Cenozoic clastics, presently exposed at the foothills of the 

Southern Alps or drilled by oil exploration wells in the subsurface of the Po Plain.

Previous studies

“Monte Orfano Conglomerate” is an informal name of long historical standing. It is applied 

to the mostly conglomeratic succession, that is over 800 m (Vecchia and Cita 1954; Boni 

and Cassinis 1973) and possibily up to 2000 m thick (Gunzenhauser 1985; Schönborn 
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1992), and forms the pre-Quaternary bedrock of the whole Monte Orfano, south of Lake 

Iseo, and of two smaller hills (Badia and Sale) on the western bank of the Trompia Valley, 

just a few km west of Brescia (Fig. 1). Monte Orfano should not be confused with other 

isolated reliefs in the Southern Alps, namely Montorfano near Como (consisting of 

Paleocene conglomerates, Kleboth 1982) and Montorfano near Mergozzo (consisting of 

post-Variscan granites). In the literature, the term “Montorfano bresciano” has been used 

as a synonym of Monte Orfano (Gunzenhauser 1985).

The continental nature of the conglomerates at Badia and Sale was recognised earlier 

based on findings of fresh-water molluscs (Deshayes 1860; Ragazzoni 1862) suggesting 

an Aquitanian age (Deshayes 1860; Sordelli 1882). Vecchia and Cita (1954) provided 

detailed lithologic descriptions and biostratigraphic documentation of the Early-Middle 

Miocene based on benthic (Cibicides, Elphidium) and planktonic (Globoquadrina) 

foraminifera. 

Brambilla and Penati (1987) suggested a subtropical climate and a Miocene (pre-

evaporitic Messinian?) age for the Badia deposits by analysing plant macrofossils. New 

structural interpretations on the Monte Orfano were cursorily provided by Picotti et al. 

(1997), who reported field evidence of four successive generations of paleostress 

reconstructed from brittle deformation. The earlier two events were indirectly ascribed to 

the Middle Miocene (“Valtrompia-Valsugana Phase” of Castellarin et al. 1992).

Geological framework

The study area belongs to the Adriatic Plate, that recorded Variscan deformation and 

metamorphism during the Carboniferous, followed by continental wrenching and 

magmatism during the Early Permian. Late Permian to Triassic transgression of 

continental, transitional and marine sediments culminated in the Early Jurassic rifting of 

the Alpine Tethys, where deposition of siliceous and calcareous oozes characterised the 

Middle and Late Jurassic. Early Cretaceous tectonic activity in the Eastern Alps (“pre-

Gosau Phase”) caused deposition of thick flysch successions in confined basins up to 

Campanian times, while pelagic marls in Scaglia facies sedimented in protected areas and 

during quiescence stages, up to the Early Eocene. Middle Eocene to Oligocene reprise of 
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tectonic activity due to subduction of the Alpine Tethys and continental collision between 

Adria and Europe typically resulted in widespread Periadriatic plutonism and deposition of 

discontinuous clastic to volcanic successions, until vigorous uplift of the Alps since the 

Late Oligocene created a thick foredeep succession, that was partly accreted to the 

orogenic front by a Middle-Late Miocene thrusting “phase” (“Lombardic Phase” of 

Schumacher et al. 1997).

Among the Oligo-Miocene sediments of the Alpine retro-foreland basin, the MOC is the 

only formation bridging a wide gap of outcrops between Brianza (north of Milan) and Lake 

Garda. The Monte Orfano is an isolated relief 452 m high and extending for about 5.4 km 

from WNW to ESE and 1.2 km from NNE to SSW south of Lake Iseo and south of the 

frontal anticline (“flessura pedemontana”; Bersezio et al. 1993) in which the Mesozoic 

sedimentary succession of the Southern Alps is widely exposed (Fig. 1; Boni and Cassinis 

1973; Cassinis et al. 2009). North of Lake Iseo, the Camonica Valley cuts through the 

volcanic to clastic succession of Permian age exposed in the Cedegolo and Camuna 

Anticlines – the latter also named Massiccio delle Tre Valli Bresciane; Val Trompia-Val 

Caffaro basin of Schaltegger and Brack 2007– overlain by a mostly carbonate succession, 

there of Triassic age (Assereto and Casati 1965). Further to the north, the Paleogene 

Adamello Batholith (Callegari and Brack 2002) is exposed in the present-day drainage 

area of the Camonica Valley.

The MOC succession plunges SE to W with an unusual “fan-like” arrangement of the dip 

of bedding planes (Pl. I), that might partly reflect the original morphology of the clastic 

body or, alternatively, could result from gentle tectonic buckling with a N-directed hinge 

line. The succession belongs to the southern limb of a ramp anticline at the front of a 

buried south-verging thrust represented on the seismic section 6 of Pieri and Groppi 

(1981), the balanced section H of Schönborn (1992) and the balanced cross-section AA’ 

of Picotti et al. (1997). Sharp lateral truncations of the Monte Orfano to the E and W with a 

likely triangular facet at the SE end suggest that the thrust front was segmented by NNE-

SSW-trending faults, possibly representing oblique ramps.

The base of the MOC is not exposed. In the ENI/Agip exploration well Coccaglio 1, drilled 

~ 2 km south of Monte Orfano (Fig. 1), several hundred metres of mudstones with thin 
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intercalations of fine-grained sandstones span the nannofossil zones CP16b to CP18 of 

Okada and Bukry (1980), which correspond to nearly the whole Early Oligocene 

(Valdisturlo et al. 1998). In the ENI/Agip exploration well Chiari 1, drilled ~ 4 km south of 

Monte Orfano, a comparable pelitic facies, less-precisely dated on cuttings, seems to 

extend up to nannofossil zone NN1, that straddles the Oligocene/Miocene boundary 

(Valdisturlo et al. 1998, fig. 3). 

The Badia and Sale hills are even smaller reliefs, 220.5 and 186 m high respectively, 

rising only 90 and 45 m respectively above the surrounding topography. They are both 

located in the western hinterland of the city of Brescia, on the western bank of the Mella 

River. Bedding planes gently dip to the W/SW suggesting, at a first look, that the 

succession, unconformably overlying the Mesozoic thrust stack, is undeformed and that 

the observed dip might reflect the original topographic gradient. Such a model would 

possibly be in line with the Messinian age proposed by Brambilla and Penati (1987). 

On the other hand, field observations such as: 1) relatively high dip angles in the basal 

part of the Badia succession; 2) open parasitic folds recognised at outcrop scale; and 3) a 

well-developed system of parallel near-vertical fractures with average strike 100°N 

(roughly parallel to the mountain front and interpreted as an axial plane fracture cleavage; 

Fig. 2), support an alternative interpretation. Actually, we suggest that the clastic 

succession of Badia and Sale, though presumably unconformable on the Mesozoic and 

Paleogene bedrock, was deformed by the same thrust system involving the bedrock, and 

that the gentle dip of the clastic succession reflects its proximal position to the hinge line 

of a broad ramp anticline as also suggested by the balanced section H of Picotti et al. 

(1995). 

Sedimentology

C o n g l o m e r a t e s are prevailing within the formation. They are almost invariably well-

cemented orthoconglomerates, in which individual clasts display variable roundness 

depending on petrography (chert occurs as sharply angular clasts, carbonates and other 

clast types are subangular to rounded) and are commonly bladed to flattened in form (Pl. 

IIa). Clasts range in size from pebble to cobble (boulders occur exceptionally) and almost 
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invariably consist of limestone, cherty limestone, chert and dolostone, with subordinate 

marlstone and sandstone. In addition, a single cobble of subvolcanic porphyrite was 

observed at Monte Orfano (D. Corbari, pers. comm. 2007). In outcrop, cherty limestone 

and chert clasts are differentially weathered out (Pl. IIb). A number of distinctive clast 

types are easily recognised in outcrop based on their lithofacies and can be ascribed to 

sedimentary formations of the Southern Alps, exposed less than ten km to the north:
1) white to light brown calcilutite, with stylolites, yellow to brown chert nodules and 
conchoidal fracture (Maiolica, latest Jurassic to early Aptian);

2) varicoloured, dominantly red radiolarites in thin beds sandwiched between pinkish 

marly limestones (Selcifero Lombardo Group, Middle-Late Jurassic);

3) blackish marly limestone, locally silicified and/or containing dark chert nodules, with 

traces of parallel lamination (Medolo Group, Early Jurassic);

4) grey, coarsely crystalline dolostone with “dusty” appearance and locally-preserved 

stromatolites (Dolomia Principale, Norian).

Other less distinct limestone clasts can be broadly ascribed to lithostratigraphic units 

belonging to the Southalpine Upper Triassic to Cretaceous sedimentary succession (Zu 

Limestone, Conchodon Dolomite, “Corna”, etc.). Gunzenhauser (1985) described pebbles 

that, upon observation on thin section, revealed an assemblage of large benthic 

foraminifera diagnostic for the Brenno Formation (Kleboth 1982; Tremolada et al. 2008), a 

Late Campanian to Maastrichtian formation in Scaglia facies. No clasts from older rocks 

(Variscan metamorphites, Collio volcanics, Verrucano Lombardo-Servino clastics) or from 

the Adamello batholith, cropping out in the present-day drainage basin of the Camonica 

and Trompia Valleys, were detected after screening several thousand pebbles, cobbles 

and boulders from MOC outcrops.

The conglomerates are massive- to poorly-bedded, commonly display maximum clast 

elongation parallel to bedding planes. Clast-supported, horizontally-stratified gravel (Gh)

and clast-supported, massive gravel (Gcm) lithofacies prevail (Miall 2006; in order to avoid 

the introduction of new facies codes and emphasizing similarities in depositional 

processes, Miall codes were applied also to fan-delta deposits). Upcurrent-dipping 

imbricated clasts are locally observed (Pl. IIc; flow direction south to southwest), whilst 

grading, usually normal, is hardly recognized at Monte Orfano. Large thick-shelled 
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bivalves (Pectinacea) are locally preserved as disarticulated and abraded valves with 

convex-upward orientation at the top of beds (Pl. IId).

At Badia, aligned elongate pebbles are commonly observed on the bedding planes of 

conglomerate strata indicating NE to SW flow direction with their long axes (SenGupta 

1966; Fig. 2). 

S a n d s t o n e s , fairly rare at Monte Orfano, are instead widespread at Badia and Sale. 

There, they commonly consist of channelised medium to very coarse-grained sandstones 

and pebbly sandstones (planar cross-laminated sand lithofacies, Sp of Miall, 2006; Pl. IIe) 

locally displaying high-angle and, less commonly, trough cross-lamination. Invariably 

unfossiliferous, the sandstones are organised in individual tabular to lenticular, several 

dm-thick beds, and are typically intercalated within finer-grained sediments or represent 

the basal part of coarsening-upward cycles topped by conglomerates. At Monte Orfano 

instead, sandstones are limited to the plugs, not exceeding 30 cm in thickness, of 

individual fining-upward conglomerate beds and represent the finer-grained tail of single 

depositional events. The sandstones are well cemented (“calcarenite saldissima” of 

Vecchia and Cita 1954). Gastropods and disarticulated bivalves are locally preserved as 

broken and abraded shells filled by internal moulds.

F i n e - g r a i n e d  c l a s t i c  f a c i e s  display at least three distinct subfacies types:
1) whitish and yellowish, massive, sandy to silty mudrocks, with a “chalky” appearance 
(massive mud and silt lithofacies, Fm of Miall 2006 – here renamed Fm1; Pl. IIf). This 
facies, remarkably light in the hand, forms discontinuous intercalations between 
conglomerate beds and is restricted to the Monte Orfano. Calcareous nannoplankton and 
foraminifera do occur (see below).

2) grey to yellowish, massive, silty marls arranged in m-thick planar beds with 

gastropods and bivalves (lithofacies Fm of Miall 2006 – here renamed Fm2). This facies, 

resembling an hemipelagite polluted by a conspicuous siliciclastic input, is rare and also 

restricted to the Monte Orfano.

3) yellowish to brownish calcareous siltstones and very fine-grained sandstones, with 

pedogenetic features, in dm- to m-thick intervals (parallel-laminated siltstone and 

mudstone lithofacies, Fl of Miall 2006). This facies, which contains rare plant remains and 

freshwater molluscs, was observed only at Badia and Sale. Typically, lithofacies Fl is 

oxidised and shows rhizoconcretions, locally associated with caliche close to the top of 
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individual layers. Caliche is commonly clustered in pluricentimetric to decimetric horizons, 

denser towards the top of the bed, and sometimes culminating in a continuous or nodular 

calcrete layer.

A representative stratigraphic section for Monte Orfano, measured along the road from 

Cologne to the Cappella Alpini (stratigraphic section on Pl. I) and displaying most of the 

described lithofacies, is reported in Fig. 3A. A vertical plot of maximum and modal grain 

size of clasts depicts a sequence of coarsening-upwards (CU) cycles, a few tens of 

metres-thick each, that is not easily appreciated in the field. Thinner fining-upwards cycles 

are locally superimposed on the main CU trend.

The vertical lithofacies stacking pattern, the planar geometry of strata at outcrop scale and 

the occurrence of shallow-marine fossils point to a gravel-dominated shelf fan-delta with 

distributaries subjected to strong lateral migration and amalgamation. Conversely, 

interdistributary areas are poorly represented. As a consequence, Fm1 and Fm2

lithofacies are volumetrically negligible but are crucial to demonstrate the marine 

environmental conditions, that are difficult to recognize because of the overwhelming Gh

facies.

A composite stratigraphic log for the Badia hill was measured from the Sant’Anna Church 

to the Badia Alta House (Fig. 3B). In the basal part, lithofacies Sp and Fl are arranged in 

metric fining-upward cycles, interpreted as overbank deposits in an alluvial plain setting. 

Upsection, conglomerates in metric beds commonly overlie much thinner alternations of 

Sp and Fl lithofacies, corresponding to coarsening-upward cycles with an overall negative 

(prograding) trend, in contrast to the underlying alluvial plain stratal packages. High-

energy intervals, episodically interrupted by metric deposits in Fl lithofacies, prevail up to 

the top of the section. Thick Fl intervals with local soil horizons are interpreted as evidence 

of persistent overbank settings, whilst laterally discontinuous and lenticular sandstone 

beds embedded in the Fl facies may represent natural levee/crevasse-splay deposits. The 

lack of marine fossils, the persistence of the Fl lithofacies throughout conglomerate-

dominated cycles and the overall prograding trend imply a distal alluvial fan setting. The 

observed pedogenetic features document the occurrence of weakly to moderately 

developed soils in the Badia hill section. Massive precipitation of CaCO3 close to the top 



10

of the Fl layers suggests hot and semi-arid to sub-humid climatic conditions (Retallack 

1990).

Sandstone petrography

A total of 10 modal analyses (point-counting target = 300 points) was performed on 

moderately-sorted sandstones in the grain size range F = -0.50 ÷ 2.00 in order to 

investigate in detail the provenance of the MOC. Thin sections were completely stained 

with red alizarine to discriminate calcite from dolomite. Seven out of ten samples were 

taken from Monte Orfano, two from Badia and one from Sale.

MOC sandstones are nearly pure sedarenites (Folk 1974) consisting almost exclusively of 

carbonate and cherty lithics (on the average, Q1F0R99). However, subordinate quartz, 

volcanic lithics and sandstone rock fragments also occur. Carbonate extrabasinal grains 

(CE, DE sensu Zuffa 1987) are dominant (75-90% of the sandstone framework) among 

sedimentary lithics. Thus, working categories based on carbonate texture were employed 

to better discriminate provenance following Dunham’s (1962) classification of limestones 

(Table 1).

Inspection of calcareous to marly clasts revealed the occurrence of Cretaceous macro-

and microfossils, and of Paleogene planktonic foraminifera. In detail, clasts of calpionellid 

lime mudstone (Maiolica) contain Calpionella alpina (latest Tithonian to possibly earliest 

Berriasian), Calpionellopsis oblonga (middle to latest Berriasian) and radiolarians 

(particularly common in the Maiolica before the Early Valanginian): thus, the Maiolica 

seems totally represented. Few clasts with dark micrite contain Rotalipora appenninica gr., 

Globigerinelloides ultramicrus, Heterohelix sp., possible Paracostellagerina sp. and 

possible fragment of Planomalina buxtorfi, pointing to the uppermost Albian, that is 

represented in the study area by the Sass de la Luna (Bersezio, 2005). Globotruncana 

bulloides, G. hilli, Archaeoglobigerina sp. and other not diagnostic cuts of double-keeled 

globotruncanids indicate a Late Cretaceous, probably Campanian age for other clasts; 

very rare Inoceramid fragments also indicate the Cretaceous. Finally, two sparse 

specimens with cancellate wall generally indicate the Paleogene. 
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Intrabasinal grains (also including echinoid fragments and a single ferricrete chip) never 

exceed 3% of the rock volume in samples from Monte Orfano, whilst feldspars and heavy 

minerals, including detrital micas, are extremely rare. Primary pores were filled by sparse 

micrite and by a widespread, sparry calcite cement. All the studied sandstones match the 

composition of modern “non-metamorphic calclithite sands” documenting an “undissected 

stage of continental block provenance” according to Garzanti et al. (2006).

Quantitative data obtained from modal analyses (Table 1) indicate that the most common 

sedimentary lithic type are micritic limestones (lime mudstones, wackestones and 

microsparites), which represent one third to half of the rock volume. Granular limestones 

(packstones, grainstones) are subordinate, but their abundance is unrelated – unlike it 

might be expected – to the sandstone grain size. Among all kind of lithics, and more 

notably among carbonate lithics, pseudodolosparites are the grain type that records the 

maximum variations in abundance from sample to sample (from 0.0 to 22.3% of rock 

volume, reflecting in fluctuations of the DE/[DE+CE] ratio by one order of magnitude). 

Chert abundance and relative proportions among radiolarian, spicular and unclassifiable 

cherts remain instead fairly constant in the investigated sample population. Sandstone 

rock fragments, monocrystalline and polycrystalline quartz as well as very rare K-feldspar, 

muscovite/biotite flakes and garnet grains (Pl. IIIe-f) might have been recycled from 

outcrops of Cretaceous flysch units. In those units, fed also by the Variscan basement 

during an early stage of tectonic structuring of the Alps, garnet can be the dominant heavy 

mineral in particular stratigraphic intervals (Bernoulli and Winkler 1990). Rare and deeply-

altered volcanic lithics, which display vitric and microlithic structures, can be assigned to 

the subvolcanic Paleogene porphyrites sparsely intruded in the Mesozoic succession 

(Fantoni et al 1999).

Sharply angular chert grains (Pl. IIIb) vs. subangular to rounded carbonates are explained 

by differential rounding of clasts during stream transport and deposition in a high-energy 

environment before burial. Such evidence clearly indicates first-cycle sedimentation with 

exceptional “textural inversions” (Folk 1951: e.g., rounded quartz vs. subangular carbonate

grains) pointing to very limited recycling of older sandstones. Erratic abundance variation 

of dolostone grains seems to reflect limited and accidental incision into carbonate platform 
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facies of the Triassic succession, which is everywhere topped by a thick slab of Dolomia 

Principale. 

Mineralogy of the muddy Fm1 lithofacies

X-ray mineral diffraction (courtesy of M. Dapiaggi, University of Milan) and standard 

calcimetry measurements were carried out on four samples from the Fm1 lithofacies. 

Results are summarised in Table 2.

Calcite is the dominant mineral in the Fm1 lithofacies, but quartz is also widespread. No 

opal-CT, commonly described in “tripolaceous” facies (Amorosi et al. 1995; Falorni 2003) 

was detected.

Dolomite, interpreted as detrital in origin, occurs only in sample MO14. The absence of 

dolomite in three out of the four samples confirms the limited contribution to the MOC from 

detritus derived from the Dolomia Principale and possibily older dolostone-dominated 

Triassic units. Another “rumorous absence” concerns detrital mica flakes, which are 

expected to be concentrated in finer-grained sediment fractions by virtue of hydraulic 

sorting processes.

Thin-section analyses show that the Fm1 lithofacies is characterised by an irregular 

honeycomb structure (Pl. IIIg) with conspicuous and roughly equidimensional secondary 

pores that point to diagenetic dissolution of subspherical particles. This process has taken 

place when the muddy matrix was lithified enough to prevent pore collapse. Very high 

secondary porosity accounts for low density and extreme mechanical weakness of the 

Fm1 lithofacies.

Calcareous nannofossil biostratigraphy

Calcareous nannofossil biostratigraphic investigations have been performed on 12

samples collected from lithofacies Fm1 and Fm2 of the MOC. Samples were taken from 

the stratigraphic section (Fig. 3A) and sparse outcrops at Monte Orfano (Table 2). Due to 

the lack of a continuous section throughout the MOC, stratigraphic position can be 

assessed only within the stratigraphic section. However, location of the sampling sites with 

respect to the bedding allowed us to attribute most of the studied samples to the upper 
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part of the exposed succession. All samples were prepared using standard techniques 

described by Bown and Young (1998). Smear slides were analyzed using standard light-

microscope techniques under crossed polarizers and transmitted light at 1250x 

magnification. Calcareous nannofossils were identified at the species level (Pl. IV) by 

using the taxonomic schemes of Perch-Nielsen (1985), de Kaenel and Villa (1996), and 

Young (1998). The biozonations of Martini (1971) and the timescale of Berggren et al. 

(1995) were adopted in this study.

Samples MO12 and MO14 are barren of calcareous nannofossils, whilst MO10 and MO11 

contain only Watznaueria barnesae, a reworked Mesozoic taxon. A single specimen of 

Reticulofenestra bisecta (R. scissura of several authors; NP15-NN1) has been observed in 

the sample MO13. Conversely, calcareous nannofossils are fairly abundant in the samples 

MO1, MO3, MO5, MO6, MO7, M15a, and M15b, but characterized by moderate 

preservation. Evidence of reworking from Mesozoic and Paleocene-Eocene formations 

has been observed in all these samples. Reworked Mesozoic taxa are extremely 

abundant and are represented by Watznaueria barnesae, W. britannica, W. manivitae, 

Cretarhabdus spp., Rhagodiscus spp., Cribrosphaerella ehrembergii, Biscutum spp., 

Zeughrabdotus spp., Micula staurophora, Nannoconus spp., and Tranolithus spp. 

Paleogene species are less abundant, but Neochiastozygus spp., Chiasmolithus spp. 

(especially C. consuetus), and Toweius gammation make up the 6-8% of the total 

nannofloral assemblages. However, the samples contain similar Neogene calcareous 

nannofossil communities. The most abundant taxa are long-range calcareous 

nannofossils such as Cyclicargolithus floridanus, Sphenolithus moriformis, 

Reticulofenestra minuta, Discoaster deflandrei, and Coccolithus pelagicus; nonetheless, 

coccoliths with a high biostratigraphic significance are frequent and allowed us to define a 

fairly precise biostratigraphy. All samples show the concurrent presence of 

Cyclicargolithus abisectus (NP24-NN1), Zygrhablithus bijugatus (NP7-NN2), 

Reticulofenestra lockeri (NP23-NN2), Helicosphaera recta (NP24-NN1), Helicosphaera 

carteri (intra NN1-Recent), and Triquetrorhabdulus carinatus (NP25-NN2), whilst taxa such 

as Sphenolithus ciperoensis (NP24-NP25), Sphenolithus distentus (NP23-NP24), 

Discoaster druggii (NN2-NN4), Sphenolithus disbelemnos (NN2-NN3), and Helicosphaera 
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ampliaperta (NN2-NN4) are absent. These findings suggest that all samples can be 

assigned to the NN1 nannofossil zone, which straddles the Oligocene/Miocene boundary. 

In particular, the Last Occurrence (LO) of S. ciperoensis marks the base of CN1 in the 

nannofossil biozonation of Okada and Bukry (1980), whilst the base of NN1 (Martini 1971) 

was originally defined by the LO of H. recta. However, it is now well established that H. 

recta has its LO in the Miocene and the LO of S. ciperoensis is formally used as the 

nannofossil event indicating the base of NN1 nannofossil zone (Young 1998 and 

references therein). The presence of R. bisecta, whose LO is used to define the base of 

the Miocene (e.g., Berggren et al. 1995), may be the result of reworking since the 

occurrence of H. carteri (intra NN1-recent) excludes an age older than Miocene (e.g., 

Young 1998). The continuous occurrence of H. carteri in this study indicates an earliest 

Miocene age (Neogene portion of NN1) for the muddy lithofacies Fm1 of the MOC. 

Microfossils

Foraminiferal investigations have been performed on the same samples studied for 

calcareous nannofossils collected from lithofacies Fm1 of the MOC. Eight samples were 

taken from the stratigraphic section (Fig. 3A) and isolated outcrops on the Monte Orfano 

(Table 2). The samples were washed following standard techniques.

The fossil assemblages are, if present, overall very poor and the specimens are very 

poorly-preserved. The only exception is sample MO1, the residue of which yielded some 

benthic and rare planktonic foraminifers, 5-6 specimens of radiolarians, common echinoid 

spines, one mollusc fragment and a few tubular moulds of possible burrows. The inorganic 

residue consists of quartz.

In spite of the poor preservation, a few benthic and planktonic taxa could be identified. 

The rare planktonic foraminifera are of mixed ages and include specimens of middle to 

late Eocene Globigerinatheka spp. and Late Cretaceous globotruncanids, the latter 

reported also by Cita (in Vecchia and Cita 1954). The benthic foraminiferal assemblage is 

moderately diversified though each taxon is represented by one single specimen. The 

species identified are: 

Textularia sp.
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Lenticulina cf. inornata (d’Orbigny) 

Heterolepa cf. floridana (Cushman) 

Anomalinoides helicinus (Costa) 

Cibicidoides sp.

Ammonia beccarii (Linneus)

Cita (in Vecchia and Cita 1954) described a foraminiferal assemblage from the MOC 

comprising both benthic and planktonic foraminifers, dated as not older than Miocene. 

However, the rather rich assemblage described by Cita does not contain the species listed 

above from sample MO1, which, on the other hand, is devoid of planktonic taxa of 

Miocene age. Nevertheless, the few benthic species identified in sample MO1 mainly 

appear in the Miocene (Agip 1982). In particular, according to Cahuzac and Poignant 

(2002) and Daneshian and Dana (2007), the first occurrence of Ammonia beccarii

indicates the earliest Miocene. Despite the paucity of foraminifera in terms of index 

species and preservation, the Miocene age of the MOC indicated by Cita (in Vecchia and 

Cita, 1954) is here confirmed, although restricted by the calcareous nannoplankton data to 

the very onset of the Miocene. The planktonic foraminifera of middle to late Eocene and 

Late Cretaceous ages, as well as the few radiolarians, must be considered as reworked.

Palynologic analyses (courtesy of S. Torricelli, ENI E&P) were performed on samples from 

fine-grained facies exposed at Monte Orfano and Badia. Samples from Badia (lithofacies 

Fl) were found to be barren or bearing very badly-preserved pollen. Pollen assemblages 

from Monte Orfano (lithofacies Fm2) did not provide any chronologic information, but 

suggest a low grade of burial diagenesis.

Macrofossils

Molluscan and plant remains are known since the earliest works on the MOC. At Badia, 

Helix ramondi Brongniart, H. noueli Deshayes, Cyclostoma antiquum Brongniart and 

Glandina sp. were found (Deshayes 1860; Sordelli 1882). Sordelli (1882) identified plant 

remains such as Cyperacites sp. and Myrica ragazzonii Sordelli. H. ramondi points to a 

latest Chattian age (Sige et al. 1995).
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In addition to these previous findings, our study also documents at Monte Orfano the 

occurrence of a limited molluscan assemblage, in which E. Robba (pers. comm. 2007)

identified the pectinid bivalves Oopecten rotundatus Lamarck (Pl. IId) and Pecten

(Amussiopecten) burdigalensis Lamarck (Pl. Va), the tellinid bivalve Tellina sp. (Pl. Vb) 

and the gastropod cf. Bolma sp. (Pl. Vc-g). The occurrence of O. rotundatus points to an 

Egerian age (Mandic 2007), which spans the entire NP25 and NN1 nannofossil zones 

following the timescales of Berggren et al. (1995) and Cicha et al. (1998). The taxa Pecten 

burdigalensis and Bolma proborsoni Sacco are common forms in the Lower Miocene of 

Piedmont. These scarce and poorly-preserved molluscan taxa, which suggest shallow-

marine and high-energy depositional settings, have relatively long stratigraphic ranges 

that, however, match an Early Miocene age.

Although the sediments at Badia-Sale do not contain marine fossils, we tend to correlate 

them with the fan-delta deposits of Monte Orfano. This age attribution is in contrast to the 

Messinian age proposed by Brambilla and Penati (1987).

Discussion

Sand provenance. Data on sandstone framework grains can be interpreted in terms of 

provenance. Key features of the almost pure sedarenites sporadically interbedded in the 

MOC are: 1) the practical absence of crystalline basement and pre-Cenozoic volcanic 

grain types; 2) the low and erratic abundance of dolostone grains; and 3) the relatively 

high chert/carbonate ratio in the sand fraction compared to the rock types exposed in the 

present-day catchement area (Lake Iseo and Camonica Valley).

Consistent with observation on pebbles, composition of sand grains indicates provenance 

from a sedimentary succession extending from Triassic dolostones to Cretaceous-

Paleogene marls. Chert enrichment might be due to selective dissolution of limestones 

during erosion, transport and residence in the depositional environment before final 

deposition. Although the Oligocene-Miocene transition is regarded not to be as arid as the 

Late Miocene (Harzhauser et al., 2007), it is unlikely that carbonate dissolution under 

humid climatic conditions affected significantly the chert/carbonate ratio because: 1) 

efficient transport mechanisms are indicated for the MOC; and 2) a semiarid to arid 
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climate is documented by the conditions of soil formation at Badia. In fact, evidence for 

carbonate dissolution (oxidised limestone grains and intrabasinal silcrete/ferricrete clasts) 

is extremely poor. If we accept the assumption that composition of the MOC closely 

reflects the composition of rock types exposed in the Southern Alps drainage basin, 

possibly modified by processes acting during sediment transport such as differential 

rounding, we must conclude that, in the drainage basin of the MOC, a superficial section 

of cherty Mesozoic formations was exposed, with erosion only sporadically reaching into 

the Dolomia Principale and certainly not cutting into deeper stratigraphic levels. In our 

interpretation, however, the drainage basin should not have been too small or local based 

on 1) relatively homogeneous, pebbly-cobbly grain size, 2) absence of matrix-supported 

mass flow deposits, 3) rounding of carbonate clasts, and 4) homogeneous petrography 

over a relatively wide area.

Therefore, we favour a paleotectonic scenario in which the Camuna Anticline and the 

Adamello Batholith had not yet been exhumed (see below). This model is also supported 

by paleotectonic reconstructions, according to which the overthrusting of the Camuna 

Anticline (Thrust System 2B – Trompia Unit of Schönborn 1992; Unit I of Cassinis et al. 

2009) onto the Mesozoic succession occurred only during the Middle to Late Miocene 

(“Valtrompia-Valsugana phase” of Castellarin et al. 1992; “Lombardic phase” of 

Schumacher et al. 1997), after deposition of the MOC. 

Lithostratigraphy. Grouping the sedimentary rocks exposed at Monte Orfano and at Badia-

Sale into a single formation poses some unresolved questions. Whereas similar lithologies 

and clast content support the current attribution of all these outcrops to the MOC, 

remarkable differences in depositional setting (shallow-marine fan-delta vs. alluvial plain to 

alluvial fan) and distinct fossil content exist, that might be sufficient reasons (Salvador 

1994) to split the MOC into two spatially distinct formations. On the other hand, the same 

petrographic composition of both the gravelly and sandy fractions of the sediments at 

Monte Orfano and Badia-Sale strongly shows that all these sediments belong to one and 

the same petrofacies (Dickinson and Rich 1972), reflecting an early stage of tectonic uplift 

during the formation of the Southern Alps. As far as the Messinian age proposed by 

Brambilla and Penati (1987) for the Badia-Sale sediments is concerned, we consider 
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highly unlikely that, after the Tortonian phase of Alpine deformation and uplift, the 

drainage area was still shedding the same “undissected-stage” detritus that it had shed 

over 15 My before.

We recommend not only to keep the MOC as a single formation, but also to include it into 

the Gonfolite Lombarda Group (GLG) of the Como-Varese area (Cita 1957; 

Gunzenhauser 1985; Bersezio et al. 1993; Schumacher et al. 1997) together with all syn-

orogenic clastics of the Southalpine foredeep buried below the Po Plain (Dondi and 

D’Andrea 1986; Picotti et al. 1997). Although the MOC strongly deviates from the average 

petrography and sedimentology of other GLG formations (compare with Gunzenhauser 

1985; Gelati et al. 1988; Carrapa and Di Giulio 2001; Sciunnach and Tremolada 2004), its 

paleotectonic significance and age are the same. Also the MOC represents, in fact, a 

coarse clastic formation deposited in the Oligo-Miocene retro-foreland basin at the front of 

the Southern Alps retrowedge after the Alpine collision, and, likewise, reduced to a 

deformed wedge-top succession by the Middle to Late Miocene tectonics.

Age and regional correlation. Based on literature and present data, we believe that the 

bulk of the MOC, almost certainly younger than zone CP19a (Valdisturlo et al. 1998), is 

essentially latest Oligocene in age. This because nannofossil zone NN1, straddling the 

Oligocene/Miocene boundary, is documented only in the upper part of the succession. 

Even though the Miocene part of nannofossil zone NN1 is documented, the thickness of 

the underlying conglomerates makes a latest Oligocene age probable for their base. The 

fine-grained lithofacies occurring in the Chiari 1 well is coeval to the MOC and would 

therefore suggest a downslope lithofacies change from proximal conglomerates to distal 

mudstones and sandstones over a distance of nearly 4 km.

If our assumptions are correct, a correlation with the Como Conglomerate (base of the 

GLG, dated to nannofossil zones NP25-NN1; Scardia et al. 2007) can be established (Fig. 

4); both events would reflect the same phase of rapid deformation and uplift of the Alps 

during the late Chattian (Giger and Hurford 1988; Bersezio et al. 1993; Ford et al. 2006). 

Available ages and lithologic descriptions of Oligo-Miocene sediments are comparatively 

poor in the Lake Garda sector, east of the study area. At Monte Brione (Riva del Garda), 

glauconitic sandstones and conglomerates of late Chattian-Aquitanian age 
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(“glaukonitische, sandige Kalke” of Hagn 1956; Mt. Brione Formation of Luciani 1989) 

unconformably overlie Rupelian bioclastic limestones (“Lithothamnien-Kalke” of Hagn 

1956; Linfano Limestone of Luciani 1989). Other Oligo-Miocene clastic sediments from 

the southern Lake Garda area (Zinoni 1951; Manerba Fm. of Boni and Cassinis 1973) are 

too loosely dated and poorly characterised in terms of petrography and provenance to 

allow meaningful correlations for the moment.

Further to the East, in the Veneto and Friuli regions, the base of the “molassa” (a clastic 

wedge up to 4000 m-thick recording Alpine uplift throughout the Miocene) is also dated as 

late Chattian to Aquitanian (Massari et al. 1986; Stefani et al. 2007). Recent calcareous 

nannofossil data from the Dinarides indicate that, after a stratigraphic gap spanning most 

of the Oligocene, sedimentation resumed in the northern part of the Dinaric foredeep 

during nannoplankton Zones NP24 to NP25 (Mikes et al. 2008). This Chattian to Miocene 

part of the Outer Dinarides Flysch is broadly equivalent to the Cavanella Group (Nicolich 

et al., 2004).

The rough, but substantial synchrony of the latest Oligocene unconformity over a wide 

region requires a major tectonic event that involved the whole Southern Alps-Dinaric 

foredeep, and can be hardly accounted for by an eustatic lowstand only. The end-

Oligocene global eustatic fall (Berggren et al. 1995; Harzhauser et al., 2007) might have 

enhanced coarse clastic deposition, but the eustatic signal is often ambiguously recorded, 

or completely outstripped, by the tectonic signal in active settings (see discussion in Gelati 

et al. 1988 for the significance of the base of the GLG).

Tectonic implications. The tectonic position of the MOC has been clarified by structural 

cross-sections based on seismic data (Pieri and Groppi 1981), on balanced palynspastic 

sections (Schönborn 1992), or on both (Picotti et al. 1997). It belongs to a structural horse 

that displays a thick supracrustal section, extending from the Variscan basement namely 

to the MOC. In more internal (northern) areas of the Alps, correlatable crustal sections had 

been thrusted southwards during two distinct tectonic pulses, starting since the Late 

Cretaceous (pre-Gosau “Phase”) and surely not younger than the Middle Eocene (i.e., 

pre-Adamello). The uplift recorded by the MOC can be ascribed to early post-Adamello 

orogenic movements (Thrust system 2B of Schönborn 1992) in the hinterland of the MOC 
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basin, where about 4 km of sediments at least had been exhumed. The revised 

biostratigraphic age here proposed for the MOC documents the importance of such early 

post-Adamello tectonics and related uplift, that brought to erosion stratigraphic units as 

young as the Cretaceous-Eocene. 

A tentative paleotectonic scenario at the MOC time (latest Oligocene) has been proposed 

by restoring a geologic cross-section (Fig. 5) through the Southern Alps and the Po Plain 

in the study area. The cross-section has been modified from Fantoni et al. (2004), Fantoni 

and Franciosi (2008) and depth-extrapolated following the considerations about the 

Southern Alps thick-skinned tectonic style proposed in Picotti et al. (1995; 1997) and 

Doglioni (2007). The palinspastic restoration process accounted for, in this order: the ~5° 

southward Pliocene tilting of the Southern Alps due to the Pliocene Apennine flexuration, 

the out-of-sequence thrusting of the frontal anticline (“flessura pedemontana”), and the 

Burdigalian to Tortonian in-sequence outward thrusting (Schönborn 1992; Bersezio et al. 

1993; Picotti et al. 1995; 1997). The inferred sea level in the latest Oligocene 

paleotectonic scenario is constrained by the MOC depositional environments, spanning 

from alluvial plain to shallow-water settings. 

In our interpretation, blind thrusting of the Orobic anticlines and carbonate allochtonous 

units (Fantoni et al., 2004) were active during the latest Oligocene, mainly upthrowing the 

pre-Adamello thin-skinned structural stack of Mesozoic carbonate cover. In the study area, 

the metemorphic basement was not exhumed, lying well below the erosion base level, 

whilst the ongoing erosion of the Aptian to Paleogene flysch and marls, whose clasts have 

been identified in the MOC sediments, is documented.

Comparison of coeval clastics from the GLG (Carrapa and Di Giulio 2001; Vezzoli et al. 

2007) and the MOC reveals that different structural levels were eroded in western and 

eastern Lombardy at the onset of the Alpine post-collisional deformation. Whilst nearly 

“ideal arkose” (Dickinson 1985; Garzanti et al. 2006) were being deposited in the Como 

Conglomerate (Vezzoli et al. 2007), almost pure sedarenites constituted the MOC. 
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Conclusions

The MOC was deposited along the uprising front of the Southern Alps in a shallow-marine 

settings for its main part at Monte Orfano, and in a continental setting for the Badia-Sale 

area, as suggested by faunal and sedimentological evidence. Even though a precise 

correlation between the outcrops at Monte Orfano and Badia-Sale could not be 

established, identical sandstone petrofacies supports a rough chronological correlation of 

clastic sediments deposited in laterally contiguous environments.

The new biostratigraphic data, obtained from the analysis of calcareous nannoplankton, 

suggest that the age of the MOC is substantially older than hitherto estimated. The bulk of 

the succession may probably be assigned to the late Chattian and the top part is surely 

not younger than the earliest Miocene instead of Early to Middle Miocene. The new 

biostratigraphic constraints provided in this study allowed us to indirectly refer the early 

stage of post-collisional thrusting of the Southern Alps to the latest Oligocene at least and 

to frame it into a more coherent regional scenario of strong Alpine tectonic activity and 

uplift during the Late Oligocene. In fact, if a latest Oligocene age is assumed for the thick 

conglomerate succession underlying the sampled mudrock intervals, the onset of the 

deposition of the MOC was roughly coeval with deposition of foredeep turbidites and other 

mass-flow deposits in western Lombardy and Piedmont (GLG: Scardia et al. 2007). In 

addition, the deposition of the MOC correlates with other local clastic formations cropping 

out to the east, in the Lake Garda area (M. Brione Fm.) and, farther eastwards, in the 

Veneto-Friuli region (“molassa” veneto-friulana) and in the Outer Dinarides foredeep.

While the Como Conglomerate was fed by crystalline basement rocks (thence their 

arkosic composition), the MOC records the incipient unroofing of newly-uplifted 

sedimentary basins. This indicates that the Alpine retro-foreland basin recorded as a 

whole the synchronous tectonic activity of two distinct structural domains. The MOC was 

fed by the structuring of a proximal Southern Alps retrowedge and, in the contrast, the 

Alpine axial chain was feeding the GLG. Although of limited extent, the MOC proved to be 

a key tessera in reconstructing the timing and regional distribution of the mosaic of clastic 

bodies that records the early stages of the post-collisional Alpine uplift during the 

Cenozoic Era.
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Figure Captions

Fig. 1 Geological sketch map of the catchment area of the Monte Orfano Conglomerate (after Montrasio et al. 

1990) and simplified stratigraphy of the MOC source rocks.

Fig. 2 Rose diagrams of paleocurrent trends and fractures from Badia. A) paleocurrent directions based on 

gravel imbrication; B) paleocurrent directions based on orientation of basal flow marks and of the major axis 

of elongated pebbles; C) strike of vertical fractures.

Fig. 3 Stratigraphic sections at Monte Orfano and Badia.

Fig. 4 Correlation of the MOC with adjacent units deposited in the Southalpine retro-foreland. Vertical 

timescale after Berggren et al. (1995). CM = Chiasso Formation (Marls); LL = Linfano Limestone; MBF = 

Monte Brione Fm.; MVF = “molassa” veneto-friulana; ODF = Outer Dinaride Flysch; VOC = Villa Olmo 

Conglomerate.



29

Fig. 5 Tentative paleotectonic scenario for the Chattian-early Aquitanian Monte Orfano Conglomerate.

Plate I Geological map of the Monte Orfano hill (after Corbari 2006; D. Corbari, P. Falletti, GS & DS, 

unpublished data collected in the framework of the CARG Project) and of the Badia-Sale hillos (insets). 

Topographic base: Carta Tecnica Regionale at the 1: 10 000 scale.

Plate II Lithofacies and sedimentary structures in the MOC. a) crudely-bedded orthoconglomerates (Gh

facies) with iso-oriented platy pebbles and vague downstream imbrication (flow direction: right [NE] to left 

[SW]); b) strong differential relief between carbonate and chert clasts; c) imbricated pebbles and cobbles 

(flow direction: right [NE] to left [SW]); d) bedding surface displaying a thick-shelled and abraded, large 

pectinid valve (Oopecten rotundatus Lamarck); e) cross-bedded sandstones (Sp facies) intercalated between 

Gh beds; f) “chalky” mudrocks (lithofacies Fm1). All photos from Monte Orfano; photos a,b,f by D. Corbari –

phots c,d,e by DS.

Plate III Petrography of MOC arenites and mudrocks from Monte Orfano. a) typical petrofacies 

(sedarenites/calclithites). Note subangular to subrounded carbonate and comparatively less abundant chert 

clasts. The largest carbonate clast is a calpionellid lime mudstone/wackestone that can be doubtlessly 

assigned to the Maiolica Fm.; b) sharply angular chert grains; c) oolitic grainstone fragment (Conchodon

Dolomite?); d) sandstone fragment; e-f) single garnet grain; g) irregular honeycomb structure in mudrocks 

from facies Fm1. Photomicrographs a,b,c,e parallel nicols; photos d,f,g crossed nicols. Scale bar = 250 m.

Plate IV Calcareous nannofossils from the MOC mudrocks. 1-2) Reticulofenestra scissura (bisecta) (crossed 

nicols; sample MO3); 3) R. bisecta (parallel nicols; sample MO3); 4) Cyclicargolithus abisectus (crossed 

nicols; sample MO5);  5-6) Helicosphaera carteri (crossed nicols; sample MO5); 7-8) Cyclicargolithus 

floridanus (crossed nicols; sample MO1); 9-10) Discoaster deflandrei (parallel nicols; sample MO1); 11-12) 

Triquetrorhabdulus carinatus (crossed nicols; sample MO1); 13) Coccolithus pelagicus (crossed nicols; 

sample MO5); 14-15; Helicosphaera mediterranea (crossed nicols; sample MO3); 16) Helicosphaera recta

(crossed nicols; sample MO7); 17-18) C. pelagicus (crossed nicols; sample MO6); 19-20) Zygrhablithus 

bijugatus (crossed nicols; sample MO3).
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Plate V Macrofossils from facies Sp, Monte Orfano. a) Pecten (Amussiopecten) burdigalensis Lamarck 1809, 

left valve; b) Tellina sp., left valve; c-g) cf. Bolma sp., various orientations. Scale bar = 2 cm. Determinations 

by E. Robba.

Tab.1 Petrography of the MOC arenites. Samples in alphabetical order. Qs = monocrystalline quartz; Qp = 

polycrystalline quartz; Af = alkalifeldspar; VRF = volcanic rock fragments. Carbonate extrabasinal grains (CE 

of Zuffa 1987) were subdivided into: CEM = lime mudstones (some of them displaying Calpionellid loricae

and therefore reliably ascribed to the Maiolica Fm. - Tav. IIIa); CEW = wackestones, locally rich in 

radiolarians or, less commonly, containing Late Cretaceous globotruncanids; CEP = packstones; CEG = 

grainstones, commonly oolitic (Tav. IIIc); CEMIC = microsparites, a diagenetic facies that can originate from 

recrystallized micritic limestones; CEPSE = pseudosparites, a diagenetic facies that commonly originates 

from recrystallization of granular limestones such as packstones and grainstones, but that in principle can 

derive from any deeply-buried limestone type. Dolostone extrabasinal grains (DE) were subdivided into: 

DEMIC = microdolosparites, corresponding to dolomitized micritic limestones; DEPSE = pseudodolosparites, 

where the growth of large dolomite crystals has obliterated any original texture. Chert lithics were subdivided 

into: ChR = radiolarian chert; ChS = spicular chert; Chnn = unclassified chert. ARF = sandstone rock 

fragments (Tav. IIId); HM = heavy minerals; CI = carbonate intrabasinal grains; NCI = non-carbonate 

intrabasinal grains; mat = matrix, including recrystallized micrite; cem = calcite cement; aut = authigenic 

minerals; TOT = total. QFR modes after Folk (1974); C/Q, P/F, V/L ratios after Dickinson (1970); NCE-CE-

NCI-CI modes after Zuffa (1987); GSZ = grain size in  scale.

Tab. 2 Descriptive characters (spatial coordinates and ages based on calcareous nannoplankton) for 

samples from Facies Fm1. Biogenic and mineral content of washing residues was described for eight 

samples; the results of calcimetric and X-ray diffraction analysis are available only on four samples.
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Sciunnach et al. Fig. 2
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Sciunnach et al. Fig. 3
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Sciunnach et al. Fig. 4
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Sciunnach et al. Fig. 5
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Sciunnach et al. Pl. 1
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