
 1

Denoising gravity and geomagnetic signals from Etna volcano (Italy)  

using multivariate methods 

  
Ciro Del Negro(a), Filippo Greco(a,#), Rosalba Napoli(a), Giuseppe Nunnari(b)  

 
aIstituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania, Italy. 

bDipartimento di Ingegneria Elettrica, Elettronica e dei Sistemi, Università di Catania, Italy 
 

# Email of corresponding author: greco@ct.ingv.it 

 

 

Abstract 

Multivariate methods were applied to denoise the gravity and geomagnetic signals 

continuously recorded by the permanent monitoring networks on the Etna volcano. Gravity 

and geomagnetic signals observed in volcanic areas are severely influenced by meteorological 

variables (i.e. pressure, temperature and humidity), whose disturbances can make the 

detection of volcanic source effects more difficult. For volcano monitoring it is necessary, 

therefore, to reduce the effects of these perturbations. To date filtering noise is a very complex 

problem since the spectrum of each noise component has wide intervals of superposition and, 

some times, traditional filtering techniques provide unsatisfactory results. We propose the 

application of two different approaches, the adaptive neuro-fuzzy inference system (ANFIS) 

and the Independent Component Analysis (ICA) to remove noise effects from gravity and 

geomagnetic time series. Results suggest a good efficiency of the two proposed approaches 

since they are capable of finding and effectively representing the underlying factors or 

sources, and allow local features of the signal to be detected.  
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Introduction  

Over the last decades, new modern techniques of volcano monitoring have been implemented 

on Mt Etna in order to improve the knowledge of eruptive processes. In particular, monitoring 

involves gravity and magnetic techniques that have provided essential information on the 

eruption mechanism including magma storage and transport within the volcano edifice 

(Carbone et al., 2003; Del Negro et al., 2004). However, gravity and geomagnetic time series 
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are severely influenced by meteorological variables (i.e. pressure, temperature and humidity), 

whose disturbances can not only make the detection of volcanic source effects more difficult 

but also may lead to misinterpret data. For all practical purposes, volcano monitoring is 

concerned with detection of gravity and geomagnetic anomalies attributable to the dynamics 

of a volcano and removal of variations with no geophysical significance. 

Temporal gravity changes in volcanic areas are related to sub-surface mass-redistributions 

and/or surface elevation changes in response to magmatic activity, and their amplitude, 

wavelength and duration depend on several parameters such as the size, depth and evolution 

rate of the sources. The expected gravity changes due to volcanic sources range in amplitude 

between 10 and 1000 µGal (1μGal = 10-8 ms-2) with a spectrum varying from 1-10 s to more 

than 1 yr. To isolate gravity residuals, due to sub-surface mass-redistribution it is necessary to 

remove the effects of non volcanic sources (i.e. luni-solar gravitational effects, atmospheric 

contribution, instrumental drift, ground tilt etc). Unfortunately, especially when used in the 

adverse environmental conditions often encountered at active volcanic areas, the behavior of 

spring gravity meters (the most commonly utilized instruments for microgravity studies) have 

proven to be severely influenced by meteorological variables (i.e. pressure, temperature and 

humidity; Andò and Carbone, 2001, 2004, 2006; Carbone et al., 2003; El Wahabi et al., 1997; 

Warburton and Goodking, 1977). In particular, El Wahabi et al. (1997) showed that, over a 

yearly period, temperature changes can produce up to 1 mGal (1 mGal = 10-5 ms-2) 

instrumental effect. An admittance up to 0.2 mGal/°C, over changes in periods longer than 1 

month, has been evidenced in Carbone et al. (2003). It should also be noted that the 

temperature effects are evident for longer periods than 1 month (Carbone et al., 2003). The 

correction formulas are instrument-specific and often frequency-dependent. Obviously, 

frequency-domain filters cannot be applied to remove the effects of these perturbations since 

the spectrum of each noise component has wide intervals of superposition. A wavelet based 

approach to filter noise components from gravity signals was proposed in Panepinto et al. 

(2006). Andò and Carbone (2001, 2004, 2006) investigated the possibilities of a Neuro-Fuzzy 

algorithm as a tool to reduce the effect of meteorological variables from the continuous 

gravity signal. 

Geomagnetic changes attributable to the dynamics of a volcano are usually very small, within 

1~10 nT, while changes up to a few hundreds nanoteslas are caused by natural geomagnetic 

fluctuations of external origin (ionospheric and magnetospheric currents, and secular 

variations) whose spatial distribution is, generally, considered uniform because of the great 

distance of their sources. The classical differential technique, based on simultaneous simple 
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differences among the magnetic field amplitudes recorded at several points on a volcano, is 

the most frequently used and reliable method to remove them. Unfortunately, this simple 

technique does not allow properly reducing the geomagnetic signal to the level of a few 

nanoteslas, which is the apparent upper limit of detectability of magnetic anomalies 

associated with volcanic activity (Davis et al., 1981). Up to now filtering geomagnetic noise 

is a very complex problem that involves the development of different algorithms to reduce 

transient fields, which could be of the same order as the volcanomagnetic signal to be 

detected (Currenti et al., 2004). If very rapid changes are indeed characteristic of 

volcanomagnetic events (Sasai, 1990), then filtering techniques for removing short-period 

geomagnetic noise may be very helpful in increasing the detectability of volcano-related 

magnetic field changes. Methods of predictive filtering (Davis et al., 1981) and adaptive type 

approach (Currenti et al., 2004) have been suggested to remove changes in the difference 

fields due to contrasting responses at magnetometer sites. However, even if the effects of 

external and transitory fields are properly eliminated, both periodic and non-periodic 

geomagnetic changes have clearly been observed in the magnetic reduced signals. Since 

fluctuations are present even when no volcanic activity is apparently affecting the signal (e.g., 

Johnston, 1989; Zlotnicki et al., 2000; Del Negro et al 2004) it is evident that external sources 

are responsible for these variations. Hence, it is necessary to correct this component in order 

to identify significant geophysical signals. Recent and more accurate studies claim that annual 

periodic variations in the geomagnetic total intensity could be caused by seasonal changes in 

the heterogeneous magnetization of near-surface rocks due to a diffusion of atmospheric 

temperature changes into the ground. The intensity of the local magnetic anomaly depends on 

the heterogeneity of the near-surface rocks and their temperature dependence. Using the 

method proposed by Utada et al. (2000), the features of annual variations can be 

quantitatively estimated by a simple one-coefficient filter. However, this simple linear 

filtering is not able to remove a residual annual component (Del Negro and Currenti, 2003) 

which is probably due to a non-linear effect of the temperature.  

Notwithstanding the problem of filtering gravity and geomagnetic time series recorded in 

volcanic areas has been addressed by different authors, the lack of standard procedures justify 

the effort presented in this paper, devoted to describing the application of two different 

techniques for denoising gravity and geomagnetic data. The first one is a nonlinear 

autoregressive model based on the application of an Adaptive Neuro-Fuzzy Inference System 

(ANFIS), whose intrinsic learning features seem to be particularly suitable for such a task. 

The second one is a method obtained by combining wavelet transform and Independent 
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Component Analysis (ICA), which is able to separate multiple data series into independent 

data series. Both techniques were applied to data recorded by the gravity and magnetic 

monitoring networks of Etna volcano (Italy). A comparison between ANFIS and ICA 

techniques is also reported together with a consideration on their usefulness. 

The objective of the work was not the observation of anomalies related to an eruptive event 

but rather the study of methods for noise reduction in gravity and geomagnetic field 

measurements in volcanic area. It is important to note that, in this paper, the term noise is 

used to indicate only the components due to non volcanic sources (i.e. meteorological effects).  

 
 

Mathematical background 

To represent the relation between a geophysical variable y(t) (e.g. gravity field and 

geomagnetic field) and a set of related variables u1(t), u2(t), … up(t), which represent 

candidate sources of noise, we can consider both non-linear such as autoregressive models 

with exogenous inputs (NARX), and linear approaches, such as the Independent Component 

Analysis (ICA) technique. NARX models are recurrent dynamic structures, with feedback 

connections, which can be represented as: 

 y(t) = f(y(t-1),…, y(t-ny), u1(t),  u1(t-1),..., u1(t-n1),... up(t), up(t-1),... up(t-np))       (1) 

where t represents the discrete time variable, y(t) is the output model, u1, … un are the model 

input variables, and  f is an unknown non linear function, which can be approximated by using 

several methods such as the neuro-fuzzy approach considered in this work. 

In neuro-fuzzy systems, neural networks are used to tune the membership functions of the 

fuzzy system and to automatically extract fuzzy rules from numerical data. The internal 

structure of a neuro-fuzzy network is illustrated in Figure 1. The nodes of the first layer 

represent the crisp inputs. The activation functions of the second layer nodes are Gaussian and 

act as membership functions. Each neuron of the third layer acts as a rule node so that this 

layer provides the fuzzy rule base. The output of this layer determines the activation level at 

the output memberships. As ordinary neural nets, the neuro-fuzzy one learns on a training 

data set, tuning membership functions and rules, by means of a back-propagation algorithm. 

When xi is the ith node in layer A, Oj
L is the jth output of generic layer L and Wij

L is the weight 

of the link between jth neuron at layer L+1 and ith neuron at layer L, each layer output can be 

described as follows: 
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The second approach taken into account in this study, to express the relation between 

different variables, considers the static linear model: 

 y(t) = a1 u1(t) + a2 u2 (t) … + ap up(t)        (2) 

In the model (2), the observed variable is considered to be a linear mixtures of some latent 

variables, assumed to be nongaussian and mutually independent. The set of unknown 

coefficients a1, … ap, can be obtained by using various kinds of methods. By arranging the 

observations nniii uauay ⋅+⋅= ,11, L   of the random variable y into a vector Y it is possible to 

write 

                                                            uAY ⋅=       (3) 

where A is the so-called mixing matrix. Thus, given the observation Y the problem is to 

estimate both the mixing matrix A and the observed sources u. This is done by adaptively 

calculating a cost function which either maximizes the non-gaussianity or minimized the 

mutual information.  

The original sources u can be recovered by multiplying the observed signals Y with the 

inverse of the mixing matrix W = A − 1, also known as the un-mixing matrix. Of course, in 

general the matrix A in not square thus the inverse matrix must be interpreted in the sense of 

the generalized-inverse (Ben-Israel and Greville, 2003).  

One of the problems of the ICA approach is that it is not possible to identify the original 

scaling of the sources (Hyvärinen and Oja, 2000). The reason is that, both u and A in 

expression (3) are unknown. Thus, any scalar multiplayer in one of the sources ui could 

always be cancelled by dividing the corresponding column ai of the A matrix by the same 

scalar. However, in our applications, the energy of the unknown component, expect the 

volcanic source component, is measurable. For instance, one typical problem is to remove the 

meteorological variables (i.e. temperature, pressure etc) effects. Thus, we can compute 

appropriate scale factor by measuring the oscillation of each component in the observed time 

period and comparing this oscillations with the corresponding one provide by the ICA 

approach.  
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Computation of the residuals 

Regardless of the adopted representation for the relation among geophysical variables y(t) and 

a set of candidate noise sources u1(t), … up(t), the denoising scheme (Fig. 2) adopted in this 

work is based on the idea of existence of a time interval in which the signal y(t) is not affected 

by a volcanic source. In this hypothesis, a residual signal r(t) can be computed as: 

 r(t) = y(t) – y’(t)  (3) 

where y’(t) is the estimated value of y(t). This residual in absence of effects due to the 

volcanic sources, that might involve mass redistribution and/or variations of the local 

geomagnetic field, will be limited in amplitude to typical ranges depending on the considered 

signals (i.e. ranging between a few µGal for gravity and a few nT for geomagnetic field). 

Knowledge of the magnitude of the residuals in “quiet periods” allows to recognizing and 

isolating the anomalies due to volcanic sources. 

Let us represent the component xi of the observed random vector 
T

mxxxx ],,[ 21 L=  are 

generated as a sum of the independent components uk, nk L,1= . The data is represented by 

the random vector 
T

mxxxx ],,[ 21 L= and the components as the random vector 
T

nuuuu ],,[ 21 L= . The task is to transform the observed data x, using a linear static 

transformation W as xWu ⋅=  into maximally independent components u measured by some 

function  of independence. This is done by adaptively calculating the w vectors and setting up 

a cost function which either maximizes the nongaussianity of the calculated xWsk ⋅=  or 

minimizes the mutual information. 

 

 

Data set and preliminary analysis 

The long and high-quality gravity and geomagnetic sequences recorded at Etna volcano 

during the last two decades represent an essential starting point to develop and validate 

analysis techniques to remove effects caused by meteorological variables. The continuously 

monitoring systems running at Etna were set up in 1998 (Del Negro et al. 2002; Carbone et 

al., 2003) and improved during recent years. At present, they consist of 3 gravity remote 

stations, a network of 6 scalar magnetometers and 3 magnetic gradiometers. Stations are 

located at elevations ranging between 1700 and 3000 m a.s.l. along a North-South profile 

crossing the summit craters. The magnetic reference station (CSR) is installed further west 

(about 50 km) on the Nebrodi Mountains (Fig. 3). The continuous recording stations were 
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devised using innovative technologies which guarantee uninterrupted working under harsh 

environmental conditions. 

The gravity stations are equipped with LaCoste and Romberg (L&R) spring gravimeters, 

featuring analog feedback systems, which are installed in partially buried concrete cases at 

ESL and BVD, while at PDN the gravimeter is located inside the observatory building. Data 

are recorded at 1 datum/min sampling rate through a CR10X Campbell Scientific datalogger. 

All magnetic stations are equipped with a GSM-90 Overhauser effect magnetometer (0.01 nT 

sensitivity). Each station synchronously samples the Earth’s magnetic field every 5 seconds. 

A Global Positioning System (GPS) receiver controls the synchronization of readings. 

Simultaneously with gravity and magnetic signals, atmospheric and ground temperature, 

pressure and humidity are acquired at each station.  

The definition of a background level for each signal requires a long and continuous data series 

acquired in unperturbed (i.e. quiescent period) conditions, therefore we used data gathered on 

Etna when no significant volcanic activity was observed. As a first step, we reduced gravity 

data for the effect of Earth Tide and instrumental drift (Torge, 1989). The effect of Earth 

Tides (amplitude up to 250 µGal peak-to-peak depending on latitude, elevation and stage in 

the tidal cycle) is modeled through the Eterna 3.30 data processing package (Wenzel, 1996). 

The accuracies of the prediction model is within ±1%, implying tidal residuals affecting the 

gravity signal up to 1-2 μGal peak-to-peak over the most relevant tidal families (diurnal and 

semidiurnal). To correct the data for the main effect of instrumental drift a best linear fit was 

removed from the sequences. For geomagnetic signals we have used both the raw signals and 

the difference of the geomagnetic fields measured by magnetic stations located in the volcanic 

area with respect to reference station (CSR) 

Considering that effect of meteorological variables mainly affects the long period components 

(Carbone et al., 2003; Del Negro et al., 2004), we computed hourly averages and used time 

series generally of about 6 months or more. In order to define the correlation between gravity, 

geomagnetic data, and meteorological variables (temperature, pressure and humidity), we 

performed the analysis in the frequency domain for each time series investigated. The power 

spectra analysis for each signal, obviously, reveals the presence of harmonics with their 

fundamental oscillations (see peaks in Figure 4). In particular, besides seasonal components, 

the dominant periodic components of raw gravity data are centred around 12 and 24 hours. 

The same semidiurnal and diurnal components were found in the temperature, pressure and 

humidity signals. In the same way, power spectra of geomagnetic data show prominent peaks 

at the period of 8, 12 and 24 hours. 
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Cross-correlation analysis in the time domain between geophysical signals and meteorological 

variables was also performed. Although the results of this analysis are strongly dependent on 

the period chosen and on the length of the considered window time, they provide useful 

information on the general relationship between different signals. Both gravity and 

geomagnetic signals show a strong correlation with temperature. In particular, the correlation 

coefficient for different gravity and geomagnetic time series is up to -0.64 and 0.68, 

respectively. Moreover, gravity data are anti-correlated and show a considerable time lag up 

of to 900 hours. As regards geomagnetic data, it is worth noting that the significant 

correlations found between differences of geomagnetic signals and temperature, over a time 

lag of about 10 hours, are not so marked when we considered the raw signals. 

Correlations were also observed between gravity signal and pressure (factor is up to -0.367) 

with a time delay of about 200 hours, and between geomagnetic data and humidity (index is 

up to -0.54). Conversely low correlation coefficients were obtained between gravity 

sequences and humidity (especially at PDN station), and between geomagnetic data and 

pressure for all values of the time delay. As an example of the correlations identified in 

different periods at different stations, we report two representative series in Fig. 5. These 

correlations were taken into consideration during the implementation of the model for 

reducing geophysical signals for the effect of meteorological variables. 

 

The ANFIS non linear approach 

The adaptive network based on fuzzy inference system (ANFIS) is a specific approach in 

neuro-fuzzy development. Neuro Fuzzy systems make use of neural networks (ANNs) in 

order to determine the parameters of a fuzzy rule base from fuzzy sets and fuzzy rules by 

processing data examples (patterns). These systems are able to capture the benefits of fuzzy 

logic and ANNs in a single framework. ANFIS is based on a fuzzy Sugeno’s model which has 

shown significant capability in modeling nonlinear systems. It can simulate and analyze the 

mapping relation between the input and output data through a learning procedure to 

implement a set of fuzzy rules in “if-then” form to determine the optimal distribution of the 

membership functions. In ANFIS, the membership function parameters are extracted from a 

dataset that describes the system behaviour and successively optimized according to a given 

error criterion (Jang, 1993; Ubeyli and Guler 2006) during the learning process. The 

optimization is accomplished using a hybrid algorithm combining the least squares method 

and the gradient descent method. The training process aims to minimize the training error 
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between the real target and the ANFIS output. This allows ANFIS to learn features from 

observed data, and represents the final model in the form of linguistic rules.  

We implemented ANFIS autoregressive non linear models to denoise gravity and 

geomagnetic signals from effects of temperature, pressure and humidity. The development 

environment adopted was the Matlab® Neuro-Fuzzy tool. The model uses three bell shaped 

membership functions and a Sugeno model structure of the rule base. The available datasets 

were divided into training and testing subsets in order to ensure the validation of the model on 

fresh data, i.e. data not considered during the training phase. This avoids the well known 

problem of over-fitting. Based on results of correlation analysis the most promising 

candidates as input variables were the temperature (T) and pressure (P) for the gravity signal 

and the temperature and humidity (H) for geomagnetic signals. Once the input variables have 

been chosen, it is necessary to define the structure of the autoregressive model, i.e. the values 

of ny,, n1… np which appear in expression (1). We tested three different configurations for 

modeling the effects of temperature and pressure in the gravity signals, as indicated in Table 

1, where f is the non-linear model estimated by neuro-fuzzy algorithm; t is the present time 

index; T and P represent temperature and pressure, respectively; m and n represent 

appropriate time delays obtained by the cross-correlation analysis; Tmean(t-m) and Pmean(t-n) 

are the mean values of temperature and pressure within the intervals [t-m, t] and [t-n, t].  

 

Model 1 y(t) = f(T(t), P(t))   

Model 2 y(t) = f(T(t), T(t-m), P(t), P(t-n))   

Model 3 y(t )= f( T(t), T(t-m), Tmean(t-m), P(t), P(t-n), Pmean (t-n)) 

 
Tab. 1 – Three different structures to model the effects of temperature and pressure in the gravity 
signals.  
 

To estimate the goodness of the models presented in Tab.1, we calculated the standard 

deviation of the residuals as performance index and results are shown in Table 2. It is evident 

that the estimation capabilities of the first two models are worse than model 3, this is, 

probably due to the lack of information on the average behaviour of temperature Tmean(t-m) 

and pressure Pmean(t-n). 

 

 

 
Tab. 2 - Standard deviation of the residuals obtained by three different models described in Table 1. 
 

 Model 1 Model 2 Model 3 
Standard deviation 70.07 µGal 13.35 µGal 4.86 µGal 
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Model 3 was practically applied to a real case study consisting of the gravity sequences 

recorded from January to December 2005 at BVD station and from June to December 2005 at 

PDN station (Fig. 6). These gravity stations, the only working during the 2005 on Etna, are 

equipped with LaCoste and Romberg D-185 and PET 1081 gravimeters, respectively. After 

removing the theoretical Earth Tide and the instrumental drift, as described above, large 

components with amplitude of about 600 (BVD) and about 500 µGal peak-to-peak (PDN) are 

strongly dominant in both gravity sequences (Fig. 6). The amplitude of the residual signals, 

calculated as the difference between the instrumental effect due to atmospheric temperature 

and pressure, estimated by model 3 and gravimeters output, is very low compared to the 

original signals. These results highlight that the instrumental effects of atmospheric 

temperature and pressure are the most significant components of all the original signals, and 

are strongly confirmed also through the low correlation coefficients between residual gravity 

sequences and temperature and pressure signals (see Table 3).  

 

 Temperature Pressure

Raw gravity data at BVD -0.570 -0.350 

Raw gravity data at PDN -0.643 -0.367 

Gravity residual at BVD -0.055 -0.043 

Gravity residual at PDN -0.029 -0.035 

 
Tab. 3 - Correlation coefficients between raw gravity data, residual gravity signals and temperature 
and pressure after removing the corresponding temperature and pressure effects estimated by ANFIS 
model from each gravity sequence. It is important to note the large difference of the relative values of 
the correlation coefficients before and after the filtering approach were performed. 
 
 

We can see that the ANFIS method removes satisfactorily the long period components of the 

gravity sequences, considered harmonic of the annual oscillation due to the influence of the 

seasonal atmospheric variables changes. The magnitude of the residuals (BVD and PDN) as 

well as diurnal and semidiurnal components are highly comparable each other and are in the 

order of 2 ÷ 3 µGal (well-matched also with the uncertain of the Earth Tide model used). 

Instead, a significant component with a maximal amplitude range of about ± 10 µGal peak-to-

peak and a period of about 20 days strongly emerges in the residual of BVD (Fig. 6). This 

discrepancy is probably due to the position of  the BVD station, located very close to the SE 

Crater (about 700 meters). The residual may reflect changes in the local gravity field due to 

the “normal” activity of the Crater. 
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For geomagnetic data, since the results of the simulations obtained by using the model 2 are 

better than the results gained by applying the model 3, we used the structure of the model 2, 

but pressure was substituted by humidity (H) on the grounds of the cross correlation analysis; 

consequently the model is defined as follows:  

 y(t )= f (T(t), T(t-m), H(t), H(t-n))  (4) 

This model was applied to the hourly averages of total intensity variations from February to 

August 2005 observed at PDN and DGL stations, relative to the reference station (CSR). It is 

worth stressing that, though external magnetic fields were previously removed by differential 

technique, and at that time no significant volcanic activity occurred, a clear trend is still 

evident especially at DGL station (Fig. 7a). In order to evaluate the capability of the filtering 

process, we compared the estimated residuals with the differences of total magnetic intensity 

with respect to CSR station. The magnitude of the residuals is lower than the original ones 

and no evident trend appears (Fig. 7a). At the same time, we used hourly averages of total 

intensity variations recorded at the MFS and PDG gradiometric stations. Each station consists 

of two sensors, (namely MFSnorth, MFSsouth, PDGnorth and PDGsouth) spaced horizontally 

by about 50 m, which simultaneously sample the Earth’s magnetic field. In this case, we 

initially applied the model to the raw signals recorded by each sensor and then the residual 

signals were differentiated to obtain the gradient (MFSnorth-MFSsouth and PDGnorth - 

PDGsouth). Figure 7b shows the comparison between the hourly averages of the unreduced 

magnetic gradients recorded from October 2005 to January 2006 at MFS and PDG and the 

difference of residuals estimated by ANFIS model. It is evident that the long period 

fluctuations affecting original signals, probably due to the joint effects of temperature and 

humidity, are successfully removed. To better estimate the validity of the model, as well as 

for the gravity case, a correlation analysis between each residual and temperature and 

humidity was calculated. Also in this case, the correlation coefficients significantly decreased, 

ranging between 0.02 and 0.00001 for temperature and between 0.02 and -0.003 for humidity 

(Table 4). These results confirm that the applied model removes both the effect of temperature 

and the humidity from magnetic data. 

 

Unreduced data Temperature  Humidity  Residuals Temperature  Humidity

PDN-CSR 0.68 0.54 PDN-CSR 0.003 0.008 

DGL-CSR 0.66 0.20 DGL-CSR 0.00001 0.002 

MFS gradient 0.87 0.42 MFS gradient 0.0016 -0.02 

PDG gradient 0.84 -0.18 PDG gradient 0.021 -0.003 
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Tab. 4 - Correlation coefficients between meteorological variables (temperature and humidity), 
recorded geomagnetic signals and residuals obtained by ANFIS filtering.  
 

 

The ICA linear approach  

The Independent Component Analysis (Bell and Sejnowski, 1995) is an algorithm which can 

be used for blind source separation and feature extraction from mixed signals. ICA outputs a 

set of linearly independent signals, given a set of the original multi-channel input signals. This 

method can be used directly for feature extraction but requires more than one time series (at 

least from two separate sensors). To overcome this constraint, we propose a method to 

generate multiple time series from the single available time series. According to Ming et al. 

(2005), we use the wavelet transform to pre-process data recorded by single gravity and 

magnetic sensor and then use the obtained information as input for an apposite ICA tool 

developed in Matlab® language. We assume that each time series recorded by gravity and 

magnetic sensors is affected by multiple sources, and we are interested in estimating the 

mixing ratios of the source signals in the collected data in order to obtain the independent 

source signals. In particular, we apply ICA to remove from gravity and geomagnetic time 

series the noise signal (due to meteorological effects) characterized through the frequency 

analysis. 

The FastICA algorithm, based on the approach proposed by Hyvärinen and Oja (1997), seeks 

to find a set of independent components (IC) by estimating the maximum negentropy 

(Hyvärinen, 1999). After the pre-processing step, the FastICA analysis starts choosing the 

indices of the largest and smallest eigenvalues of the covariance matrix of the observed 

signals to be included in the reduced data. Once the eigenvalues of the covariance matrix of 

data are computed, we chose the number of Independent Components (IC) related with the 

ICA algorithm according to the subset of significant eigenvalues. Gravity and geomagnetic 

residuals are obtained by removing the denormalized independent components, which show a 

strong correlation with one or more meteorological signals, from the observed gravity and 

geomagnetic signals. As stated before, the scaling factor for each ICs was computed by 

comparing the oscillation of each measurable meteorological variables with the magnitude of 

each ICs component. 

The FastICA algorithm was applied to the same gravity sequences analyzed by the ANFIS 

non-linear model. The components obtained from the wavelet decomposition of gravity 

sequences were used as input to FastICA. Only one independent component (IC) was found to 
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be suitable in describing the effects of meteorological variables for each data set considered. 

The correlation coefficients between gravity signals recorded at PDN and BVD stations and 

the only one Independent Component extracted from both signals and temperature and 

pressure are reported in Table 5. 

 

Raw gravity  Temperature  Pressure  Residual gravity Temperature  Pressure

BVD -0.570 -0.350 BVD 0.052 0.135 

ICBVD -0.572 -0.359    

PDN -0.643 -0.367 PDN -0.020 -0.052 

ICPDN -0.602 -0.401    

 
Tab. 5 - Correlation coefficients between meteorological variables (temperature and pressure), raw 
gravity signals and their related Independent Components extracted by FastICA method, and the 
residual gravity signal after filtering with the related Independent Components identified by FastICA 
method.  
 
 

The magnitude of the residual signals, after the independent component was subtracted from 

the time series recorded at BVD and PDN stations, is less than 98% of the original signals 

(Fig. 8). The correlation coefficients between gravity residuals and meteorological variables 

are negligible (see Table 5). This means that the combined method wavelet/FastICA is able to 

recognize the main components induced by the meteorological variables in the gravity 

signals. Analysis performed on residuals obtained through this combined ICA-wavelet 

method reveals that residuals are similar to those obtained by the non-linear ANFIS approach. 

Thus both the proposed methods are able to remove meteorological effects from gravity 

signals. 

The ICA approach in combination with wavelet transform was also applied to the same 

geomagnetic data sets used for validating the ANFIS model previously described. First of all, 

we performed the wavelet decomposition both of the differences in the geomagnetic signals 

(PDN-CSR, DGL-CSR) and raw signals gathered at the gradiometric stations of PDG and 

MFS. Geomagnetic signals were decomposed from scales 1 to 7 and 1 to 9 on the basis of the 

length of the considered time window. Therefore, ICA was used to process the obtained 

matrix of wavelet coefficients for detecting single independent sources. The analysis 

performed on the differences of geomagnetic signals identified 4 Independent Components 

(IC), while 3 IC were detected for the raw signals of gradiometric stations. These components 

are associated with the principal eigenvalues of the covariance matrix. It is worth stressing 
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that for all cases only one IC is correlated both with temperature and humidity, while the 

others are uncorrelated with the meteorological variables considered. Furthermore, the 

correlation coefficient computed between the meteorological variables and the selected IC is 

always higher than that obtained between the observed signal and meteorological variables 

(Table 6).  

The extracted IC was then denormalized, as stated before, and removed from the observed 

signals. The residuals obtained for the differences PDN-CSR and DGL-CSR, and for MFS 

and PDG gradients were compared with the unreduced signals (Fig. 9). The comparison 

shows that the long period variations affecting the original signals were efficiently removed. 

Moreover, the cross-correlation analysis in the time domain between residual signals and 

meteorological variables provided very low correlation coefficients (Table 7). These results 

confirm that the method of combining wavelet transform and ICA is a valuable tool for 

simultaneous separation of ICs affected by hidden meteorological effects in the observed 

geomagnetic signals.  

 
 Temperature  Humidity   Temperature  Humidity 

PDN-CSR 0.68 0.54 DGL-CSR 0.66 0.20 

IC1 0.016 -0.0006 IC1 0.002 -0.0003 

IC2 0.001 0.013 IC2 0.01 0.018 

IC3 -0.73 0.68 IC3 0.003 -0.005 

IC4 0.011 -0.035 IC4 0.91 -0.42 

 

MFSn -0.21 0.08  MFSs 0.016 -0.02 

IC1 -0.19 0.07 IC1 0.066 0.06 

IC2 -0.12 0.01 IC2 0.013 -0.035 

IC3 -0.55 0.19 IC3 0.02 -0.04 

 

PDGn -0.31 0.08  PDGs -0.41 0.1 

IC1 -0.25 0.07 IC1 0.17 0.06 

IC2 0.14 -0.06 IC2 -0.19 0.027 

IC3 0.66 -0.24 IC3 -0.83 0.25 

 
Tab. 6   Correlation coefficients between meteorological variables (temperature and humidity), 
observed geomagnetic signals, and their related Independent Components extracted by FastICA 
method.  
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 Temperature Humidity 

PDN-CSR 0.0015 0.005 

DGL-CSR 0.00008 0.007 

MFS gradient -0.0062 0.023 

PDG gradient 0.013 -0.001 

 
Tab. 7 - Correlation coefficients between meteorological variables (temperature and humidity), and 
residual signals obtained after removal of the related Independent Component identified by FastICA 
method.  
 
 

Discussion and conclusion 

With the aim of developing a novel approach to analyze gravity and geomagnetic time series 

recorded in volcanic areas, we proposed two different methods, namely the ANFIS and the 

ICA. Results presented throughout this paper show the denoising capability of the two 

considered approaches for removing noise from both gravity and geomagnetic signals. In 

particular, the very low correlation coefficients between residuals and the set of explaining 

variables confirm that both approaches are able to efficiently remove the effects of 

meteorological variables from considered geophysical data. It is important to note the 

presence of small anomalies (such as amplitude) in the gravity and magnetic time series in the 

unreduced signals, which are not due to changes in the meteorological variables (Figs. 6 to 9). 

The standard deviations of residuals were also assessed and compared to verify the obtained 

results from ANFIS and ICA approaches (Table 8). It should be noted, that the standard 

deviation of residuals is much decreased both for gravity and geomagnetic data when 

compared to that of the unreduced signals. In particular, gravity residuals show standard 

deviations lower than 98 ÷ 99% in comparison with original data, while the standard deviation 

of geomagnetic residuals decreased by about 40 % (for PDN, DGL and MFS stations) and 

more than 60% for the PDG station. 

 

Gravity data Unreduced signal ANFIS residual ICA residual 

PDN 165.36 µGal 1.01 µGal 1.18 µGal 

BVD 155.98 µGal 4.86 µGal 6.19 µGal 

 

Geomagnetic data Unreduced signal ANFIS residual ICA residual 

PDN-CSR 1.25 nT 0.66 nT 0.72 nT 

DGL-CSR 1.56 nT 0.84 nT 0.79 nT 
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MFS gradient 2.25 nT 1.25 nT 1.22 nT 

PDG gradient 1.34 nT 0.47 nT 0.41  nT 

 

Tab. 8 - Standard deviations of recorded gravity, geomagnetic signals and residuals obtained by the 
ANFIS and the ICA approaches. 
 

The ANFIS and ICA techniques remove efficiently noise components showing themselves a 

valid approach to the general problem of denoising geophysical data. The results are highly 

promising, and in our view the proposed techniques outperform traditional time series 

filtering in terms of efficiency. This is an important chance since the gravity and magnetic 

signals could include volcanic effects with a wide range of evolution rates. Moreover, 

frequency-domain filters cannot be efficiently applied to remove the effect of these 

perturbations since the spectrum of each component of various origins has wide intervals of 

superposition. Furthermore, frequency domain filtering does not always work well because: 

(i) it globally removes frequencies causing a generalized smoothing effect that substantially 

broadens features of interest; (ii) depending on both cut off frequency and filter order it also 

could introduce edge effects and distortions of the original signal; (iii) it does not allow to 

study local features of the signal in the time domain. 

Finally, on comparing the standard deviations of ANFIS and ICA residuals, it appears that the 

efficacy of the two approaches is very similar. Thus, the criteria for choosing one rather than 

the other should be only based on considerations such as computational speed and degree of 

difficulty in implementing and applying the proposed filtering scheme. Our research suggests 

that the ICA approach is more suitable in this respect and is thus recommended to solve the 

considered filtering problem. 
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Figure Captions 

 
Fig. 1 – Neuro-fuzzy network architecture. 

Fig. 2 – Filtering strategy used to remove the effects of meteorological variables from gravity 

and geomagnetic time series considered. 

Fig. 3 - Schematic map showing the locations of the continuous gravity and magnetic stations 

operating on Mt Etna.  

Fig. 4 – Power spectral densities of analyzed signals: (a) geomagnetic; (b) gravity; (c) 

temperature; (d) humidity; (e) pressure. 

Fig. 5 – Gravity, geomagnetic and meteorological variables (temperature, humidity and 

pressure) recorded on Mt Etna from February to December 2005. The correlation 

coefficients between gravity and geomagnetic signals and meteorological variables are 

reported at the bottom. 

Fig. 6 – Left panel: at the top, gravity signal after removal of the best linear fit and the 

theoretical Earth Tide observed at BVD station from June to December 2005. At the 
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bottom, gravity residual after removing the meteorological effects estimated by ANFIS 

model. 

 Right panel: at the top, gravity signal after removing the best linear fit and the 

theoretical Earth Tide observed at PDN station from June to December 2005. At the 

bottom, gravity residual after removing the meteorological effects estimated by ANFIS 

model. Black arrows indicate anomalies which are not related to the meteorological 

variables. 

Fig. 7 – Comparison between the unreduced geomagnetic data (in red) and the residuals (in 

green) estimated by ANFIS model considering (a) the differences of the geomagnetic 

signals (DGL-CSR and PDN-CSR) and (b) raw signals recorded at the gradiometric 

stations of PDG and MFS.  

Black arrows indicate anomalies which are not related to the meteorological variables. 

Fig. 8 – Left panel: at the top, gravity signal after removal of the best linear fit and the 

theoretical Earth Tide observed BVD station from January to December 2005. At the 

bottom, gravity residual after removing the meteorological effects estimated by 

wavelet/ICA combined method. 

 Right panel: at the top, gravity signal after removing the best linear fit and the 

theoretical Earth Tide observed at PDN station from June to December 2005. At the 

bottom, gravity residual after removing the meteorological effects estimated by 

wavelet/ICA combined method. Black arrows indicate anomalies which are not related 

to the meteorological variables. 

Fig. 9 – Comparison between the unreduced geomagnetic data (in red) and the residuals  

estimated by ICA approach (in green) considering (a) the differences of the 

geomagnetic signals (DGL-CSR and PDN-CSR) and (b) raw signals recorded at the 

gradiometric stations of PDG and MFS. Black arrows indicate anomalies which are not 

related to the meteorological variables. 
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Fig. 1 – Neuro-fuzzy network architecture. 
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Fig. 2 – Filtering strategy used to remove the effects of meteorological variables from gravity and 

geomagnetic time series considered. 
 
 
 

 
 
 
 

Fig. 3 - Schematic map showing the locations of the continuous gravity and magnetic stations 
operating on Mt Etna.  
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Fig. 4 – Power spectral densities of analyzed signals: (a) geomagnetic; (b) gravity; (c) temperature; (d) 
humidity; (e) pressure. 
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Fig. 5 – Gravity, geomagnetic and meteorological variables (temperature, humidity and pressure) 

recorded on Mt Etna from February to December 2005. The correlation coefficients between 
gravity and geomagnetic signals and meteorological variables are reported at the bottom. 
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Fig. 6 – Left panel: at the top, gravity signal after removal of the best linear fit and the theoretical 

Earth Tide observed at BVD station from June to December 2005. At the bottom, gravity 
residual after removing the meteorological effects estimated by ANFIS model. 

 Right panel: at the top, gravity signal after removing the best linear fit and the theoretical Earth 
Tide observed at PDN station from June to December 2005. At the bottom, gravity residual after 
removing the meteorological effects estimated by ANFIS model. Black arrows indicate 
anomalies which are not related to the meteorological variables. 
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Fig. 7 – Comparison between the unreduced geomagnetic data (in red) and the residuals (in green) 

estimated by ANFIS model considering (a) the differences of the geomagnetic signals (DGL-
CSR and PDN-CSR) and (b) raw signals recorded at the gradiometric stations of PDG and 
MFS. Black arrows indicate anomalies which are not related to the meteorological variables. 
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Fig. 8 – Left panel: at the top, gravity signal after removal of the best linear fit and the theoretical 

Earth Tide observed BVD station from January to December 2005. At the bottom, gravity 
residual after removing the meteorological effects estimated by wavelet/ICA combined method. 

 Right panel: at the top, gravity signal after removing the best linear fit and the theoretical Earth 
Tide observed at PDN station from June to December 2005. At the bottom, gravity residual after 
removing the meteorological effects estimated by wavelet/ICA combined method. Black arrows 
indicate anomalies which are not related to the meteorological variables. 
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Fig. 9 – Comparison between the unreduced geomagnetic data (in red) and the residuals  estimated by 
ICA approach (in green) considering (a) the differences of the geomagnetic signals (DGL-CSR 
and PDN-CSR) and (b) raw signals recorded at the gradiometric stations of PDG and MFS. 
Black arrows indicate anomalies which are not related to the meteorological variables. 


