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Abstract 

The viscosity of an iron-bearing melt with composition similar to Unzen andesite was 

determined experimentally in the high (109-1010.5 Pa·s) and low (5-1000 Pa·s) viscosity range 

using a parallel plate viscometer and the falling sphere method, respectively. Falling sphere 

experiments were carried out in an internally heated argon pressure vessel and in a piston 

cylinder apparatus at 1323 to 1573 K and 200 to 2000 MPa. Creep experiments were 

performed in the temperature range of 747 - 845 K at 300 MPa. The water content of the melt 

varies from nominally dry to 6.2 wt% H2O. The Fe2+/Fetot ratio was determined for each 

sample in the quenched glass using a colorimetric method. Pressure has minor influence on 

the viscosity compared with the effect of temperature, water content (main compositional 

parameter controlling the viscosity) or with the Fe2+/Fetot ratio (especially important at low 

water content of the melt). Based on our new viscosity data and literature data with measured 

Fe2+/Fetot ratio we propose a new empirical equation to estimate the viscosity η (in Pa·s) of 

andesitic melts as a function of temperature T (in K), water content w (in wt%) and Fe2+/Fetot 

ratio. The derived relationship reproduces the experimental data (87 in total) in the viscosity 

range from 100.5 to 1013 Pa·s with a 1σ standard deviation of 0.17 log units. However, 

application of this calculation model is limited to Fe2+/Fetot>0.3 and to temperatures above Tg. 

Moreover, in the high viscosity range the variation of viscosity with water content is 

constrained only by few experimental data and needs verification by additional 

measurements.  

The viscosity data are used to interpret mixing processes in the Unzen magma chamber prior 

to 1991-1995 eruption. We demonstrate that the viscosities of the rhyolite and andesite melts 

from the two end-member magmas are nearly identical prior and during mixing, enabling 

efficient magma mixing.  
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1. Introduction 

There is strong petrological and geochemical evidence that magma mixing occurred prior to 

the 1991-95 eruptions of Unzen volcano (e.g., Nakada and Motomura, 1999) and it has been 

suggested that injection of a high temperature andesitic melt in a highly crystalline magma 

chamber with rhyolitic melts has initiated the eruption (e.g., Nakada and Motomura, 1999; 

Venezky and Rutherford, 1999; Holtz et al., 2005). On the other hand, the groundmass 

composition of the volcanic rocks, which was interpreted to be representative of the melt 

composition after mixing, is particularly homogeneous (Nakada and Motomura, 1999; Sato et 

al., 1999), indicating that the mixing between rhyolitic and andesitic melts must have been 

very efficient. Because the mixing efficiency of two liquids is mainly depending on their 

respective viscosities, the examination of magmatic processes occurring at Unzen needs to 

take into account the crucial role of melt and magma viscosity. 

 

The main parameters which govern the viscosity of magmas are bulk composition of the melt 

(in particular the water content) and temperature (Bottinga and Weill, 1972; Shaw, 1972; 

Persikov, 1991; Giordano and Dingwell, 2003), but also pressure (Kushiro et al., 1976; Scarfe 

et al., 1987; Behrens and Schulze, 2003), dispersed crystals (Lejeune and Richet, 1995; 

Bouhifd et al, 2004; Sato, 2005) and bubbles (Lejeune et al., 1999) may have an important 

influence. For volcanism related to subduction zones, melts of rhyolitic to andesitic 

compositions are of particular interest. An extensive amount of work has been devoted to 

silicic systems in the last decade (see Giordano et al. 2004b and references therein). 

However, few studies on the viscosity of andesitic melts are available only. Except for a 

recent study of Vetere et al. (2006), no systematic dataset was obtained in the low viscosity 

range. Using data of Richet et al. (1996) and Liebske et al. (2003) obtained in the high 
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viscosity range, Vetere et al., (2006) proposed a model for calculating andesite melt 

viscosities over the range 101 to 1012 Pa·s. This model is based only on data for analogue 

compositions in which iron was replaced by Mg, Ca and Al to avoid experimental problems 

in controlling the redox state of iron and avoiding loss of iron from the melt during 

experiment. The question is whether the model can be directly applied to natural melt 

compositions at geological relevant conditions.  

 

In this paper we want to enrich the dataset on viscosity of Fe-bearing andesitic melts 

especially in the high temperature range. Natural andesitic melts at high pressure may contain 

up to 10 wt% of dissolved H2O (Grove et al., 2003) which strongly decreases the viscosity 

compared to the dry melt. Hence, a major focus of our work is on the effect of dissolved 

water on melt viscosity. Liebske et al. (2003) demonstrated that the viscosity of dry andesitic 

melts above the glass transition can decrease by about 1.6 log unit when the Fe2+/Fetot ratio 

increases from 0.42 to 0.79. The effect of redox state of iron may be different at high 

temperature and at high water content of the melt. Hence, controlling and varying Fe2+/Fetot 

were important issues in our study. The viscosity was investigated over a wide range of 

temperature and pressure using the falling sphere(s) method (in the range 5-103 Pa·s) and the 

creep method (in the range 109-1010.5 Pa·s). The new experimental data on melt viscosity are 

used to discuss mixing processes between felsic and andesitic melts in the Unzen magma 

chamber prior to 1991-1995 eruption.  
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2. Experimental and Analytical Methods 

2.1. Starting materials  

The starting composition is based on an andesite from Unzen Volcano (Pre Unzen 500 kyr; 

Chen et al., 1993). Two dry glasses were synthesized, labelled as compositions MDIB1 and 

MDIB2 in Table 1. In each synthesis about 100 g of glass was produced by melting a mixture 

of oxides and carbonates at 1873 K for 4 h in a Pt crucible in air. Part of the melt was 

quenched by pouring on a brass plate. A large part of the melt, however, stuck in the crucible 

and was quenched by dropping the crucible into water. To improve homogeneity, the glass 

was crushed, re-melted and quenched at same conditions. The poured glass was used for 

microprobe analyses. The glass stuck at the wall was crushed and used for preparation of 

viscosity samples.  

 

The most oxidized water-poor samples for viscosity experiments were produced by re-

melting of compacted glass powder in AuPd capsule for 20 h at 1523 K, 500 MPa in the 

internally heated gas pressure vessel (IHPV). The air-melted glass could not be used directly 

for viscosity experiments because the Fe2+/Fetot ratio is much lower than the equilibrium 

redox state in the experimental apparatus. After pre-treatment in the IHPV the Fe2+/Fetot ratio 

increases from 0.41 (MDIB1, Table 1) to 0.61 (MDIB 12, Table 2). The latter value 

represents the lower limit of Fe2+/Fetot adjustable in the IHPV. Hydrogen fugacity in the 

vessel is typically ~0.2 bar at intrinsic conditions, resulting in an oxygen fugacity close to that 

buffered by the MnO-Mn3O4 (MMO) assemblage if pure H2O fluid is present in the capsule 

(Berndt et al., 2002). 
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To produce a strongly reduced water-poor glass, powder from MDIB2 glass was mixed with 

an appropriate portion of carbon, filled into a graphite crucible, and melted for 1 h at 1523 K 

in an oven flushed with a gas mixture composed of 93% Ar and 7% H2. The obtained sample 

had a very high average Fe2+/Fetot ratio of 0.91 (sample R13 in Table 2) but visually appeared 

to be inhomogeneous. To improve homogeneity and to compact the samples, the glass was 

crushed, filled in a large AuPd capsule (diameter of 8mm), and re-melted for 30 min at 1573 

K, 500 MPa under intrinsic conditions in the IHPV. The post-experimental analysis yielded a 

Fe2+/Fetot ratio of 0.83 close to the initial value (Table 2). 

 

The procedure to synthesize water-bearing glasses is described in detail by Vetere et al. 

(2006). Distilled water was added stepwise to a dry glass powder in AuPd capsules (diameter 

of 5-6 mm, length of 30-40 mm). Relatively oxidized glasses (MDIB32, MDIB30, MDIB29 

MDIB25, MDIB24, MDIB12 MDIB10, MDIB4, J1) were produced by annealing at 300-500 MPa 

and 1523 K for 24 h under intrinsic conditions of the IHPV. To synthesize hydrous glasses 

with high Fe2+/Fetot (R6, R7, R9, R10), runs were performed for 20 to 70 h at 1323 K and 200 

MPa in an IHPV at an elevated hydrogen pressure. In these runs the amount of H2O (10 wt% 

relative to the loaded glass powder) in the capsule was in excess to the expected water 

solubility and Au capsules were used which are more efficient than AuPd capsules to depress 

iron loss. Hydrogen fugacity was monitored with a Shaw membrane as described in Berndt et 

al. (2002). In the syntheses of samples R6 and R7 the hydrogen fugacity was at  fH2 = 6.4 bar 

while more reducing conditions of fH2 = 20 bar were adjusted for R9 and R10 (see Table 2). 

 

Samples were quenched either by the rapid quench method (see Berndt et al. 2002) or by 

normal quench (by switching off the power; initial cooling rate is about 200 K / min). Using 

the rapid quench method avoids the formation of quench crystals, but the glass cylinders 
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accumulate stress and often brake. In such a case, the cylinders can not be used for a second 

viscosity determination. On the other hand, the normal quench method allows multiple 

experiments with the same glass, but quench crystals are formed. To check whether quench 

crystals could influence the viscosity measurements, we performed annealing experiments in 

which a quench crystals-bearing sample was heated up and quenched (using the rapid quench 

technique) immediately after reaching the target temperature. After such treatments at 1423 K 

and at 1473 K the quench crystals dissolved completely. Hence, we do not expect any 

influence of quench crystals on the viscosity experiments.  

 

For the viscosity experiments a cylinder (diameter: 4 or 5 mm; length: 10 – 15 mm) was 

cored out of the synthesized glasses. The residual glass was crushed to fine grained powder 

except for some fragments to be used for determination of the water content and the Fe2+/Fetot 

ratio. Loading procedure of capsules for viscosity experiments is described in detail by 

Vetere et al. (2006).  

2.2. Electron microprobe analyses 

The chemical composition of the glasses was determined by electron microprobe Cameca 

SX100. Measurement conditions were: defocused beam of 15 µm diameter, accelerating 

voltage of 15 kV and a beam current of 4 nA. The nominally dry andesitic glasses MDIB1 

and MBIB2 are more mafic than those used by Liebske et al. (2003) and Neuville et al. 

(1993) (see Table 1). Silica content was slightly higher in hydrous viscosity samples (average 

value for six samples is given as MDIBvis in Table 1) than in the dry starting glasses. We 

attribute these deviations to inhomogeneities in the starting glass. The average composition 

MDIBvis is considered to be representative for our viscosity samples. Consistency of the 
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overall dataset implies that slight variations in compositions (except for water content and 

Fe2+/Fetot) have minor influence on viscosity. 

2.3. Water determination 

The water content of the glasses was determined by Karl-Fischer Titration (KFT) and 

infrared spectroscopy (IR). To account for unextracted water (Behrens and Stuke, 2003), 

water contents measured by KFT were corrected by adding 0.13 wt% H2O. The accuracy of 

the KFT analysis is estimated to be 0.10 wt%, including the uncertainty in the amount of 

unextracted water and the error in the titration rate (for details of the analytical technique and 

error estimation see Behrens and Stuke, 2003 and Leschik et al., 2004). To test the 

homogeneity of H2O concentrations in selected samples, wafers from different part of the 

samples were analyzed by KFT. Data are labelled with the superscript t (top), b (bottom) and 

c (center) in Table 2. Variation of water content was always within the analytical error.  

 

Mid-infrared (MIR) absorption spectroscopy was used to characterize the water content of 

water-poor glasses. Absorption spectra of doubly polished glass slabs with thickness of 0.05-

0.30 mm were recorded using an IR microscope Bruker IRscopeII connected to an FTIR 

spectrometer Bruker IFS88. Water contents were derived from the peak height of the OH 

stretching vibration band at 3550 cm-1 after subtraction of a linear baseline. The absorption 

coefficient of 62.3 L mol-1cm-1 determined by Mandeville et al. (2002) was used in the 

evaluation of the MIR spectra. 

 

Water distribution in some water-rich post-experimental glasses was measured using near-

infrared (NIR) spectroscopy. Simple linear baselines were fitted to the OH combination band 

at 4500 cm-1 and the molecular H2O band at 5200 cm-1 (TT baseline according to Ohlhorst et 
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al., 2001). This baseline correction is reliable to quantify the total water content but may have 

systematic errors in the determination of hydrous species concentrations (cf Ohlhorst et al., 

2001). However, water speciation measured in glasses at room temperature does not reflect 

the equilibrium speciation in the melt during viscosity experiments (Dingwell and Webb, 

1990), and, hence, it is not important for the interpretation of our viscosity data. 

2.4. Colorimetric determination of ferrous iron in silicate glasses 

A 6 mg to 9 mg portion (glass chips) of each sample was used for determination of ferrous-

ferric ratios using a colorimetric method modified after Wilson (1960). Samples were 

dissolved with concentrated HF to which a solution of ammonium vanadate in 5 M sulfuric 

acid was added. At these acid conditions the released ferrous iron reacts with V5+ forming 

V4+ and ferric iron (reaction Fe2+ + V5+ = Fe3+ + V4+). The reaction products are more stable 

with respect to oxidation in air than ferrous iron so that the initial redox state of the glass is 

preserved in the solution. After complete sample dissolution at room temperature we added 

saturated hot boric acid (353 K) instead of beryllium sulfate as proposed by Wilson (1960) to 

neutralize excess HF and to bring eventually formed fluorides back into solution. Fe2+ is 

regenerated by adjusting a pH value of ~5 using an ammonium acetate buffer. For the 

colorimetric analysis 2:2’bipyridyl was added which forms a stable complex with Fe2+. To 

quantify the concentration of this complex we have used the characteristic absorption band at 

523 nm. Measurements of concentrations of ferrous Fe and total Fe were made on the same 

solution before and after adding solid hydroxylamine hydrochloride. This reducing agent 

converts all ferric Fe into the ferrous state. Since both Fe2+ and total Fe determination was 

done on the same solution, uncertainties in the Fe2+/Fetot ratios arise mainly from the 

absorbance measurements for which a 1 cm transmission cell in an UV/VIS spectrometer 
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Zeiss Specord S10 was used. Calibration of the spectrometric technique was made by 

measuring ferrous ammonium sulfate solutions with different known Fe2+ concentrations.  

 

In each analytical session several internal standards were processed to assess the accuracy 

and reproducibility of the method. These standards included the glassy USGS standard 

RGM-1 rhyolite, and two synthetic glass in-house standards, PU-3 andesite and CT-1 basalt 

(synthesized from oxides and carbonates at 1873 K in air). The mean values of Fe2+/Fetot 

(all ± 2σ error) determined by the colorimetric method are 0.77 ± 0.04 for RGM-1 (n=11), 

0.38 ± 0.03 (n=25) for PU-3, and 0.41 ± 0.02 (n=8) for CT-1. For RGM-1 the determined 

values of ferrous Fe (FeO = 1.31 ± 0.06 wt%) and total Fe (FeOtot = 1.69 ± 0.04 wt%) are 

equivalent within the given 1σ errors with the certified values (FeO = 1.27 ± 0.05 wt%; 

FeOtot = 1.67 ± 0.03 wt%; Fe2+/Fetot = 0.76 ± 0.03). The total Fe concentrations of the 

synthetic glass standards determined with the colorimetric method (PU-3 FeOtot = 7.57 ± 0.06 

wt%; CT-1 FeOtot = 12.93 ± 0.70 wt%) are in good agreement with FeOtot analyses by 

electron microprobe (PU-3 FeOtot = 7.74 ± 0.42 wt%; CT-1 FeOtot = 13.17 ± 0.47 wt%). 

From the results of the replicate analyses of different standards, the precision assigned to the 

reported Fe2+/Fetot ratios is ± 0.03 (2σ).  

 

The Fe2+/Fetot ratios of glasses before viscosity experiments and after viscosity experiments 

are given in Tables 1 and 2. No significant change in redox state is observed during the 

viscosity determination (Fig. 1). Comparison of the Fe2+/Fetot ratio of the air-melted starting 

material (Table 1) with those of the viscosity samples (Table 2) emphasize the importance of 

pre-equilibration of samples at similar conditions as used in the viscosity experiments. 

Fe2+/Fetot ratio of air-melted glasses are in the range of 0.41 – 0.44 whereas samples 

processed in the IHPV have redox ratios above 0.58.  
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2.5. Falling sphere experiments 

Determination of viscosity required the measurement of the exact position of the sphere in the 

glass cylinder before and after experiment. A thin layer of Pt powder was inserted in the 

viscosity samples as internal reference for distance measurements. Due to small grain size (~ 

0.8 µm) the Pt powder is essential immobile during the experiment. Because the glasses are 

not transparent in the visible we have used X-ray images to monitor sphere positions 

(SIEMENS HELIODENT DS X-rays camera with voltage of 60 kV and anode current of 7 

mA, KODAK INSIGHT IP-21 films, and exposure time of 0.16 s). Some run products were 

cracked and could not be completely expelled from the capsule without destruction. In this 

case only part of the capsule was removed to enable recording X-ray images. To calibrate the 

images, we have used a transparent glass piece with copper wires in well defined intervals 

(Fig. 2). The distance between the wires was measured on a microscope stage equipped with 

a micrometer scale. In some experiments, we used more than one sphere (Pt and Pd spheres) 

that allowed us multiple determination of viscosity.  

 

After welding shut the capsule, a pre-experiment was performed in an IHPV for a few 

minutes to establish well-defined starting positions of the spheres with respect to the Pt 

powder layer (condition: 1523 K and 300-500 MPa for AuPd capsules; 1323 K and 200 MPa 

for Au capsules). The pre-experiment gave a raw estimate for the melt viscosity. However, 

due to initial compaction of the sample and thus due to a poorly constrained starting position 

of the sphere, this measurement is less precise than the subsequent runs and it is not included 

in Table 2. Up to four viscosity determinations were carried out with the same sample. A long 
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approaches the platinum layer. 

 

Most of the viscosity experiments were performed under intrinsic conditions in IHPV as 

described in Vetere et al. (2006). Samples R6, R7, R9 and R10 were processed at same 

hydrogen fugacity as used for the glass syntheses. Run duration was always short (300 – 3000 

s) so that only minor changes in iron content or redox state of iron were expected during the 

viscosity experiments. 

 

Some additional experiments at elevated pressures of 1000 – 2000 MPa were performed in an 

end-load ¾ inch piston cylinder apparatus, PCA, (Voggenreiter company) at INGV in Rome. 

We have used a NaCl-crushable alumina-pyrex assemblage for the nominally dry sample 

MDIB12 and a crushable alumina-pyrophyllite-pyrex assemblage for the hydrous samples 

MDIB24 and MDIB25 (see Freda et al. (2001) for the effect of assemblage on water budget 

of capsules processed in PCA). Experiments were first pressurized and then heated at a rate 

of 200 K/min up to 20 K below the target temperature. A smaller rate of 40 K/min was 

applied within the last 20 K of heating to avoid overshooting. Temperature was controlled 

within ±3 K using one W95Re5-W74Re26 (type C) thermocouple located on top of the sample. 

The experiment was terminated by switching off the heating power while maintaining 

pressure constant. The initial quench rate was about 2000 K/min. 

 

The viscosity η is calculated by Stokes law  

d
Crgt F

⋅
⋅⋅Δ⋅⋅⋅

=
9

2 2ρ
η

           (1) 
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where d is the settling distance in cm, t is the run duration in sec, ∆ρ is the density difference 

between the sphere and the melt, g is the acceleration due to gravity (9.81 m/s2), r is the 

radius of the sphere and CF is the Faxen correction (Faxen, 1923) to account for the effect of 

viscous drag by the capsule wall on the settling sphere. To account for movement of spheres 

during heating and cooling, we calculated the effective run duration for each experiment as 

described in Vetere et al. (2006). Room temperature densities of Pt and Pd are 21.45 and 

12.02 g/cm3, respectively. No correction was made for differential compression and thermal 

expansion of the solid materials because this would contribute less than 1% to the viscosity. 

The density of hydrous andesitic glasses as a function of the total water content, CH2O (in wt 

%) was calculated with the equation  

               ( ) ( ) OHC
2

0.24.1872661 ⋅±−±=ρ                                                   (2) 

reported by Ohlhorst et al. (2001). When the melt density at experimental conditions is used 

in Eqn. 1 instead of the glass density, the viscosity is higher by at most 3% (Vetere et al., 

2006). This difference is small compared to the experimental error of viscosity and we did 

not correct for it.  

 

The settling distance was measured with Corel Draw 12 software after scanning the X-ray 

images with a resolution between 600 and 1200 dpi. The estimated error of distance 

measurement is about ± 10 µm, mainly determined by the resolution of the micrometer scale 

on the microscope stage. This error, together with the uncertainty in run duration, in radius of 

spheres and in temperature (estimated to be ± 30s, 1-5 µm and ± 10 K, respectively; see 

Vetere et al., 2006) accumulate to an overall error in viscosity determination of 9 - 14 % 

(Table 2). Viscosity values measured using spheres with different radii inserted in the same 

sample are identical within uncertainty for MDIB4, MDIB10a, MDIB29, MDIB30a and 
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MDIB30b (Table 2). However, larger deviations than expected from this error estimate were 

observed for samples MDIB32 and MDIB31. Possible explanation could be deformation of 

spheres induced by capsule loading and initial compression as observed for haplogranitic 

samples (Holtz et al. 1999). Thus in some cases the effective radius of the sphere may differ 

from that determined before experiment. Unfortunately, the iron-bearing glasses are not 

transparent and possible deformation of spheres could not be verified. 

2.6. Creep experiments 

Creep experiments under pressure were performed to measure melt viscosity above the glass 

transition temperature. Experimental procedures follow those described by Schulze et al. 

(1999). The rate of deformation of cylindrical glass samples is measured when applying a 

constant uniaxial stress (Neuville and Richet, 1991). The viscosity is calculated as: 

dt
ld ln3 ⋅

=
ση

           (3) 

where σ is the applied stress and l is the length of the cylinder. The reproducibility of 

viscosity measurements with the high pressure parallel plate viscometer is within ± 0.15 log 

unit (Schulze et al., 1999). To check for possible water loss during creep experiments, 

polished sections along the cylindrical axis were prepared and analyzed by IR 

microspectroscopy.  

 

In previous studies, rapid crystallization of iron oxide was a major problem in measurement 

of the viscosity of andesitic melts near the glass transition (Neuville et al., 1993; Richet et al., 

1996; Liebske et al., 2003). In order to minimize the influence of crystallization, the samples 

were heated as fast as possible to the temperature of the first viscosity measurement. Hence, 

the viscosity data have higher uncertainty than in previous studies because the apparatus was 
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not completely relaxed, but the overall error of the viscosity data obtained from experiments 

is estimated to be within ± 0.2 log unit.  

3. Results 

3.1. Falling sphere experiments 

The falling sphere data cover a range of water content from nominally dry to 6.2 wt%, of 

Fe2+/Fetot from 0.61 to 0.83 (considering data after experiments) and of temperature from 

1323 to1573 K (Table 2). The minimum viscosity measured with the falling sphere method is 

4.9 Paּs using a Pd sphere with a radius of 61 μm and 5 min run time at 1473 K (Table 2, 

sample MDIB32a). Runs at same temperature and pressure using samples with similar water 

content and redox state of iron agree within 0.17 log units (R6, R7) and 0.33 log units (R9, 

R10). The relatively large deviation in the second case is probably due to the uncertainty in 

run duration for the short experiment R9 (dwell time of only 420 s) but could be affected also 

by deformation of the sphere. 

 

In the experiments it was not possible to vary Fe2+/Fetot independent on water content because 

both properties are linked by the hydrogen fugacity imposed by the vessel. Hence, the 

influence of Fe2+/Fetot on viscosity at given water content and temperature can be inferred 

only by considering trends in the whole dataset. The effect of redox state of iron appears to be 

very low for water-rich samples (2.5 to 6.2 wt% H2O) in the Fe2+/Fetot range of 0.61- 0.76. At 

1323 K, the viscosity of samples R6, R7, R9 and - R10 (Table 2) containing 4.8 to 5.2 wt% 

H2O varies only between 14 and 31 Pa·s for Fe2+/Fetot ratios increasing from 0.62 to 0.77. No 

clear tendency (increasing or decreasing viscosity with changing Fe2+/Fetot) is observed in the 

dataset. In contrast, in melts with low water contents, the viscosity decreases noticeably with 
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increasing Fe2+/Fetot ratio. The comparison of data obtained for “nominally dry” samples (e.g. 

R13 and J1; Table 2) in the high temperature range indicate that changing Fe2+/Fetot from 

0.83 to 0.60 may cause a variation of up to 1 log unit. Although there is a difference of 50 K 

between experiment R13 and J1, it is obvious that the viscosity is higher in the melt with the 

lowest ratio Fe2+/Fetot. 

3.2. Creep experiments 

Creep experiments were successful only with one sample containing 3.3 wt% H2O (MDIB7, 

Table 3). An attempt with a sample containing 5.1 wt% H2O failed due to rapid loss of water 

during viscosity measurement. The viscosity datum obtained for this glass at 792 K was 

about 1 log unit higher than that predicted by our new model (see below) and by the variation 

of viscosity with water content observed for iron-free analogue compositions (Richet et al. 

1996; Vetere et al. 2006). The sample shows a dehydrated rim after experiment which 

probably has strongly strengthened the sample.  

 

With the sample MDIB7 three measurements at the same temperature (747 K) were 

performed during the experimental sequence (Fig. 3). The obtained viscosity data agree 

within ±0.15 log units. However, the viscosity-time record shows an increase of viscosity 

with time already for the second measurement, indicating that iron-oxides started to 

crystallize from the glass (Richet et al. 1996; Liebske et al. 2003). But the change in viscosity 

is small and we suggest that the data presented in Table 3 are still representative for the 

andesitic melts. Water determination by KFT after the experiments agree within the value 

measured for the starting glass, indicating that water loss was not severe during the 

experimental sequence with MDIB7.  
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4. Discussion  

4.1. Loss of iron during experiments and implication for viscosity determination 

One problem with high pressure experiments using Fe-bearing samples at high temperature is 

the loss of iron from the melt to the capsule material, in particular at low water content of the 

melt and high hydrogen fugacity in the vessel (e.g., Sisson and Grove, 1993; Berndt et al., 

2005). The loss of iron was quantified using the colorimetric method and/or electron 

microprobe. For the centre of the glass cylinders electron microprobe analysis yielded similar 

iron content when compared with bulk measurements using colorimetry (Table 4). Near the 

capsule walls (see Fig 4) the melts were more depleted in iron content, but this may not have 

affected the viscosity data because the spheres are located close to the cylindrical axis of the 

sample.  

 

Experiments performed in Au capsules (Table 2) show only little changes in iron contents 

when compared to the starting material despite of high hydrogen fugacity in the IHPV, in 

agreement with studies on basaltic system using the same IHPV (Berndt et al., 2005). The 

iron loss for samples R6 to R10, with starting material MDIB2 (Table 1) is 0.5 ± 0.3wt% 

FeOtot. The iron loss is more significant when using AuPd capsules, even at low hydrogen 

fugacity (intrinsic conditions of IHPV). Among the samples analyzed for iron loss, two 

glasses (MDIB30, MDIB25) are products from experiments conducted at the highest 

temperature (1523 K). One of these samples (MDIB30) was even used in a series of 

experiments at different temperatures. Thus, the iron loss is expected to be particularly strong 

for this sample. However, the loss of 1.7 wt% FeOtot detected for MDIB30 is similar to the 

value found for MDIB25 (2 wt% FeOtot). Glasses from experiments performed at 1473 K 

show similar or slightly lower iron loss (MDIB31 and MDIB32). Thus, iron loss is low but 
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not negligible in our experiments performed in AuPd capsules. The problems related to iron 

loss may explain some differences in viscosity obtained at similar conditions (water content 

and temperature). For example, the viscosity determined in experiment MDIB32d (1323 K, 

6.2 wt% H2O), in which 2 wt% FeOtot loss was observed, is higher than the viscosity 

determined in experiment R6 (1323 K, 5.2 wt% H2O) with less than 0.7 wt% FeOtot loss 

(compare Table 2). Since the water content in MDIB32d is higher than in R6, a lower 

viscosity is expected from the experiment MDIB32d.  

4.2. Viscosity model for Fe-bearing andesite melt  

The originality of our dataset is that it allows us to improve the viscosity model for andesite 

melt established for a Fe-free composition by Richet et al., (1996) and Vetere et al. (2006). 

These authors showed that the effect of dissolved water on andesitic melts is more 

pronounced at low than at high water content, as expected from other compositions 

investigated in the past (e.g., Hess and Dingwell, 1996; Richet et al., 1996; Scaillet et al., 

1996; Schulze et al., 1996, 1999; Romano et al., 2001, 2003; Whittington et al., 2000, 2001; 

Liebske et al., 2003; Zhang et al., 2003; Giordano et al., 2004a,b). Several studies (Mysen 

and Virgo 1989, Dingwell and Virgo 1988, Dingwell 1991, Liebske et al., 2003) have shown 

that oxidation state of iron is a parameter which needs to be taken into account to model the 

viscosity of silicate melts with high Fe contents. In the system Na-Si-Fe-O (composition 

NS4F40) and at 1473 K, Dingwell and Virgo (1988) observed a decrease in viscosity by 0.81 

log units when increasing the Fe2+/Fetot ratio from 0 to 0.77. Moreover a decrease in log 

viscosity of 0.34 log units was found for NaFeSi2O6 melt when increasing the Fe2+/Fetot ratio 

from 0.08 to 0.82 at 1703 K. As shown in Liebske et al. (2003), when the Fe2+/Fetot ratio 

increases from 0.42 to 0.79 in an andesite melt, the viscosity decreases by ~1.7 log units at 
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1061 K. This indicates that previous determinations made at ambient conditions (high oxygen 

fugacity) may not be geologically relevant.  

 

A major problem in setting up a viscosity model for andesite melts is due to inconsistencies 

within and between the data sets published for viscosity of andesitic melts and due to the lack 

of information on the redox state of iron in most of previous studies. In the high viscosity 

range (just above the glass transition) published data for nominally dry andesitic melts cover 

a range of more than two orders of magnitude at constant temperature (see data compilation 

in Liebske et al. (2003), Fig. 10). In part these viscosity variations may be due to variations in 

melt composition and/or differences in redox state of iron. Liebske et al. (2003) found a 

decrease in viscosity by 1.7 log units in average when Fe2+/Fetot increases from 0.42 to 0.79. 

Additionally, differences in the applied experimental techniques and bulk composition may 

contribute to the variation in viscosity data for dry andesite (Goto et al., 1997, and Taniguchi, 

1993, used fiber elongation; Neuville et al., 1993, and Richet et al., 1996, performed creep 

experiments at 1 atm; Liebske et al., 2003 used high pressure parallel plate viscometry). 

However, a severe problem in the low temperature studies is also rapid crystallization of iron 

oxides, especially in oxidized melts (Neuville and Richet, 1991; Richet et al., 1996; Liebske 

et al., 2003). Hence, actual experimental data are often difficult to interpret in terms of the 

viscosity of a supercooled crystal-free andesitic melt.  

 

In our modelling we consider for water-poor melts in the high viscosity range only data from 

Liebske et al. (2003) because of the unknown redox state of iron (and possible effect of 

crystallization of iron oxides) in the other studies (Taniguchi, 1993; Goto et al., 1997; 

Neuville et al., 1993; Richet et al., 1996). Data for the viscosity of hydrous melts near the 

glass transition are limited to one measurement on a sample containing 1.88 wt% H2O 
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studied by Liebske et al. (2003) and five measurements on a sample containing 3.30 wt% 

H2O measured in this study (Table 3, sample MDIB 7). Redox state of iron is similar in both 

melts and, hence, variation of viscosity with Fe2+/Fetot can not be constrained for hydrous 

melts in the high viscosity range. However, minor variation of η with Fe2+/Fetot were 

observed for dry melts with similar Fe2+/Fetot (0.70) at high viscosity and the viscosity of 

water-rich melts above the liquidus is not sensitive to Fe2+/Fetot. Thus we infer that the data 

for hydrous samples just above the glass transition can be applied in a wider range of 

Fe2+/Fetot without significant error (between 0.65 and 0.75).  

 

Although several data sets are available for the viscosity of andesitic melts above the glass 

transition (Murase and McBirney, 1973; Kushiro et al., 1976; Persikov et al., 1990; Neuville 

et al., 1993; Goto et al., 1997), the data can not be used directly for modeling viscosity 

because of the unknown redox state of iron for these experiments. Data measured at ambient 

pressure using the concentric cylinder technique (Neuville et al., 1993) and the counter 

balanced sphere method (Murase and McBirney 1973; Goto et al., 1997) cover a narrow 

range in viscosity at given temperature, implying that small differences in compositions have 

minor effect on viscosity of andesite-like melts. For modeling we have estimated the redox 

state of iron in the melts using the model of Moretti (2005). Assuming equilibrium of the 

melt with the surrounding air, these redox calculations indicate very large changes in 

Fe2+/Fetot with temperatures (from Fe2+/Fetot = 0.35 at 1867 K to Fe2+/Fetot = 0.055 at 1433 K). 

Unfortunately, it was not possible to design a simple model which describes well the data for 

very oxidized and for more reduced melts. Because we do not know reliably the redox state 

the melts in the superliquidus experiments we restricted ourselves to design a simple model 

applicable only to reduced melts (Fe2+/Fetot >0.3). However, andesitic melts in nature usually 

are not very oxidized, except may be for melts exposed to the earth surface. Thus we suggest 
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The data base for modelling the viscosity as a function of temperature, water content and 

Fe2+/Fetot ratio consists of 46 measurements from Liebske et al. (2003) and 36 measurements 

from our new study. An empirical viscosity model based on the VFT approach was chosen to 

account for the non-Arrhenian temperature dependence of viscosity. Data were fitted using a 

non-linear least-square regression. After various attempts of trial and error the following 

equation was found best to reproduce the experimental data and the observed viscosity trends 
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where η is the viscosity in Pa·s, T the temperature in K, w is the water content in wt% and 

Fe2+/Fetot is the relative proportion of ferrous iron. This equation reproduces the experimental 

data with a 1σ standard deviation of 0.17 log units (Fig. 5). The predicted trends for different 

redox ratios of iron are plotted in Fig. 6. For water-rich melts difference due to Fe2+/Fetot can 

not be resolved by the experimental data. It has to be emphasized that the dependence on 

redox ratio of iron is constrained mainly by the data for dry melts at low temperature 

(Liebske et al. 2003) and our high temperature data (samples MDIB12, R13). 

 

Noteworthy, the new empirical model is constrained only for Fe2+/Fetot > 0.3. More oxidized 

melts show discrepancies to the model in particular at low temperatures. At temperatures 

around 1800 K Eqn. (4) agrees well with measurements using the concentric cylinder 
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technique and counter balanced sphere method in air (Neuville et al., 1993; Murase and 

McBirney, 1973; Goto et al., 1997) when estimating the redox state of iron after Moretti 

(2005). However, already at 1700 K the model overestimates the viscosity by one order of 

magnitude, and the difference is strongly growing with decreasing temperature. Furthermore, 

as noted above, the variation of viscosity with water content is uncertain because only few 

experimental data are available. The predictions have to be verified by additional experiments 

with water-bearing melts in the low temperature range. Finally, it has to be emphasized that 

the model is not applicable at temperatures below the glass transition. 

 

The viscosity model of Vetere et al. (2006) determined for a Fe-free andesite is compared 

with the predictions of Eqn. (4) to check the applicability of viscosity models elaborated for 

Fe-free melts. Fig. 7 shows the effect of water on viscosity of Fe-free and Fe-bearing 

andesitic melts with Fe2+/Fetot of 0.7 at 1273 and 1473 K. This Fe2+/Fetot ratio is 

representative for a fO2 corresponding approximately to the QFM buffer at high temperature, 

which is relevant for geological conditions in magma chambers. Significant differences (up to 

approximately 1 order of magnitude) between the two models are observed at low water 

contents. The differences become less pronounced at water contents higher than 4 wt% H2O. 

Differences become larger at low temperature but melts with an andesitic composition 

partially crystallize at 1273 K and water contents below 4 wt% (e.g., Botcharnikov et al., this 

issue).  

4.3. Pressure effect on viscosity of andesitic melts.  

Scarfe et al. (1987) found in the low viscosity range that in some silicate melts with 

NBO/T>1, like CaMgSi2O6, viscosity increases with pressure, whereas most silicate and 

aluminosilicate melts with NBO/T<1 NaAlSi3O8, NaAlSi2O6, K2O-MgO-5 SiO2, andesite, 
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tholeiitic basalt, are characterized by a negative pressure effect (decrease in viscosity with 

increasing pressure). An “anomalous” negative pressure effect on viscosity was found also in 

the high viscosity range for polymerized melts such as albite melts or tonalite melts (Schulze 

et al., 1999; Behrens and Schulze, 2003). In the system albite-diopside a crossover between 

positive and negative pressure dependence of viscosity was found between an NBO/T of 0.1 

to 0.3 (composition close to Ab74Di26), depending on temperature (Behrens and Schulze 

2003). From these studies a minor effect of pressure on melt viscosity is expected for 

andesitic melts. Results from Liebske et al. (2003) confirm this suggestion in the high 

viscosity range (108-1011.5 Pa s) for Fe-free andesitic analogue composition with water 

contents from 0 to 2 wt%. In the pressure range from 0.1 to 300 MPa the variation of 

viscosity was found to be less than 0.3 orders of magnitude. In the low viscosity range, 

Vetere et al (2006) found no significant dependence of viscosity on pressure in the range 0.1 

to 500 MPa for a melt with similar composition. Thus, in Fe-free andesites, the effect of 

pressure is minor and can be neglected for geologically relevant conditions.  

 

Results of falling sphere experiments with Fe-bearing andesite melts in the pressure range 

from 200 to 2000 MPa suggest that pressure is of minor influence for andesitic melts at 

geological relevant conditions. The overall consistency of the data and the agreement 

between modelled and experimental data (Fig. 5) support this conclusion, although we do not 

have experimental pairs in which only pressure is changing (identical water content, Fe2+/Fetot 

and temperature). 
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5. Implication for mixing-mingling processes at Unzen volcano 

It has been emphasized in previous studies (e.g., Nakada and Motomura, 1999; Venezky and 

Rutherford, 1999; Holtz et al., 2005) that the Unzen dacite of the 1991-1995 eruption was 

probably generated from a mixing process between a phenocryst-rich low-temperature 

(rhyolitic) and a nearly aphyric high-temperaure magma (basalt-andesitic). This is based on 

petrographic observations with plagioclase and hornblende phenocrysts showing 

compositional zoning and reverse zoning at the rims (Nakamura, 1995; Nakada and 

Motomura, 1999) and on experimental phase equilibria investigations (Venezky and 

Rutherford, 1999; Holtz et al., 2005; Sato et al., 2005; Botcharnikov et al., 2006). It has been 

proposed that mixing of an almost aphyric high temperature andesitic magma with a 

phenocryst-rich low temperature rhyolitic magma has initiated the 1991 eruption of the 

Unzen volcano (Nakada and Motomura, 1999 Venezky and Rutherford, 1999). The andesitic 

composition of the high temperature end-member has been recently questioned by Browne et 

al. (2006), suggesting that it may have been basaltic on the basis of the analysis of mafic 

enclaves from the historical Unzen volcanic sequence. However, since no mafic enclave with 

a basaltic composition has been found in the products of the 1991-1995 eruption, the 

following discussion is based on previous models, assuming an andesitic end-member. In this 

hypothesis, the temperature of the injected andesitic magma is estimated to be near 1323 K 

with a water content of 4 wt% (Holtz et al., 2005; Sato et al., 2005). The temperature of the 

partially crystallized magma in the chamber before mixing is estimated to be 1033 – 1053 K 

and the water content of the residual rhyolitic melt is inferred to be about 8 wt% (Holtz et al., 

2005). 
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Among the parameters governing the efficiency of mixing processes, viscosity is a crucial 

factor. Using viscosity models elaborated for hydrous rhyolitic melts (Hess and Dingwell, 

1996) and for Fe-bearing andesitic melt (this study) the melt viscosities prior to eruption, the 

evolution of viscosities of mixed silicate melts and the efficiency of magma mixing at local 

scale can be estimated. Figure 8a shows the viscosity of the two end-member melts as a 

function of water content. Assuming a water content of 4 and 8 wt% H2O for the andesitic 

and the rhyolitic melt, respectively, the melt viscosity is 50 Pa·s and 1.3·104 Pa·s, 

respectively, prior to eruption. Thus, directly after injection, the viscosity of the hot andesitic 

melt is about two orders of magnitude lower than that of the cold rhyolitic melt (Fig. 8a) and 

mingling processes, rather than mixing, between the two magmas should occur. 

 

The average temperature of the magma after mixing is estimated to be 1173 to 1203 K 

(Venezky and Rutherford, 1999; Holtz et al., 2005). Assuming that equilibrium temperature 

is reached within a short period (mingling enhances equilibrium temperature distribution), the 

viscosity of the two end-member melts will change. Since thermal equilibrium is attained 

faster than chemical equilibrium in mingling/mixing processes, an important parameter 

governing efficient mixing (chemical homogeneity) at a local scale is the viscosity of melts 

which are reacting. Assuming a temperature of 1203 K (T after mingling/mixing), the 

andesitic melt with 4 wt% H2O and Fe2+/Fetot ratio of 0.65, would have a similar viscosity as 

the rhyolitic melt with 8 wt% (Fig. 8b). Assuming equilibrium conditions, the andesitic melt 

containing 4 wt% H2O should crystallize at 1203 K and mixing processes will involve 

residual melts from a partially crystallized andesitic system and rhyolitic melts. However, at 

1203 K, the viscosity of mixed melts (with a composition corresponding to the rhyodacitic 

groundmass) with water contents in between the two end-members (4 to 8 wt% H2O) is not 

expected to differ strongly from that of the two end-members (increasing silica content is 
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compensated by the increasing water content). In conclusion, the nearly identical viscosity of 

the end members (independently on mixing ratios) and the low viscosity of the melts (103 

Pa·s) favour chemical mixing processes. This is probably an important factor explaining the 

chemically homogeneous composition of the groundmass of Unzen dacite erupted over a 

period of 4 years. 
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Figure caption 

 

Fig. 1. Comparison of the Fe2+/Fetot ratio in glasses before and after experiments.  

 

Fig. 2. X-ray images showing platinum and palladium spheres in an andesitic glass (left). 

Distance is measured relative to the platinum powder. A glass slide with copper wires 

in defined distance is used to calibrate the positions on the image (right). 

 

Fig. 3. Creep experiment on sample MDIB 7 containing 3.30 wt% H2O. Note that the 

viscosity started to increase with time at constant temperature from the third 

temperature step. 

 

Fig. 4. Electron microprobe analyses showing a profile through the diameter of the sample. 

Note the depletion in Fe near the capsule wall. 

 

Fig. 5. Comparison of experimental viscosity data for iron-bearing andesitic melts with 

predictions of the new model (Eqn. 4). IHPV, PPV and PCA in the legend refer to 

internally heated pressure vessel, parallel plate viscometer and piston cylinder 

apparatus respectively. Data from Liebske et al., (2003), LO3. 

 

Fig. 6. Effect of redox state of iron and water content on the viscosity of andesitic melts at 

1473 K. 

 

Fig. 7. Comparison between the predictions of the model for Fe-free melts from Vetere et al., 

(2006) and those from our new model for natural andesite at 1273 and 1473 K. 
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Significant differences (up to approximately 1 order of magnitude) between the two 

models are observed at low water contents. The differences become less pronounced 

at water contents higher than 4 wt% H2O. 

 

Fig. 8. Viscosity of rhyolitic and andesitic melts at conditions prior to eruption of the Unzen 

volcano. The figure on top (a) shows the initial viscosity of the melt in the magma 

chamber (rhyolite) and in the ascending melt (andesite). This situation favours 

mingling of the magmas. The figure on bottom (b) illustrates the situation after 

thermal equilibrium. Similarity of viscosity observed in this case favours magma 

mixing. 
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Table 1. Electron microprobe analysis and water content of the starting material and selected viscosity samples (wt%).  

 MDIB1 MDIB2 MDIB24 MDIB25 MDIB30 MDIBvis  Liebske et al. 

(2003) 

SiO2 55.11 (0.44) 54.18 (0.60) 57.60 (0.40) 59.56 (0.50) 56.86 (0.50) 59.32 (0.71) 56.65 (0.41) 

TiO2 1.09 (0.05) 1.09 (0.07) 0.92 (0.05) 0.93 (0.05) 1.04 (0.04) 1.02 (0.05) 1.01 (0.04) 

Al2O3 18.39 (0.36) 18.41 (0.19) 14.98 (0.21) 15.45 (0.25) 16.90 (0.17) 16.76 (0.31) 17.41 (0.15) 

FeO  a) 9.16 (0.32) 9.52 (0.33) 7.56 (0.39) 7.14 (0.35) 7.55 (0.38) 7.66 (0.43) 8.16 (0.21) 

MnO 0.08 (0.06) 0.09 (0.06) 0.00 (0.08) 0.06 (0.04) 0.04 (0.04) 0.04 (0.06) 0.13 (0.04) 

MgO 2.88(0.17) 2.93 (0.09) 2.77 (0.10) 2.79 (0.11) 3.14 (0.12) 3.05 (0.14) 4.30 (0.07) 

CaO 8.44 (0.25) 8.69 (0.32) 6.37 (0.20) 6.46 (0.24) 7.13 (0.18) 7.16 (0.27) 7.38 (0.11) 

Na2O 3.38 (0.25) 3.41 (0.29) 3.06 (0.21) 3.26 (0.22) 3.31 (0.13) 3.38 (0.08) 3.23 (0.15) 

K2O 1.41 (0.08) 1.42 (0.08) 1.57 (0.08) 1.61 (0.07) 1.56 (0.06) 1.62 (0.08) 1.56 (0.07) 

Fe2+/Fetot 0.41 0.44 b) b) b)  - 

H2O (IR) 

H2O (KFT) 

0.015 0.016  

4.80 

 

3.32 

2.88 

2.95-2.91 
see Table 2 

0.015 

Total 99.98 100.02 99.63 100.56 100.43 100 99.85 

Notes. Numbers in parenthesis correspond to 1 σ standard deviation. Analyses of andesites studied by Liebske et al. (2003) are 
shown for comparison. MDIB24 MDIB25 MDIB30 are average compositions of three samples after viscosity runs. MDIBvis 
represents the average of post-experimental analyses of six viscosity samples (MDIB4, MDIB 12, MDIB 24, MDIB 25, MDIB 30, 
MDIB 31, MDIB 32) normalized to a total of 100 wt%. H2O contents were measured by IR spectroscopy using the peak height of 
the absorption band at 3550 cm-1 and the calibration of Mandeville et al. (2002) and/or by Karl-Fischer titration. 
 a) Total iron is given as FeO; b) Fe2+/Fetot before and after experiments is given in Table 2.
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Table 2. Experimental conditions and results of viscosity experiments using the falling sphere method.  
 

No. 
 
 

H2O 
initial 
(wt%) 

H2O 
final 

(wt%) 

P 
(MPa) 

T 
 

(K) 

Sphere radius 
 

(µm) 

Cf Dwell 
time 
(s) 

Effective 
time 
(s) 

Falling 
distance 

(cm) 

η  
 

(Pa·s) 

Fe2+/Fetot 

before 

experiments 

Fe2+/Fetot 

after experiments 

             
61.5 ± 1 (Pd) 0.98 0.517 4.9 ± 0.7 0.58  MDIB32a 1473 
54± 1 (Pd)  

300 346 
0.219 9.3 ± 1.1   

MDIB32b 1423 61.5 ± 1 (Pd)  900 943 0.818 9.0 ± 0.9   
  54± 1 (Pd)    0.432 12.8 ± 1.2   
MDIB32c 1373 61.5 ± 1 (Pd)  900 940 0.649 11.1 ± 1.0   

  54± 1 (Pd)    0.316 18.1 ± 1.7   
MDIB32d 

6.10t  
6.31b 

 

 
 

6.20t 

500 
 
 

1323 54± 1 (Pd) 0.98 2700 2735 0.603 53.4 ± 5.0  0.61 
MDIB24 5.17t/4.78b 4.80c 1000* 1473 48± 1 (Pd) 0.98 900 923 0.303 14.5 ± 1.4 0.66 0.70 

56 ± 1 (Pd) 0.291 8.9 ± 1.0 0.73  MDIB 4 3.67t/3.64b  1523 
50 ± 1 (Pt) 

0.98 360 409 
0.403 10.2 ± 1.1  0.69 

62 ± 1 (Pd) 0.98 0.292 17.2 ± 1.7 0.73  MDIB31 3.50t/ 
3.44IR 3.30b 

1473 
55 ± 1 (Pd)  

600 646 
0.125 31.6 ± 3.1  0.70 

52 ± 1 (Pt) 0.98 0.135 34.9 ± 3.7 -  MDIB 10a 1473 
62.5 ± 1 (Pd) 0.98 

393 439 
0.097 32.3 ± 3.4   

MDIB 10b 

3.46b 

3.38t 

500 
 

500 
 

500 
 

500 1523 52 ± 1 (Pt) 0.90 420 469 0.309 15.2 ± 1.6  0.70 
72.5 ± 2.5 (Pt) 0.95 0.436 16.2 ± 1.8 0.68  MDIB25 3.36t/3.30b 3.32c 1000* 1523 
57.5 ± 1 (Pt) 0.98 

300 325 
0.278 16.7 ± 1.9  0.68 

MDIB30a 82.5 ± 2.5 (Pt) 0.98 0.619 28.6 ± 2.7 0.65  
 

1473 
52 ± 1 (Pt) 0.98 

600 646 
0.245 28.7 ± 2.9   

MDIB30b 82.5 ± 2.5 (Pt) 0.98 0.510 56.5 ± 5.2   
 

1423 
52 ± 1 (Pt) 0.98 

1020 1063 
0.201 55.3± 5.3   

MDIB30c 1523 52 ± 1 (Pt) 0.98 300 349 0.105 36.3 ± 4.1   
82.5 ± 2.5 (Pt) 0.98 0.867 96.3 ± 8.5   MDIB30d 

2.91b 
2.88t-IR  

 
 
 

2.95t-IR 1373 
52 ± 1 (Pt) 0.98 

3000 3040 
0.397 83.5 ± 7.8  0.66 

MDIB 29 60 ± 2.5 (Pt) 0.98 0.379 24.7 ± 2.4 0.75  
 

2.47t 

2.52b 2.47t 

500 
 
 
 
 
 
 

500 1473 
47± 1 (Pt) 0.98 

600 646 
0.263 21.9 ± 2.2  0.76 

MDIB 12a  0.06t-IR 500 1523 200 ± 5 (Pt) 0.93 2700 2749 1.231 349.5 ± 34.1   
MDIB 12b  0.08b-IR 2000* 1473 200 ± 5 (Pt) 0.93 2700 2746 0.525 801.7 ± 80.1  0.61 
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R13 - 0.02IR 300 1573 90 ± 2.5Pt 0.96 1200 1251 0.596 67.2 ± 7.4 0.91 0.83 
J1 - 0.07 IR 300 1523 440 ± 5 Pt 0.85 600 646 0.341 1283.8 ± 15.7 - 0.60 
R6 5.23t 5.11t 200 $ 1323 65 ± 2 Pt 0.98 900 921 0.742 21.1 ± 2.2 0.64 0.62 
R7 5.15t 5.22c 200 $ 1323 95 ± 2.5 Pt 0.96 300 321 0.365 31.3 ± 3.7 0.69 0.65 
R9 4.83t 4.81b 4.82b 200 # 1323 92.5 ± 2.5 Pt 0.96 420 441 1.0123 14.7 ± 1.6 0.80 0.77 

R10 4.84t 4.80b 4.83t 200 # 1323 60 ± 1 Pd 0.98 1200 1221 0.335 26.5 ± 2.7 0.81 0.77 
 
Experiments using same sample are presented in the order in which they were performed. Sphere radii were determined before 
incorporation in the glass.  
CF refers to the Faxen correction.  
Supscripts t, b and c at water contents refer to measurements of slabs from the top, the bottom and the center of the cylinder, 
respectively. An additional subscript IR is used to distinguish infrared spectroscopy from KFT analyses. 
* Experiments performed in piston cylinder apparatus, all others were carried out in IHPVs. 
$ Hydrogen fugacity of 6.4 bar during synthesis and in the experiment. 
# Hydrogen fugacity of 20 bar during synthesis and in the experiment.  
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Table 3. Results of parallel plate viscometry at 300 MPa 
 

Sample Temperature 
(K) 

log η exp.(Paּs) Fe2+/Fetot H2O (wt%) 

     
MDIB7 747 10.33 0.70 3.3 

 757 10.07   
 747 10.36   
 768 9.77   
 747 10.47   

 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4. Total iron contents in run products using AuPd capsules. 
 

Sample Temperature (K) Microprobe 
FeOtot (wt%) 

Colorimetry 
FeOtot (wt %) 

MDIB 25 1523 7.34 7.07 
MDIB 30   7.74 7.39 
MDIB 31 1473 7.71 7.39 
MDIB 32  7.66 7.73 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8a 
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