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Abstract 9 

What forces control active deformation in the Central Mediterranean? Slab-pull has long been 10 

debated, but no other hypothesis has been generally accepted. Here we analyze the role of shear basal 11 

tractions.  12 

By using a thin-shell modeling technique, we generated a large number of models that span 13 

different sets of boundary conditions from the literature; we then explored acceptable ranges of model 14 

parameters. We computed residuals between model predictions and several datasets of stress directions, 15 

GPS measurements and tectonic stress regimes that have been produced in recent studies, and then 16 

compared the best models obtained in the presence of tractions with those obtained in the absence of 17 

tractions. 18 

For all tested boundary conditions and all considered datasets, our results show that the only 19 

successful models are those with significant basal shear traction exerted by eastward mantle flow. 20 
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Introduction 1 

Mantle flow acts as a tectonic force and is generally considered to resist plate motion [Forsyth and 2 

Uyeda, 1975]. However, dynamic models show, at least in North America, the Caribbean and Tonga [Liu 3 

and Bird, 2002; Negredo et al., 2004; Conder and Wiens, 2007], that the mantle drags the overlying 4 

plates. Also, global models suggest that mantle flows eastward [Doglioni, 1990; Smith and Lewis, 1999] 5 

and controls the hinge migration of west-dipping subductions [Doglioni et al., 2007]. In the context of the 6 

Central Mediterranean, Africa-Europe convergence explains only part of the observations, such as the 7 

crustal shortening across Sicily and the Alps. In contrast, the opening of the Tyrrhenian basin [Royden, 8 

1988], the polarization of fast S-waves [Margheriti et al., 2003] and the existence of low-angle normal 9 

faults [Barchi et al., 1998] require an additional force that is distinct from slab pull [Negredo et al., 1999; 10 

Barba, 1999; Carminati et al., 2001]. In this study, we quantitatively and systematically compared the 11 

active and resistive mantle-flow scenarios in the Central Mediterranean. To this end, we developed a 12 

finite element model and analyzed, under a number of boundary conditions, the misfits between model 13 

predictions and a large amount of surface data. Our procedure iterates over a selection of boundary 14 

conditions and parameters that reproduce those published in the scientific literature. Those model results 15 

that exhibited the lowest misfits with the data were averaged, thereby accounting for uncertainties in 16 

boundary conditions and model parameters and permitting us to evaluate the reliability of the results. 17 

We found that basal shear tractions, possibly exerted by mantle flow, are required both in the 18 

Northern Apennines and in the Calabrian Arc. 19 

Method and Data 20 

We modeled the Central Mediterranean Area (Figure 1) using the finite-element code SHELLS 21 

developed by Bird [1999, and references therein]. SHELLS incorporates faults and realistic rheology in a 22 

two-layer grid (crust and lithospheric mantle) with laterally-varying thickness, heat flow and topography. 23 

It solves the horizontal components of the momentum equation to predict long-term horizontal velocities, 24 

anelastic strain rates, vertically integrated stresses, and fault slip rates. 25 
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Our grid consists of 5126 triangular continuum elements and 822 fault elements. The vertical 1 

integrals are performed using 1-km-steps at each of seven Gauss integration points in each finite element 2 

(continuum or fault). For faults, we adopted 109 individual faults and 67 composite seismogenic sources 3 

(Figure 2) from DISS v.3.0.2 [DISS Working Group, 2006] which are based on geological and 4 

geophysical data and which are capable of M≥5.5 earthquakes [Basili et al., 2008]. We represented 5 

composite sources as a single fault trace assuming the dip from the database and the strike from the 6 

surface projection of the composite source. Thus, we surmounted the assumptions related to the 7 

identification of individual earthquake sources (e.g., segmentation, characteristic behavior). We also 8 

incorporated active faults not included in DISS database. We set the effective fault friction to 0.3 9 

although we tested the range 0.15-0.6. For crust and lithosphere thicknesses, values from the literature 10 

were adopted [Aichroth, 1990; Nicolich, 2001; Marone et al., 2003; Calcagnile and Panza, 1981; Babuska 11 

and Plomerova, 2006].  12 

The steady-state heat flow or the Moho temperature were derived from the literature [Pasquale et 13 

al., 1997; Pasquale et al., 1999; Verdoya et al., 2005]. Where we had no information, we interpolated, 14 

assuming a heat flow of 0.060 W/m2 at the model edges. The final heat flow represents a filtered flux that 15 

only marginally depends on non-stationary components (e.g., meteoric water circulation, erosion and 16 

sedimentation). 17 

Some quantities were set to be uniform in the crust/mantle by assuming regional averages. We set 18 

the densities (at 275 K) to 2850/3350 Kg/m3, the volumetric thermal expansion coefficients to 0/3.5x10-5 19 

K-1, the thermal conductivities to 3/3.4 Wm-1K-1 and the constant radioactive heat production to 8x10-7/0 20 

K-1. For dislocation creep, we computed the shear stress from expcreep
s s

B CzAe
T

σ +⎛ ⎞= ⎜ ⎟
⎝ ⎠

, where ės is the 21 

shear strain rate, T is the temperature, z is the depth, A=2.11x106/1.28x104 Pa s1/3, B=8625/18028 K and 22 

C=0/0.017. We set the plasticity limit, i.e., the shear stress above which the strain does not increase, to 23 

500 MPa. 24 

We applied a number of boundary conditions derived from the literature to the five segments of the 25 

model perimeter, and tested all their possible combinations in the Eurasia reference frame for a total of 64 26 
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cases. The following is a list of the tested boundary conditions: Europe (EU; fixed), Adria (AD; 1: fixed, 1 

2: orthogonally fixed, 3 and 4: NE convergence with respect to Eurasia [Serpelloni et al., 2005; 2 

Westaway, 1990); Africa (AF; 1: NE EU-convergence [Serpelloni et al., 2007], 2: NW EU-convergence 3 

[Mantovani et al., 2007]); Ionio (IO; 1: AF-fixed, 2: AD-fixed, 3: subject to lithostatic stress only, and 4: 4 

EU convergence [Westaway, 1990]); EU-AF transition zone (TR; 1: AF-fixed and 2: reflection symmetry 5 

across the North-AF thrust). To simulate the effect of the eastward mantle flow, we applied arc-normal 6 

shear tractions from 0-100 MPa at the base of the model beneath the Apennines and the Calabrian Arc 7 

(Figure 2). These tractions are located where the maximum force is transferred to the lithosphere, i.e., 8 

where mantle encounters continental lithosphere. 9 

Comparisons with observations 10 

To evaluate the quality of the modeling results, we compared the model predictions with four 11 

independent datasets: geodetic horizontal velocities from temporary and permanent GPS stations, the 12 

stress regime data, based on relative stress magnitudes, and the directions of maximum horizontal 13 

compressive stress.  14 

Model-predicted horizontal velocities were compared with 129 geodetic data: 56 from both 15 

permanent and temporary stations [Serpelloni et al., 2007] and 73 from permanent stations only (28 from 16 

the EUREF and 45 from the Italian-Austrian permanent GPS networks; Caporali, 2007). For simplicity, 17 

the two datasets will be referred to as “temporary” and “permanent”, respectively. All geodetic data use 18 

the ITRF2000 datum definition.  19 

To constrain the stress regimes and the stress directions in the Andersonian conditions, we used 20 

data taken from Montone et al. [2004]. Such data are derived from borehole break-outs, M≥4 earthquake 21 

fault-plane solutions, composite focal mechanisms and faults. We use ~200 SHmax orientations of good 22 

quality (labeled A and B), and ~400 stress regime data. 23 

In general, the “best” model is the one that simultaneously minimizes the L1 or L2 misfit norm 24 

between model predictions and all available datasets. However, no model totally satisfies this condition, 25 

because minimizing a misfit relative to one dataset can result in increasing the misfit with another dataset. 26 
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In all cases, the choice of the “best” model therefore remains a somewhat arbitrary decision. To reduce 1 

arbitrariness, we combined all misfits together into a synthetic index (Is) by weighing each misfit relative 2 

to the others based on known uncertainties. Misfits were then standardized using the formula:  3 

min( )i i
s devi

i

e eI
e
−

=∑  4 

where ei are the different misfits, ei
min are the reached minimum misfits and ei

dev are the standard 5 

deviations of the misfits that are less than a certain cut-off value. This procedure leads us to define 6 

discretional cut-off values, below which we consider the misfits to be acceptable. To deal with Gaussian 7 

GPS residuals and spiky stress outliers, we used the L2 norm for GPS data and the L1 norm for stress 8 

data. Cutoff values of σtemp=3 mm/a, σperm=2 mm/a, Δθ=33° and %bad=20% were adopted, and the 9 

resulting Is for our models was  10 

( )
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In order to compare the models with tractions to the models without tractions, we analyzed how the 12 

tractions affected the Is with varying boundary conditions and validation datasets (Figure 3).  13 

Results and Discussion 14 

To verify the hypothesis of the existence of basal tractions in the Central Mediterranean, we 15 

produced a large number of models that spanned different sets of boundary conditions and explored the 16 

acceptable ranges of model parameters. We computed residuals between model predictions and several 17 

datasets, and then compared the best models obtained in the presence of tractions with those obtained in 18 

the absence of tractions.  19 

We found that all sets of boundary conditions followed the same pattern, which was characterized 20 

by a clear reduction in misfits between measured and predicted values when applying eastward basal 21 

tractions, regardless of the chosen dataset (Figure 3). Dealing with the 50-models average allowed us to 22 

compute the error on model predictions and helped our procedure to find a global minimum. The null 23 

hypothesis is rejected at 3% significance level. In contrast, all the applied boundary conditions failed to 24 

reproduce important tectonic features in the absence of tractions.  25 
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Although the Africa-Eurasia convergence reproduced well the stress directions and GPS velocities 1 

in Sicily and in the Southern Tyrrhenian, it inhibited extension in the Apennines with SE-trending SHmax. 2 

Models with counterclockwise rotation of Adria, as proposed by Westaway [1990] or Serpelloni et al. 3 

[2005], showed the correct orientation of stress axes, but did not reproduce the extension-compression 4 

pair in the Apennines. Conversely, models with basal tractions were able both to generate the extension-5 

compression pair in the Apennines and to predict larger NW velocity vectors in Apulia than those in the 6 

Northern Apennines. The basal tractions also predicted the correct orientations of SHmax, thereby 7 

reproducing the stress field along the Apennines and the peri-Tyrrhenian region (Figure 4). For all the 8 

analyzed boundary conditions, basal tractions clearly reduced residuals (Figure 3a). 9 

We found that the best models without tractions had misfits of σtemp=1.85 mm/a, σperm=1.31 mm/a, 10 

Δθ=28.85°, %bad=16.35% and Is =2.31, whereas models with tractions had lower misfits of σtemp=1.64 11 

mm/a, σperm=1.10 mm/a, Δθ=24.27°, %bad=10.04% and Is =0.95. 12 

Only models with active mantle flow proved to be successful, indicating that inner lithospheric 13 

forces do not suffice to reproduce the observed data. However, more work is necessary to improve the 14 

determination of the magnitude, direction, spatial distribution and geodynamic significance of the basal 15 

tractions. Although we assumed uniform basal traction, stress and GPS data are not uniformly distributed. 16 

Consequently, we could not verify the model predictions in areas where data was more scarce, such as the 17 

Central-Southern Adriatic shoreline. Also, our models did not reproduce the Po plain data well; this is 18 

because we applied uniform basal tractions where the Apennines actually bends at its Northern 19 

termination.  20 

Although we cannot clearly differentiate broad scale mantle flow from wedge induced flow, we 21 

favor the mantle flow for the northern Apennines, as in Doglioni et al. [2007], and the mantle wedge for 22 

the Calabrian Arc, as in Faccenna et al. [2005]. In the Northern Apennines, the tractions rotated the 23 

direction of SHmax and generated compression at the outer thrust, whereas in the Calabrian Arc, the 24 

tractions generated arc-normal extension, despite the arc-parallel velocities. However, the upper-25 

asthenosphere viscosity greatly affected the geodynamic processes. In the viscosity range 1020-1012 Pa s, 26 

basal tractions are ascribed to mantle drag (high viscosity), trench suction (intermediate) and slab pull 27 
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(low viscosity) [Doglioni et al., 2007]. The existence of an eastward mantle flow relative to the 1 

lithosphere is also in agreement with the interpretation of the surface-wave tomography by Panza et al. 2 

[2007]. They showed that the low-velocity layer in the upper asthenosphere is well stratified and confined 3 

beneath the old northern Africa continental lithosphere, whereas it is rather dispersed in the Apennines 4 

back-arc. All these observations agree well with a shallow upper mantle convection/circulation in the 5 

Tyrrhenian and a contemporaneous eastward flow, regardless of whether this flow is a cause or an effect 6 

of the slab retreat. Furthermore, the E-W trending of the anisotropy directions in the Tyrrhenian region 7 

and their abrupt rotation [Margheriti et al., 2003] suggest that a flow can exist and interact with the 8 

lithosphere. Differences in the magnitude of the seismic anisotropy between northern and southern Italy 9 

[Baccheschi et al., 2007] suggest that uniform flow is an oversimplified assumption.  10 

In our deformable model, the basal tractions generated the apparent rotation of Adria, and rigid 11 

plate behavior was not required. This fact argues for new criteria to be adopted in the interpretation of 12 

GPS data in the Mediterranean. The arc-normal predicted orientation of stress axes favors the hypothesis 13 

that the external thrusts are active, which justifies the occurrence of reverse faulting earthquakes along 14 

the Adriatic margin [Basili and Barba, 2007] and also implies that the seismic potential of the Ionian 15 

thrust should be better studied. 16 

We conclude that basal horizontal forces are required to reproduce surface observations in the 17 

Central Mediterranean. Misfits between model predictions and surface data were significantly reduced 18 

when tractions were used, regardless of the datasets and boundary conditions applied.  19 
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Figure Captions 1 

 2 

Figure 1. Location map of the Central Mediterranean. Thick lines are the external thrusts and the 3 

thick arrow approximately represents the movement of Africa with respect to Europe. The codes at the 4 

edge indicate boundary conditions (see text for details). 5 

 6 

Figure 2. Model grid (triangles), faults (thick lines), shear tractions locations (gray areas) and 7 

directions (arrows).   8 

 9 

Figure 3. (A) Model misfit (Is) for different sets of boundary conditions as a function of the shear 10 

tractions at the base of the model. (B) Average model misfit (histogram) and misfit RMS (error bars) of 11 

the best 50 models for different types of validation datasets in the “tractions” and “no tractions” 12 

scenarios. 13 

 14 

Figure 4. Computed stress orientations (bars) and horizontal velocities (arrows) with (dark gray) 15 

and without (light gray) tractions, along with observed data (black) in the (A) Apennines and (B) 16 

Calabrian Arc. Data are from Montone et al. (2004), Serpelloni et al. (2007) and Caporali (2007).  17 
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