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Abstract 6 

A permanent automatic infrared (IR) station was installed at Solfatara crater, the most active 7 

zone of Campi Flegrei caldera. After a positive in situ calibration of the IR camera, we 8 

analyze 2175 thermal IR images of the same scene from 2004 to 2007. The scene includes a 9 

portion of the steam heated hot soils of Solfatara. The experiment was initiated to detect and 10 

quantify temperature changes of the shallow thermal structure of a quiescent volcano such as 11 

Solfatara over long periods. Ambient temperature results as the main parameter affecting IR 12 

temperatures while air humidity and rain control image quality. A geometric correction of the 13 

images was necessary to remove the effects of slow movement of the camera. After a suitable 14 

correction the images give a reliable and detailed picture of the temperature changes, over the 15 

period October 2004 – January 2007, which suggests origin of the changes were linked to  16 

anthropogenic activity, vegetation growth and to the increase of the flux of hydrothermal 17 

fluids in the area of the hottest fumaroles. Two positive temperature anomalies were 18 

registered after the occurrence of two seismic swarms which affected the hydrothermal 19 

system of Solfatara in October 2005 and October 2006. It is worth noting that these signs 20 

were detected in a system characterized by a low level of activity with respect to systems 21 

affected by real volcanic crisis where more spectacular results will be expected. Results of the 22 

experiment show that this kind of monitoring system can be a suitable tool for volcanic 23 

surveillance. 24 

25 



1. Introduction 25 

Quiescent volcanoes can release large amount of energy through the emission of hot 26 

fluids from diffuse degassing structures [Werner et al., 2000; Chiodini et al., 2001; 27 

Ingebritsen et al., 2001; Caliro et al., 2004; Chiodini et al., 2005; Hochstein and Bromley, 28 

2005; Werner et al., 2006]. The process causes both soil diffuse degassing of incondensable 29 

hydrothermal gases, mainly CO2, and the formation of hot soils because most of the original 30 

steam condenses at depth heating the ground. At Solfatara, located within the Campi Flegrei 31 

(CF) caldera, soil degassing of deeply derived CO2 is spatially associated with hot soils over 32 

an area of about 0.5 km2 (Fig. 1). The energy dissipated daily by the deeply heated soils 33 

represents the main flux of energy of the entire CF in the current period of quiescence. 34 

According to Chiodini et al. [2001] the thermal energy released from Solfatara by degassing 35 

(~ 100 MW) is  much higher not only than the conductive heat flux over the caldera (90 km2), 36 

but even than the average energy release associated to seismic activity and ground 37 

deformation in the last 30 years, a period during which two main uplift phases were recorded 38 

in 1969–1972 and in 1982–1984, respectively. In both cases, deformation was confined 39 

within a radius of 6 km, with maximum values of ~ 2 m at the caldera centre. There, the town 40 

of Pozzuoli was partially evacuated in 1984 due to the intense seismic activity [Barberi et al., 41 

1984]. Since 1985, a slow subsiding phase began and  has been interrupted four  times by 42 

minor uplifts in 1989, 1994, 2000, 2005-2006. 43 

The pivotal role of the hydrothermal system in the genesis of the CF bradyseismic 44 

events was highlighted by recent interpretations of geophysical and geochemical signals 45 

[Chiodini et al., 2003; Todesco et al., 2004; Todesco and Berrino, 2005; Battaglia et al., 2006; 46 

Troise et al., 2007]. Nevertheless no data are available on the variations which affected the 47 

main flux of energy from the hydrothermal system of CF during this period of crisis, i.e. the 48 

thermal energy released at Solfatara.  The monitoring of such energy fluxes may be a primary 49 

tool in the surveillance of volcanic activity at CF as well at other quiescent volcanoes of the 50 

world characterized by intense hydrothermal activity. With the aim of cover this gap in 2004 51 

started the TIIMNet project (Thermal Infrared Imagery Monitoring Network) founded by the 52 

Italian National Operating Program for the realization of Infrared (IR) automatic stations 53 

specific for the monitoring of the shallow thermal structure of the hydrothermal zones of 54 

volcanoes. With respect to the traditional thermocouple measurements, which can be done 55 

only in selected sites, a single IR image can cover a large part of a fumarolic field resulting 56 

particularly useful for monitoring purposes. The IR images can in fact potentially register 57 



temperature variations occurring in any sector of the monitored scene. In addition the IR 58 

devices, which do not require a direct contact with the monitored target, result of easier 59 

maintenance with respect to the thermocouples often damaged by the high temperature and 60 

corrosive volcanic environment. 61 

In recent years, IR based techniques have been largely used in applied volcanology. IR 62 

(0.9 - 13 µm) remote sensing of surface temperatures from space sensors has been applied to 63 

several volcanoes to monitor extent and magnitude of thermal activity associate with 64 

phenomena such as lava flows, active domes, fumaroles, hot springs, crater lakes or to detect 65 

and track eruption clouds [Oppenheimer and Yirgu, 2002; Dean et al., 2004; Harris et al., 66 

2004; Hellman and Ramsey, 2004; Watson et al., 2004; Bailey et al., 2006]. In recent years, 67 

following the hand-held thermal imaging cameras development, increasing use is being made 68 

of ground-based thermal IR measurements to map and investigate lava flow field structures 69 

(flow field inflation, lava tube formation, vent migration, lava vesicularity), to estimate active 70 

lava flow parameters (e.g. effusion rate), to analyze the evolution of active eruption plumes 71 

[Ramsey and Fink, 1999; Harris and Maciejewski, 2000; Pinkerton et al., 2002; Calvari and 72 

Pinkerton, 2004; Lautze et al., 2004; Calvari et al., 2005; Johnson et al., 2005; Harris et al., 73 

2005; Vaughan et al., 2005; Lodato et al., 2006].  74 

With respect to previous IR applications, most of which are focussed on the study of 75 

relatively quick processes associated to volcanic eruptions, our experiment has the aim to 76 

detect and quantify slow temperature changes of the shallow thermal structure of quiescent 77 

volcanoes over long periods. Any increase of fluid expelled by a volcano system will be 78 

accompanied by an increase in the temperature of the rocks hosting the fumarolic vents or in 79 

the size of the fumarolically heated areas [Oppenheimer et al., 1993; Kaneko and Wooster, 80 

1999]. Moreover, we think that also relatively slow variations in the amount of thermal 81 

energy flux can help to define the level of activity of the volcano and that possible major 82 

changes in surface temperature can mark the transition from a quiescent stage to an eruptive 83 

phase. For this reason our experiment was designed to monitor a significant portion of the 84 

Solfatara fumarolic field with a systematic periodic acquisition of IR images from a 85 

permanent station. 86 

We present herein a comprehensive time series of night-time IR images for the 2004-87 

2006, a period during which the station located at Solfatara acquired 2175 scenes. To our 88 

knowledge, this is the more comprehensive of such datasets available for a volcanic area. 89 



In the first part of the paper we described the experiment design including the technical 90 

aspects of the IR camera and of the remote control system, the main characteristics of the 91 

monitored scene during the period October 2004-January 2007, and finally the in situ 92 

calibration test. In the second part of the paper the entire IR dataset is analyzed with the dual 93 

purpose to evaluate the thermal features of the Solfatara crater in the observation period and 94 

to determine whether IR information can be useful in the long period monitoring of a 95 

volcanically active area.  96 

2. Experiment design 97 

2.1 The remote control of the IR camera and the acquired scene  98 

The IR camera used in the experiment is a NEC Thermo Tracer TS7302 that operates in 99 

the spectral range from 8 to 14 µm across a 29° (H) x 22° (V) field of view and a focusing 100 

range from 0.5 m to infinity with standard lens. It is a camera with uncooled focal plane array 101 

measuring systems (microbolometer technology 320x240 pixel) of recent availability for civil 102 

purposes. 103 

Such a system has found extensive usage in permanent configurations for process and 104 

quality control in production line and the monitoring of systems in motion or electrical 105 

devices; therefore, such monitoring applications imply that thermal cameras are laboratory 106 

instruments or just predisposed for indoor installations.  107 

Similar experiments of IR camera use have never been carried out for long period 108 

outdoor in extreme conditions as those affecting a volcanic area. For this reason, the first part 109 

of the experiment was devoted to integrate the station with protective housing and remote 110 

monitoring system (RMS) including data transmission devices. A picture of the Solfatara 111 

station is shown in Fig. 2a.  112 

 The camera was placed inside a protective housing, made of a special stainless steel in 113 

order to protect the camera in presence of corrosive elements. The shooting window is 114 

protected by a germanium glass that is transparent in the thermal wavelengths, and is 115 

equipped with a mechanical device covering the germanium glass. This cover has the dual 116 

function to allow the microbolometric sensor calibration and to preserve the integrity and the 117 

cleanness of the shooting window during the standby of the thermal camera. 118 

The RMS directly manages the phase of the image shots by running in succession the 119 

execution of the following actions: (1) turns the thermal camera on, (2) waits for the 120 



calibration of the microbolometric sensor, (3) opens the watertight cover, (4) sets the 121 

sensibility, the range levels and focus parameters, (5) waits for the image acquisition, (6) 122 

closes the watertight cover, (7) uploads the image data acquired by the thermal camera in 123 

numerical format through serial RS 232C interface, (8) turns the thermal camera off.  124 

The control unit is located at the surveillance centre of the Osservatorio Vesuviano - 125 

INGV in Naples . Its main feature is to manage the remote stations network (another similar 126 

station is operating at Vesuvio crater) through a communication system based on two 127 

different technological solutions: a master transmission system via GSM frequency network 128 

and an emergency system on radio frequency network. The control unit communicates with 129 

the RMS’s allowing to both configure times and shooting parameters for the image 130 

acquisition and run the automatic uploading of the remotely acquired thermal images. In 131 

addition, the control unit performs the storage of the transferred thermal images both in its 132 

proprietary graphic format for data visualization and, after real-time data conversion in form 133 

of digital ASCII matrix containing the temperature values for further processing. 134 

The scene that the station systematically acquires is shown in Figure 3a-b in the spectral 135 

range of the visible and IR. This scene includes part of the SE inner slope of the Solfatara 136 

crater where most radiant pixels correspond to the location of the major fumaroles (BG 137 

~160°C and BN ~150°C), which are sited at the intersection of two active, SW-NE and  NW-138 

SE, main faults of CF (Fig. 2b). This area is the most active sector of the crater. On the basis 139 

of previous investigations [Chiodini et al., 2001], it can be estimated that this area releases 140 

diffusively ~ 15% of the total CO2 and heat released by Solfatara crater (i.e. ~ 250 t d-1 and ~ 141 

13 MW respectively).  142 

The TIR[AC5] (Thermal IR) image framing covers a viewing distance that ranges from 143 

40 m up to a maximum of about 500 m (Fig. 2b), with the main fumarole field located at an 144 

average distance of about 300 m. The increasing viewing distance produces an increase in the 145 

pixel size (Table 1) and consequently a decrease in the image resolution.  146 

2.2 The October 2004 – January 2007 data set 147 

The installation of the Solfatara monitoring station ended in mid-September 2004 and, 148 

after about one month of tests performed on the whole system, the systematic thermal 149 

imaging acquisition began on 17th October 2004. IR images were collected during night-time 150 

with the rate of three images per night (typical time acquisition 00:00, 02:00, 04:00 UTC). 151 



The TIR imagery was generally of good quality, though it suffers from two minor 152 

problems related to the weather conditions: (1) the occasional presence of wide blurred areas 153 

due to the condensation of water vapor from the fumaroles plume and (2) the rare occurrence 154 

of heavy rain which caused the homogenization of the IR temperature. These images of very 155 

low quality were removed from the analyzed dataset which consist of 2175 TIR images from 156 

the 17th October 2004 up to 31st January 2007. 157 

In order to investigate the dependence of IR temperatures on environmental parameters 158 

we used data acquired by a meteorological station located in the same site of the IR station. 159 

The meteorological station acquired, at 10-second intervals, the barometric pressure, wind 160 

speed, air temperature, air relative humidity, and rainfall. Hourly mean data were transferred 161 

at the surveillance center of the Osservatorio Vesuviano - INGV in Naples by means of the 162 

GSM communication system. The meteorological station worked almost continuously 163 

throughout the monitoring period (October 2004 – January 2007) with a few interruptions 164 

rarely exceeding one week. The data measured from the meteorological station are 165 

summarized in Table 2.  166 

 167 

2.3 In situ calibration of the IR camera 168 

The IR camera was calibrated in situ for assessing the reliability of the IR temperatures 169 

in a large temperature interval  to evaluate the necessity to apply suitable corrections. The 170 

experiment consisted in the comparison between IR temperatures and temperatures measured 171 

with a K type thermocouple (hereafter named T_ther). The thermocouple was installed with 172 

an automatic data logger at an easily identified target (the wood wall of a cabin located in the 173 

central sector of the IR scene, Fig.3a-b) whose IR temperature was estimated as the average 174 

temperature of 4 pixels located in the center of the cabin wall (hereafter named T_target). The 175 

experiment started on the 1st of August 2006 and ended on the 3rd of January 2007 producing 176 

434 pairs of T_ther and T_target values ranging from 273 to 301 K. The temperatures 177 

registered by the two independent methods are compared in the chronogram of Fig 4 and in 178 

the scattered plots of Fig. 5. Even though the IR measurements (T_target) resulted 179 

systematically lower than T_ther, the results are very good: the two temperatures strictly 180 

follow the same temporal pattern  and show a very high correlation (R2  = 0.989).  181 

On the basis of these results we decided not to apply any instrumental correction to the 182 

raw data. This choice was made also because we did not consider another source of 183 

uncertainty which arises from viewing the surface at an oblique angle [Ball and Pinkerton, 184 



2006], an effect which is difficult to be evaluated for every pixel of the image. The 185 

availability of a long time series of the same scene, allowed us to analyze the collected 186 

thermal imagery in terms of relative temperature variations without applying any correction 187 

for the oblique angle view whose possible effects remained unchanged at each location during 188 

the monitoring period.  189 

 190 

3. Results 191 

3.1 Meteorological parameters affecting IR images 192 

 193 

Meteorological data and IR temperatures were combined in a single dataset, such that 194 

each IR image had corresponding values of the meteorological parameters. The objective was 195 

to statistically analyze the dependence of the IR temperatures with environmental parameters. 196 

The correlation coefficients between the mean temperature of the scene excluding the 197 

sky (SES, a matrix of 320 x 190 pixel) and the meteorological parameters are listed in Table 3. 198 

The data indicate that the air temperature is by far the most important parameter related to the 199 

SES temperature (r = 0.98). Pressure and wind speed have a moderate correlation, but 200 

significant at the 95% confidence level, with SES temperature (r=-0.17 and r=-0.19, 201 

respectively) whereas air relative humidity is not significantly correlated. A multi parametric 202 

regression analysis was then applied to quantify the relation between the SES mean 203 

temperature, used as dependent variable, and the meteorological parameters considered as 204 

independent variables. The stepwise model of regression showed that the air temperature 205 

alone explains about 96% of the SES mean temperature variance, while the addition of the 206 

other two significant variables  nly provides an extra 1%. 207 

Further applications of the regression analysis regarded the mean temperature of 40 208 

boxes (40*40 pixels) on which the IR scene was divided. The results show an high correlation 209 

of the IR temperature with air temperature in any portion of the image. In particular the air 210 

temperature explained an amount of the IR temperature variance of the 40 boxes from 92% to 211 

97%, with a mean value of about 95%. A strict dependence of the IR temperature on air 212 

temperature was observed also in the main fumarolic area (MFA, Fig. 3) where the air 213 

temperature explained 92% of MFA mean temperature variance.  214 

The high correlation with air temperature implies a strong seasonal control on the IR 215 

temperatures registered by the camera both for SES area as well for the MFA (Fig. 6a). In 216 



order to highlight temperature changes caused by variations in the endogenous source, this 217 

dominant effect from environmental parameters has to be removed from the data. Among 218 

different possibilities we chose T_target as reference to filter the IR data from ambient 219 

conditions because T_target was easily computable for each IR image, strictly depended on 220 

ambient temperature and refers exactly to the same meteorological conditions of each image, 221 

and finally it was not affected by variations of the endogenous source. The filtering operation 222 

consisted of subtracting from the IR temperature (T) of each pixel the T_target of the same 223 

image. The values obtained (T-T_target, Fig. 6b) do not show  the typical seasonal pattern of 224 

ambient temperature which instead characterizes the measured IR temperatures (Fig. 6a). This 225 

filtering worked suitably for both IR temperatures, that were not anomalous, and IR 226 

temperatures of hot areas (Fig. 6b, SES and MFA lines).  227 

The IR image quality (i.e. sharpness, contrast, brightness, etc.) is another feature which 228 

depends on meteorological conditions and which needs some consideration because it can 229 

strongly affect the possibility of recognizing thermal anomalies in the scene. The standard 230 

deviation (SD) of the IR temperatures can be considered as a good index of the quality of 231 

each image. During the monitoring period SD of the SES varied from ~2 to ~ 6 (Fig. 7).  The 232 

highest values correspond to the sharpest images while the lowest characterize the blurred, 233 

lowest quality images as highlighted in Fig. 8a and 8b where an image with a high SD (SD = 234 

6.24, image of the 4th April 2005, hour 4.00) is compared with an image of low SD (SD = 235 

2.16, image of 21st April 2005, h 0.00). Fig. 7 shows how the lowest SD values generally 236 

correspond to periods of rain. Excluding data acquired during rain periods, it is evident the 237 

negative correlation between SD and H2O concentration in air (Fig. 9) which reflects the 238 

homogenization of the temperature in the IR scene due to the increase in both the atmospheric 239 

absorption and scattering. It is worth noting that the quality of the image does not affect the T-240 

T_target values of the entire area which are not correlated to SD (Fig. 10). Most probably this 241 

reflects the fact that the water vapor air concentration affects, in a similar extension, both the 242 

background temperatures of the image and the temperatures of the target. Instead the T-243 

T_target values of the hot zones were strongly affected by the quality of the image as 244 

suggested by the positive correlation between SD and the MFA T-T_target values (Fig. 10). 245 

This correlation between T-T_target values of the hot zones and the SD, i.e. the quality of the 246 

image, may depend on different factors. For example, during wet periods, the presence of a 247 

bigger plume of condensed steam in the fumarolic areas can enhance air IR absorption and 248 

scattering. Moreover during rain and in the following wet periods, the actual temperature of 249 

the hot soils can decrease causing negative peaks on T-T_target values. Beside the causes of 250 



this effect, during the monitoring period, this dependence of T-T_target on the image quality 251 

in the hot zones resulted in more random scatter of T-T_target as highlighted by the noise of 252 

the MFA line in Fig. 6b. 253 

In conclusion, the study of the correlation between IR images and meteorological 254 

parameters showed as the IR average temperatures are mainly controlled by ambient 255 

temperature while the quality of the image, here quantified in terms of SD, is inversely 256 

correlated with the water vapor concentration in air. In addition rain events produce an 257 

anomalous decrease of SD values because cause the homogenization of the surface 258 

temperatures. Contrary periods of clear, not humid air, will tend to produce more contrasted 259 

images characterized by highest SD values.  260 

3.2 Slow movements of IR scene and image co-registration  261 

Fig. 6b suggests that no evident temperature anomalies affected the whole monitored 262 

scene, but we can not exclude that smaller portions of the Solfatara crater were affected by 263 

temperature changes. A pixel by pixel linear regression of T-T_target with respect to time  264 

was performed in order to investigate local temperature changes of the scene. Ten-day 265 

average values of T-T_target at each pixel were considered in order both to reduce the 266 

computation time and to smooth high frequency variations. The results are graphically 267 

reported in the map of Fig. 11a. 268 

The map, which represents the temperature change expressed as K/year, highlights a 269 

series of positive and negatives structured anomalies. At all locations a positive anomaly 270 

systematically corresponds to a negative anomaly located to the left and below by a few 271 

pixels, suggesting that a movement of the camera occurred during the monitoring period. This 272 

unexpected behavior complicates the identification of the real temperature change of the 273 

scene. In order to do a co-registration of the images, a study of the correlations among 274 

selected portions of the scene (boxes from 1 to 8 in Fig. 11a) was performed. Practically for 275 

each box the shifts in the horizontal and in the vertical axis (DX and DY respectively, 276 

expressed as number of pixels) were determined for which the best correlation with respect to 277 

a reference case (image n. 1200, 20-02-2006) was obtained. The results are reported in the 278 

DX and DY chronograms of Figs. 12a and 12b. All the boxes, located in the SE inner slope of 279 

Solfatara crater, correspond to hot spots where the contrast with the relatively cold nearby 280 

zones makes the computation more efficient and gives the best results, i.e. less noisy DX and 281 

DY curves are obtained. It is worth noting the similarity among all the curves obtained in 282 



different portions of the scene. On the basis of these correlations it was assumed that the 283 

entire IR scene moved both synchronously and at the same velocity following the mean DX 284 

and DY vs. time patterns highlighted in Figs. 12a and 12b. This homogeneous behavior of the 285 

entire scene suggests that a slow movement affected the camera.  286 

It is reasonable to suggest that a local deformation of the terrain could have caused the 287 

tilt of the pole where the camera is installed and the consequent movement of the scene. We 288 

can not exclude that this local deformation is linked to the general terrain uplift phase which 289 

occurred at Campi Flegrei in 2005-2006 [Troise et al., 2007]. The chronograms of the mean 290 

DY displacement (vertical displacement of the scene) registered by the IR camera are 291 

compared in Fig. 13a with the ground uplift registered by RITE and ACAE GPS stations 292 

located in the region of the Solfatara (Fig. 2). Because the different total displacement 293 

registered by the two stations during the period (48 mm and 36 mm at RITE and ACAE 294 

respectively), the GPS data were normalized. The DY curve is very similar to the GPS 295 

normalized data with the only difference that the DY movement precedes the ground uplift 296 

registered at RITE and ACAE. The best correlation between DY and GPS measurements is 297 

found shifting the ACAE and RITE datasets back by ~100 days (Fig. 13b). This correlation, if 298 

confirmed by the data which will be acquired in the next years, would imply that Solfatara is 299 

affected by a ground motion that precedes the ground deformation pattern generally observed 300 

at other locations in the CF.  301 

Finally the DY and DX mean values (Fig. 12a-b) were used to perform the co-302 

registration of all the images assuming as reference (DX=0, DY=0) the image n. 1200 303 

(acquired on 20-02-2006). Practically for each pixel of each image a new value of T-T_target 304 

was computed as the average of the values of the 4 pixels located in the new position and 305 

weighted in function of the surface contribution. 306 

3.3 Temperature variations at Solfatara 307 

A pixel by pixel regression with respect to time of the corrected T-T_target data 308 

(averaged on a 10-day period) was performed and the results are graphically shown in Fig. 309 

11b. The map does not show any more the structural alternation of positive and negative 310 

anomalies which characterized the analogue picture obtained from the uncorrected values (Fig. 311 

11a). This suggests that in general the adopted correction was effective and that Fig. 11b can 312 

be used to investigate temperature changes that occurred at Solfatara during the monitoring 313 

period.  314 



Temperature variations affected both the Solfatara crater wall and the areas of the plane 315 

nearest to the camera. Here we focus on the variations of the Solfatara crater wall being the 316 

variations of the plane of smaller dimension and most probably linked to very local processes. 317 

The map of Fig. 11b suggests that generally the SE inner slope of the Solfatara crater was not 318 

affected by important temperature changes, being these generally restricted in the interval 319 

from -0.5 K/year to 0.5 K/year. The map however highlights the presence of some spots 320 

characterized by higher temperature increases (red and white colors) and few spots which 321 

cooled (blue color). 322 

Before discussing the details of the temperature variations, it is necessary to describe 323 

briefly the data filtering adopted to compare images of different quality. For example we 324 

examined the temperature increase registered by the area BG (Fig. 14), i.e. the biggest and 325 

hottest fumarole of Solfatara. In the scene this area corresponds to 18 pixels whose average T-326 

T_target values during the monitoring period are shown in Fig. 14b. The data are highly 327 

scattered because different meteorological conditions caused different image qualities and a 328 

large variability of the SD of this image sector (SD-MFA Fig. 14a). In order to filter the 329 

temperatures from this “image quality” effect, only the data corresponding to a narrow 330 

interval of SD were considered. The images with a SD-MFA from 7.7 to 8.8 (gray band in Fig. 331 

14a) were chosen for the zones located in the MFA (i.e. areas of BG and BN fumaroles) while 332 

for the other zones the filtering was based on SD-SES (values from 4 to 4.6). A further 333 

improving of the temperature vs. time data was obtained by averaging the data of the images 334 

of the same time period. For example Fig. 14c shows the 1 day mean of T-T_target values of 335 

BG area filtered for SD-MFA values (T_fltr). 336 

The T_fltr vs. time curve (Fig. 14c) shows a first period (autumn 2004 – autumn 2005) 337 

of minor variations followed by a period of temperature increase with two relative peaks, a 338 

first one from November 2005 to February 2006 and the second one  from November 2006 to 339 

January 2007. In total, from Nov. 2005 to Jan. 2007, the BG area heated ~ 5-10°C. This 340 

temperature increase  was not, however, reflected in the maximum temperature of BG 341 

fumarole which, in the period of IR monitoring, remained at a stationary value of 161 ± 2°C. 342 

The temperature increase observed in the nearby hot soils was most probably the result of an 343 

increased flux of fumarolic fluids, while the absolute temperature of BG did not change. It is 344 

worth noting that also steam velocity, a parameter monitored since spring 2005 at BG 345 

fumarole, displayed a temporal trend very similar to the IR temperature pattern, reinforcing 346 

the idea that the anomaly is caused by an increase in the flux of the fumarolic fluids (Fig. 15).  347 



The fact that a temperature peak similar to those observed in 2005 and 2006 was not 348 

observed in autumn 2004 seems to exclude the possibility that the two temperature increases 349 

being linked to some seasonal effect not removed by the T_target correction. To the contrary 350 

we think that the observed anomalies are caused by variations in the deep source of fluids. 351 

Both the anomalous increases of the temperature followed two periods of increased seismicity 352 

by a few days to weeks (Fig. 15). The first seismic swarm occurred on 5th October 2005 353 

when 84 low energy volcano-tectonic (VT) events (Mmax= 1.1) were registered, while the 354 

second period occurred from 19 to 27 October 2006 and was characterized by ~ 150 VT 355 

earthquakes (Mmax=0.8) and more than 750 long-period (LP) events [Saccorotti et al., 2007]. 356 

All the events of both periods were clustered beneath Solfatara crater; the VT events occurred 357 

at depths of 1.5-2.5 Km while the LP at shallower depths (~ 500 m, Fig. 16). These data 358 

suggest that the temperature anomaly registered at BG area was most probably caused by the 359 

transfer of hot fluids from the deeper part of the hydrothermal system to the Solfatara 360 

discharge zone. The time lag between the occurrence of the seismic shocks at depth and the 361 

temperature peaks at BG would be due to the time necessary for the fluid to move from the 362 

deeper seismogenetic zones to the surface. Similar changes in temperature after the October 363 

2005 seismic crisis were observed in other localized spots of the fumarolic field (Fig. 17, i.e. 364 

10-day T_fltr mean values of areas a, b, c, d, e in Fig. 11b).   365 

Fig. 11b shows that the temperature increase, which is particularly evident at BG site, 366 

did not affect the entire fumarolic field. Instead some spots cooled (blue color in Fig. 11b) but 367 

these temperature decreases were not linked to the variation of the hydrothermal source rather 368 

they reflect anthropogenic activity or vegetation growth. In particular the BN site, another 369 

strong fumarole of high temperature (~ 150°C), was affected during 2006 by a marked 370 

cooling. In this case the temperature variation registered by the automatic station was caused 371 

by the building in October-November 2006 of a tourist pathway that goes around the BN 372 

fumarole. This work caused a clear decrease of the temperature of the area (Fig. 18a). Other 373 

temperature decreases were observed in the area labeled ‘vegetation – v1’ in Fig. 11b. In this 374 

case the temperature decrease, that was registered from April to June of both 2005 and 2006 375 

(Fig. 18b) reflects the fact that the relatively hot pixels of the Solfatara crater wall were 376 

progressively occupied by the colder vegetation growing in the spring season. The same 377 

process explains also the positive anomalies at the border between the sky and the ground 378 

(‘vegetation – v2’ in Fig. 11b), being in this case the relatively cold pixels of the sky 379 

progressively occupied by the hotter vegetation. 380 



4. Summary and Conclusions 381 

The energy dissipated daily by hydrothermal hot soils generally represents a main term 382 

of the total energy released from volcanoes. At Solfatara for example the thermal energy 383 

released in the last 30 years by the hot soils is much higher not only than the conductive heat 384 

flux over the caldera (90 km2) but even than the average energy release associated to seismic 385 

activity and ground deformation during the same period. The spatially extensive monitoring 386 

of such energy fluxes was the main objective of this research. In particular we tested the 387 

possibility to use an infrared (IR) automatic station to monitor the shallow thermal structure 388 

of hydrothermal zones. With respect to previous IR applications, most of which regarded the 389 

study of relatively quick processes associated to volcanic eruptions, our experiment was 390 

designed to detect and quantify slow temperature changes of shallow thermal structures of 391 

quiescent volcanoes over long periods. A significant portion of the Solfatara fumarolic field 392 

was monitored with the  systematic acquisition of IR images from a permanent station. The 393 

system prototype was built and tested at Solfatara in autumn 2004, and has since produced 394 

2175 thermal images of the same scene up to January 2007. 395 

The reliability of the data was  tested with an in situ calibration procedure, performed 396 

by comparing IR temperatures with those given by a K type thermocouple.  The IR 397 

measurements resulted systematically  lower than the thermocouple temperatures, but the two 398 

sets of data showed a very high correlation. The satisfactory result allowed us consider the 399 

data without any instrumental corrections. Meteorological data were specifically acquired 400 

during the experiment in order to investigate the dependence of IR data on environmental 401 

parameters. IR temperatures are correlated to air temperature which  explained 92%-97% of 402 

the IR temperature variance. This implies a strong seasonal control on the IR temperatures of 403 

both background and  hot areas of Solfatara at the surface. In order to remove the effect of 404 

ambient temperature variations, which masks the variation caused by endogenous changes, a 405 

simple background correction was applied to all the data. We investigated  the quality of the 406 

images (i.e. sharpness, contrast, etc.) which was also found strongly affect the possibility to 407 

recognize temperature anomalies. For quantifying the image quality we used the standard 408 

deviation (SD) of the IR temperatures of the images. The image quality was inversely 409 

correlated with the water vapor concentration in the air. In order to study the temporal 410 

evolution of the monitored thermal structure we thus adopted a simple ‘quality image’ filter 411 

based on SD values. A further correction of the images was necessary to remove the effects of 412 



a slow movement of the camera and to obtain the corrected data set suitable to investigate the 413 

thermal variations.  414 

Anomalous temperature increases were recorded at the area named BG, i.e. the main 415 

fumarole at Solfatara, in autumn 2005 and 2006, a few days to weeks after the occurrence of  416 

seismic swarms which were located exactly beneath Solfatara crater. This delay between the 417 

temperature anomalies and the end of the seismic swarms excludes the possibility that such 418 

temperature anomalies were co-seismic effects. In our model episodes of fluid pressure 419 

increases within the hydrothermal system caused both the seismic events and, some time later, 420 

the temperature anomalies at the surface, related to the expulsion of fluids. Similar 421 

temperature  increases were observed in several spots of the scene, while all the  temperature 422 

decreases were caused  either by anthropogenic activity or vegetation growth.  423 

The final considerations are devoted to the general lesson which we learned at Solfatara 424 

analyzing for the first time a two-years long series of IR images.  425 

The system gives a reliable picture, rich in datails, of the temperature changes and 426 

important indications on the origin of the changes. It is worth noting that these signs were 427 

detected in a system currently characterized by a level of activity relatively low with respect 428 

to those systems affected by real volcanic crisis where more spectacular results would be 429 

expected. 430 

Finally, an important point is that the images can be suitably filtered from ambient 431 

effects using simple corrections based on data contained in the image itself. This makes the 432 

system independent from the availability of other data. Our filtering was based in fact on a 433 

background temperature defined in the scene, on the standard deviation of each image and on 434 

a procedure based on image data for the co-registration. These features make the system 435 

almost autonomous and able to work also in remote and impervious sites resulting as a 436 

suitable tool for volcanic surveillance. 437 

438 
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FIGURE CAPTIONS 554 

 555 

Figure 1 – General view of the Solfatara crater in the spectral range of the visible and IR 556 

(range 8-14 µm). The town of Pozzuoli is in the background. 557 

 558 

Figure 2 – a) Solfatara thermal monitoring station. b) Digital color orthophoto (CGR it2000) 559 

of the Solfatara crater area. Red lines represent faults and fractures [Di Vito et al, 1999]; 560 

yellow lines shows the TIR image framing. The Solfatara crater rim and the locations of the 561 

permanent GPS stations (RITE and ACAE) are also shown. BN (Bocca Nuova) and BG 562 

(Bocca Grande) are the hottest fumaroles of the Solfatara crater. 563 

 564 

Figure 3  – Scene (320x240 pixel) acquired by the remote station a) in the spectral range of 565 

the visible and  b) in the IR wavelength. The target is the wall of a wood cabin (4 pixels) 566 

located about at the same viewing distance of the main fumarolic area (MFA). BG area is also 567 

shown. 568 

 569 

Figure 4 – Chronograms of the temperature recorded by a K type thermocouple on the wall of 570 

the wood cabin (T_ther) and temperature of the same area derived by the IR image (T_target).  571 

 572 

Figure 5 – Thermocouple (T_ther) vs IR temperature (T_target) scatterplot.  573 

 574 

Figure 6 – a) IR temperature variations of the whole Scene Excluding the Sky (SES, a matrix 575 

of 320x190 pixel) and of the Main Fumarolic Area (MFA, a matrix of 42 x 28 pixel) during 576 

the period October 2004 – January 2007 b) Chronograms of the same temporal series after the 577 

subtraction of the target temperature (T-T_target). 578 

 579 

Figure 7 – Standard deviation (SD) of the SES. Rainy periods produce images with lower SD 580 

values. 581 

 582 

Figure 8 – IR images of the scene. a) sharp image characterized by a high value of SD (SD = 583 

6.24, image of the 4th April 2005, hour 4.00) b) blurred image with a low SD (SD = 2.16, 584 

image of 21th April 2005, h 0.00). SD is assumed as a quality index of the image.  585 

 586 



Figure 9 – Correlation between the SD of the SES and absolute H2O content in air (excluding 587 

rainy days).   588 

 589 

Figure 10 – T-T_target of SES and MFA vs SD-SES. In the first case the temperature 590 

difference is not correlated to the SD, in the second one the correlation is positive. 591 

 592 

Figure 11 – a) Map of the IR 10-day averaged temperature changes expressed in K/year. A 593 

series of  contiguous positive and negative anomalies are evident. Eight boxes in the SE inner 594 

slope of Solfatara crater are selected to co register the image b) Co registration of the image 595 

with the identification of the true temperature changes. Alternations of positive and negative 596 

anomalies are disappeared and a few cooling spots (BN area) and heating spots (areas from a 597 

to e and BG area) are turned out. 598 

 599 

Figure 12 – a) horizontal shift (DX, expressed in number of pixels) of the eight boxes (see Fig. 600 

11) respect to a reference case (image n. 1200, 20-02-2006) and b) vertical shift (DY, 601 

expressed in number of pixels) of the same boxes. Mean DX and mean DY values are 602 

assumed as the horizontal and the vertical displacement of the whole IR scene respect to the 603 

reference case.   604 

 605 

Figure 13 – a) Chronogram of the mean vertical displacement of the scene (mean DY, see Fig. 606 

12) compared to the ground vertical movement recorded by the RITE and ACAE GPS 607 

stations (normalised values). b) The best correlation between DY and GPS meaurements is 608 

obtained by back-shifting ACAE and  RITE data of ~100 days. 609 

 610 

Figure 14 – a) Standard Deviation (SD) of the MFA; b) Chronogram of T-T_target rough 611 

values of the BG area; c) Chronogram of BG T-T_target values of the images characterized 612 

by SD comprises between 7.7 to 8.8 units (T_fltr). The values of the same day have been 613 

averaged. The horizontal rows mark the periods characterized by temperature increases in the 614 

BG area (Nov. 2005 – Feb. 2006 the first one and Nov. 2006 – Jan. 2007 the second one).    615 

 616 

Figure 15 –  T_fltr values of BG area, averaged over a 1-day period, are compared with the 617 

steam velocity of BG fumarole (solid dots) measured since May 2005 with a Pitot tube using 618 

the method described in the work of Sorey et al. [1993]. The values are normalized. The data 619 



are compared with the number of the volcano-tectonics (VT) earthquakes located at Solfatara. 620 

In addition the arrow indicates the occurrence of 750 long-period (LP) events. 621 

 622 

Figure 16 – Hypocentral location of the best located LP events of October 2006 [redraw from 623 

Saccorotti et al., 2007]. The figure shows for comparison the position of the BG area where 624 

the thermal anomalies were detected. 625 

 626 

Figure 17 – Chronogram of T- T_target data (averaged over a 10-day period) of  6 heating 627 

spots located in the SE inner slope of Solfatara crater (Fig. 11b).  628 

 629 

Figure 18 – Example of chronograms of T- T_target of the cooling spots located in the SE 630 

inner slope of Solfatara crater (Fig. 11b). a) the cooling in the BN area is due to the building 631 

of a tourist pathway in October-November 2006; b) in some spots (‘vegetation–v1’ in Fig. 632 

11b) were observed two periods of decreasing temperature (spring 2005 and 2006) in 633 

agreement with the vegetation growing.  634 



Table 1 - Pixel surface vs. viewing distance 
 

Distance (m) 10 30 100 300 500

Pixel size (m2) 0.000256 0.002304 0.0256 0.2304 0.64



Table 2 - Summary of results from meteorological station of Solfatara 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

*Atmospheric pressure (PAtm in hPa), wind speed (WindS in m/s), air temperature (AirT in °C), air 
relative humidity (AirRH, in percentage), rainfall (Rain in mm)  
 

 Year Mean Range Std.Dev. 
2005 998.6 971.4 : 1019.1 6.4 PAtm*  

(hPa) 2006 997.9 977.9 : 1019.7 6.0 
2005 2.0 0.0 : 8.3 1.0 WindS*  

(m/s) 2006 1.3 0.0 : 5.5 0.6 
2005 16.6 -0.5 : 31.3 7.1 AirT * 

(°C) 2006 15.7 0.7 : 30.4 6.3 
2005 74.6 33.1 : 100.0 14.2 AirRH*  

(%) 2006 77.9 32.9 : 100.0 14.7 
 Year Tot (mm) Rainy_days (n) 

2005 808.4 100 
Rain*  

2006 744.0 95 



Table 3 - Correlation of IR average temperature of the scene (SES, Scene Excluding the Sky) with 

meteorological parameters. 

 

  PAtm(hPa) WindS (m/s) AirT (°C) AirRH (%)
SES  mean T (K) -0.17 -0.19 0.98 0.00
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