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Abstract 

We performed a series of X-ray tomographic experiments and lattice Boltzmann 

permeability simulations on pyroclastic products from explosive activity at Stromboli 

between December 2004 and May 2006. We reconstructed the 3-D textures of vesicles to 

investigate the relationship between the nature of vesiculation in the erupted products and 

the dynamics of gas transport in the shallow conduit in order to derive implications for 

the eruptive behaviour of basaltic volcanoes. Scoriae from normal Strombolian 

explosions display remarkably consistent vesicle volume distributions fit by power-laws 

with an exponent of 1 (±0.2). We ascribe the origin of such distributions to the combined 

effect of coalescence and continuous nucleation events in the steady-state, shallow 

magma system that supplies normal Strombolian activity. Volume distributions and 

textures of vesicles in pumice clasts from the 5 April 2003 and 15 March 2007 

paroxysmal activity are markedly different from those in the scoriae. Besides a power-

law function with a higher exponent, portions of these distributions can be also fit by an 

exponential function, suggesting the attempt of the system to reach near-equilibrium 

conditions. The investigated pumice clasts also lack the large, connecting vesicles 

responsible for the development of degassing pathways in the Stromboli magma that 

erupts the scoriae. This testifies to a decreased degassing efficiency of the magma 

associated with paroxysmal explosions and potential overpressure build-up at depth. By 

comparison with degassing experiments on basaltic melts, we derive a time constraint on 

the order of minutes to hours for the incubation of paroxysms at Stromboli.  
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Introduction 

Volatiles play a significant role in magmatic systems and provide the driving force for 

volcanic eruptions. Because exsolved volatiles are recorded in volcanic rocks as vesicles 

(gas filled cavities), investigations of the nature of vesiculation in eruptive products is a 

tool for reconstructing the mechanisms of volatile exsolution and degassing in volcanic 

conduits. These mechanisms are not directly observable at the surface and consequently 

not easy to understand unambiguously from geophysical signals and geochemical studies 

of the gases emitted from active volcanoes. Although volcanic ejecta are imperfect 

records of magma chamber processes because of possible syn- and post-eruptive 

modification, research in the past 15 years has demonstrated that textures preserved in 

products from both effusive and explosive activity provide information on a number of 

processes occurring in conduits and at the surface. In particular, vesicles proved useful in 

the investigation of: i) the dynamics of magma ascent and fragmentation in both silicic 

[Klug and Cashman, 1994, 1996; Klug et al., 2002; Polacci et al., 2001, 2003; Gurioli et 

al., 2005; Polacci et al., 2005; Adams et al., 2006; Piochi et al., 2008] and mafic Plinian 

eruptions [Sable et al., 2006]; ii) the development of magma permeability [Klug and 

Cashman, 1996; Rust and Cashman, 2004; Mueller et al., 2005]; iii) the deformation 

history of magmas [Polacci and Papale, 1997; Rust et al., 2003; Manga, 2005], and iv) 

rheological transitions [Polacci et al., 1999], as well as surface degassing in active 

[Cashman et al., 1994] and solidified [Gaonac’h et al., 1996a] lava flows. With the 

exception of the pioneering work by Mangan and Cashman [1996], only very recently 

have vesicle textures been used to shed light on mechanisms driving basaltic explosive 

eruptions of mild to moderate intensity.  
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Large vesicles in scoria clasts from low energy Strombolian explosions have been found 

to record permeable pathways for gas flow in basaltic systems [Polacci et al., 2007]. This 

type of vesicle has been used to highlight the role of gas percolation during passive 

degassing of persistently active volcanoes [Burton et al., 2007a]. Heterogeneous vesicle 

textures and size distributions are found to accompany variations in the style of activity at 

Etna [Polacci et al., 2006], Stromboli [Lautze and Houghton, 2007] and Villarrica (Chile) 

volcanoes [Gurioli et al., 2008]. Here we study the textures of vesicles in fresh ejecta 

from Stromboli with the goal of investigating their relationships to, and implications for, 

the eruptive behaviour of this volcano. We report a series of synchrotron-based, high-

resolution, X-ray tomographic experiments carried out on samples of scoria and pumice 

from normal and paroxysmal activity at Stromboli. These experiments allowed us to 

reconstruct digital volumes of the collected samples, visualize their 3-D inner structure, 

and determine the true vesicle size distribution, number density, and total vesicularity. In 

addition to this textural analysis, we performed lattice Boltzmann fluid flow simulations 

on selected tomographic volumes from our Stromboli sample suite. The simulations 

provide novel insights on the link between scoria and pumice structure and the dynamics 

of gas transport in basaltic magmas. This information, together with the textural dataset, 

significantly improves our understanding of the physics of degassing in basaltic systems. 

 

Volcanological background and sample description 

Stromboli volcano is known as the lighthouse of the Mediterranean Sea for its persistent 

activity that has been documented for the last 2000 years [Rosi et al., 2000]. The normal 

activity of the volcano consists of low to moderate energy, intermittent, Strombolian 

explosions from the summit craters located at 750 m asl (Fig.1), and of non-eruptive 
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degassing. The latter occurs as a continuous flow of passive, non-explosive gases 

supplied to the persistent volcano plume mainly by the open, summit vents, fractures and 

fumaroles present on the volcano flanks, and as a stream of more vigorous, discrete, non-

passive gas puffs [Harris and Ripepe, 2007] associated with infrasonic pulses [Ripepe et 

al., 1996]. Explosions at Stromboli result from the buoyant rise of deep-sourced gas slugs 

bursting at the magma free surface and occurring on average every 10-20 minutes 

[Burton et al., 2007b]. They eject a mixture of volcanic gases and particles ranging in 

size from ash to scoria (lapilli, bombs and blocks) to heights of 100-200 m above the 

craters. Video camera systems (see weekly reports on Stromboli activity at the Istituto 

Nazionale di Geofisica e Vulcanologia, sezione di Catania (INGV-CT) website 

www.ct.ingv.it) and thermal imagery [Patrick et al., 2007] of Stromboli have allowed 

scientists to refine previous classifications of its eruptive style [Ripepe et al., 1993; 

Chouet et al., 1999; Ripepe and Marchetti, 2002; Chouet et al., 2003; Marchetti and 

Ripepe, 2005]. Explosions are subdivided into two main groups. The first group 

comprises events dominated by ejection of coarse ballistic particles. The second group is 

defined by explosions consisting of thick, ash-rich plumes; these latter events may exhibit 

gas thrust velocities and may be accompanied by the emission of coarser ejecta [Patrick 

et al., 2007]. Both styles of eruptive behaviour are common at different craters [Patrick et 

al., 2007], with events of the first group mostly associated with the North-East (NE) 

crater, and those of the second with the South-West (SW) crater [Marchetti and Ripepe, 

2005]. 

Stromboli is also characterized by the less frequent occurrence of lava effusions and 

paroxysmal explosions [Barberi et al., 1993]. Effusive activity at Stromboli consists of 

lava overflows from the summits craters or of lava flows erupted from vents located a 
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few hundred metres below the craters and emplaced in the Sciara del Fuoco, a horseshoe-

shaped depression occupying the NW side of the volcano. Twenty-six lava effusions have 

been documented between 1888 and 2002, approximately one every 4 years [Barberi et 

al., 1993; Landi et al., 2006]. The most recent effusive episodes occurred during the 7-

month-long flank activity of 2002-2003 [Calvari et al., 2005; Landi et al., 2006; Lodato 

et al., 2007] and, recently, from 27 February to 2 April 2007 (see daily reports of the 

eruption activity at www.ct.ingv.it). 

Paroxysms are of much higher explosivity in comparison to normal Strombolian events, 

posing a serious hazard for island residents and tourists [Barberi et al., 1993; Bertagnini 

et al., 1999]. They range from small-scale events [Métrich et al., 2005], occurring at a 

rate of 1 to 3 per year in the last 10 years, during which showers of ash, lapilli and bombs 

blanketed the upper slopes of the volcano, to less frequent, large-scale paroxysms like the 

one of 1930 [Imbò, 1928; Rittmann, 1931]. During this event metre-sized bombs and 

blocks fell up to a few km away from the summit, affecting the two villages at the base of 

the volcano, Stromboli and Ginostra, and producing an almost continuous spatter deposit 

out to distal volcano areas [Speranza et al., 2004]. The last paroxysms of 5 April 2003 

and 15 March 2007 [Calvari et al., 2006; Rosi et al., 2006] had intensities between the 

paroxysmal end-members described above, and represent the most powerful explosive 

events that occurred at Stromboli in recent years. 

Scoriae erupted during normal, explosive Strombolian activity, including those 

investigated in this study [Corsaro and Miraglia, 2006, 2007], and lava flows derive 

from a crystal-rich (40-50 vol%), volatile-poor, shoshonitic basalt magma that occupies 

the shallow (less than ~ 1 km below the craters) conduit [Francalanci et al., 1999; 

Métrich et al., 2001; Francalanci et al., 2004; Landi et al., 2004, Corsaro et al., 2005; 
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Landi et al., 2006]. This degassed magma is thought to develop from decompression-

induced, water-loss-driven, low-pressure crystallization of volatile-rich magma blobs 

rising from a deep plumbing system [Métrich et al., 2001]. The deep magma is a crystal-

poor, volatile-rich, high-potassium, calc-alkaline basalt only erupted during paroxysmal 

explosions. It generates the highly vesicular, crystal-poor pumice products characteristic 

of such activity at Stromboli [Bonaccorso et al., 1996; Bertagnini et al., 2003; Métrich et 

al., 2005]. 

In this study we focus on the explosive activity that characterized the volcano from 

December 2004 to May 2006. During this period all three summit craters, NE, SW and 

Central (C), were active and occupied by one or more vents (Fig. 1) producing 

Strombolian explosions of varying intensity and style of activity. Samples of scoria were 

collected in the proximity of the source vent between minutes to a few hours after 

ejection during the activity of the 21 December 2004, 9 January 2005, 10 February 2005, 

3 March 2005, 22 May 2005, 17 September 2005, 12 January 2006, 15 February 2006, 14 

April 2006, 15 April 2006, 22 May 2006, 24 May 2006 and 25 May 2006. Our sample 

suite mostly comprises scoria of lapilli size, the only exception being the scoria bombs 

collected on 22 May 2005, and 14 and 15 April 2006. We mainly focus on lapilli because 

these samples do not exhibit textural features denoting post-eruptive degassing processes 

or cooling, such as bread-crusted surfaces, vesicularity gradients or groundmass 

crystallites, and therefore they are assumed to preserve evidence of the vesiculation state 

of the magma in the upper part of the conduit at the time they were erupted [Mangan and 

Cashman, 1996]. The deep-sourced, metre-sized bubbles that produce the explosive 

activity (i.e. the Strombolian bursts at the magma free surface) are never preserved in the 

erupted products, the only information about their nature coming from geochemical 
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[Burton et al., 2007b] and geophysical [Ripepe et al., 2007] determinations. However, the 

textures of lapilli-size scoria clasts provide valuable information on conditions of gas 

exsolution, transport and loss in the shallow conduit system feeding normal Strombolian 

activity. As we will demonstrate, significant textural differences exist between the lapilli 

produced during normal explosive activity and those produced during the paroxysmal 

activity of 5 April 2003 and 15 March 2007. 

 

Summary of the explosive activity in 2005-2006 

During the time span of our investigation, December 2004 to May 2006, Stromboli was 

marked by periods with significantly different eruptive behaviour (Fig. 2). In the 

following, we provide a brief synopsis of the eruptive activity that characterized our first 

(21 December 2004 - 17 September 2005) and second (12 January 2006 - 25 May 2006) 

sampling programs (Fig. 2). From December 2004 to the end of February 2005 the level 

of activity was high, as measured by the frequency per hour of the explosions and their 

height (check weekly reports at the INGV-CT website www.ct.ingv.it). One spectacular 

eruption in this sequence was on 9 January 2005, a high energy explosion with 

characteristics intermediate between normal and paroxysmal explosive activity 

[Andronico et al., 2008]. From the end of February to the beginning of May the activity 

was low, but peaked again around 22 May. The activity decreased until early July 2005, 

followed by an increase up to early August when there was another high energy 

explosion on 6 August (for which we do not have samples). Stromboli returned to less 

explosive behaviour until the second half of September when the level of activity 

increased again until early October and our sampling program for year 2005 ended. 

During our second sampling program in 2006 the level of activity at Stromboli was 
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higher in comparison to our first period of sample collection (Fig. 2). An activity peak 

can be identified in January 2006, followed by a gradual decrease in activity between 

mid-January and mid-February and then an increase until the end of March. After a 

second peak in early April, the activity progressively decreased and remained low until 

the end of May 2006, when the second sample collection campaign terminated. 

 

Methods 

Analytical techniques and data reduction 

Thirty-one (31) scoria clasts (from one to seven scoria clasts per sample suite erupted 

during the same day or explosion) and 6 pumice clasts (one from the 5 April 2003 

paroxysmal explosion and 5 from the 15 March 2007 paroxysmal explosion) were 

selected on the basis of binocular microscope observation of their morphological features 

and vesicle content, and prepared for textural characterization via X-ray 

microtomography (μCT). Regretfully, the analysis of 1000's of samples (or thousands of 

cm3 of samples) per day or explosion necessary for a statistically valid textural analysis is 

impossible by any current analytical technique. However, the samples chosen for 

tomography are to the best of our abilities representative of the complete sample suite 

collected for each day or explosion. Tomographic experiments were run at the SYRMEP 

beamline of the ELETTRA synchrotron radiation facility in Basovizza (Trieste, Italy), a 

third generation synchrotron source where it is possible to take advantage of the use of 

Phase-Contrast (PHC) imaging. While contrast in conventional X-ray imaging is 

generated only by the absorption properties of the sample, in PHC imaging contrast also 

arises from interference between parts of the wave front that have experienced different 

phase shifts (Fresnel diffraction). This technique allows us to visualize sample features 
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through the phase modifications that such features induce in the monochromatic 

transmitted X-ray beam [Snigirev et al., 1995]. The important parameter in this approach 

is the sample-to-detector distance d. At d~0 the recorded image is a conventional 

absorption radiograph. PHC μCT is simply obtained by locating the detector at a distance 

d> 0 (which typically varies from a few tens of centimetres to 1 metre) from the sample 

[Cloetens et al., 1996]. The choice of d depends on the size a of the feature to be 

identified, measured perpendicularly to the beam direction, and on the X-ray wavelength 

(λ). In the edge detection regime (d << a2/λ), images can be used qualitatively to extract 

morphological information from the sample.  

A sketch of the experimental setup of the SYRMEP beamline is presented in Fig. 3a. 

During data acquisition, samples were mounted on a precision stage at a sample-to-

detector distance of 20 cm, and rotated 180 degrees around an axis perpendicular to the 

monochromatic X-ray beam. The configuration used for each tomographic scan was a 

ring energy of 2.4 GeV, a beam energy between 27 and 33 keV, and a CCD field of view 

of 28.7 x 28.7 mm2 or 18.0 x 12.0 mm2, producing voxels (the 3-D equivalent of pixels) 

with edge lengths in each direction of 14  or 9 µm, respectively.  This voxel size 

represents the minimum size vesicle we can detect. Projection images were recorded at 

1/5 degree rotation steps by a detector system consisting of a 16 bit water-cooled CCD 

camera coupled to a Gadolinium oxysulphide scintillator by a straight fibre-optic coupler, 

and stored in a computer. The resulting 900 projections were reconstructed into 

tomographs via the backprojection algorithm with the creation of between 190 and 400 2-

D image slices. The slices were stacked in the ImageJ software [Abramoff et al., 2004] to 

produce digital volumes of the investigated scoriae in 3-D. These volumes were used for 

3-D visualization of the internal structures of the scoria samples and for qualitative 
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characterization of scoria textures. In contrast to the acquisition of the tomographic 

images, which required a short time (<1 h), quantifying vesicle textures was time-

consuming. Because on average it took from one to several days to process the vesicle 

population in each scoria clast, our quantitative characterization of vesicles focussed on 

scoriae erupted from December 2004 to September 2005, but also comprised two clasts 

from the normal explosive activity of 2006 (see Table 1).  

In addition to the samples analyzed by the synchrotron source, pumice clasts from the 15 

March 2007 paroxysmal event were processed at the Tomolab facility of ELETTRA 

(www.elettra.trieste.it/Labs/TOMOLAB). The Tomolab station is a cone-beam μCT 

system equipped with a sealed, micro-focus X-ray tube operating in an energy range from 

40 to 130 kV (Fig. 3b). The CCD is a high resolution digital camera optically bonded to a 

tapered fibre-optic with a Gadolinium oxysulphide scintillator layer and provides a 

combination of a large field of view (approx. 50 x 33 mm2) with voxels whose edge 

length is 12.5 µm. Exploiting the magnification effect offered by the cone-beam 

geometry [Feldkamp et al., 1984; Kak and Slaney, 1987], the source-object-detector 

distance can be varied to achieve a spatial resolution close to the focal spot size of the 

source (5 μm) while imaging samples from a few millimetres to a few centimetres in size. 

Because the focal spot size is small enough, a limited but clearly detectable phase-

contrast effect can be achieved [Wilkins, 1996], especially when low energies are used 

and object-to-detector distances are around 30 cm or larger. From the 12-bit tomographic 

projections acquired by the CCD camera during a 360° rotation of the sample, a set of at 

least 1024 2-D slices for each sample was reconstructed by the commercial Cobra 

Software Package Version 5, and imported into the ImageJ software to inspect the entire 

3-D volume. 
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Individual vesicles within both scoria and pumice clasts were counted with the Blob3-D 

software [Ketcham, 2005] after segmentation by grey-scale thresholding and separation 

following two erosion and dilation steps. Several cycles of erosion and dilation were 

repeated on each sample for a number of different samples in order to optimize the 

separation procedure for these vesicular products. Vesicle volumes were measured with 

the same software and used together with bulk (i.e. the total volume investigated) and 

melt volumes (following Proussevitch et al. [2007]) to determine vesicle volume 

fractions and to plot vesicle volume distributions. Vesicle number densities, as the total 

number of vesicles normalized to either the bulk or the melt volume in each sample were 

also calculated. Textural parameters and vesicle volume distributions of the scoria and 

pumice clasts are reported in Table 1 and Figures 5 and 6. 

 

Lattice Boltzmann simulations of fluid flow 

To compare the permeability of scoria and pumice clasts, the permeability of samples 

30305a1, 170905a, 170905c2, 240506b, Str50403 and Str150307 was investigated using 

lattice Boltzmann simulations of fluid flow [Succi, 2001; Sukop and Thorne, 2006]. The 

lattice Boltzmann technique treats the fluid as microscopic point particles that interact 

with each other and with the walls of the vesicles. This technique has been demonstrated 

to successfully reproduce macroscopic observations of fluid flow in porous media [Succi, 

2001]. Because of computer limitations our simulations were performed using cropped 

central portions from each of the thresholded tomographic digital volumes. Despite the 

fact that the volumes investigated were small, these simulations allowed us to calculate 

and compare, for the first time, permeability values for scoria and pumice clasts from 

normal and paroxysmal explosive activity at Stromboli. The cropped volumes were cubes 
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with edge lengths in each of the three dimensions, arbitrarily labeled x, y and z, of 

between 140 and 180 pixels (the voxel size being either 14 x 14 x14 μm3 or 9 x 9 x 9 

μm3, see previous section). The computations were performed with a code previously 

used by Hill et al. [e.g., 2001] for computing inertial flows in ordered and random arrays 

of impenetrable spheres. Accordingly, the software was modified to handle the complex 

vesicular geometry displayed in the X-ray tomographic images. Details of the lattice 

Boltzmann scheme implemented in this code are given by Ladd [1994 a, b]. In the 

referenced code the vesicles are fluid filled, and a uniform body force (equivalent to a 

uniform pressure gradient) is applied in a direction normal to one face of the domain. 

This force accelerates the fluid from rest until a steady state is reached in which the 

average pressure gradient balances the hydrodynamic drag. The time to reach steady state 

scales with the time it takes for momentum to traverse the largest vesicles in the domain. 

Our simulations reached a steady state, as indicated by the hydrodynamic force and 

momentum, in less than 30000 lattice Boltzmann time steps. From the average 

momentum flux and body force (average pressure gradient), we ascertained the Darcy 

permeability or, equivalently, the square of the Brinkman screening length [Brinkman, 

1947]. Simulations were repeated with the force perpendicular to each of the three 

mutually orthogonal faces of the domain. In agreement, the permeabilities reported are 

the average values for these three mutually orthogonal directions. The complete 

simulation required approximately 5 days of computer time for each tomographic 

volume. 

If the average pressure gradient is high enough, the lattice Boltzmann simulations permit 

the flow to enter a non-linear regime (after Forchheimer [1901]) in which the 

permeability, as measured by the ratio of the average flow rate and pressure gradient, 
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decreases with increasing microscale Reynolds number. Therefore, by varying the force 

over several orders of magnitude, we ensured that the permeabilities reported are indeed 

independent of the force and, therefore, are the Darcy permeabilities for creeping 

(inertialess) microscale flow. Accordingly, the flows from which we ascertained the 

reported permeabilities are steady and laminar, which is not the case at higher Reynolds 

numbers [e.g., Hill and Koch, 2002]. 

 

Results 

Observations and measurements of 3-D vesicle textures 

Tomographic images of lapilli-size scoria samples from the 2005 and 2006 normal 

explosive activity at Stromboli provide the unique ability to reconstruct and view the 

internal structure of these vesicular materials in 3-D. Fig. 4 provides examples of 

orthogonal views from two reconstructed scoria volumes. Observations of the 3-D 

volumes show that the vesicles range in volume from our minimum detection limit of 3 x 

103 µm3 to above 109 µm3 and that vesicle textures can vary from one portion of a sample 

to another. These 3-D volumes allowed us to measure the total vesicularity, which varies 

from 0.24 to 0.78 in our sample set, and the number density, which is between 0.50 x 102 

and 1.80 x 102 per mm3 of bulk volume or 0.96 x102 and 4.55 x 102 per mm3 of melt 

volume (Table 1). In addition, the 3-D volumes clearly demonstrate that the larger (>6 x 

107 µm3) vesicles were coalescing (i.e. forming a network of continuously connected 

vesicles) in the samples as they quenched and completely span the volume of the clast 

investigated (Fig. 4), as also discussed in Polacci et al. [2007]. This coalescence can only 

be unambiguously observed using the 3-D imagery from tomography, because many 

vesicles that appear unconnected in two-dimensional sections (e.g., a thin section) are 
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instead connected in the third dimension. The smallest vesicles are found in the septa and 

plateau regions between vesicles and in quenched glass between vesicles and crystals. 

After a given time these smallest vesicles would be expected either to coalesce with the 

larger ones around them or be incorporated into these latter by Ostwald ripening [Baker 

et al., 2006], but the scoria clasts were erupted before this could occur. Finally, we note 

that crystals exert a significant control on the shapes and orientations of the medium-to-

large vesicles (Fig. 4), but there is no clear evidence that vesicles nucleated on crystals or 

vice versa. Instead, it appears that growing vesicles pushed aside crystals. 

The volume distributions of vesicles in scoria clasts from the 2005 and 2006 normal 

explosive activity at Stromboli are all remarkably similar, spanning the same wide range 

of volumes between ~ 104 to >109 µm3 (Fig. 5). The vesicle size distribution of each 

scoria is clearly described by a power-law over the range of approximately 106 to 108 

µm3 with an exponent of 1 (±0.2), as shown in Fig. 5. Smaller vesicle volumes (<106 

µm3) can also be fit by power-laws, but with much lower exponents ranging from 0.3 to 

0.5 (Fig. 5). All but one of the vesicle size distributions in the samples are characterized 

by a large vesicle with a volume of about one up to two orders of magnitude larger than 

the high end of the power-law distributions. The one distribution that does not contain the 

large vesicle, 100205a1 (Table 1, and Fig. 5g), is another sub-volume from the same clast 

as 100205a2 (Fig. 5h), which instead contains this vesicle type. 

We concentrated our analysis on lapilli because they undergo limited or no post-eruptive 

processes. However, we processed one bomb sample (220505a, Table1) and found that it 

exhibits a power-law with a slightly lower exponent of 0.66 (Fig. 5p). The difference in 

the vesicle distribution of this clast, as compared to the lapilli samples, is seen in its 

depletion of vesicle volumes near 106 µm3. This difference is attributed to the longer time 
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bombs take to cool after eruption, resulting in modifications of the vesicle size 

distribution through loss of some smaller vesicles, possibly by diffusive growth into 

larger vesicles, which, if carried to completion, is expected to lower the power-law 

exponent to near zero [Gaonac'h et al., 1996a, b]. 

In contrast to the scoriae from normal Strombolian explosions, pumice samples from the 

paroxysmal explosions of 5 April 2003 and 15 March 2007 do not contain the large 

vesicle type described above (as highlighted in the 3-D reconstructions of Figs. 6a, c). 

These pumices display a population of small-to-medium sized spherical vesicles together 

with larger, ellipsoidal ones scattered throughout the sample. The vesicle volume 

distribution in each of these clasts is described by a poorly-fitted power-law with an 

exponent up to 1.40. In both pumice clasts the small-to-medium sized vesicles can also be 

fit with an exponential distribution (Figs. 6b, d). Measured vesicle number densities are 

2.70 x 102 and 3.76 x 102 per mm3 of bulk volume (or 6.43 x102 and 8.60 x102 per mm3 

of melt volume), and the vesicularity is 0.58 and 0.57 (Table 1).  

 

Permeability simulations 

The average of the permeabilities calculated from the lattice Boltzmann simulations in 

the three perpendicular directions of the scoria samples ranges from 2.0 x 10-10 to 7.3 x 

10-10 m2, whereas the pumice samples from the 5 April 2003 and 15 March 2007 

paroxysmal eruptions have permeabilities of 2.1 x 10-11 m2 and 8.6 x 10-11, respectively 

(Table 2). The permeabilities calculated for each of the three directions display some 

differences, demonstrating the anisotropic characteristics and distributions of the vesicles 

in these porous rocks.  In most cases the differences are small, and not large enough to be 

significant for this study, but one sample does display a 3 order of magnitude difference 
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(Table 2). The calculated permeabilities of the pumice samples are similar to those 

measured for pumice clasts of the 5 April 2003 paroxysm [Mueller et al., 2008], 

supporting the use of lattice Boltzmann permeability simulations.   In contrast to the 

pumice, the scoria samples are up to 2 orders of magnitude more permeable (Table 2). 

 

Discussion 

Implications of power-law distributions on normal Strombolian activity 

The origin of power-law distributions in basaltic eruptive products has been discussed in 

a number of previous papers. The power-law exponent of 0.3 to 0.5 seen for smaller 

vesicles in some of our samples is well explained by the diffusive-growth theory of 

Gaonac’h et al. [1996 a, b]. Two main processes have been proposed to account for the 

distributions of the larger vesicles, greater than ~ 105 μm, that display exponents near 1. 

One process is that of steady-state vesicle growth through coalescence [Gaonac’h et al., 

1996a, b] (i.e. the process by which a network of connecting vesicles is formed that may 

span the whole volume under investigation), and the other is continuous nucleation of 

new vesicles [Blower et al., 2001, 2002; Yamada et al., 2005]. Indeed, recent degassing 

experiments at 1 atm using Stromboli basalt melts demonstrate that both coalescence and 

multiple nucleation events occurred in samples displaying power-law size distributions 

[Bai et al., 2008]. There is no reason not to accept the presence of both mechanisms 

operating to produce the distributions observed in our natural samples.  

The experiments of Bai et al. [2008] demonstrate that once coalescence and vesicle 

nucleation stop, the vesicle size distributions evolve from power-laws to exponential 

distributions in the space of minutes. The experiments of Baker et al. [2006] on the 

vesicle size distribution formed during decompression at 1200 ºC of a slightly water-
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saturated albite melt demonstrated the same behaviour. Except, the timescale of evolution 

from a power-law to an exponential distribution was hours instead of minutes in the 

hydrous albite melt, which is orders of magnitude more viscous than the basaltic melt of 

Bai et al. [2008]. This evolution in the vesicle size distribution is associated with the 

transition of the system from far-from-equilibrium to near-equilibrium conditions, where 

the vesicles are all similar in size and approximately equidistant from each other, as seen 

in most foams of everyday life (e.g., beer, champagne, and soap). Because we do not see 

an exponential distribution in any of our Stromboli scoria samples from normal, 

Strombolian, explosive activity, we can infer that this transition never occurred and thus 

these scoriae were erupted at relatively far-from-equilibrium conditions. We ascribe the 

lack of such transition in our natural scoriae to the combination of coalescence and the 

occurrence of continuous vesiculation resulting in multiple nucleation events that affect 

the distribution of vesicles in the shallow conduit magma feeding the normal Strombolian 

activity (Fig. 5). We suggest that multiple nucleation events are recorded by the smallest 

vesicles located in the septa between larger vesicles and observed in scoria textures via 

our 3-D tomographic images (Fig. 4). We also think that a continuous vesicle nucleation 

process in the shallow Stromboli conduit is consistent with late-stage degassing of 

magma rich in halogens. This hypothesis is supported by the shallow-sourced, HCl-rich 

degassing signature of Stromboli [Burton et al., 2007a] and by the relatively low pressure 

exsolution of HCl and HF reported for basaltic magmas [Spilliaert et al., 2006].  

The timescale of the evolution process from power-law to exponential distributions 

observed in the experiments of Bai et al. [2008] in a crystal-free system is only minutes, 

but in a natural system it may take longer. The relaxation times for diffusive- and 

viscosity-controlled vesicle growth were derived by Navon et al. [1998] and allow us to 
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make the necessary comparison between nature and experiments. The relaxation time for 

viscosity-controlled growth is the magma viscosity divided by the pressure difference 

between the vesicle and its surroundings. The melt viscosity for the Bai et al. [2008] 

experiments was 10 to 100 Pa s, whereas the bulk viscosity  of the natural, crystal-rich, 

vesiculating Stromboli magma was estimated to be ~10 000 Pa s [Burton et al., 2007a 

and references therein]. Therefore, providing the pressure differences are similar, the 

viscous relaxation time for the natural magma is estimated to be from 100 to 1000 times 

longer than in the experiments because the growing vesicles must viscously deform the 

melt+crystal mixture of the magma (as seen Fig. 4). The calculated relaxation time for 

diffusive vesicle growth in the scoriae, i.e., the ratio of the squared vesicle radius to the 

volatile diffusion coefficient of the melt, is also between approximately 100 to 1000 

times longer than the experiments. Thus the ratio of the timescale in the natural system to 

that in the experiments of Bai et al. [2008] is at least 100, irrespective of whether growth 

is diffusive- or viscosity-controlled. Applying this factor to the observed timescales of the 

experiments indicates that the natural system may take as long as hours for the vesicle 

size distributions to evolve from power-law to exponential size distributions. Thus, the 

vesicles in the scoria samples from normal Strombolian activity displaying a power-law 

size distribution did not experience conditions that allowed them to relax to near-

equilibrium distributions for any longer than minutes to hours before eruption.  

 

Correlation of textural measurements with explosive activity 

The scoriae from normal Strombolian activity (discussed above) are remarkable for their 

consistency in vesicle size distributions, suggesting steady-state conditions for the 

shallow magma system that supplies the explosions. Although Stromboli is known for the 
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persistency of its activity during at least the past 2000 years, the intensity as well as the 

style of the normal explosions varies with time (see Fig. 2). To investigate if changes in 

the eruptive activity correlate with textures of the erupted scoriae we consider the 

continuous 9-month-long record of vesicle measurements that we have for samples 

collected between 21 December 2004 and 17 September 2005. 

Despite variations in activity during the time of our study, and with the exception of the 9 

January 2005 high energy explosion, we did not find any clear relationships between the 

intensity of normal Strombolian explosions and either the vesicularity or vesicle number 

density of the ejected material (Fig. 7). For example, periods of high-level activity in 

terms of explosion frequency and height are associated with either more-vesicular scoria 

(i.e. 17 September 2005) or less-vesicular scoria (i.e. 10 February 2005). Lautze and 

Houghton [2007] observed a similar diversity of explosive activity at Stromboli in 2002 

and explained it in terms of variations in the magma supply rate versus discharge rate, 

linking textures to the rheology of the more-or-less stagnant magma in the shallower part 

of the conduit. In our study we discovered that vesicularity and vesicle number density 

cannot be linked unambiguously to normal explosive activity at Stromboli, unless these 

parameters are interpreted in light of independent geochemical and geophysical 

measurements.  

However, we did find that the vesicle number density increases with the eruption 

intensity from normal explosive activity through small-scale paroxysms up to paroxysmal 

explosions (Table 1). The largest explosion during this period of investigation, 9 January 

2005, has the highest vesicle number density (Table 1). This correlation is consistent with 

observations made in products from the explosive activity of other persistently active 

basaltic volcanoes [Polacci et al., 2006].  
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Implications of vesicle size distributions on paroxysmal explosions at Stromboli 

The vesicle number densities of the pumice clasts from the 5 April 2003 and 15 March 

2007 paroxysms are the largest (Table 1). This is consistent with the correlation between 

explosivity and vesicle number density that we observed when products from normal and 

high energy explosions are compared. Despite the consistency of the vesicle number 

densities with this trend, the vesicle size distributions of the pumice samples are 

markedly different. 

The small-to-medium sized vesicles (Fig. 6) in both pumice samples from paroxysmal 

eruptions can be fit by an exponential function, implying vesiculation histories different 

from normal Stromboli scoria. We interpret these distributions to indicate the attempt of 

the system to reach near-equilibrium conditions that produce exponential distributions of 

vesicle volumes [Bai et al., 2008]. It appears, however, that this attempt did not go to 

completion, because we see remnants of power-law behaviour but with a steeper 

exponent (Fig. 6b, d). Based on the comparison between experimental and natural 

samples, we previously calculated that the transition from a power-law to an exponential 

distribution may take minutes to hours to reach completion in nature. Therefore this 

transition may provide a time constraint on the triggering of paroxysmal explosions. 

An additional difference between the pumice and scoria is that the pumice lacks the 

largest, coalescing, vesicle type connecting one side of the sample to the other (compare 

Figs. 4 and 6a, c). This large vesicle was found to play a fundamental role in promoting 

permeability development in the Stromboli shallow magmatic system and its degassing 

[Polacci et al., 2007]. The efficiency of degassing is supported by measurements of 

persistent, passive degassing during periods of normal Strombolian behaviour [Burton et 

21 



al., 2007a]. In comparison, the lack of the largest, connecting vesicle in the pumice clasts 

testifies to the fact that such a vesicle type is not present in the deeper magma feeding 

paroxysmal explosions prior to these events. This observation leads us to the assumption 

that degassing conditions are less efficient in the deeper feeding system associated with 

paroxysmal activity. Indeed, permeabilities from lattice Boltzmann simulations support 

this observation. The permeability of the scoria clasts is from one to ~ two orders of 

magnitude higher than that of the pumice from the 5 April 2003 explosion, and about 3 

times to one order of magnitude higher than that of the pumice from the 15 March 2007 

explosion (Table 2). These differences are evident from the two visualizations of the 

simulations where the effect of the large, connecting vesicles on flow is readily seen (Fig. 

8 and Electronic Supplementary Material).  

Based upon these observations and inferences we propose the following scenario for 

normal Strombolian activity and for the events that lead to paroxysmal explosions. Under 

normal conditions there is a continuous pathway for gas and magma ascent from the 

deeper to the shallower part of the system; continuous vesicle nucleation and coalescence 

produce the power-law distributions and large, spanning vesicles that we find in the 

scoriae from the normal, daily explosions at Stromboli. Prior to a paroxysm, the 

efficiency of degassing in the deeper feeding system drops because only a few or no 

spanning vesicles are present and overpressure builds up at depth. This situation lasts 

until the overpressure exceeds the tensile strength of the shallower magma and the 

paroxysm occurs. It is notable that the vesicle textures observed in pumice clasts are 

consistent with initial sub-equilibrium vesiculation but then very fast magma ascent, a 

mechanism that agrees well with either of the two alternative hypotheses previously 

proposed to explain the dynamics of paroxysmal explosions at Stromboli: the fast ascent 
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of either deep, volatile-rich, magma blobs [Bertagnini et al., 2003; Metrich et al., 2005; 

Polacci et al., 2006] or large gas pockets produced by intermittent bubble foam collapse 

[Allard, 2007]. 

Our analysis suggests that the incubation time for paroxysms is short, minutes to hours, 

implying that drastic changes in the Stromboli magmatic system occur rapidly. A further, 

independent piece of evidence for our proposed mechanism and its timescale is provided 

by decreases in the measured gas fluxes only hours before the paroxysm of 15 March 

2007 (M.R. Burton, personal communication, 2008). We have not yet identified the 

causal event that results in the significant drop in degassing efficiency that leads to 

paroxysms. However, because paroxysms occur frequently, with a recurrence interval of 

one year, it seems that the precipitating event can occur easily. 

 

Conclusions 

The 3-D study of vesicle textures, vesicle size distributions and permeability in scoria and 

pumice clasts respectively from normal and paroxysmal explosions at Stromboli provides 

novel insights into the dynamics of vesiculation and degassing in basaltic magmas. 

Results from the investigation of vesicles in scoria clasts from normal explosive activity 

revealed that the shallow conduit magma supplying the daily explosions at Stromboli is a 

system operating under remarkable steady-state conditions. In contrast, pumice products 

from paroxysmal explosions display a markedly different vesiculation history implying 

that gas transport in the associated magma is also different. We propose that the lack of 

percolation pathways and lower permeabilities in pumice clasts compared to scoria clasts 

document a less efficient degassing occurring in the deeper magma feeding system prior 

to paroxysmal explosions. Although the incubation time of paroxysms is unknown, 
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vesiculation patterns indicate that it may be on the order of minutes to hours, 

demonstrating the necessity of real-time monitoring to detect any precursory activity in 

basaltic explosive systems. This information, if combined with results from independent 

geophysical and geochemical investigations, is expected to shed light on the mechanisms 

that trigger the inception of paroxysmal eruptions as well as on the transition between 

eruptive styles at Stromboli and other basaltic volcanoes characterized by a variety of 

eruptive behaviour.  
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Figure Captions 

Fig. 1 View of summit vents of Stromboli in January 2006 (photo by L. Lodato). Crater 

area ~ 300 m. 

 

Fig. 2 Plot showing the average frequency of explosions per hour at Stromboli reported 

on a daily basis for the period from December 2004 to May 2006 (redrawn from plots in 

Stromboli weekly reports available at www.ct.ingv.it, by courtesy of A. Cristaldi). 

Yellow boxes mark periods with no data. Grey arrows indicate the dates of the normal 

explosive activity from which we collected the samples used in this study (double arrows 

refer to two consecutive days). 

 

Fig. 3 a) Sketch of the tomography set up at the SYRMEP beamline at Sincrotrone Elettra 

and b) external (left) and internal (right) setup of the Tomolab facility, also at Sincrotrone 

Elettra. 

 

Fig. 4 Examples of orthogonal views from two of the reconstructed 3-D scoria volumes 

from normal Strombolian activity. Cutting planes displaying inner vesicle textures 

indicated with abcd for both volumes. Z axis is 2.7 mm for both images. 

 

Fig. 5 Cumulative (open circles) and non-cumulative (bars) vesicle volume distributions 

of the investigated scoria clasts from normal Strombolian activity at Stromboli between 

December 2004 and May 2006. See text for further details. 
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Fig. 6 3-D volumes of pumice clasts from the a) 5 April 2003 and b) 15 March 2007 

paroxysmal explosions of Stromboli reconstructed via X-ray computed 

microtomography, and related vesicle volume distributions in b) and d), respectively. Z 

axis 3.5 mm in a) and 1.9 mm in c).  

 

Fig. 7 Vesicularity and vesicle number density of the investigated scoria clasts between 

21 December 2004 and 17 September 2005.  

 

Fig. 8 Relative velocity magnitudes of fluid flow in two slices of a) scoria sample 

170905a, and b) pumice clast Str50403, calculated by lattice Boltzmann simulations. The 

colour-bar scale in each image depicts the steady state velocity magnitude at each point in 

the domain multiplied by 1 x 1014 when the force applied in the x-direction is 10-6. The 

simulation in a) demonstrates high fluid flow velocity (hotter colours) through a large 

connecting vesicle on the left-hand side of the image; in b) fluid transport occurs at lower 

values (cooler colours) through smaller vesicles. The width is 2 mm for both slices.  

 

Electronic Supplementary Material 

Complete movies of relative velocity magnitudes in samples 170905a (movie a) and 

Str50403 (movie b) calculated by lattice Boltzmann simulations. Colour-bar scale as in 

Fig. 8 of the main text. Note that the single slice on the right-hand side of both movies is 

reversed right-to-left compared to the 3-D image on the left. 
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Table 1  
Vesicles in scoriae from December 2004-May 2006 normal explosive activity on Stromboli 
Sample aVolume (mm3) Vesicularity bVND per mm3 cVNDmelt per mm3 exponent 

211204a1 6.0 0.31 0.70x102 1.01x102 1.14 
211204a2 4.0 0.46 0.61x102 1.13x102 0.95 
211204a3 2.0 0.25 nd nd nd 
90105a1* 13.8 0.46 1.60x102 2.96x102 0.94 
90105a2* 21.6 0.55 1.80x102 4.00x102 1.11 
90105a3 92.5 0.57 nd nd nd 
90105b1* 13.9 0.78 1.00x102 4.55x102 1.17 
90105b2* 11.5 0.68 1.20x102 3.75x102 1.25 
100205a1* 8.8 0.32 0.76x102 1.12x102 0.77 
100205a2* 11.9 0.39 0.85x102 1.39x102 0.94 
100205b1* 10.0 0.29 0.98x102 1.38x102 0.99 
100205b2 5.8 0.32 nd nd nd 
30305a1* 47.7 0.50 0.60x102 1.20x102 1.13 
30305a2* 35.0 0.51 1.10x102 2.24x102 1.16 
30305b1 13.2 0.36 nd nd nd 
30305b2* 15.4 0.47 0.86x102 1.62x102 1.0 
220505a* 34.7 0.48 0.50x102 0.96x102 0.66 
170905a* 29.3 0.62 0.80x102 2.11x102 1.10 
170905c2* 26.1 0.56 0.50x102 1.14x102 1.13 
220506a 7.8 0.24 0.78x102 1.03x102 0.94 
220506d 5.4 0.63 nd nd nd 
240506b 9.9 0.49 0.90x102 1.96x102 0.97 
Str50403* 15.7 0.58 2.70x102 6.43x102 1.40 
Str150307 1.6 0.57 3.76x102 8.60x102 1.40 

aSample volume. 
bVesicle number density. 
cVesicle number density per melt volume. 
*Asterisks indicate samples whose vesicularity comes from Polacci et al. [2007]. 
In sample labels, different letters indicate different samples; different numbers next to the same letter 
indicate distinct sub-volumes of the same sample. Str50403 and Str150307 are pumice clasts from 
paroxysmal explosions. 
nd stays for not determined. 
 

Table 2 
Permeability calculations using lattice Boltzmann simulations of fluid flow 
Sample aL bX (m2) bY (m2) bZ (m2) cAverage (m2) 
30305a1 140 0.2x10-10 2.2x10-10 3.5x10-10 2.0x10-10 

170905a 140 4.4x10-10 8.9x10-10 8.6x10-10 7.3x10-10 

170905c2 180 3.6x10-10 6.5x10-10 3.7x10-10 4.6x10-10 

240506b 160 16.x10-10 0.017x10-10 3.5x10-10 6.5x10-10 

Str50403 142 2.7x10-11 1.3x10-11 2.2x10-11 2.1x10-11 

Str150307 160 8.7x10-11 9.1x10-11 8.2x10-11 8.6x10-11 

aEdge length in pixels of the cropped tomographic volumes. 
bPermeability values on the x, y, z directions. 
cPermeability values averaged on the 3 (x, y, z) directions. 
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