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Abstract - We calculated the expected impact on the Italian coast of the Adriatic Sea of a large set 

of tsunamis resulting from potential earthquakes generated by major fault zones. Our approach 

merges updated knowledge on the regional tectonics and scenario-like calculations of expected 

tsunami impact. 
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We selected six elongated potential source zones. For each of them we determined a Maximum 

Credible Earthquake and the associated Typical Fault, described by its size, geometry and 

kinematics. We then let the Typical Fault float along strike of its parent source zone and simulated 

all tsunamis it could generate. Simulations are based on the solution of the nonlinear shallow water 

equations through a finite-difference technique. For each run we calculated the wave fields at 

specified simulation times and the maximum water height field (above mean sea level), then 

generated travel-time maps and maximum wave height profiles along the target coastline. Maxima 

were also classified in a three-level code of expected tsunami threat. 

We found that the southern portion of Apulia facing Albania and the Gargano promontory are 

especially prone to the tsunami threat. We also found that some bathymetric features are crucial in 

determining the focalization-defocalization of tsunami energy. We suggest that our results be taken 

into account in the design of early-warning strategies. 

 

 

 

Key words: Tsunamis, Adriatic Sea, seismotectonics, active faulting, seismic hazard, tsunami 

hazard 
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The Adriatic Sea is an elongated basin stretching NW-SE in the central Mediterranean Sea (Figure 

1). It has been struck several times by tsunamis (e.g.: Ambraseys, 1962; Caputo and Faita, 1984; 

Papazachos and Dimitriu, 1991; Soloviev et al, 2000; Maramai et al., 2007; Tinti et al., 2007; see 

also Paulatto et al., 2007 for a complete review), most often along the coasts of the Gargano 

promontory (De Martini et al., 2003; Tinti et al., 2004). The northwestern portion of the Adriatic 

basin is also the most vulnerable because of its large low-topography coastal area extending for 

over 150 km. This area also hosts the city of Venice, that is particularly to vulnerable to sea-level 

rise. From the regional tectonics standpoint, the Adriatic Sea falls in the middle of the Adria plate, 

that is being pushed by Africa northward against stable Europe. Overall, Adria is affected by active 

compression and overridden by thrust belts all around. 

 The purpose of this work was to assess systematically the potential threat posed by 

earthquake–generated tsunamis on the Italian coastline of the Adriatic Sea, following the approach 

proposed by Lorito et al. (2008). To this end, we first compiled a database of potentially-

tsunamigenic earthquake faults, then used them as input in the preparation of scenarios of maximum 

water height (above mean sea level) based on numerical simulations of tsunami propagation. 

Potential tsunami sources were selected from the seismogenic sources listed in version 3.0.4 of the 

Database of Individual Seismogenic Sources (DISS Working Group, 2007; Basili et al., 2008), 

adapted to the modeling needs and integrated with additional data, particularly for the eastern side 

of the basin. 

 Our scenarios supply at-glance information of the expected tsunami impact onto the target 

coastline and can be progressively updated as knowledge on earthquake sources advances. As such, 

our approach can be easily converted into an application program for disaster prevention whose 

results can be handed out to a variety of stakeholders, such as civil protection agencies or land-use 
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planners. Similar approaches have been independently developed, for example, for Australia and 

New Zealand by Burbidge and Cummins (2007) and Power et al. (2007), respectively. Using a 

different approach, Paulatto et al. (2007) studied the tsunami potential of Adriatic Sea seismic 

sources adopting two fault locations for each selected source zone.  

 The results of our work include the determination of the maximum water height along 2100 

km of the Adriatic Italian coastline calculated for six source zones located inside or very close to 

the Adriatic Sea. These results were compared with the threat posed by tsunamis generated in the 

Hellenic Arc source zone (Lorito et al., 2008), i.e. the source of the biggest tsunamis generated 

outside the basin with the capability to hit our target coastline. All profiles of maximum water 

heights are given in aggregated form together with averages and standard deviations. Maxima were 

also classified in a three-level code of expected tsunami threat. Finally, we explored the role of 

specific bathymetric features in controlling the focalization-defocalization of tsunami energy. 

 

 

2. Method 

 

To assess the potential threat posed by earthquake-generated tsunamis in the Adriatic Sea we 

adopted the method developed by Lorito et al. (2008). We systematically carried out a number of 

simulations for all source zones that can possibly affect the target coastlines. A Source Zone (SZ) 

includes an active tectonic structure at regional scale that is made up of a number of individual fault 

segments, each one capable of releasing a significant earthquake. For each SZ we identified a 

Maximum Credible Earthquake (MCE) and an associated Typical Fault (TF). We let the TF float 

along the entire SZ and computed a tsunami scenario at regular intervals. To assess the MCE for 

each SZ we selected the largest earthquake that has ever occurred in that zone and for which there 

exists, or is possible to obtain, a reliable magnitude estimation. The TF is defined by parameters 
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that must comply with both the seismological properties of the MCE and the tectonic properties of 

its parent SZ. To estimate them we largely relied on published data, and particularly on those made 

available in the DISS database (DISS Working Group, 2007; Basili et al., 2008). Strike, dip and 

rake were slightly adjusted as needed to account for the internal geometric variations of the SZ at 

each position of the TF. The amount of slip was derived from the seismic moment of the MCE, 
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using the formulations by Kanamori and Brodsky (2004). Steps were taken at one or half fault 6 

length to guarantee a sufficient spatial sampling of the tsunamigenic structure. At each new position 

the TF was made to release its MCE by uniform slip over the entire fault plane. The initial seawater 

elevation associated with the earthquakes generated by the floating TF was assumed equal to the 

coseismic vertical displacement of the sea bottom computed according to Okada’s (1985, 1992) 

formula. Rupture was assumed to be instantaneous, and the initial velocity field was assumed to be 

identically zero. For the numerical modeling of the tsunami propagation we used the nonlinear 

shallow water equations that were solved numerically by means of a finite difference method on a 

staggered grid (Mader, 2001). We set the boundary conditions as pure wave reflection at the solid 

boundary, by setting to zero the velocity component perpendicular to the coastline. Full wave 

transmission was set at the open boundary (open sea). The sea-floor topography was taken from the 

ETOPO2 bathymetric dataset (Smith and Sandwell, 1997), that we oversampled at 0.5 arcmin to 

achieve a sufficient sampling of the wave features. We fixed a minimum depth of 10 meters, then 

modified all shallower bathymetry accordingly. Our simulation domain is 9° to 23° longitude E, and 

30° to 46° latitude N. 
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 We performed a distinct numerical experiment for each fault position in each SZ for a total 

of 129 runs. From each simulation we extracted the maximum water height above sea level 

(HMAX) profiles along the Adriatic coasts of Italy. The HMAX was calculated at the points 

adjacent to the coastline, that is at a fixed water depth of 10 meters. The HMAX values along the 

target coastline were then grouped according to the causative source zone. For each group we then 
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calculated the absolute maximum, the average, and the standard deviation of the HMAX values. 

Finally, we set three HMAX thresholds at 0.05, 0.5, and 1.0 m and coded the different levels of 

threat as marine, land and severe land threat, respectively. Allen and Greenslade (2008) pointed out 

that the practical use of the threat levels requires much caution because the local effects of a 

tsunami can be precisely described only through fine-scale inundation models. In addition to being 

computationally very demanding, this approach is not feasible because inundation models rely on 

fine-scale bathymetry data that are currently not available for the entire coast under investigation 

(see also Lorito et al. 2008). Nevertheless the HMAX represents an average coastal level that is 

certainly appropriate for comparing risk levels and for tsunami preparedness, provided that a caveat 

is included specifying that the wave height can be locally higher.  

 

 

3. Tsunamigenic source zones in the Adriatic Sea 

 

The Adriatic Sea is almost completely surrounded by active fold-and-thrust belts and strike-slip 

faults (Figure 1). Frequent earthquakes occur along these well-known fault zones, most of which 

run close to the coastlines or in the open sea and are thus potential sources for tsunamis. The largest 

earthquakes (M>7) occurred near the eastern margin of the central Adriatic Sea, along the 

Montenegro portion of the Dinaride-Albanide chain, and at the southern end of the basin near the 

Ionian Islands along the Kefallonia-Lefkada right-lateral shear zone. Most of the remaining 

structures exhibit a potential for earthquakes of magnitude 6≤M≤7, thereby holding a significant 

tsunamigenic potential. 

 This section describes the local tectonic setting of the six selected Source Zones grouped 

into four major tectonic domains. The reasoning followed to define the Typical Fault (TF) of each 

zone will also be illustrated. 
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3.1. Dinarides, Albanides and Hellenides 

A contractional belt longer than 1,000 km runs along the eastern margin of the Adriatic Sea from 

the southern Alps, to the north, to the Kefallonia-Lefkada Fault, to the south (Figure 1). This fold-

and-thrust belt is usually split into three different domains named Dinarides, Albanides and 

Hellenides, respectively from north to south, that started forming as a consequence of subduction of 

Adria under the European plate. Adria acts as an indenter pushing northward into stable Europe 

(e.g. Aljinović et al., 1990; Prelogović et al., 1995; Herak, 1999). GPS data document 

compressional strain across the chain at a rate of about 30 nanostrain/yr (Hollenstein et al., 2003; 

Serpelloni et al., 2005). Stronger earthquakes mostly concentrate in the Albanides and Hellenides. 

The outer portion of these chains is partly located offshore and characterized by numerous thrust 

fronts that all seem to be currently active. Available focal mechanisms indicate predominant SW-

NE shortening (Papazachos et al., 1999); reverse faulting earthquakes dominate (Vannucci et al., 

2004; Pondrelli et al., 2006). 

 

Croatia. The Dinarides is a wide NW-SE fold-and-thrust belt stretching from southwestern 

Slovenia to Croatia along the Adriatic coast (Figure 1). The Dinaric accretionary prism is 

dominated by NW-SE trending, NE dipping thrust faults (Mamuzić, 1975; Ivanović et al., 1976; 

Herak, 1991, 1999) whose geometry is well imaged in seismic profiles and constrained by gravity 

surveys (Figure 2a; Skoko et al., 1987; Aljinović et al., 1990; Lawrence et al., 1995; Prelogović et 

al., 1995). In the southern and central parts of the Dinarides the active thrust front lies offshore and 

is blind along most of its length (Tari-Kovačić and Mrinjek, 1994; Herak et al., 2005). The amount 

of shortening and the hanging-wall displacement increase towards the NE, where the faults become 

surface-breaking (Kuk et al., 2000; Herak et al., 2005). Moving towards the NW, fault planes 

become steeper and exhibit more oblique to dextral strike-slip kinematics (Prelogović et al., 1995). 
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 GPS studies show shortening rate across the central Dinarides of few millimeters per year 

(Battaglia et al., 2004; Grenerczy et al., 2005). Earthquake focal mechanisms show thrusting on 

NE-dipping faults at shallow to medium depth in the Dinarides and oblique to dextral-strike slip 

motion on steeper NE-dipping planes in the northern Adriatic (Herak et al., 1995; Ivančić et al., 

2006). The average orientation of compression in the Dinaric region is N-S, varying from N15º to 

N340º
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 (Herak et al., 1995; Prelogović et al., 1999, 2003), also consistent with GPS data. Bennett et 

al. (2007) used regional GPS data to model a  N77oW oriented thrust fault that accommodates the 

modern stress field in the southern Dinarides. 

 Based on the geometry, kinematics, and spatial distribution of individual faults and on data 

on the associated instrumental and historical earthquakes, we have chosen to split the Dinarides into 

two source zones. One running close to the coast of mainland Croatia (Figure 1); the other located 

offshore almost in the middle of the Adriatic Sea (Figure 1). 

 The geometry and depth of the typical fault of the Coastal Croatia SZ (Table 1) were taken 

from published seismic profiles and analyses of instrumental earthquakes. From south to north, the 

strike of the typical fault varies by nearly 40º from NW-SE to NNW-SSE; in its turn, the rake varies 

from almost pure thrusting to dextral oblique thrusting. The strongest earthquake generated by the 

Dinaric coastal source zone is the ML 6.1, 11 January 1962 Makarska earthquake that was also 

followed by a tsunami (Herak et al., 2001). Other earthquakes associated with this source zone are 

the 2 July 1898, I0 = IX, Split; 29 December 1942, ML 6.0, Imotski (Kuk et al., 2000); and 5 

September 1996, ML 6.0, Ston (Markušić et al., 1998). As the 1962 earthquake is the largest known 

event associated with this source zone, we chose MW 6.1 as the magnitude of its MCE.  

 The Offshore Croatia SZ (Table 1) comprises a blind thrust faulting system. The strike of 

the typical fault changes from N320º to N290º from south to north whereas the rake changes from 

pure thrusting to oblique slip. The largest event recorded in the past 20 years is the 29 March 2003, 

MW 5.6 earthquake, located near the island of Jabuka (Herak et al., 2005). Instrumental and 
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historical catalogues locate the 30 November 1934, ML 5.6 event in the northwestern part of this 

source zone; Kuk et al. (2000) also place in the same epicentral region a disastrous event in 361 

AD. Even if known earthquakes do not exceed M 5.6, we adopted the value of M
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W 6.0 for the MCE 

because reports of the 361 AD earthquake hint at a larger magnitude than that of the more recent 

instrumental event. 

 

Montenegro. This portion of the chain runs NW-SE parallel to the coast just offshore Montenegro 

and is narrower than its own northern and southern prolongations (Figure 1). It is made up by fewer 

major structures than the rest of the chain, but these structures are bigger and more tightly 

imbricated. The outermost thrust front lies about 20 km off the coast (Figure 2c; e.g. Dragasevic, 

1983; Picha, 2002). 

 The area is currently characterized by moderate shallow instrumental earthquakes, but a 

number of strong events (MW≥7.0) are listed in the historical catalogue compiled by Papazachos 

and Papazachou (1997). The largest well-known earthquake (MW 7.1) occurred on 15 April 1979 

off the coast of southern Montenegro (Console and Favali, 1981), and was probably generated by 

the most external thrust (Benetatos and Kiratzi, 2006). It also generated a tsunami (e.g.: Bedosti and 

Caputo, 1986; see also Paulatto et al., 2007 and references therein). Most earthquakes in this zone, 

including the 1979 event, exhibit reverse focal mechanisms with NW-SE fault planes (Vannucci et 

al., 2004; Benetatos and Kiratzi, 2006; Pondrelli et al., 2006), overall suggesting compression with 

P-axes oriented roughly N230º (Papazachos et al., 1999). The average strike and rake from focal 

mechanisms are consistent with plate motion vectors derived from GPS data and with the 

orientation of thrust fronts. 

 We placed the Montenegro SZ (Table 1) on the main and most external of the thrust fronts, 

which has the largest potential of generating tsunami and is thought to be responsible for the 1979 

earthquake. As for the MCE we adopted MW 7.2 based on the maximum magnitude assessment 
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given by Aliaj et al. (2004) for the Lezha-Ulqini area, which includes the majority of the 

Montenegro SZ. We derived strike, dip, and rake from focal mechanisms and from the average 

geometry of the thrust faults as revealed by seismic reflection profiles. 

 

Albania - Northern Greece. In the southern Adriatic Sea, the submerged edge of the Apulia 

platform acts as an indenter in the European plate. Here continental collision creates a series of 

NW-SE thrusts fronts involving the Apulian platform itself (Figure 1), occasionally interrupted by 

NE-SW strike-slip faults. Seismic profiles image the sole-thrust at about 10 km depth (Figure 2b; 

e.g.: Argnani et al., 1996; Sulstarova et al., 2000; Ballauri et al., 2002; Finetti and Del Ben, 2005; 

Aliaj, 2006; Graham Wall et al., 2006). 

 The Albania offshore is characterized by shallow instrumental seismicity with many 4<M<5 

earthquakes (Duni et al., 2003), but a number of larger events (up to MW 6.8) are reported by 

historical catalogues (e.g. Papazachos and Papazachou, 1997). The offshore of northern Greece is 

also characterized by shallow seismicity, nonetheless events in the magnitude range 6 to 7 are 

frequent. The largest known event took place near Kerkira Island on 5 February 1786 and had an 

estimated MW 7.0. Another large earthquake (MW 6.8) is thought to have occurred near Kerkira on 

20 February 1743 (Papazachos and Papazachou, 1997; see also Guidoboni et al., 2007 for a 

complete review). Most earthquakes exhibit reverse focal mechanisms over NW-SE planes both in 

Albania and northern Greece (Vannucci et al., 2004; Pondrelli et al., 2006). Subhorizontal 

compression with P-axes from focal mechanisms trending 230-240º dominates the area (Papazachos 

et al., 1999); the average strike and rake from focal mechanisms are consistent with plate motion 

vectors derived from GPS data and with the orientation of thrust fronts. 

 We identified the Albania - Northern Greece SZ (Table 1) as made of three segments that 

cover the set of thrust fronts having the highest potential for tsunami generation (Figure 1). As for 

the MCE we adopted the 1786 Kerkira Island event. A MW 7.0 is also the maximum expected 
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magnitude estimated by Aliaj et al. (2004) for this area. Similarly to the Montenegro SZ, we derived 

strike, dip, and rake from focal mechanisms and from the average geometry of the thrust faults as 

detected on seismic reflection profiles. 

 

3.2. Northern Apennines 

The Apennines is a fold and thrust belt running all along the Italian peninsula. The northern 

Apennines orogenic wedge grew and migrated throughout the Neogene as a response to the NE-

ward roll-back of a retreating slab at the western edge of the Adria plate (e.g. Royden et al., 1987 

Doglioni, 1991). The most external thrust structures are known from seismic exploration data and 

are located offshore beneath a cover of Early Pliocene to Quaternary synorogenic deposits (Figures 

1 and 2d; Casero et al., 1990; Del Ben, 2002; Franciosi and Vignolo, 2002; Scrocca et al., 2007). 

 The shortening rate across the thrust belt during the whole orogenic process is estimated at 

~2.9 mm/yr (Basili and Barba, 2007, and references therein). Because of the limited number of 

permanent stations available, GPS data on strain rates for this area are scarce and not yet reliable; 

however they do indicate shortening at a few mm/yr across the northern Adriatic (Zerbini et al., 

2006). In addition, geomorphic evidence for active growth above individual blind thrusts running 

along the coast has provided a slip rate of 0.24-0.36 mm/yr (Vannoli et al., 2004). Available focal 

solutions show NE-SW compression at shallow depth, consistent with the geometry of the thrusts 

detected in seismic profiles (Piccinini et al., 2006; Lavecchia et al., 2007; Meletti et al., 2008). 

 We identified a long portion of the coastal and offshore thrusts as the Northern Apennines 

SZ (Table 1). The largest known event occurred on 30 October 1930 on the coast nearby Senigallia 

and had an estimated magnitude of MW 5.9. This event was followed by a small tsunami (Boschi et 

al., 2000). However, the 1930 earthquake is probably not the largest to have ever occurred in the 

area, as geological and geomorphic data from an area about 30 km to the NW indicate the presence 

of a fault whose size is compatible with earthquakes up to MW 6.1 (DISS Working Group, 2007). 
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Although there is no known historical earthquake associated with this fault, we sized the TF of this 

source zone on the basis of geological evidence as this represents the worst case scenario. The 

eastern boundary of the source zone follows the pattern of the domain that according to Scrocca 

(2006) has been affected by contractional deformation during the Late Quaternary. 

 

3.3. Apulia 

The southern part of the Apulian foreland is characterized by a number of right-lateral E-W striking 

shear zones (Figure 1). These tectonic structures extend westward below the outer edge of the 

Apennines orogenic wedge and eastward into the Adriatic Sea. Most of them probably started 

forming during the Mesozoic under a different tectonic setting as left-lateral kinematics is 

documented by structures with a long deformation history, but according to the majority of workers 

their most recent reactivation is dominantly right-lateral (Argnani et al., 1993; Bosellini et al., 1993; 

Chilovi et al., 2000; Di Bucci and Mazzoli, 2003; Valensise et al, 2004). The northernmost shear 

zone, known as Tremiti Line, is thought to represent the effect at shallow crustal depths of a 

lithospheric tear in the Adria microplate (Doglioni et al., 1994). A few kilometers to the south of the 

Tremiti Line, the Molise-Gondola shear zone, which includes the Mattinata fault, shows evidence 

for recent dextral strike-slip activity in the offshore (Di Bucci et al, 2007; Ridente et al., 2008). 

 The present-day stress field of this source zone exhibits NE-SW compression that appears to 

be a direct result of the Africa-Europe convergence (e.g.: Noquet and Calais, 2004; Serpelloni et al., 

2007). Focal mechanisms mostly consist of dextral strike-slip faulting on subvertical planes at 

depths of 10-25 km (Pondrelli et al., 2004; Vannucci et al., 2004; Milano et al., 2005; Del Gaudio et 

al., 2007). The western portion of the Molise-Gondola shear zone is responsible for the 31 October 

and 1 November 2002, MW 5.7 Molise earthquakes (Valensise et al., 2004; Chiarabba et al., 2005). 

Historical and instrumental seismicity data suggest the presence of similar shear zones both to the 

north and to the south of the Molise-Gondola (Fracassi and Valensise, 2007; Meletti et al., 2008). 
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 The largest known earthquake of the Apulian foreland is the 30 July 1627, MW 6.7 Gargano 

event (Gruppo di lavoro CPTI, 2004). It was followed by a tsunami that severely affected the 

northern coast of the Gargano Promontory (Tinti and Piatanesi, 1996; Boschi et al., 2000; Tinti and 

Armigliato, 2003), where geological evidence for recurrent tsunamis is found in coastal deposits 

(De Martini et al., 2003). We have chosen the Molise-Gondola shear zone as a sample structure for 

the whole set of E-W faults that affect this region because it is the best documented structure, 

especially in the offshore, and adopted it as the Apulia SZ (Table 1). The size of the 1627 

earthquake was adopted as its MCE; its causative source from DISS Working Group (2007) was 

taken as typical fault for this shear zone. 

 

3.4. Kefallonia-Lefkada 

The Kefallonia-Lefkada Fault marks the boundary between the NNE-directed subduction of the 

Africa oceanic lithosphere beneath the Aegean continental lithosphere to the south and the 

continental collision between the Adriatic and European plates to the north (Figure 1). South of the 

Kefallonia-Lefkada alignment the rate of convergence between the African and Aegean plates is ~4-

5 cm/yr and observed GPS velocities are the fastest of the entire Mediterranean basin (Kahle et al., 

2000; McClusky et al., 2000), whereas north of it they decrease rapidly. As a result, inferred strain 

rates vary from more than 100-200 nanostrain/yr in the Hellenic Arc to about 30 nanostrain/yr in the 

Hellenides chain (Kahle et al., 2000; Hollenstein et al, 2003). The Kefallonia-Lefkada Fault thus 

accommodates a deformation of at least 100 nanostrain/yr (Kahle et al., 1998; Hollenstein et al, 

2006). GPS data also indicates right-lateral relative motion across the shear zone at ~4 cm/yr, even 

if earthquakes account for only about 50% of that value (Kahle et al., 1996). 

 The Kefallonia-Lefkada Fault is one of the most seismically active areas in the 

Mediterranean and is largely characterized by strike-slip earthquakes (Papazachos et al., 1998; 

Vannucci et al., 2004). In 1983 a MW 7.0 earthquake with a transpressional mechanism occurred on 
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the southern portion of the zone (Papazachos and Papazachou, 1997; Louvari et al., 1999). The 

largest known event in this area is the 12 August 1953, M
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W 7.3 Kefallonia earthquake that caused 

~0.5 m of vertical displacement testified by raised shorelines (Pirazzoli et al., 1994; Stiros et al., 

1994). Louvari et al. (1999) associate this earthquake with the southern segment of the Kefallonia-

Lefkada strike-slip fault.  

 We identified as the Kefallonia-Lefkada SZ (Table 1) the entire fault and adopted the size of 

the 1953 event (MW 7.3) as the MCE, consistent with the maximum magnitude reported for the 

Kefallonia zone by Papaioannou and Papazachos (2000). We constrained the depth of this SZ based 

on the hypocentral distributions from various workers (up to 20 km). Strike, dip and rake were also 

based on data from various workers who analyzed the instrumental seismicity (Papazachos et al., 

1998; Louvari et al., 1999); its kinematics is consistent with the GPS velocity field by Cocard et al. 

(1999). 

 

 

4. Modeling results 

 

We analyzed the tsunami impact expected on the Adriatic coasts of Italy as a result of earthquakes 

generated in each of six independent SZs. All tsunamis generated by a single SZ were grouped 

together. The corresponding HMAXs expected along the Adriatic coastline of Italy are shown as 

profiles of their maximum, average and average plus one standard deviation, respectively (Figure 

3). Abscissa values are distances along the coastline and increase from south to north from an 

arbitrarily chosen starting point (Figure 4); since the true length of coastlines depends on the 

yardstick used, these are not intended to be accurate distances but rather a practical way to map the 

HMAXs values along the coastline. We also emphasized the threat level by color coding the 

background of each diagram. The use of such color codes is quite a common practice and a similar 
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approach is routinely adopted for tsunami warnings and advisory by the Japan Meteorological 

Agency (

1 

http://www.jma.go.jp/en/tsunami/). We decided to adopt a three-color code: yellow for 

marine threat, corresponding to 0.05 m < HMAX < 0.5 m; orange for land threat, corresponding to 

0.5 m < HMAX < 1 m; red for severe land threat, corresponding to HMAX > 1 m. This choice is 

coherent with the approach followed by Allen and Greenslade (2007), who proposed a three-level 

stratified warning method and set a threshold of 0.5 m between marine and land threat based on 

Whitmore (2003). 
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4.1. Croatia, Montenegro, Albania, and Northern Greece 

Our calculations show that the offshore Croatia SZs pose a rather low threat to a ∼700 km-long 

stretch of the Adriatic coast of Italy from the northern edge of the Gargano promontory to north of 

Ancona (Figure 3a). Here the level of maximum HMAXs (black line) enters the yellow zone by 0.1 

m at the most, hence exceeding the lower threshold of the marine threat level. Conversely the 

average HMAX (blue line) always lies below the this level. The difference between the maximum 

and average values is almost one order of magnitude at some locations, and the standard deviation 

is relatively high (green line). This may be the evidence that, depending on the relative position of 

the fault with respect to the coast, the tsunamis following each single earthquake generated by the 

floating fault have mainly local effects. It is also likely that the main contribution to the maximum 

values is brought by the source zone facing the coasts of Italy, whereas tsunamis generated in the 

Coastal Croatia SZ are shielded by the Dalmatian Islands (Figure 1 and 4). 

 The Montenegro SZ revealed a tsunamigenic potential beyond the attention level, i.e. over 

the lower bound of marine threat, almost everywhere on the Adriatic coast of Italy (Figure 3b), and 

consistently inside the marine threat band from about the 150 km position in Apulia to just north of 

Ancona. Land threat (orange background) is to be taken into account for a ∼550 km-long stretch 

running along the Apulian coast from the 200 km position to north of the Gargano promontory. The 
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Gargano itself is exposed to a severe land threat level, as shown in Figure 3b, where the peak of 

the maximum values (black line) is almost two meters high, thereby largely entering the red code 

zone. 
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 The Albania - Northern Greece SZ (Figure 3c) poses a threat comparable to that of 

Montenegro. The marine threat level is reached on the entire coast stretch from Apulia up to around 

Ancona, but the southern part of Apulia is exposed to land and even severe land threat involving a 

∼50 km-long stretch where the highest peak of maximum HMAX may exceed 1.5 m. 

 It is worth analyzing jointly the results we obtained for the Montenegro and Albania as they 

revealed a peculiar bathymetry-induced propagation effect due to the presence of the relatively deep 

South Adriatic Basin (Figure 1). Figures 5a-c show HMAX maps for the entire calculation 

domain. Figures 5a and 5b show the propagation of the tsunamis generated by two earthquakes on 

the Montenegro SZ, whereas Figure 5c shows a tsunami generated by the Albania - Northern 

Greece SZ. The case of Figure 5b shows that the basin acts as a convex lens deflecting most of the 

propagating wave energy back to the Montenegro coast, thus limiting the height of the tsunami 

wave reaching the Apulian coast. This effect is predicted for faults located in the southernmost 

portion of the Montenegro SZ. Conversely, when the source fault is placed to the north of the South 

Adriatic Basin (Figure 5a) tsunami energy is focused towards the Gargano promontory at the basin 

edge. This is why the height of the narrow peak of the maximum values at ∼650 km in Figure 3b is 

almost three times larger than the corresponding average value, and it is abundantly in the severe 

land threat band, whereas the threat to the adjacent coast to the south is only at the land threat 

level, with an average of less than a half of the tsunami wave height. At the southern end of the 

basin, the Albania - Northern Greece SZ again exceeds 1.0 m (Figure 5c), and poses a severe land 

threat to Apulia. In this case, the vicinity of the sources to the target coasts causes the maximum 

being about three times the average HMAX values (Figure 3c), meaning that the tsunami may be 

locally higher along the stretch of coast directly facing the source. This severe land threat peak is 
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slightly broader than that of the Montenegro SZ case, reflecting the fact that more than one source 

contributes to it as the fault floats. 

 

4.2. Northern Apennines 

The Northern Apennines SZ generally poses a low threat that can only locally be slightly higher but 

is always comparable to that of the Croatia offshore SZ. The affected portion of the Adriatic coasts 

of Italy is restricted to a ∼750 km-long stretch from the northern side of the Gargano promontory to 

the south of the Po River delta (Figure 3d). The level of maximum HMAXs (black line) attains the 

marine threat zone from ∼1050 to ∼1400 km. Similarly to the Croatia SZ, the average (blue line) is 

significantly lower than the maximum HMAX. Near-field effects of the coastal sources again 

dominate, the main contribution to the maximum being brought by faults facing the coasts of Italy, 

whereas faults running farther offshore contribute relatively less (Figure 1). The peak at ∼450 km 

could result from a focalization effect at the northern edge of the deeper South Adriatic Basin, as 

illustrated earlier for the Montenegro case. 

 

4.3. Apulia 

The typical fault floating along the Apulia SZ generates a series of tsunamis that may pose a marine 

threat (Figure 3e) along a stretch of coast extending from Bari (at 400 km) northward for ∼500 km. 

Further north the lower marine threat threshold is exceeded only at scattered locations. Around the 

∼500 km position there seem to be only near-field effects, as revealed by the difference between 

maximum and average values. The highest peak is almost 0.5 m, just below the lower threshold of 

land threat, and occurs at ∼640 km. 

 

4.4. Kefallonia-Lefkada 
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The maximum HMAXs profile of the Kefallonia-Lefkada SZ (Figure 3f) features a quite narrow 

peak that starts in the marine threat band and then rises into the land threat band in the 40-140 km 

interval. Maximum height is ∼0.9 m, almost at the lower threshold of the severe land threat band. 

The maxima curve then drops again while remaining in the marine threat band as far as a point at 

640 km. North of the Gargano promontory the coast is free from serious threats. Conversely, the 

peak that almost reaches the severe land threat level is due to a bathymetric effect (Figure 5d). The 

shelf extending to the southeast of Apulia (Figure 1) acts as a wave-guide for tsunami propagation. 

It focuses the energy in a relatively narrow band thereby enhancing the wave height that reaches the 

southernmost tip of Apulia. This is the well understood continuous refraction and amplification 

phenomenon seen during the global propagation of the 26 December 2004 Sumatra-Andaman 

tsunami - just to mention a recent example - when the wave reached the Mid-Atlantic Ridge, which 

in turn efficiently transmitted the wave energy (Thomson et al., 2007). Another example of a similar 

phenomenon is the unexpectedly big damage suffered by the Crescent City harbor, California, on 

occasion of the 15 November 2006 Kuril islands earthquake (M
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W 8.3) and tsunami. The damage 

was caused by a secondary wave that was reflected by a sea-mount and focused by the Mendocino 

escarpment and that arrived at Crescent City two hours after the main wave (Kowalik et al., 2008). 

Thus, despite the little vertical sea-floor displacement expected due to the strike-slip style of the 

causative fault, the Kefallonia-Lefkada SZ poses a significant threat to the coasts of Italy, which 

may be further increased by bathymetric amplification. 

 

 

5. Discussion 

 

We investigated the potential effects on the Italian coasts of the Adriatic Sea for all the earthquake 

source zones that are known to be capable of generating tsunamis. To this end we used an approach 
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that combines a detailed knowledge of the tectonic setting of the source zones with the evaluation of 

the tsunami impact onto the target coastline. This was done by introducing the concept of a typical 

fault that is sized after the maximum credible earthquake of the area and is let floating along its 

parent source zone. 

 Similar approaches for other tsunami-prone areas in the world are those of Burbidge and 

Cummins (2007) and Power et al. (2007). The first explored the effects onto the western coast of 

Australia for tsunamis generated by faults in three different positions along the Sunda Arc with two 

possible earthquake magnitudes (MW 8.5 and 9.0). The second analyzed the impact onto New 

Zealand coasts of tsunamis generated in the South America subduction zone, exploring a range of 

possible earthquake magnitudes and obtaining results expressed in probabilistic terms. 

 By displaying the aggregated HMAX values all along target coastlines our method allows an 

easy comparison between the effects of different source zones and shows the relative level of 

tsunami threat for different stretches of the coast. The results of our modeling could also serve as 

input data for detailed studies on local effects, provided that finer bathymetry data are available. 

The purpose of our work is to provide an estimation of HMAX for an earthquake occurring at any 

position along a known source zone rather than just for a specific past earthquake. Historical 

tsunamis of the Adriatic Sea were recently reviewed by Paulatto et al. (2007), who also carried out 

simulations for a set of earthquakes in six potential source zones. Their approach, however, 

substantially differs from ours as the earthquake sets are defined considering three magnitude 

values and three depth values at two locations, inland and offshore, for each source zone; the results 

are then shown in terms of maximum water height and arrival time at selected localities. 

 Our predictions can be compared with limited historical accounts of tsunamis that occurred 

around the Adriatic basin:  

• according to Guidoboni and Tinti (1988), the tsunami that followed the 1627 Gargano 

earthquake caused sea withdrawal of about 3 km at the mouth of the Fortore River (northern 
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side of Gargano) and an estimated run-up of 2-3 m in the town of Manfredonia (southern side of 

Gargano); 

• according to contemporary newspapers, an anomalous high tide was observed in the Ancona 

harbor after the 1930 Senigallia earthquake. An American steamship broke the moorings and hit 

the docks. A tsunami intensity of 4 is attributed to this event in the Italian Tsunami Catalogue 

(Boschi et al., 2000; Maramai et al., 2007; Tinti et al., 2007); 

• according to Soloviev et al. (2000), no tsunami followed the 1953 Kefallonia earthquake, even 

if previous publication based on press reports indicated the flooding of the port of Vathi 

(Lefkada Island). In any case, flooding of the port was ascribed to a local landslide and was 

hence not a direct effect of seafloor displacement; 

• a minor disturbance was recorded at the tide gauge of Split following the 1962 Makarska 

earthquake (Herak et al, 2001); 

• although Papazachos and Papazachou (1997) report that after the 1979 Montenegro earthquake 

a ship sank and several houses on the waterfront were taken off, at Boka Kotorska (Montenegro) 

the tide gauges recorded a sea wave of just 6 cm. Other disturbances were noticed at the tide 

gauges of Dubrovnik and Bari (Bedosti and Caputo, 1986; Soloviev et al., 2000). 

 For the Kefallonia, Makarska and Montenegro tsunamis our results show HMAX values 

greater than those reckoned by interpreting available historical data, in agreement with our aim at 

representing worst-case scenarios. The tsunamis following the Senigallia and Gargano earthquakes 

need further discussion. The Senigallia tsunami produced significant effects only in the harbor of 

Ancona. Even if an instrumental measure of tsunami effects in the harbor of Ancona does not exist, 

we cannot rule out that our simulation underestimates the wave height inside the harbor. This may 

be due to poor resolution of the bathymetry model at the harbor scale, and/or to local amplifications 

and resonance phenomena that are common in quasi-closed basins (e.g.: Kowalik et al., 2008). The 

Gargano tsunami is a case that, despite several studies, still presents unresolved issues. A major 
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inconsistency exists between the macroseismic field, that suggests an inland source, and the tsunami 

effects, that cannot be satisfactorily reproduced either by inland or offshore sources (Tinti and 

Piatanesi, 1996; Tinti and Armigliato, 2003). For this tsunamigenic source we estimated a 

maximum wave of about 0.5 m, comparable to the results of Tinti and Piatanesi (1996). One could 

invoke a contribution by a secondary source (e.g. a submarine landslide), but this option falls 

outside the scopes of our work. 

 To fully explore the significance of our results in terms of tsunami threat to the Italian coasts 

of the Adriatic Sea we used the results obtained by Lorito et al. (2008) for the Hellenic Arc SZ as a 

term of comparison. Their HMAXs (Figure 6) show that the Hellenic Arc SZ poses a severe land 

threat to southern Apulia; the threat drops progressively northward to the level of land threat first, 

then to marine threat north of the Gargano promontory, and finally to nearly no threat north of 

Ancona. Remarkably, even the propagation of tsunamis from the Hellenic Arc SZ into the Adriatic 

Sea is strongly influenced by the two bathymetric effects illustrated in the previous section. The 

first is the focalization along the ridge that conveys energy towards the southernmost tip of Apulia - 

resulting in a peak of more than 4 m in the HMAX profile (Figure 6) - similarly to what was 

illustrated for the Kefallonia-Lefkada SZ. The second is the shielding effect of the northern Adriatic 

by the South Adriatic Basin. This results in a deflection of most of the wave energy towards the 

coast of the southern Adriatic Sea and a consequent increased dissipation. Recall that a similar 

shielding effect has already been discussed for the Albania - Northern Greece and Montenegro SZs. 

 Figure 7 summarizes the HMAXs associated with all six SZs considered in this study. 

Although most of the sources generate waves well beyond the level of attention of the marine threat 

band, we found that only three SZs enter the land threat band. The first is the Kefallonia-Lefkada 

SZ (black line) which, despite its limited size and strike-slip style, poses a significant threat for a 

short reach of the coast due to the bathymetric focalization. The two most threatening SZs are the 

Albania -Northern Greece (magenta) and Montenegro (blue) SZs, which generate water heights that 
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locally exceed the severe land threat level. The threat posed by the Albania - Northern Greece SZ, 

however, is always lower than that posed by the Hellenic Arc (gray line) at the same coastal 

positions. Nevertheless, tsunami waves from the Albania - Northern Greece SZ reach the Italian 

coast in less than 30 minutes (Figure 8a), whereas waves from the Hellenic Arc take 50 to 90 

minutes (Lorito et al., 2008), depending on the exact position of the fault source. This means that 

the time available to issue a warning or take countermeasures is much shorter in the case of the 

Albania - Northern Greece SZ. The threat posed by the Montenegro SZ exceeds that of the Hellenic 

Arc for a significant coastline length and the HMAX peak at ~640 km is the highest of all Adriatic 

source zones (Figure 7). However, the propagation of tsunamis from the Montenegro SZ to the 

coasts of Italy takes more than 50 minutes (Figure 8b), comparable with the minimum time needed 

for propagation from the Hellenic Arc.  
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 The combination of expected HMAX values and propagation times will become especially 

useful in the design of early-warning systems if integrated with analyses of the Euro-Mediterranean 

seismic network performance (e.g. Olivieri and Scognamiglio, 2007) for different tsunamigenic 

source zones. 
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Following the approach proposed by Lorito et al. (2008) we defined a maximum credible 

earthquake and an associated typical fault for each of six source zones potentially threatening the 

Adriatic coasts of Italy with sizable tsunamis. For each of the zones we let a pre-defined typical 

fault float along the entire source zone and computed a tsunami scenario at regular intervals. We 

then aggregated the maximum water heights above the mean sea level of each source zone and 

performed calculations of their maxima, averages and standard deviations along the target Adriatic 

Sea coasts of Italy. We finally coded the resulting tsunami threat for three different levels defined 

as: marine, land and severe land, shown in yellow, orange and red respectively. 

 We found that the southern part of Apulia facing Albania and the Gargano promontory are 

the portions of the Adriatic coasts facing the largest tsunami threat (Figure 4). We also found that 

some bathymetric features are crucial in determining the focalization-defocalization of tsunami 

energy. Despite its expected strike-slip faulting style, the Kefallonia-Lefkada source poses a 

significant threat for the southernmost tip of Apulia due to energy focalization along a bathymetric 

ridge. A further significant result is that the northern part of the Adriatic coast, where the cities of 

Venice and Trieste are located, is generally safer than the southern part. Only the region south of 

the Po delta may suffer from tsunamis, also due to its intrinsic vulnerability to flooding resulting 

from the extremely flat topography.  

 We also compared the threat posed by the investigated sources to that associated with 

earthquake sources in the Hellenic Arc. We found that the latter is potentially more destructive than 

the former, although the effects of small local sources can outpace those of the Hellenic Arc sources 

at specific locations. This is partly due to bathymetric effects, which can either reduce or enhance 

the threat posed by sources falling at specific locations.  
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We believe our results can be a valuable guidance for designing early warning systems, 

assessing risk and planning land-use for the coasts of southern Italy. 
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Table 1. Summary of parameters of the Typical Faults shown in Figure 1. L: fault length; W: fault 

down-dip width; D: depth of top edge of fault below sea level. MCE: Maximum Credible 

Earthquake for the given fault. 

1 

2 

3 

 Source Zone L 
(km) 

W 
(km) 

D 
(km) 

Slip 
(m) 

Strike
(deg) 

Dip 
(deg) 

Rake 
(deg) 

MCE
(Mw) 

Coastal Croatia 16 7 1 0.6 312 40 110 6.1 a Offshore Croatia 11 6.6 2 0.6 305 45 80 6.0 
b Montenegro 50 20 1 2.5 312 35 82 7.2 
c Albania-N Greece 36.2 16 1 2.0 337 35 96 7.0 
d Northern Apennines 12 8 2.5 0.6 140 30 90 6.1 
e Apulia 34 15 1 0.9 275 80 173 6.7 
f Kefallonia-Lefkada 110 18 3 2.0 27 60 162 7.3 

4  
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Figure 1. Tectonic sketch map of the Adriatic basin. The double-headed arrow indicates the 

floating path of the Typical Faults (see Table 1 for their parameters). a) Coastal and Offshore 

Croatia; b) Montenegro; c) Albania - Northern Greece; d) Northern Apennines; e) Apulia; f) 

Kefallonia-Lefkada. Selected major earthquakes discussed in the paper are indicated.  The 

traces of the cross sections in Figure 2 are also shown. 

 

Figure 2. Cross sections of the main thrust structures. Vertical arrows indicate the position of the 

active fronts selected for the modeling (see Figure 1). a) Dinarides: data taken from Tari-

Kovačić and Mrinjek (1994); Tari (2002) and Ivančić et al. (2006); b) Montenegro: data taken 

from Dragašević (1983) and Picha (2002); c) Northern Albania offshore: section modified 

after Graham Wall et al. (2006); d) Northern Apennines: section redrawn after Scrocca et al. 

(2007). 

 

Figure 3. Diagram of tsunami impact along the Italian coastlines of the Adriatic Sea following 

earthquakes generated by the a) Croatia SZ, b) Montenegro SZ, c) Albania - Northern Greece 

SZ, d) Northern Apennines SZ, e) Apulia SZ, and f) Kefallonia-Lefkada SZ. The profiles 

show maximum (black), average (blue) and average plus one standard deviation (green) of the 

HMAXs (maximum water height above the mean sea level) aggregated for each SZ. 

Horizontal scales are distances in kilometers: see Figure 4 for locating the diagram relative to 

the coastline. Vertical scales are water heights in meters. Yellow, orange and red in the 

background show the marine, land and severe land threat levels respectively (see text). 
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Figure 4. Combined threat levels posed by all SZs considered in this study (except for the Hellenic 

Arc), color-coded as in Figure 3, and progressive distance (in km) along the target coastlines 

used for displaying the modeling results. This map is intended for use in conjunction with 

Figures 3, 6 and 7. 
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Figure 5. Map of the maximum water height above the mean sea level in the simulation domain, for 

some selected fault positions in two different SZ: a) and b) are generated by two faults in the 

Montenegro SZ; c) is generated by a fault in the Albania - Northern Greece SZ; d) is 

generated by a fault in the Kefallonia-Lefkada SZ. 

 

Figure 6. Diagram of tsunami impact along the Italian coastlines of the Adriatic Sea: aggregated 

HMAXs (maximum water height above the mean sea level) from the Hellenic Arc SZ. Line 

colors and threat levels in the background as in Figure 3. 

 

Figure 7. Synoptic diagram of tsunami impact shown as aggregated HMAXs maximum for each 

source zone. Black: Kefallonia-Lefkada; magenta: Albania - Northern Greece; blue: 

Montenegro; brown: Croatia; cyan: Northern Apennines; green: Apulia. The maximum 

HMAXs produced by the Hellenic Arc SZ is shown in gray. Threat levels in the background 

as in Figure 3, water heights are above the mean sea level. 

 

Figure 8. Snapshots of the tsunami wave height for two selected faults: a) in the Albania – Northern 

Greece SZ; b) in the Montenegro SZ. 

 

 

 

 40



Tiberti, M. M., S. Lorito, R. Basili, V. Kastelic, A. Piatanesi and G. Valensise (2008) - Scenarios of earthquake-
generated tsunamis in the Adriatic Sea. PAGEOPH 165, 11/12, in press, doi:10.1007/s00024-008-0417-6. 

 1 

2 

3 

 

 

 4 

5 

6 

7 

8 

9 

10 

11 

12 

 

Figure 1 

 

 

 

 

 

 

 41



Tiberti, M. M., S. Lorito, R. Basili, V. Kastelic, A. Piatanesi and G. Valensise (2008) - Scenarios of earthquake-
generated tsunamis in the Adriatic Sea. PAGEOPH 165, 11/12, in press, doi:10.1007/s00024-008-0417-6. 

1 

2 

3 

 

 

 

 4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

 

Figure 2 

 

 

 

 

 

 

 

 

 

 42



Tiberti, M. M., S. Lorito, R. Basili, V. Kastelic, A. Piatanesi and G. Valensise (2008) - Scenarios of earthquake-
generated tsunamis in the Adriatic Sea. PAGEOPH 165, 11/12, in press, doi:10.1007/s00024-008-0417-6. 

 1 

2 

3 

4 

 

Figure 3 

 

 43



Tiberti, M. M., S. Lorito, R. Basili, V. Kastelic, A. Piatanesi and G. Valensise (2008) - Scenarios of earthquake-
generated tsunamis in the Adriatic Sea. PAGEOPH 165, 11/12, in press, doi:10.1007/s00024-008-0417-6. 

 1 

 2 

3 

4 

5 

6 

7 

8 

9 

10 

 

 

Figure 4 

 

 

 

 

 

 44



Tiberti, M. M., S. Lorito, R. Basili, V. Kastelic, A. Piatanesi and G. Valensise (2008) - Scenarios of earthquake-
generated tsunamis in the Adriatic Sea. PAGEOPH 165, 11/12, in press, doi:10.1007/s00024-008-0417-6. 

 1 

2  

 3 

4 

5 

6 

7 

8 

9 

10 

11 

 

Figure 5 

 

 

 

 

 

 

 45



Tiberti, M. M., S. Lorito, R. Basili, V. Kastelic, A. Piatanesi and G. Valensise (2008) - Scenarios of earthquake-
generated tsunamis in the Adriatic Sea. PAGEOPH 165, 11/12, in press, doi:10.1007/s00024-008-0417-6. 

 1 

2  

 3 

4 

5 

6 

7 

 

Figure 6 

 

 

 8 

9 

10 

11 

 

Figure 7 

 

 46



Tiberti, M. M., S. Lorito, R. Basili, V. Kastelic, A. Piatanesi and G. Valensise (2008) - Scenarios of earthquake-
generated tsunamis in the Adriatic Sea. PAGEOPH 165, 11/12, in press, doi:10.1007/s00024-008-0417-6. 

 1 

2 

3 

4 

5 

6 

7 

8 

 

Figure 8 

 

 

 

 

 

 47


