1 Simulaneous magina and gas cruphons at the volcano	1	Simultaneous magma and	gas eruptions at three volcand	bes
--	---	------------------------	--------------------------------	-----

- ² in southern Italy: an earthquake trigger?
- 3 T. R. Walter^{1*}, R. Wang¹, V. Acocella², M. Neri³, H. Grosser¹, J. Zschau¹
- 4 ¹Dept. Physics of the Earth, Helmholtz-Zentrum Potsdam, Deutsches
- 5 GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany
- 6 ²Dipartimento Scienze Geologiche Università Roma Tre, Largo S.L. Murialdo, 1, 00146
- 7 Roma, Italy
- 8 ³Istituto Nazionale di Geofisica e Vulcanologica (INGV), Catania, Piazza Roma, 2,
- 9 95123 Catania, Italy
- 10 *E-mail: twalter@gfz-potsdam.de
- 11 ABSTRACT

12 In September 2002, a series of tectonic earthquakes occurred north of Sicily, 13 Italy, followed by three events of volcanic unrest within 150 km. On October 28, 2002, 14 Mt. Etna erupted; on November 3, 2002, submarine degassing occurred near Panarea 15 Island; and on December 28, 2002, Stromboli Island erupted. All of these events were 16 considered unusual: the Mt. Etna NE-rift eruption was the largest in 55 yr, the Panarea 17 degassing was one of the strongest ever detected there, and the Stromboli eruption, 18 which produced a landslide and tsunami, was the largest effusive eruption in 17 yr. 19 Here, we investigate the synchronous occurrence of these clustered unrest events, and 20 develop a possible explanatory model. We compute short-term earthquake-induced 21 dynamic strain changes and compare them to long-term tectonic effects. Results suggest 22 that the earthquake-induced strain changes exceeded annual tectonic strains by at least 23 an order of magnitude. This agitation occurred in seconds, and may have induced fluid

and gas pressure migration within the already active hydrothermal and magmatic

25 systems.

26 INTRODUCTION

27 Volcanoes interact with their environment on different scales, and with different 28 modes and processes, ranging from climate and tidal relationships to tectonic 29 interactions. Tectonic interactions, in particular, have received special attention in 30 recent years. A correlation of earthquakes and eruptions was revealed by a statistical 31 examination of global data catalogues and these relationships may occur over distances 32 exceeding hundreds of kilometers (Linde and Sacks, 1998). A mechanical relationship 33 between apparently interlinked processes is, however, still not understood, partly due to 34 the limited number of studied cases. Recent papers suggest that dynamic strain, together 35 with long-term tectonic extension (Hill, 2008) and/or short-term static extension 36 associated with earthquakes (Walter and Amelung, 2007), may increase the number of 37 volcanic eruptions. A series of volcanic unrests occurred in 2002 in southern Italy in the 38 weeks following an earthquake, and may help to better understand such clustered 39 events. 40 The Aeolian Arc is associated with the NW-ward subducting Ionian slab and 41 currently hosts several active volcanoes. Tectonic deformation within the Arc is 42 heterogeneous, being subject to extensional tectonics in the east (including the 43 volcanoes of Stromboli and Panarea), dextral shear tectonics in the center (including

44 Vulcano and Lipari), and compressional tectonics in the west (Alicudi and Filicudi,

45 Figure 1; De Astis et al., 2003). The dextral shear of the central Aeolian Arc is

46 associated with a NNW-SSE-trending structure constituting the northernmost part of the

47 Maltese Escarpment. This is the surface expression of a tear separating the subducting

48	oceanic lithosphere (to the east) from the colliding continental lithosphere (to the west).
49	This tear allows the extension and the rise of asthenospheric material at Mt. Etna
50	(Gvirtzman and Nur, 1999).
51	While there is a long-term interdependency between the southern Italy
52	volcanism and tectonics (Neri et al., 1996; Lanzafame and Bousquet, 1997), in the
53	short-term, the link is still debated. Historical records suggest that some particular
54	events of volcanism at Mt. Etna have occurred in temporal proximity to large tectonic
55	earthquakes (Feuillet et al., 2006). Synchronous activity at several volcanoes and their
56	possible link to large tectonic earthquakes, however, has not been elaborated. In 2002, a
57	significant earthquake took place west of the Aeolian Islands and was followed by a
58	widespread aftershock sequence, and by major eruptions at Mt. Etna and Stromboli
59	Island and anomalous degassing at Panarea. Through observation, seismic investigation
60	and numerical modeling, this group of events is investigated here. Our study suggests
61	that the volcanoes were further activated by dynamic pressure fluctuations associated
62	with the earthquake, with implications that are important for understanding clustered
63	activity and hazards in southern Italy and elsewhere.

64 CHRONOLOGY OF THE EVENTS

65 **The Palermo Earthquake**

66 On September 6, 2002, at 01:21:27 UTC, an earthquake occurred ~40 km 67 northeast of Palermo, Sicily (Rovelli et al., 2004), and 130–140 km west of the nearest 68 continuously active volcanoes, Mt. Etna and Stromboli Island (Fig. 1). The earthquake 69 was followed by more than 600 aftershocks M > 1, with hypocenters aligned in a north-70 eastern continuation along a ~100 km segment of a 050°-trending fault. The mainshock 71 killed two people, damaged several buildings in the Palermo area, and was felt in

72	eastern Sicily in the cities of Catania and Messina. In northern Sicily, the earthquake is
73	thought to have triggered the Cerda landslide (Agnesi et al., 2005) and affected physical
74	parameter recordings at thermal springs (Caracausi et al., 2002). Seismological
75	characteristics were detailed in the International Seismic Catalogue (ISC), with the
76	hypocenter located at 38.36 N 13.69 E at 12 km depth. The USGS NEIC and Harvard
77	HRVD solutions provided a magnitude $Mw = 5.9$, with a focal mechanism nodal plane
78	striking SW-NE (NEIC 242/60/145 or 351/60/35, and HRVD 26/50/40 or 267/60/133).
79	As illustrated in Figure 2, the earthquake was soon followed by eruptions at Mt. Etna
80	and Stromboli Island, and degassing close to the island of Panarea. At these 3 volcanic
81	centers, the change and scale of activity were very unusual, as detailed below.
82	Mt. Etna eruption
83	Mt. Etna erupted in July-August 2001, as a consequence of the emplacement of
84	an eccentric dike, an exceptional event in its recent history (Allard et al., 2006 and
85	references therein). From October 27, 2002 to January 28, 2003, the volcano erupted
86	again, now also associated with the opening of the NE rift. This was the first NE rift
87	fissure eruption after 55 yr of quiescence (since 1947). Associated with this event, a
88	major part of the east flank of the volcano was displaced eastward by up to several
89	meters, with surface fracturing and hazardous earthquakes; these events have not been
90	observed in recent decades (Neri et al., 2005).
91	Panarea degassing
92	Panarea lies in the eastern Aeolian Arc and had its main period of activity in the
93	Holocene. A constructional phase occurred between 150 and 105 ka, followed by
94	discrete explosive eruptions until 8 ka, associated with slight submergence (Lucchi et
95	al., 2006). In historical times, only reports of degassing activity may be found. No

96	dramatic increase or decrease in gas flux was ever instrumentally recorded before
97	November 3, 2002 (Esposito et al., 2006). The anomalous period of increased degassing
98	activity ended in January 2003. Observations showed that gas discharge occurred in at
99	least three distinct areas ~3 km offshore of Panarea Island (Bulletin of the Global
100	Volcanism Network, BGVN 27:10). Geochemical monitoring revealed a dynamic
101	behavior changing in time, space and flux, with a component of the gases being directly
102	associated with magmatic fluids (Capaccioni et al., 2007). The only other account of a
103	similarly strong degassing episode refers back to the year 1865 (Billi and Funiciello,
104	2008).
105	Stromboli Island eruption
106	Stromboli Island, in the eastern Aeolian Arc, hosts one of the most active
107	volcanoes with continuous archetypal strombolian eruptions. These are usually
108	associated with gas bubble rise, coalescence and slug bursts, rather than juvenile
109	effusion. Continuous radon gas measurements showed that summit degassing increased
110	shortly after the 2002 Palermo earthquake (Cigolini et al., 2007). On December 28,
111	2002, Stromboli Island had its first dike-fed effusive eruption in 17 yr (since 1985),
112	culminating two days thereafter in failure of part of the northern flank into the sea and
113	the formation of a tsunami. The familiar strombolian activity resumed in mid-2003
114	(Ripepe et al., 2005).
115	STRESS AND STRAIN TRANSFER MODELING
116	Our calculations take the static and dynamic transfer of strain due to the
117	September 6, 2002 Palermo earthquake into account. Strain changes were first

- 118 calculated by producing synthetic seismograms at sites where we had actual seismic
- 119 data available. We used seismic data from the Mediterranean Very Broadband

120	Seismographic Network (MedNet http://mednet.rm.ingv.it) at a station in Antillo (AIO,
121	37.9712° N, 15.2330° E, H = 751 m), recorded by a STS2-station at 20 Hz, and from
122	another station maintained by INGV Catania in Tortorici (TORT, 38.040°N, 14.810°E,
123	H = 540 m), recorded at 200 Hz by an accelerometer station (details are provided in the
124	electronic supplement). These stations are located 142 and 104 km from the Palermo
125	earthquake epicenter, respectively, and span the distance range of the investigated
126	volcanoes (Mt. Etna - 134 km, Panarea - 124 km, Stromboli Island - 141 km). Upon
127	successful reproduction of the amplitudes of these seismograms in computer models, we
128	were able to simulate strain changes at any other location, namely at Mt. Etna
129	(37.734°N, 15.004°E), at Panarea (38.63°N, 15.07°E), and at Stromboli Island
130	(38.789°N, 15.213°E). Since we were interested in how the earthquake caused transient
131	changes at depth, we first simulated the seismic wave fields and then calculated the
132	associated pressure fluctuation at depth (electronic supplement S1-3). This provided a
133	quantitative estimate of the scale of transient pressure changes under each of the
134	volcanic centers, i.e., 2 km below sea level at Mt. Etna, Panarea and Stromboli Island.
135	We assume that this is a reasonable depth that may host hydrothermal as well as shallow
136	magmatic reservoirs.
137	The Palermo earthquake synthetic wave propagation essentially depends upon
138	the earthquake source and strength considered (model fault data is provided in the
139	electronic supplement S1). This plane is discretized by 100 point sources, which are
140	triggered by the rupture front propagating circularly from the hypocenter at a constant
141	velocity of 2 km/s. The seismic moment of each point source is released via a set of
142	Brune's sub-events (Brune, 1970). We did not attempt to perfectly match the
143	waveforms, but rather the three component amplitudes that yield information about the

144	magnitude of induced dynamic strain changes. The characteristic duration of each point
145	source is comparable to the rise-time of the earthquake, which is related empirically to
146	the magnitude and stress drop (Boore, 1983). Using the semi-analytical code by (Wang,
147	1999) to calculate synthetic seismograms, we produced the Green's functions for the
148	standard seismic reference model IASPEI91. Synthetic seismograms of the earthquake
149	are obtained by convolution between the Green's functions and the source functions
150	described above. The results are shown in Figure 3 and further explained below.
151	The calculations show a large fluctuation of the three components at 2 km depth.
152	As shown in Figure 3, the east and north components, as well as the vertical
153	components of all synthetic waveforms, display 15 to ~18 seconds of time lag between
154	p- and s-wave arrivals, which is consistent with the distance of 125–140 km between the
155	earthquake hypocenter and the volcano locations. Amplitudes at all sites are similar to
156	the true recordings at Antillo and Tortorici. At the Mt. Etna site, the vertical component
157	is larger, while at the Panarea and Stromboli sites the N-S component is larger, which is
158	related to the moment tensor solution applied in the initial rupture model and considered
159	to be realistic. From these three components, we infer that the pressure changes are
160	fluctuating for ~25–30 seconds at \pm 10 kPa at Mt. Etna, and \pm 8 kPa at Panarea and
161	Stromboli Island. Thus, the dynamic pressure fluctuations reach ~20 kPa and then fall
162	back to near zero after the seismic waves pass. A small offset from the zero line is
163	found due to static offset related to the permanent dislocation induced by the earthquake
164	model. The static offsets are negligible (< 1 kPa) and are thus an implausible eruption
165	trigger, while the dynamic fluctuations (~20 kPa) exceed values known to have induced
166	seismicity or volcanic activity elsewhere, as discussed below.

167 **DISCUSSION AND CONCLUSIONS**

168	The observed degassing activity at Panarea and the types and scales of the
169	eruptions at Mt. Etna and Stromboli Island were each considered peculiar within the
170	context of their recent decades of activity. Even more remarkable is the synchronous
171	occasion of these events. Large eruptions and degassing events have been observed at
172	the three volcanic centers in the past, although never in such a close temporal proximity
173	as in the period from October-December 2002. In this article, we investigated the
174	influence of a possible external trigger that set off all three volcanoes. As shown, the
175	preceding Palermo earthquake induced transient changes at the magmatic and
176	hydrothermal systems of these volcanoes.
177	Alternatively, one may speculate whether the 2002 synchronous activity was an
178	expression of a general geodynamic reorganization affecting the southern Tyrrhenian
179	area. A geodynamic reorganization can cause static stress changes and thus act as a
180	regional tectonic trigger, and may have locally led to both the Palermo earthquake and
181	the simultaneous volcanic activity. However, regional seismicity does not suggest major
182	plate movement (electronic supplement S2). As recently suggested (Cigolini et al.,
183	2007), and as quantitatively tested in this work, the possibility that the volcanic activity
184	increased due to dynamic stress changes directly associated with the earthquake
185	mainshock alone appears to be reasonable. Although the models presented herein are
186	simplified, ignore complex heterogeneities and time dependent rheology, they may help
187	to understand the simultaneous 2002 volcanic activity in Italy.
188	Our model calculations suggest that pressure fluctuations occurred surrounding
189	the magmatic and hydrothermal reservoirs of the volcanoes on the order of 20 kPa.
190	These values may appear small considering absolute pressures at magma stagnation
191	levels (GPa), or magmatic overpressures required for magma chamber wall rupture and

192	dike propagation (MPa). However, values on the order of tens of kPa appear large in
193	comparison to long-term plate tectonic forcing and to short-term extrinsic forcings,
194	including various types of tidal and earthquake triggers. Long-term tectonic strain rates
195	in the Aeolian Arc and at Mt. Etna are generally less than 100 nanostrain yr ⁻¹ (D'
196	Agostino and Selvaggi, 2004), which is about one order of magnitude smaller than
197	values estimated from the Palermo earthquake model presented in this paper. Short-term
198	forcings, in turn, related to dynamic triggering elsewhere suggest that stress changes
199	below those calculated in this work might be significant. For instance, seismicity
200	increases at the Long Valley caldera associated with regional and teleseismic tectonic
201	earthquakes were found to be triggered if the 5 kPa threshold was reached (Brodsky and
202	Prejean, 2005). Such small changes may lead to a chain of adjustments within a magma-
203	hydrothermal system already in a critical state and may explain the delay between the
204	earthquake and observed volcanic activity. The chain of adjustments may begin with the
205	excitation and ascent of gas bubbles, and associated pressure and density changes within
206	a magmatic reservoir and other fluid-filled structures (Manga and Brodsky, 2006), that
207	may even lead to rupture and magma intrusion (Walter and Amelung, 2007).
208	Considering the distance to the earthquake, other time dependent quasistatic
209	(viscoelastic) effects are probably of minor influence (see also Hill et al., 2002). Similar
210	dynamic interaction may have occurred already before, as in 1865, when strong
211	degassing was observed at Panarea and eruptions occurred at Stromboli and Mount Etna
212	following strong earthquakes. The pressure fluctuations detected in this work might thus
213	be indirectly significant, and a relationship with a long-term tectonic effect as illustrated
214	in the conceptual model of Figure 4 must be considered. Long-term and steady strain
215	increase is abruptly exceeded manifold during the passage of seismic strain.

216	We note that the volcanoes located within the eastern Aeolian Arc became
217	active, while other volcanoes located on the central and western Arc did not show any
218	significant changes. The structural tectonic configuration reveals that the eastern
219	Aeolian Arc is subject to extensional tectonic strain, being transtensional in the central
220	and compressional in the western Arc (De Astis et al., 2003). Regions near Mt. Etna are
221	in part also subject to extensional tectonic strain (D'Agostino and Selvaggi, 2004) and
222	to a complex local volcano-tectonic deformation additionally related to intrusions and
223	gravitational spreading (Feuillet et al. 2006). In a simplistic view, this work may imply
224	that volcanoes located in extensional tectonic environments are more prone to being
225	activated by dynamic effects, providing a possible explanation of why the volcanoes
226	closer to the Palermo earthquake did not show any response related to remote
227	triggering. Although in the present scenario volcanoes located closer to the earthquake
228	source are generally less active, such an interpretation is consistent with recent findings
229	regarding the triggering of earthquakes (Hill, 2008), which suggested that extensional
230	tectonic regimes are more vulnerable to dynamic triggering than compressional regimes
231	The fact that the synchronously excited volcanoes have already been in a near critical
232	state, both in terms of their magmatic system (eruptions at Stromboli Island and Mt.
233	Etna) and hydrothermal system (Panarea) may be of additional importance, as the local
234	pore pressures may have been already elevated when the remote trigger occurred. Once
235	these conditions are met, dynamic stresses focus the activity of the volcanoes, inducing
236	synchronous unrest.

237 ACKNOWLEDGMENTS

238 Three-component seismic data were generously provided by Antonio239 Rovelli; thanks to Matteo Picozzi and Domenico Di Giacomo for help with the data

- analysis. Renato Funiciello suggested the correlation highlighted in this study as
- 241 early as in 2002. Andrea Billi, Agust Gudmundsson and Benjamin van Wyk deVries
- provided helpful reviews. This study was partly funded by the DFG (WA 1642/1-4),
- and Protezione Civile, project INGV-DPC-V2.
- 244 **REFERENCES CITED**
- 245 Agnesi, V., Camarda, M., Conoscenti, C., Di Maggio, C., Diliberto, I.S., Madonia, P.,
- and Rotigliano, E., 2005, A multidisciplinary approach to the evaluation of the
- 247 mechanism that triggered the Cerda landslide (Sicily, Italy): Geomorphology, v. 65,
- 248 p. 101–116, doi: 10.1016/j.geomorph.2004.08.003.
- Allard, P., Behncke, B., D'Amico, S., Neri, M., and Gambino, S., 2006, Mount Etna
- 250 1993-2005: Anatomy of an Evolving Eruptive Cycle. Earth-Science Reviews, v. 78,
- 251 p. 85–114, doi:10.1016/j.earscirev.2006.04.002
- 252 Billi, A., Funiciello, R., 2008, Concurrent eruptions at Etna, Stromboli, and Vulcano:

253 casualty or causality? Annals of Geophysics, v. 51, p. XX-XX.

- 254 Billi, A., Presti, D., Faccenna, C., Neri, G., Orecchio, B., 2007, Seismotectonics of the
- 255 Nubia plate compressive margin in the south Tyrrhenian region, Italy: Clues for
- subduction inception. Journal of Geophysical Research B: Solid Earth, 112,
- 257 B08302, doi:10.1029/2006JB004837
- 258 Boore, D.M., 1983, Stochastic simulation of high-frequency ground motions based on
- seismological models of the radiated spectra: Bulletin of the Seismological Society
- 260 of America, v. 73, p. 1865–1894.
- 261 Brodsky, E.E., and Prejean, S.G., 2005, New constraints on mechanisms of remotely
- triggered seismicity at Long Valley Caldera: Journal of Geophysical Research B:
- 263 Solid Earth, v. 110, p. 1–14.

264	Brune, J.N., 1970, Tectonic stress and the spectra of seismic shear waves from
265	earthquakes: Journal of Geophysical Research, v. 75, p. 4997–5009, doi:
266	10.1029/JB075i026p04997.
267	Capaccioni, B., Tassi, F., Vaselli, O., Tedesco, D., and Poreda, R., 2007, Submarine gas
268	burst at Panarea Island (southern Italy) on 3 November 2002: A magmatic versus
269	hydrothermal episode: Journal of Geophysical Research, v. 112, p.
270	doi:10.1029/2006JB004359.
271	Caracausi, A., Di Alberto, V., and Grassa, F., 2002, Effetti del sisma del 6/9/2002 sulle
272	sorgenti termali della Sicilia Nord Occidentale: Palermo, INGV open file report,
273	Sezione di Palermo-INGV.
274	Cigolini, C., Laiolo, M., and Coppola, D., 2007, Earthquake-volcano interactions
275	detected from radon degassing at Stromboli (Italy): Earth and Planetary Science
276	Letters, v. 257, p. 511–525, doi: 10.1016/j.epsl.2007.03.022.
277	D' Agostino, N., and Selvaggi, G., 2004, Crustal motion along the Eurasia-Nubia plate
278	boundary in the Calabrian Arc and Sicily and active extension in the Messina
279	Straits from GPS measurements: Journal of Geophysical Research, v. 109, p.
280	doi:10.1029/2004JB002998.
281	De Astis, G., Ventura, G., and Vilardo, G., 2003, Geodynamic significance of the
282	Aeolian volcanism (southern Tyrrhenian Sea, Italy) in light of structural,
283	seismological, and geochemical data: Tectonics, v. 22, p. 17, doi:
284	10.1029/2003TC001506.
285	Esposito, A., Giordano, F., and Anzidei, M., 2006, The 2002–2003 submarine gas
286	eruption at Panarea volcano (Aeolian Islands, Italy): Volcanology of the seafloor

- and implications for the hazard scenario: Marine Geology, v. 227, p. 119–134, doi:
- 288 10.1016/j.margeo.2005.11.007.
- 289 Feuillet, N., Cocco, M., Musumeci, C., and Nostro, C., 2006, Stress interaction between
- 290 seismic and volcanic activity at Mt: Etna: Geophysical Journal International,
- 291 v. 164, p. 697–718, doi: 10.1111/j.1365-246X.2005.02824.x.
- 292 Gvirtzman, Z., and Nur, A., 1999, The formation of Mount Etna as the consequence of
- slab rollback: Nature, v. 401, p. 782–785, doi: 10.1038/44555.
- Hill, D.P., 2008, Dynamic stresses, coulomb failure, and remote triggering: Bulletin of
- the Seismological Society of America, v. 98, p. 66–92, doi: 10.1785/0120070049.
- 296 Lanzafame, G., and Bousquet, J.C., 1997, The Maltese escarpment and its extension
- from Mt. Etna to Aeolian islands (Sicily): importance and evolution of a
- lithospheric discontinuity: Acta Vulcanologica, v. 9, p. 121–135.
- Linde, A.T., and Sacks, I.S., 1998, Triggering of volcanic eruptions: Nature, v. 395,
- 300 p. 888–890, doi: 10.1038/27650.
- 301 Lucchi, F., Tranne, C.A., Calanchi, N., and Rossi, P.L., 2006, Late Quaternary
- 302 deformation history of the volcanic edifice of Panarea, Aeolian Arc, Italy: Bulletin
- 303 of Volcanology, v. 69, p. 239–257, doi: 10.1007/s00445-006-0070-9.
- 304 Manga, M., and Brodsky, E.E., 2006, Seismic triggering of eruptions in the far field:
- 305 volcanoes and geysers: Annual Review of Earth and Planetary Sciences, v. 34,
- 306 p. 263–291, doi: 10.1146/annurev.earth.34.031405.125125.
- 307 Neri, G., Barberi, G., Orecchio, B., and Mostaccio, A., 2003, Seismic strain and
- 308 seismogenic stress regimes in the crust of the southern Tyrrhenian region: Earth
- 309 and Planetary Science Letters, v. 213, p. 97–112, doi: 10.1016/S0012-
- 310 821X(03)00293-0.

- 311 Neri, G., Caccamo, D., Cocina, O., and Montalto, A., 1996, Geodynamics implications
- 312 of the earthquake data in the southern Tyrrhenian sea: Tectonophysics, v. 258,
- 313 p. 233–249, doi: 10.1016/0040-1951(95)00202-2.
- 314 Neri, M., Acocella, V., Behncke, B., Maiolino, V., Ursino, A., and Velardita, R., 2005,
- 315 Contrasting triggering mechanisms of the 2001 and 2002–2003 eruptions of Mount
- Etna (Italy): Journal of Volcanology and Geothermal Research, v. 144, p. 235–255,
- doi: 10.1016/j.jvolgeores.2004.11.025.
- 318 Ripepe, M., Marchetti, E., Ulivieri, G., Harris, A., Dehn, J., Burton, M., Caltabiano, T.,
- and Salerno, G., 2005, Effusive to explosive transition during the 2003 eruption of
- 320 Stromboli volcano: Geology, v. 33, p. 341–344, doi: 10.1130/G21173.1.
- 321 Rovelli, A., Vuan, A., Mele, G., Priolo, E., and Boschi, E., 2004, Rarely observed short-
- 322 period (5–10 s) suboceanic Rayleigh waves propagating across the Tyrrhenian Sea:
- 323 Geophys. Res. Lett., v. 31, p. doi:10.1029/2004GL021194.
- 324 Walter, T.R., and Amelung, F., 2007, Volcanic eruptions following M9 megathrust
- 325 earthquakes: Implications for the Sumatra-Andaman volcanoes: Geology, v. 35,
- 326 p. 539–542, doi: 10.1130/G23429A.1.
- 327 Wang, R., 1999, A simple orthonormalization method for stable and efficient
- 328 computation of Green's functions: Bulletin of the Seismological Society of
- 329 America, v. 89, p. 733–741.

330 FIGURE CAPTIONS

- 331 Figure 1. Shaded relief map of Sicily and the Aeolian Islands. Tectonic strain
- 332 orientation, black arrows show compression in the western volcanic Aeolian Arc, white
- arrows show extension in the eastern Aeolian Arc (after Billi et al., 2007). Circles are
- arthquake M > 1 epicenters from the ANSS earthquake catalogue 2000–2005, stars are

335	main shocks M $>$ 5, Harvard CMT solution is provided for Palermo M = 5.9 event. Note
336	that four $M > 5$ earthquakes occurred during the observation period, but two had depths
337	> 200 km (2001/5/17 (M = 5.2) and 2004/5/5 (M = 5.5)), while the September 2002
338	earthquake and its aftershocks were shallow (< 30 km). Earthquake mainshocks and
339	remotely triggered volcanoes investigated herein are shown with red symbols. Tectonic
340	lines from Billi et al. (2007).
341	Figure 2. Volcanic activity (red lines) shortly after the largest earthquake and its
342	aftershocks in September 2002. Earthquakes with magnitude > 5 are indicated by stars.
343	Earthquakes from ANSS catalogue 2000–2005.
344	Figure 3. Synthetic seismograms showing east-west (E), north-south (N) and vertical
345	components (Z). From these three components, we determined the pressure change (P,
346	shown in red) as a function of time. Pressure fluctuations reached \pm 10 kPa for Mt. Etna
347	and ± 8 kPa for the Panarea and Stromboli Island volcanoes.
348	Figure 4. Conceptual model of the time-strain changes in the Panarea-Stromboli-Etna
349	systems. Extensional tectonic strain built up in the long-term, locally causing elevated
350	pore pressure at hydrothermal and magmatic centers. Earthquakes induced short-term
351	fluctuations exceeded the long-term signals by an order of magnitude. In the case of the
352	2002 events, strain changes are similar to 10-20 yr of tectonic strain, but occurred
353	within seconds.
354	

