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Abstract

The response of phytoplankton growth to iron supply and its modulation by large scale

circulation and tropical instability waves (TIWs) in the eastern equatorial Pacific has been

investigated with an ocean biogeochemical model. This process study shows that iron can

be efficiently advected from the New Guinea shelf through theEquatorial Undercurrent

(EUC) to the eastern Pacific. The presence of a continental iron source is necessary for

the maintenance of the observed subsurface iron maximum in the EUC core. In the eastern

Pacific region, phytoplankton production is enhanced when additional iron is available in

the EUC. Simulated phytoplankton variability is linked to TIWs activity, as revealed by

a wavelet analysis of the total autotrophic carbon. The net local effect of the waves on

phytoplankton can be either positive or negative dependingon several factors. When the

iron nutricline is sufficiently shallow to be reached by the wave vertical scale, the effect of

the waves is to enhance iron availability in the euphotic zone leading to a net local increase

of phytoplankton biomass. We therefore suggest that the local maxima of phytoplankton

observed in moorings off the Equator in the eastern Pacific might be not only the result of
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concentration mechanisms, but also the result of an increase in local production sustained

by advected iron.

Key words: biogeochemical model, BFM, PELAGOS, tropical instabilitywaves, iron,

equatorial Pacific

1 Introduction

Dissolved bioavailable iron is a crucial regulator of the productive phase of marine

phytoplankton in the eastern equatorial Pacific (Martin et al., 1994; Coale et al.,

1996). However, it is still under debate which mechanisms control the supply of

iron to the photic zone from the major geochemical sources (Johnson et al., 1997;

Fung et al., 2000; Croot et al., 2007). Atmospheric deposition of mineral dusts is

generally considered the main source for the global ocean (Tegen and Fung, 1994;

Fung et al., 2000; Gao et al., 2003), while in the eastern Equatorial Pacific the

dominant source to the euphotic zone is upwelling and mixingfrom the subsur-

face ocean (Christian et al., 2002). In other regions, inputs from the continental

margins can supply comparable amounts of iron to the open ocean (Johnson et al.,

1999; Elrod et al., 2004). Iron limitation is one of the mechanisms that are ascribed

to control phytoplankton growth in the equatorial Pacific, together with excessive

grazing (Landry et al., 1997) and silicate limitation (Dugdale and WIlkerson, 1998).

The relatively low concentrations of surface Si(OH)4 observed in the region may

∗ Marcello Vichi, CMCC, V. Aldo Moro 44, 40127 Bologna. +39 0513782631 Fax: +39

051 3782654

Email address:vichi@bo.ingv.it (M. Vichi).

URL: http://www.cmcc.it (M. Vichi).
1 now at Ocean Physics Laboratory, University of California at Santa Barbara, USA

2



specifically limit diatom growth (Dugdale and WIlkerson, 1998; Dugdale et al.,

2007) due to reduced silicate supply with respect to preformed nitrate.

The discovery of elevated iron concentrations in the core ofthe Equatorial Un-

dercurrent (EUC, Gordon et al., 1997; Landry et al., 1997) has pointed out the

importance of this large-scale current in advecting iron tothe eastern Pacific (Ryan

et al., 2006). The origin of this maximum is attributable to the continental shelves

surrounding northern New Guinea (Mackey et al., 2002) and ithas been argued that

the supply of iron through the EUC is consistently modulatedby the phase of the

El Niño Southern Oscillation (ENSO, Ryan et al., 2006).

The upwelling of iron-rich waters from the EUC is one of the major factors promot-

ing phytoplankton production in the central and eastern equatorial Pacific (Gordon

et al., 1997; Ryan et al., 2002, 2006). It is likely that any enhancement of upwelling

into the euphotic zone could lead to additional biomass production. The IronEx

experiment confirmed that iron limits production and development of larger phy-

toplankton cells in the eastern Pacific (Coale et al., 1996).In general, increases in

productivity in this region (e.g., during the autumn EqPac cruises in 1992) were as-

cribed to increased iron inputs (Foley et al., 1997; Barber et al., 1996), although sev-

eral other factors may modulate phytoplankton productivity at larger spatial scales.

Mesoscale processes in the equatorial Pacific such as tropical instability waves

(TIWs) have been interpreted as being “analogous to a natural iron enrichment

experiment” (Barber et al., 1996). The presence of TIWs is infact associated to

significant changes in the divergence of horizontal velocity and therefore to both

upwelling and downwelling processes (Flament et al., 1996;Willett et al., 2006;

Pennington et al., 2006). Downwelling characterizes the cold crest of a TIW at few

degrees north of the equator, while upwelling occurs in the trough of the waves
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close to the equator where warm water is advected from higherlatitudes. Tempo-

rary iron inputs from the EUC have been ascribed to increasesin vertical advection

linked to the passage of upwelling Kelvin waves and TIWs (Foley et al., 1997;

Barber et al., 1996), although direct measurements of increased iron concentrations

still remain to be collected in order to confirm this hypothesis.

There are several documented cases of high chlorophyll concentration associated

with TIWs (Yoder et al., 1994; Murray et al., 1994.; Foley et al., 1997; Chavez

et al., 1998; Dunne et al., 2000; Strutton et al., 2001; Legeckis et al., 2004) . Esti-

mated productivity has been observed up to 50% higher than climatological values

(Foley et al., 1997). Blooms observed in 1998 around the Marquesas Islands, a re-

gion high in nutrients but poor in iron, have been attributedto southward pulses

of cool and iron-rich upwelled waters of the EUC. Satellite images clearly shows

that these elevated chlorophyll concentrations originateat the southern boundary of

TIWs (Legeckis et al., 2004). Very high chlorophyll anomalies (an order of mag-

nitude greater than the background concentration) have been observed in 1998 in

coincidence with the passage of TIWs (Strutton et al., 2001). Some of the high-

chlorophyll features observed during that experiment wereprobably formed by a

subductive front that concentrated biomass as in the case ofthe “line in the sea”

(Yoder et al., 1994) whereas others might have been induced by enhanced produc-

tion as a result of enhanced nutrient flux to the euphotic zone.

Despite the growing consensus in the scientific community onthe role of iron in

the world ocean (e.g. Veldhuis and De Baar, 2005), there is still a systematic

lack of data that prevents the construction of robust predictive models of phyto-

plankton variability in the equatorial Pacific. Climatological numerical experiments

(Christian et al., 2002) have pointed out that iron modelling in the upper ocean is

hampered by sparse information regarding sources, abundance and distribution of
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iron, as well as by the limited knowledge of the relevant processes on the annual

and inter-annual scales that affect iron concentrations and bioavailability in the eu-

photic zone. Nonetheless, models can still be successfullyused to test hypotheses

with process-oriented studies, which might also drive datacollection strategies to

reduce specific uncertainties in our understanding of the processes relevant to phy-

toplankton production. Several issues regarding the role of TIWs on nutrient fluxes

in the equatorial eastern Pacific are still unresolved. Someauthors suggest that the

visible TIWs induced biomass enhancement is due to advection and convergence of

biomass (Yoder et al., 1994), while others suggest that is local increase in primary

production (Strutton et al., 2001). In contrast with the mooring observations, recent

numerical studies (Gorgues et al., 2005) have shown that TIWs induce a decrease

of both iron concentration and new production when the wholeupwelling region of

the equatorial Pacific is considered.

Regardless of the net effect that the waves have on the biological activity of the

entire divergence region, a quantitative identification ofthe processes that make

iron available in the eastern equatorial Pacific is still missing. In particular, we are

interested in understanding how an iron source in the western Pacific can influence

iron availability in the eastern Pacific and, as a consequence, the new production

of the region. We have used a coupled ocean biogeochemical model to investigate

some aspects of phytoplankton variability induced by changes in the large scale

iron inventory in the EUC and by TIWs dynamics. The experiment and the diag-

nostics have been specifically designed to elucidate the role of these large scale

and mesoscale mechanisms on phytoplankton dynamics, focusing on the eastern

equatorial Pacific region.

Changes in the EUC iron inventory due to different external sources and the effects

on phytoplankton on the TIW scale have been investigated by means of scenario
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experiments. The "Control" simulation presented in this work is only driven by at-

mospheric iron deposition, while the "FeSource" run includes an additional source

of iron parameterized as continental iron originating fromthe New Guinea shelf

and advected by the EUC. The chosen investigation period was1990-2001 which

allowed the identification of several different periods of TIW activity and the inter-

annual fluctuations of the large-scale upwelling due to the strong and modest events

of ENSO found in this decade. In Sections 2.1 and 2.2 we describe the experiment

design and model set up with particular emphasis on iron initialization. Section 3

contains results from a wavelet analysis used to correlate biomass variability with

TIW dynamics and from other analyses of the experiments. Finally, in Section 4

we provide a discussion and summarize the main results.

2 Experiment design

2.1 Model description

The numerical model of the global ocean used in this study is PELAGOS (PELAgic

biogeochemistry for Global Ocean Simulations, Vichi et al., 2007a,b). It is com-

posed of a three dimensional ocean general circulation model (OGCM) based on

OPA 8.2 (Madec et al., 1999), and the biogeochemistry model BFM (http://

bfm.cmcc.it) derived and modified from the European Regional Seas Ecosys-

tem Model (Baretta et al., 1995; Baretta-Bekker et al., 1997, ERSEM I/II). The

OGCM has a resolution of 2◦ with a finer mesh of 0.5◦ of latitudes at the equator

(Madec and Imbard, 1996), which allows to resolve the physical processes of inter-

est to this study. The first level of the vertical grid is at 5 m,with a 10 m step in the

top 150 m.

6



The physical model computes the advection and diffusion terms and provides the

light and temperature fields for the calculation of the biogeochemical source terms.

The system is fully-coupled as it also provides the instantaneous attenuation of the

short-wave radiation penetrating the ocean interior related to biological processes.

The biogeochemical model is fully detailed in Vichi et al. (2007b). It implements

a set of biomass-based differential equations that describes the fluxes of carbon,

nitrogen, phosphorus and silica among selected biologicalfunctional groups repre-

senting the major components of the lower trophic levels. The principal functional

groups in the pelagic environment are represented by unicellular planktonic au-

totrophs (pico-, nano-phytoplankton and diatoms), zooplankton (nano-, micro- and

meso-) and heterotrophic bacterioplankton. The model alsosimulates the dynam-

ics of nitrate, ammonium, phosphate, biogenic silicate, oxygen and has an explicit

parameterization of the biochemical cycling of dissolved/particulate non-living or-

ganic matter. In this specific experiment Fe uptake is parameterized differently as in

Vichi et al. (2007b) by assuming a simple Michaelis-Menten kinetics with different

saturation constants for each phytoplankton group. This choice was mostly driven

by the availability ofin situ iron enrichment experiments which provided a possi-

ble value of the half-saturation constant for the average phytoplankton population

(Coale et al., 1996). The observed value of 0.1µmol m−3 is set as representative

of diatoms, while the values for nano and picophytoplanktonare set an order of

magnitude lower to indicate less limitation by this nutrient. As suggested by Chris-

tian et al. (2002), by using a Michaelis-Menten kinetics, the constant ratio of iron

uptake with respect to the constituent representing the biomass (N in his case and

C in the case of PELAGOS) becomes a key parameter. Since the focus of this work

is on the equatorial Pacific, we have chosen the minimum ratioobserved by Sunda

and Huntsman (1995, 1997) (3µmol Fe/mg C), which implies iron to be a known

limiting factor of this region.
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The model is forced by imposing daily surface fluxes of heat, water and momen-

tum from the ERA-40 reanalyses (Uppala et al., 2005) over theperiod 1990-2001

and by relaxing the surface temperature to the Reynolds dataset (Reynolds et al.,

2002) with a weak coefficient (40 W m−2 K−1; 60 days). All the other physical

parameterizations are set as in Vichi et al. (2007a). The initial fields of the physi-

cal variables are derived from a physics-only simulation ofthe period 1958-1989

initialized with climatological temperature and salinitydata (Levitus et al., 1998).

2.2 External iron sources and biogeochemistry initialization

Atmospheric iron deposition is taken into account as done inMoore et al. (2002)

by applying climatological model data from Tegen and Fung (1994) and assuming

a dissolution fraction of 1%. Iron biogeochemistry is rather simplified: no organic

ligands are considered; iron is remineralized at a constantrate from organic detri-

tus produced by plankton (about a factor 10 less than hypothesized by Landry et al.

(1997)); and it is slowly scavenged to sinking particles according to a parameteri-

zation proposed by Johnson et al. (1997) and also applied by Aumont et al. (2003)

(cf. Vichi et al., 2007b).

A continental source of iron has been parameterized by imposing an iron profile

observed on the shelf at about 2.5◦S 146◦E (Mackey et al., 2002) to the grid points

belonging to the New Guinea shelf. The location of the sourceand the imposed

profile are shown in Fig. 1. This procedure assumes a stationary source of iron over

the entire continental shelf, thus neglecting any temporaland spatial variability. In

particular, the shelf processes that originated such profiles as discussed by Mackey

et al. (2002) are not considered in the model. Another important assumption con-

cerns the bioavailability of the observed iron profile. The model does not consider
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any effect of ligands and/or siderophores (e.g. Archer and Johnson, 2000; Krae-

mer, 2004) therefore all the iron prescribed on the continental shelf is available for

phytoplankton growth.

All the biological functional groups are initialized with low homogeneous values

and initial nutrient fields are derived from the World Ocean Atlas (Conkright et al.,

2002) as presented in Vichi et al. (2007a). Iron was initialized with the homoge-

neous value of 0.6µmol m−3, which is quickly consumed during the spin-up time

in the upper productive layers.

Both the Control and the FeSource experiments started from the same initial condi-

tions derived from a 2 year spin-up climatological simulation with the iron source

on the New Guinea shelf. This implies that the initial iron conditions in the equa-

torial Pacific are proper of a situation in which both the continental iron source

and atmospheric deposition are present. In the FeSource experiment this source is

maintained during the whole simulation period, while it is removed in the Control.

3 Model results

3.1 Iron variability

Fig. 1 illustrates the mean annual velocity and pattern of the simulated EUC at 182

m water depth, which is the average location of the EUC core inthe western Pacific.

The physical model can reproduce a realistic representation of the currents that feed

the EUC from the New Guinea shelf. It thus provides the necessary mechanism

for the advection of continental iron into the EUC as suggested by Mackey et al.

(2002). A spin-up time of 2 years with climatological forcings was sufficient to
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allow the advection of dissolved iron from the western source region to the central

and eastern Pacific via the EUC.

The simulated inter-annual variability of the EUC and iron advection is shown in

Fig. 2 as mass and iron transport at 140◦W over the first 300 m. Fig. 2a agrees

well with reconstructed TAO array data from Izumo (2005) over the same section

and time period, indicating an adequate simulation of the EUC time evolution by

the model. Transport-weighted iron concentration (Fig. 2b) is computed by nor-

malizing the iron transport by the mass transport for the Control and FeSource

experiments. The figure shows the adjustment of the Control experiment due to the

removal of the continental source used in the spin-up phase.This trend is mostly

visible in the western, deeper part of the basin and it has little effect on the phyto-

plankton biomass in the eastern upwelling zone (see Sec. 3.2). The FeSource sce-

nario is stable throughout the simulation with a higher variability in the Fe transport

with respect to the Control.

The inter-annual change of total biologically-available iron is further illustrated

in Figs. 3 and 4. Figure 3 shows the Hovmöller diagram of simulated equatorial

dissolved iron at the surface and at 182 m depth. This depth iswell below the

photic zone and no biological utilization is present. The eastward advection across

the Pacific at 182 m is visible until 140◦W (Fig 2b). Further East of 140◦W the

EUC shoals and iron concentration surface maxima are found (Fig. 3a). The iron

upwelled at the Equator is then advected westward by the South Equatorial Current.

Phytoplankton chlorophyll maxima are found in the same regions where dissolved

iron is available (not shown). During the 1997-98 ENSO eventthere is no iron at the

surface in the whole equatorial Pacific, and the maximum in the core of the EUC

is limited to 180◦E. In late winter 1997-98, the intensification of the EUC transport

and upwelling leads to an initial increase of surface iron at180◦E (Fig.3a) and
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eventually to the large upwelling from 160 to 120◦W during the 1998 La Niña.

A similar response is found in the observations of chlorophyll concentration as

documented by Ryan et al. (2002, 2006).

The vertical location of the simulated iron maximum is shownin Fig. 4 together

with the zonal velocity fields from the Control and FeSource experiments at 140◦W.

The initial conditions characterized by a maximum located slightly below the EUC

core at 100 m are only maintained in the presence of the continental source of

iron. In the Control experiment the initial maximum gradually decreases during

the course of the experiment and is almost completely depleted by the end of the

simulation period.

Fig. 5 shows a comparison between vertical profiles of iron from different years for

both the Control and the FeSource experiment, and the real data collected by Coale

et al. (1996) during JGOFS and provided electronically by Gregg et al. (2003). Both

experiments are characterized by a realistic vertical distribution of iron, showing a

subsurface increase around 150 m of depth. In the case of the Control experiment,

the absence of a continental source of iron leads to a progressive disappearance of

the iron maximum below the euphotic zone; on the other hand, iron concentrations

remain fairly stable throughout the whole FeSource experiment and match the ob-

served vertical distribution at 0◦N, 140◦W (Gordon et al., 1997). While the Control

experiment shows values of irons that are comparable with the observed range of

data, Fe concentrations in the FeSource experiment are approximately twice the

observed values (Gordon et al., 1997). This indicates that the simple parameter-

ization of the iron source applied in the model might represent a possible upper

limit for the iron availability from the continental source. Despite being not com-

pletely realistic, the FeSource experiment is still valid in a process-oriented study.

In fact, it provides a scenario with different conditions interms of iron availability
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to be compared with the Control experiment in order to understand the processes

through which TIWs regulate iron availability in the eastern equatorial Pacific.

3.2 TIWs and phytoplankton dynamics

The physical characteristics of the TIWs simulated by the model are realistic both

in terms of their spatial distribution and propagation features (Willett et al., 2006).

A wavelet analysis of the meridional velocity indicates that both period (Fig. 6) and

wavelength of the waves are in agreement with the observed values (Kennan and

Flament, 2000; Legeckis et al., 2002; Willett et al., 2006).The wavelet analysis is

a common tool in geophysical fluid dynamics. It is used to investigate events asso-

ciated with undulatory phenomena (Torrence and Compo, 1998) and is particularly

powerful in the identification of TIWs (e.g. Masina and Philander, 1999). The sea-

sonal and interannual variability of the simulated TIWs arealso realistic: in general

the waves are present from the beginning of the boreal summerto December and

are much more intense during La Niña years such as in 1998 (Fig. 6). In some

years the period at 2◦N (Fig. 6b) demonstrates a double peak suggesting that at this

latitude the wavelet analysis may capture a mixed signal coming from two distinct

waves (Lyman et al., 2007). Figure 7 demonstrates that the simulated chlorophyll

is distributed along the TIW undulations observed in the seasurface temperature

field (SST). These patterns are visually comparable with satellite observations (e.g.

Willett et al., 2006). The spatial distribution of chlorophyll is similar in both exper-

iments, although the average concentrations are higher in the FeSource experiment

(Fig. 7c versus Fig. 7a). The simulated iron distribution tends to be localized around

the equator and it does not follow the northward wave fluctuations, particularly in

the Control experiment where iron concentrations are lowerand confined to the
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eastern part of the model domain (Figs. 7b and 7d).

A region roughly corresponding to half the longitudinal extension of a tropical in-

stability wave (0-5◦N, 118-122◦W, Fig. 7c) was used to analyze the local effects

of TIWs on phytoplankton dynamics. Our analysis is focused on the northern re-

gion of the eastern equatorial Pacific because this is the region where the phys-

ical characteristics of the TIWs have been studied in more detail. Due to a well

defined temperature front between the North Equatorial Counter Current (NECC)

and the South Equatorial Current (SEC), this is also the region where the contrast

between the northward advection of cold, equatorial water and the southward ad-

vection of warmer tropical water is more pronounced. Therefore the biological pro-

cesses might be strongly affected by the physical processesassociated with TIWs.

The northward extension of the box was set to 5¡N in order to capture the waves

in their entirety even during those years (such as 1998) whenthe front between the

NECC and the SEC was further displaced North due to a more intense equatorial

upwelling.

Phytoplankton carbon biomass was averaged in the box volumedown to 100 m

depth, and the resulting time series for both the Control andthe FeSource simula-

tions are shown in Figure 8a and b. The visual comparison of Fig. 8a and b clearly

indicates that changes in the absolute values of iron advected by the EUC lead to

an enhancement of the mean phytoplankton biomass in the target region.

The observed inter-annual variability in autotrophic biomass is due to both the

large-scale signal and the TIW modulation. In order to assess the actual role of

TIWs, we decided to remove the variability associated with time scales longer than

intraseasonal from the total signal. The total standing carbon stock have been fil-

tered by removing the 6 months running mean also depicted in Fig. 8. The residu-
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als have been used to compute the wavelet power spectrum (Torrence and Compo,

1998), which is shown in Fig. 8c only for the FeSource experiment and limited

to time scales typical for TIWs. The local variability of phytoplankton biomass is

characterized by undulatory features with a period of 20-35days occurring mostly

in the period August-November, and characterized by wavelengths (not shown) that

are also comparable with the ones typical of the TIWs (Flament et al., 1996; Masina

and Philander, 1999). The comparison with the wavelet analysis of the meridional

velocity anomaly in the same region (Fig. 6) confirms that thevariability observed

in phytoplankton biomass is tightly related to the TIWs phenomenon.

A key question is whether TIWs have a local net effect on phytoplankton biomass

by effectively enhancing Fe availability. To answer this question we identified the

periods of TIWs activity by selecting the time windows wherethe scale-averaged

power spectrum of the 20-35 days component of the meridionalvelocity anomaly is

significant (Fig. 9). TIW energy is considered significant when it is above the 95%

significance level according to Torrence and Compo (1998). Note that the period

of activity is not always confined within the same calendar year (e.g. 1999-2000).

By convention, we take the starting date of the TIW period as indicator of the

year. Year 2000 TIWs are not considered further in our analysis given the doubtful

significance of the wave energy and the occurrence in the spring of 2001.

To separate the contribution of the wave-induced enhancement in phytoplankton

production from the large-scale upwelling and seasonal variability we removed the

longer-term average standing stock. The mean local change of total phytoplankton

carbon during TIW activity for each year is thus defined as:

∆CTIW =
100

∆TTIW

∫

∆TTIW

C−Cr

Cr
dt (1)
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whereC is the timeseries of total phytoplankton carbon in the box,Cr the 6-month

running average and∆TTIW the period of the year where TIWs are significantly

energetic as identified in Fig. 9. The choice of the 6-month window is related to

the fact that the waves are phase locked with the annual cycleand that some of

their effects are likely to be seen at lower frequencies. It is important to remark

that the results discussed here are robust to the reduction of the averaging window

down to the monthly time scale (not shown), although the local ∆CTIW is reduced,

indicating that part of the signals come from lower frequency processes.

The results are plotted for both simulations in Fig. 10a. In addition Fig. 10b shows

the depth of the Fe nutricline and a proxy of the TIW vertical scale, both averaged

over the same time window∆TTIW. The chosen proxy is the meridionally-averaged

depth of the vertical velocity maxima at 120◦W. between 0 and 3◦N where both

the equatorial and TIW-induced upwelling is found. This meridional average was

chosen in order to capture the interannual changes in the wave characteristics as

further shown in Fig. 11.

The periods when TIWs were active are characterized by different net biomass re-

sponses, indicating that TIWs do not always enhance phytoplankton production.

The FeSource run has always larger positive (lower negative) ∆CTIW due to the ad-

ditional continental Fe supply to the EUC which enhances phytoplankton carbon

production. This is a robust response of the model mostly caused by the perma-

nent iron-limiting average conditions in the surface ocean. Interestingly, despite

the variations in phytoplankton biomass shows a strong inter-annual variability in

both experiments, Control and FeSource experiments are characterized by positive

(negative) responses during the same years.

Fig. 10b suggests that the relative location of the nutricline with respect to the ver-
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tical extension of TIWs can help to interpret the net increase/decrease of biomass.

When the TIW vertical scale is sufficiently deeper than the nutricline, the con-

tribution of TIWs, either via upwelling and/or meridional advection, can provide

sufficient amounts of iron to further enhance net phytoplankton production. On the

other hand, when the two vertical scales are comparable, thedownwelling feature

of TIWs and/or their equatorial advection of iron-poor waters are likely to domi-

nate. It is also possible that this effect prevails if the role of TIWs is averaged over

the whole divergence region as suggested by the model results of Gorgues et al.

(2005). Favorable conditions were met in 1992, 1995, 1996, 1999 but not in the

other years. The 1998 La Niña is an exception because the values of the TIW and

nutricline scales are comparable, yet the change in biomassis positive.

The yearly variability in the vertical scales of TIWs is better clarified in Fig. 11,

where the 120◦W section of vertical velocity averaged over the TIW periodsis plot-

ted together with the nutricline and the depth of the 20◦C isotherm. In 1992, which

is an example of net biomass increase, the TIW contribution directly affects the

location of the Fe nutricline, which is shallower in the upwelling part and deeper

in the downwelling. In 1993, vertical velocities are smaller than in 1992 indicat-

ing that the waves are weaker. Also, the large scale upwelling is weaker as shown

by the deeper 20◦C isotherm. The maxima of vertical velocities are found above

the nutricline and thus the wave is not capable to further increase phytoplankton

production with respect to the long-term average. Finally,1998 is characterized by

a shallow thermocline and nutricline at the Equator and the TIW vertical scale of

activity is confined close to the surface. The waves are active as evidenced by an

increase with respect to the mean biomass concentration (Fig. 10a). However, in

these conditions, TIWs are unlikely to directly affect the nutricline depth since the

effects of the large scale upwelling are dominant.
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To further analyze the direct effect of the waves in advecting Fe in different years,

we computed the wave-driven iron fluxes〈V′Fe′〉TIW and〈W′Fe′〉TIW, where

V′=V −Vr (2)
W′=W−Wr (3)
Fe′= Fe−Fer (4)

are the residual meridional and vertical velocities and iron concentration after the

removal of the 6-month running means(Vr ,Wr ,Fer) and〈·〉TIW indicates the av-

erage over the TIW period.. Since iron is not a passive tracerin the model but is

consumed by phytoplankton while being advected, the concentration used in this

computation is the residual of both physical and biologicalprocesses acting at the

time scales of the TIWs. Fig. 12 shows the wave-driven fluxes computed at the same

section as in Fig. 11 for two selected years (1992 and 1993). Meridional fluxes are

higher than vertical fluxes in all the analyzed years, with positive values in the

euphotic zone when TIWs lead to a net enhancement of phytoplankton biomass

(e.g. 1992, see also Fig. 10a), and negative values (as in 1993) when there is a net

decrease in biomass associated with the wave.

The analysis of the vertical wave-driven fluxes also hints atthe existence of wave-

driven upwelling as evidenced by the positive values both in1992 and 1993. In

1992, when the waves lead to a net increase in biomass, it is evident the signature

of iron upwelling at the equator and iron downwelling further north. On the other

hand, in 1993, there is a weaker and almost uniform upwellinglocalized across the

nutricline (Fig. 12).

In Fig. 13 and 14 we plot the time series at 2◦N, 120◦W of vertical velocity, merid-

ional velocity, total phytoplankton carbon and dissolved iron from the FeSource ex-

periment averaged over the uppermost 100m for years 1992 and1993, respectively.
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While Fig. 10 and 11 describe the integrated effect of the wave over different years,

the time series help us to understand the instantaneous processes acting during the

passage of the wave. This picture clearly shows that the peaks in phytoplankton

carbon and dissolved iron coincide with downwelling of northward advected cold

water in the edge of the wave as found in the observations (e.g. Strutton et al.,

2001). Vice-versa, during the passage of the wave trough, when there is upwelling

of warm water directed toward the equator, both phytoplankton carbon and dis-

solved iron amounts decrease. The wave has thus a three-dimensional structure that

needs to be carefully considered and may complicate the interpretation of local

variability. We suggest that in cases of enhanced productivity during TIW activity

such as in 1992, an extra source of iron was made available at the equator by up-

welling processes due to large scale and wave activity. The iron was not completely

consumed locally and was advected northward by the wave to iron-limited regions

where it can trigger local production during the downwelling phase of the wave.

(This hypothesis is further analyzed in the following Section with a specific study

case). In 1993 when TIWs are also present but their effect on phytoplankton pro-

duction is negative, wave induced variability is clearly seen in total phytoplankton

carbon but not in dissolved iron. This suggests that there isno northward advec-

tion of iron from the equatorial region, due most likely to upwelling of shallower,

iron-poor waters. The role of TIWs in this case is simply to advect and redistribute

phytoplankton. Year 1993 is indeed an example of one of the years when the iron

nutricline at the equator (see Fig. 10 and 11) is particularly deep and the vertical

scale of the waves is too shallow to effectively upwell iron-rich waters.
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3.3 Year 1992: a case study

Our analysis suggests that the effect of TIWs depends on the depth of the iron nu-

tricline relative to the vertical scale of the waves. It is because of this that TIWs not

always induce an increase of phytoplankton production. However, even in cases

when TIWs effectively induce a net phytoplankton enhancement it is still unclear

whether TIWs simply advect biomass produced at the equator (Legeckis et al.,

2004), where chlorophyll maxima are always present even during weak ENSO pe-

riods (Foley et al., 1997), or instead they induce a net localphytoplankton increase.

To answer this question we analyze in detail one of the years when the TIW-induced

effect on phytoplankton is positive. Fig. 15 shows the simulated time series for year

1992 of total phytoplankton carbon, dissolved iron and total primary production av-

eraged over the first 100 m at 0◦N, 120◦W for both experiments. At this latitude the

amount of total phytoplankton carbon and its temporal variability are very similar in

both experiments. From the time series of primary production it is evident that both

cases are particularly productive during the second half ofthe year in connection

with the large scale upwelling due to the intensification of the trade winds. At the

equator, this process is dominant and the presence of TIWs isnot clearly detectable

in the time series. The Control experiment reaches a productivity peak during the

boreal summer and then decays. The FeSource experiment maintains a high pro-

ductivity level up to November and then rapidly decreases. Overall it is interesting

to note that the productivity of the two experiments does notdiffer much even if the

availability of iron at the equator is much greater in the FeSource experiment with

respect to the Control (Fig. 15b). This is a consequence of the Michaelis-Menten

form of phytoplankton growth, indicating that the equatorial Fe concentration is

above the half-saturation concentration in both experiments.
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The same quantities from Fig. 15 are shown in Fig. 16 at 2◦N. At this latitude, the

time variability of both the total phytoplankton carbon andprimary production is

dominated by mesoscale variability due to the presence of the TIWs in the second

half of the year. In both experiments, the passage of a wave results in an increase of

up to 100% in total phytoplankton carbon with respect to the background level. At

the same time the peaks of total phytoplankton carbon are higher in the FeSource

experiment and reach values up to 50% higher than in the Control experiment. The

physics is exactly the same in the two experiments and the biomass concentration at

the equator is very similar (Fig. 15a). If the mechanisms in action at 2◦N were sim-

ply advection and convergence of phytoplankton biomass dueto the waves, the total

phytoplankton carbon should be similar in both cases. We believe that the waves

do not simply advect phytoplankton produced elsewhere but can induce increased

local production. This conclusion is supported by the time series of primary produc-

tion at 2◦N (Fig. 16c), which clearly shows that the phytoplankton blooms during

TIW activity during the FeSource experiment are always associated with enhance-

ment in primary production. During phytoplankton blooms the primary production

increases up to an order of magnitude in the FeSource experiment. Despite the fact

that iron availability at the equator is significantly different in the two experiments,

iron concentrations at 2◦N are more similar on average throughout the period (Fig.

16b). This suggests that the extra supply of iron advected bythe EUC in the eastern

Pacific and upwelled at the equator mainly by the large scale dynamics (but also by

the TIW-induced vertical fluxes, cf. Fig. 12) has been utilized during the northward

advection by the TIW. Only small amounts of unused Fe remain at this latitude.

On the contrary, in the Control experiment only the first two blooms are correlated

with enhanced primary productivity, suggesting that when iron is the limiting nu-

trient TIWs are acting mainly to advect and converge biomassproduced in other

regions.
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4 Discussion and conclusions

The ocean biogeochemical model used in this work is not primarily meant to predict

the evolution of the equatorial Pacific ecosystem, but rather to approximate the ma-

jor processes and to deduce cause-effect mechanisms controlling the phytoplankton

variability. The specific model design shows that substantial iron concentrations can

be advected from the New Guinea shelf through the EUC, to the upwelling regions

of the central and eastern Pacific as hypothesized by Mackey et al. (2002). Iron is

utilized in small quantities during this process because the EUC is below the photic

zone. Our process study demonstrates that the presence of a continental iron source

is necessary for the maintenance of the subsurface iron maximum in the EUC core

observed by Gordon et al. (1997).

However, the rather simplistic parameterization of iron source used in this study

does not account for the spatial and temporal variability incontinental iron supply,

both of which might have some effects on the absolute value ofiron concentrations.

If, on the one hand, the application of a distant source partly solves the problems

presented by Christian et al. (2002), where their model was sensitive to the choice

of the imposed initial concentration profile in the core of the EUC, on the other,

major concerns remain on the assumption of bioavailabilityof the measured iron

profile that was chosen as representative of the shelf condition. In fact, in our ex-

periment all the iron measured in the profile was assumed to beavailable to phy-

toplankton growth without considering any possible effectof ligands (e.g. Archer

and Johnson, 2000). This assumption provides an upper limitfor continental iron

availability in the eastern Pacific and it needs to be furtherinvestigated to obtain

more realistic simulations. The simulated concentrationsin the central equatorial

Pacific are highly influenced by the values imposed on the shelf, however even the
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simplified profile used in this study allows for values comparable with the observed

ranges (Coale et al., 1996; Gordon et al., 1997). This process study clearly indicates

that further iron supply to the central and eastern Pacific due to the inclusion of a

continental source and subsequent advection through the EUC, leads to enhanced

biomass compared to a simulation where only atmospheric deposition is imposed.

The model results are in agreement with the field-work analyses of Coale et al.

(1996), Foley et al. (1997) and Strutton et al. (2001) regarding the iron transport

in the EUC and the local effects of TIWs on phytoplankton biomass. Both the

presence of TIWs and variations in the sources of iron to the EUC do have an effect

on phytoplankton. The model is able to simulate realistic TIWs in terms of period

and wavelength, and there is a clear relation between the periods of TIWs activity

and phytoplankton carbon variability.

The analysis of selected periods when TIWs are active has shown that in some

cases TIWs can be an efficient mechanism for increasing phytoplankton carbon

production. However, their effect is superimposed on the large-scale upwelling and

is linked to the depth of the iron nutricline. The processes that determine this depth

are not only limited to equatorial Ekman pumping. It has beenshown that in some

years (e.g. 1992) the iron nutricline can be vertically displaced underby the action

of the TIWs. When the nutricline is sufficiently shallow and/or the TIWs verti-

cal scale is deeper than the nutricline depth, TIWs contribute directly to the net

increase of biomass by enhancing iron availability in the euphotic zone. Further

investigations are needed to explore the linkages between TIWs and the depth of

the iron nutricline, which is likely to be connected both to the uptake/regeneration

of iron in the euphotic zone and to the large-scale equatorial upwelling. In partic-

ular, the choice of the iron parameterization in the modeledbiogeochemistry can

have a direct role and should be further assessed by conducting sensitivity studies
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with different formulations (e.g. the Droop-like iron limitation used in Vichi et al.

(2007b)).

The difference between the Control and the FeSource experiments is maximal dur-

ing periods of TIW activity. In particular, they differ in biomass north of the equator

on the western edge of the wave characterized by northward transport and down-

welling of cold waters. In cases when the net effect of TIWs onphytoplankton is

positive, such as in 1992, phytoplankton blooms at 2◦N are correlated with dis-

solved iron maxima. This suggests that portion of the iron upwelled near the equa-

tor is not consumed locally. This iron can then be advected northward by the TIWs,

thus “fertilizing” iron-poor regions and increasing phytoplankton biomass north of

the equator. This conclusion is supported by the analysis ofthe iron fluxes induced

by TIWs and by the fact that the phytoplankton blooms at 2◦N are well correlated

with peaks of primary productivity that reach values up to anorder of magnitude

higher than the background level. Our findings suggest that the waves have a dif-

ferential effect on Fe availability in the eastern equatorial Pacific, which likely de-

pends on the amount of iron in the EUC core and on the characteristics of the wave.

In years when TIWs are weak (in terms of their upwelling and downwelling con-

tribution) and their vertical scale is not deep enough to reach the nutricline, the

meridional wave-driven Fe fluxes are negative and while phytoplankton blooms are

still evident at 2◦N the presence of TIWs do not induce a net phytoplankton in-

crease. In these cases the effect of TIWs is simply a redistribution and advection of

biomass in iron-poor waters. This mechanism partly explains why other modelling

results (e.g. Gorgues et al., 2005) reported a negative effect of TIWs on the mean

phytoplankton biomass and iron inventory. Our interpretation suggests that the av-

erage influence of TIWs is linked to the characteristics of the modeled waves which

are in turn related to the variability of the large-scale upwelling during the chosen

23



simulation period.

The potential role of iron supply on phytoplankton growth should further be inves-

tigated in conjunction with silicate availability, since it has been shown that Si:N

and Si:P ratios in phytoplankton change in iron depleted conditions (Takeda, 1998).

PELAGOS assumes a constant Si:C ratio in diatoms which is typical of temperate

regions and is lower than the values found in the equatorial Pacific and Southern

Ocean (Vichi et al., 2007b). This is probably the major reason why PELAGOS over-

estimate silicate concentrations in the eastern equatorial Pacific (see Vichi et al.,

2007a). Further sensitivity experiments similar to the oneperformed by Chai et al.

(2007) needs to be performed to elucidate the co-limitationprocesses at work in

the HNLC regions (e.g. Veldhuis and De Baar, 2005). It is nevertheless important

to remark that the modulation by TIWs investigated in this work might affect the

distribution of silicate as well, as pointed out by Dugdale et al. (2007).

The effects of large-scale and mesoscale processes on the equatorial Pacific phy-

toplankton are difficult to separate and our analysis is an attempt to reconcile the

different aspects inferred from observations and modelling exercises. Our results

indicate that this kind of ocean biogeochemical model is capable of capturing the

basic mechanisms, and to explain the combined action of ironavailability from

distance sources and the modulation by mesoscale processes. However, the lack of

qualitative and quantitative data on iron variability in connection with phytoplank-

ton functional types prevents a direct validation of the model and the assessment of

predictive skills. On the other hand, the understanding of the simulated processes

increases our degree of confidence in describing modifications of the equatorial

Pacific ecosystem due to climate change.
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Figure 2. (a) Mass transport in the first 300 m at 140◦W, 1◦S-1◦N and (b) transport-weighted

iron concentration of EUC at 140◦W from the FeSource (continuous line) and Control

(dashed line) experiments.
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Figure 3. Hovmöller diagram at the equator of the simulated iron concentration at the sur-

face and 182 m depth from the FeSource run (µmol m−3).
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Figure 4. Mean annual concentrations for 1992, 1994 and 1998of dissolved iron (shaded,

µmol m−3) and mean zonal velocity (contours, m s−1) at 140◦W for the Control (left pan-

els) and FeSource (right panels) experiments
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Figure 5. Comparison between mean annual iron concentration profiles from the Control

(continuous lines) and FeSource (dashed lines) experiments (averaged at 9◦S-9◦N,140◦W)

and observations collected on a section at the same longitude (Coale et al., 1996).
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Figure 6. a) Timeseries of the meridional velocity at 2◦N, 120◦W and b) wavelet power

spectrum with the 95% significance level according to Torrence and Compo (1998).
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Figure 7. Snapshot (September 20, 1992) of the chlorophyll (mg m−3) and iron (µmol m−3)

concentration averaged over the first 50 m for the Control (panels a and b) and Fesource

(panels c and d) experiments. Temperature contours from 20 to 28 ◦C are superimposed.

Panel c also shows the location of the region where the wavelet analysis was applied.
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Figure 8. Phytoplankton biomass concentration in the target box and 6 month running

means for (a) the Control run and (b) the FeSource run (the Control running mean in green

is reported for direct comparison). (c) Wavelet power spectrum of the residuals with respect

to the running mean for the FeSource experiment.
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Figure 9. Scale-averaged power of the 20-35 days wavelet components of the meridional

velocity at 120◦W. The periods where TIWs are considered significant are the time-intervals

where the power is above the reference line of 95% confidence level (Torrence and Compo,

1998).
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(b) Fe nutricline TIW scale
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Figure 10. (a) mean percentage of biomass change in the box at120◦W and (b) mean

depths of the Fe nutricline and estimate of the TIWs verticalscale (FeSource experiment

only) during the periods of activity (see Fig. 9).
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Figure 11. Meridional section at 120◦W of vertical velocity (in m d−1) averaged over the

periods of TIWs activity in 1992, 1993 and 1998 (see Fig. 9). The depths of the 20◦C

isotherm (continuous line) and of the Fe nutricline (dashedline) are superimposed (model

data from the FeSource experiment).
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Figure 12. Meridional section at 120◦W of TIW-induced iron fluxes. (a) and (c) meridional

fluxes; (b) and (d) vertical fluxes, in nmol Fe m−2 s−1, averaged over the periods of TIWs

activity in 1992 and 1993 (see Fig. 9).
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Figure 13. Simulated timeseries at 2◦N, 120◦W of vertical velocity, meridional velocity,

temperature, total phytoplankton carbon and dissolved iron for year 1992, averaged over

the first 100 m.
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Figure 14. Same as Fig. 13 but for year 1993.
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Figure 15. Simulated timeseries at 0◦N, 120◦W of a) total phytoplankton carbon, b) dis-

solved iron and c) total primary production averaged over the first 100 m.
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Figure 16. Same as in Fig. 15 but at 2◦N, 120◦W.
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