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1. Introduction

The reconstruction of a compact-supported
function starting from a finite number of samples
of its spectrum is a problem potentially of inter-
est in various fields. In particular, inverse scatter-
ing problems in a loss-less background medium
can be often recast as the reconstruction of some
compact supported object function from a limit-
ed portion of its spectrum (Lesselier and Duch-
ene, 1996; Persico and Soldovieri, 2004a). Due
to the regularity of the spectrum of a compact-
supported (square-integrable) function, in some
cases there is a theoretical possibility to prolong
this spectrum outside the limited region directly
related to the data (Slepian and Pollack, 1961)
(apart from ill-posedness problems, not explicit-

ly considered here). This rationale has given rise
to various uniqueness theorems for the solution
of several inverse problems (Colton and Paivar-
inta, 1992; Sheen and Shepelsky, 2000). Howev-
er, uniqueness theorems always require a contin-
uous set of data to be available and often assume
some regularity of the object function, which is
not achieved in many practical cases (Ramm,
1990; Colton and Paivarinta, 1992). Moreover,
and above all, this regularity cannot usually be
supposed a priori because, let us remember, the
object function is the unknown of the problem.
Finally, even if the object function were regular
(i.e. continuous with its spatial derivatives of the
first order) and a continuous (multi-experiment)
set of data were available, still the uniqueness
might not be guaranteed in some cases (Devaney,
1978; Fisher and Langenberg, 1984). 

If the number of data is finite, instead, it is
just impossible to retrieve a compact-supported
function from a finite number of samples of its
Fourier Transform uniquely. It is opinion of the
author that this fact is worth outlining at least
once, because in any practical case one has at
disposal necessarily only a finite number of da-
ta. The above mentioned impossibility stems
from the fact that a compact-supported object
function is isomorphic to a countable set of ex-
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pansion coefficients along some functional ba-
sis. This means that the object function is char-
acterised by an infinite number of independent
parameters, that cannot correspond in a biu-
nique fashion to a finite number of data. The
only way to solve this kind of inverse problem
uniquely is to choose a suitable finite dimen-
sional space wherein to look for the solution. In
this way, a whole class of somewhat «improba-
ble» solutions is discarded a priori. 

In spite of the simplicity of these considera-
tions, however, it is not immediate to show ex-
plicitly (i.e. by providing an example) the non-
uniqueness of the solution of the problem at
hand, so that one could forget the fact that, when
considering a finite number of data, the solution
to any inverse scattering problem is actually on-
ly one of the possible solutions. From a practical
point of view this means, for example, that when
one performs the reconstruction of the inner of a
subsurface region by elaborating GPR (Alberti 
et al., 2002, 2003; Daniels, 2004) data, they can
never be mathematically sure of their reconstruc-
tion results. They can say that those results are
reasonable and probable but, from a mathemati-
cal point of view, they cannot exclude the possi-
bility that the actual buried objects are something
strange and complicated, even very different
from the foreseen objects but compatible with the
same gathered data. Finally, they should not as-
cribe this possibility only to the presence of some
(even possible) non-radiating density of current
or to the lack of conditions for the validity of
some complicated uniqueness theorem. Rather,
they should recognize the much more immediate
fact that they necessarily have only a finite num-
ber of data available. This paper is aimed to show
this fact explicitly. More precisely, the pursued
goal is to show, by means of a counterexample,
the fact that the reconstruction of a compact sup-
ported function from a finite number of samples
of its Fourier Transform is never unique. 

Actually, the result demonstrated here is al-
ready known (Levinson, 1940; Levin, 1980).
However, to show a systematic way to obtain
counterexamples is, to the best of the author’s
knowledge, a new result. Moreover, apart from
the «novelty» of the approach to this «old»
problem, the effort presented here seemed
worth making because the new proof is quite

simple, in the sense that it does not require a
deep knowledge of the properties of the entire
functions (Levin, 1980) in order to be under-
stood. In particular, it is plainly accessible for
people that have a non-trivial knowledge of
mathematics (as, e.g., geophysicists and engi-
neers), but nevertheless are not mathematicians. 

The next section provides some examples of
physical inverse problems that can be recast as
the reconstruction of a compact supported func-
tion from a finite number of spectral data. In
this way, the physical sense of the mathematical
problem dealt with here will be more precisely
circumstantiated. Then, in Section 3 a method
to construct the sought counterexample is ex-
posed. An example is provided in Section 4.
Conclusions follow.

2. Spectral algebraic relationships 
in inverse problems

This section provides some algebraic rela-
tionships connecting the available scattered field
data to the object function to be reconstructed in
microwave inverse problems. These relation-
ships are picked up from that branch of electro-
magnetic inverse problems commonly referred
to as Diffraction Tomography (DT) (Lesselier
and Duchene, 1996), and the aim of this exposi-
tion is to give a physical sense to the (otherwise
merely mathematical) dealing of the two next
sections. In this paper, DT will be somewhat
prompted and essentially referred. Of course,
this brief report does not claim to be a review
and is, necessarily, far from complete. 

After this premise, in DT the problem is to
retrieve buried objects, or more in general
buried inhomogeneities, from scattered field
data. The general three dimensional geometry
of the problem is given in fig. 1, wherein the da-
ta are constituted by samples of the scattered
field gathered within the observation domain Γ
at several frequencies within a fixed band Ω,
and the buried objects are described by means
of the so called contrast function, defined as

(2.1)
elsewhere0
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where εr(P) is the unknown relative dielectric
permittivity in the investigation domain D and
εbkg is the relative background permittivity, i.e.
the relative dielectric permittivity of the soil (or
of the layered medium) where the object is
buried. From eq. (2.1), we can see that the con-
trast expresses the relative difference between
the dielectric permittivity of the buried inhomo-
geneities and that of the host medium surround-
ing them. In general, the contrast is also a func-
tion of the frequency, but this fact is often neg-
lected in the adopted model, unless a dispersion
law is a priori assumed (Catapano et al., 2006).
Under a linear Born model (Chew, 1995), and
with reference to fig. 1, the relationship be-
tween the contrast and the scattered field data is
given by (Lesselier and Duchene, 1996)

(2.2)

where G is Green’s function of the problem,
Einc is the incident field (i.e. the field that would
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be present in the investigation domain D in ab-
sence of any buried object), ks= is the
wavenumber in the background medium (being
c0 the propagation speed of the light in free
space), Po is the observation point and Ps is the
source point, both supposed variable within the
observation domain Γ and, finally, Pl is the in-
tegration point variable in the investigation do-
main D. If losses can be neglected, several
spectral relationships can be obtained by taking
into consideration particular cases of eq. (2.2).
Some of them are provided in the following.

2.1. The case of a one dimensional half-space

The case of a one dimensional half-space
can be of interest (e.g.) when a humidity profile
or any stratification profile only varying versus
the depth is looked for. If the source is consti-
tuted by a plane wave impinging from the upper
half-space, the inverse problem can be recast as
a one dimensional scalar problem wherein a
contrast χ(z) is looked for. In this case, it can be
shown that the only independent observation
parameter is the frequency, whereas some fur-

cbkg 0ω ε

Fig. 1. Geometry of the problem.
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ther independent source parameters can be pro-
vided by diversity in incidence angle. For more
details the reader is referred to Pierri et al.
(1999), Persico and Soldovieri (2004a) and,
Soldovieri and Persico (2004). Here, we limit to
the case of Transverse ElectroMagnetic (TEM)
incidence. In this case, the substitution of the
specific values of Green’s function and of the
incident field in eq. (2.2) provides, after some
passages (Soldovieri and Persico, 2004) 

(2.3)

where , being
Eo the amplitude of the impinging plane wave
and k0=ω/c0 the wavenumber in free space. In
eq. (2.3), and also in the following equations,
the hat symbols stand for «Fourier Transform».

From eq. (2.3), it is clear that gathering scat-
tered field data at N frequencies ω1...ωN corre-
sponds to retrieving the spectrum of the con-
trast function in a finite set of points 2ks1...2ksN.
Moreover the contrast is compact supported be-
cause the investigation domain necessarily ex-
tends only up to a certain finite depth. 

2.2. The case of a two dimensional half-space

The case of a two dimensional half-space is of
scientific interest for retrieving elongated objects
(e.g., buried pipes or buried walls). Moreover, a
two dimensional model is of applicative interest
in many three dimensional situations, because it
often offers acceptable results in a much shorter
time with respect to a three dimensional algo-
rithm. In a two dimensional half-space, the object
function is variable along the depth z and along a
horizontal abscissa x (but it is constant along the
other horizontal direction y). If the incident field
is provided by a filamentary current parallel to
the y-axis, the inverse problem can be recast as a
two dimensional scalar problem. In particular,
limiting to the case of two antennas that move on
the soil along the x-axis with a fixed offset ∆ be-
tween each other (which corresponds to the so
called common offset configuration, customarily
adopted in GPR prospecting; Daniels, 2004),
substitution of the proper values of Green’s func-
tion and of the incident field in eq. (2.2) provides,

( ) [( )/( ) ]g j k k E k k k2 o s o o s s
2ω = − +

( ) ( ) ( )E g k2s s !ω ω χ ω Ω= t

after some passages, the relationship

(2.4)

where

(2.5)

and where

(2.6)

In eqs. ((2.4)-(2.6)), p is the conjugate variable
of the source position xs (the observation posi-
tion is xs+∆), whereas η and ζ are the conjugate
variables of the horizontal abscissa x and of the
depth z in the investigation domain, respective-
ly. The object function is 
The quantities in eq. (2.4) also depend on the fre-
quency, that appears both in the spectral weight-
ing function g(p) and (above all) in the argu-
ments of the spectrum of the contrast (see eq.
(2.6)). At the right-hand side of eq. (2.5), f is the
frequency, µo is the magnetic permeability of the
free space and Io is the level of the current. Un-
like the previously shown one dimensional situ-
ation, in this case we do not have a direct propor-
tionality between the data and the spectrum of
the object function, but rather we have propor-
tionality between the spectrum of the data and
the spectrum of the object function. This is due
to the fact that in two dimensional problems we
can extract information from spatial diversity of
the observation point, which could not been done
in one dimensional cases. From a practical point
of view, however, this does not change the prob-
lem too much. In fact, on condition that the error
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due to the truncation of the scattered field along
xs can be neglected (which is reasonable when
the source moves far from the buried objects),
from a finite number of samples of the scattered
field one can work out a finite number of inde-
pendent samples of the spectrum of the scattered
field by means of an FFT algorithm. At this
point, eq. (2.4) relates these samples of the spec-
trum of the scattered field to the corresponding
samples of the spectrum of an object function
linked to the contrast. In conclusion, also in this
case, what we can retrieve from a finite number
of data is essentially a finite number of samples
of the spectrum of a proper object function. For
more details, the interested reader is referred to
Persico et al. (2005).

2.3. The case of a three dimensional half-space

In the case of a fully three dimensional half-
space the mathematics is more involved, and it
is somewhat foreseeable. Essentially, the point
is that in three dimensions we cannot avoid the
intrinsic vector aspects of the problem. In par-
ticular, Green’s function of eq. (2.2) has to be
considered a dyadic one, and we should under-
stand the product between Green’s function and
the incident field as a matrix-vector product. In
formulas we have 

. (2.7)

Equation (2.7) means that each of the compo-
nents of the incident field influences all the
components of the scattered field. In the follow-
ing, the attention is focussed on Hertzian dipole
antennas placed on a soil parallel to each other
along the y axis and moved in common offset
along several lines parallel to the x axis. This is
a case that describes quite well many GPR
prospecting operations performed with linearly
polarized antennas (Daniels, 2004). In this case,
we essentially gather a signal proportional to the
y component of the scattered field and therefore,
one more time, we can refer to a scalar inverse
problem recast as
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where the kernel of the integral operator is de-
fined as 

(2.9)

A substitution of the proper values of the inci-
dent field and of the Green’s function in eq.
(2.8) leads to a spectral relationship of the fol-
lowing kind:

.

(2.10)
where

(2.11)

In eqs. ((2.10)-(2.11)), u is the conjugate vari-
able of the first coordinative of the source posi-
tion xs, v is the conjugate variable of the second
coordinative of the source position ys (the ob-
servation position in this case is given by (xs+∆,
ys)), η and ξ are the conjugate variables of the
horizontal co-ordinates x and y and ζ is the con-
jugate variable of the depth z in the investiga-
tion domain, respectively. The object function
is defined as χ2(x, y, z)=χ (x, y, z)/z. It can be
seen that eq. (2.10) is a quite «natural» exten-
sion of eq. (2.4). With respect to eq. (2.4), we
have a further spectral variable with regard to
the scattered field (because the observation do-
main is a surface rather than a line) and a fur-
ther spectral variable with regard to the contrast
(because the investigation domain is a buried
volume rather than a buried area). For more de-
tails, and in particular for the explicit expres-
sion of the spectral weighting function g(u, v),
the interested reader is referred to Hansen and
Johansen (2000). What is relevant here is to
outline that, by means of a two dimensional
FFT, also in this case a finite number of sam-

( , )

( , )

u v u

u v v

η
ξ

=
=

k u v4 s
2 2 2− −( , )u v =ζ .

Z

[

\

]]

]]

( , ) ( , ) ( ( , ), ( , ), ( , ))E u v g u v u v u v u vsy 2χ η ξ ζ=tt ttt

( , , , ) .Kr P P P G E G E G Einc inc inco s yx x yy y yz zω = + +l

Pd)(Pχ)k ,ω= ( , ,Kr P P P)( , ,

, ,

E P P

P P

sy o s s o s

D

s o

2

! !

ω

ω Ω Γ

l l l#



170

Raffaele Persico

ples of the scattered field essentially provides a
finite number of samples of the spectrum of the
object function. Therefore, one more time the
problem can be recast as the reconstruction of
the object function χ2, compact supported in the
investigation domain D, from a finite number of
samples of its spectrum. 

2.4. Prompts on further relevant cases

Several further possible cases of interest
can be recast as the retrieving of some object
function from a finite number of samples of its
spectrum. The essential reason for this fact is
that, in eq. (2.2), both Green’s function and the
incident field can be expressed by means of
their Plane Wave Spectrum (PSW) (Clemmow,
1996). Due to this fact, the problem of retriev-
ing inhomogeneities buried in any lossless lay-
ered medium (i.e. not only half-spaces) can be
dealt with by making use of suitable DT spec-
tral algebraic relationships. In particular, the
case of a one dimensional slab (i.e. a one di-
mensional medium with three layers) has been
dealt in Persico and Soldovieri (2004a,b),
whereas the case of a two dimensional slab has
been dealt with in Crocco and Soldovieri (2003).
Furthermore, also the radiation characteristics
of the transmitting and receiving antennas can
be included in a DT formulation. Essentially,
the radiation characteristics of the antennas af-
fect the spectral weighting function g. A two di-
mensional dealing of this problem can be found
in Soldovieri et al. (2005a), whereas a three 
dimensional dealing can be found in Meincke
(2001). Still, different configurations (other
than common offset) can also be dealt with by
means of a DT formalism. Essentially, in these
cases the arguments of the spectrum of the ob-
ject function will be somewhat varied. For
more details, the interested reader is firstly re-
ferred to Persico et al. (2005), and then also to
Lesselier and Duchene (1996) and Soldovieri 
et al. (2005a,b). Finally, even some aspects rel-
ative to the consequences of the truncation of
the observation domain can be understood in
terms of a DT formulation. Details can be
found in Leone and Soldovieri (2003) and Per-
sico et al. (2006). 

3. A method to construct a counterexample 

In this section we come back to the mathe-
matical problem presented in the introduction. In
particular, this section is devoted to finding a
(non null) function with a compact support such
as its spectrum is equal to zero in a finite set of
points k1, k2, ..., kN. In particular, the problem is
afforded in the one dimensional case for the sake
of simplicity in the exposition, but extensions to
more complicated cases (two and three dimen-
sional) are straightforward. Of course, such a
function is an element of the null space of the lin-
ear operator that transforms a compact supported
function into the column vector of the values of
its spectrum in the points k1, k2, ..., kN. Therefore,
to find such a function means to prove that the
(semi-discrete) operator at hand can never be uni-
vocally inverted (Bertero and Boccacci, 1998).

The searched function can be found as the
limit of a succession of functions, i.e. it can be
built. In order to initialize the algorithm, let
χ1(z) be an arbitrary square integrable function
supported in prefixed interval [−a, a], i.e. be
χ1∈L2(−a, a). 

Let F1(k) be the Fourier transform of χ1(z).
As it is well known, F1(k) is a square integrable
function (F1∈L2(R)) and has relevant regularity
properties (Paley and Wiener, 1934). For the
purposes of this paper, at any rate, it is suffi-
cient to outline the only fact that F1(k) is contin-
uous (which is well known and, even if it were
not known, it could be plainly proved directly). 

Let us label a1, a2, ..., aN the vector of the
values assumed by F1(k) in the points k1, k2, ...,
kN respectively. At this point, let us define a
«corrected version of F1» as follows:

(3.1)
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F2 is continuous because it is a linear combina-
tion of continuous functions. Moreover, on condi-
tion that M is chosen small enough, we can im-
pose that F2(k)=0 in each of the points k1, k2, ...,
kN. Moreover, for any chosen positive K, on con-
dition that M is chosen small enough we can also
guarantee that 

. (3.3)

In particular, we require here that K>1. In the
end, F2 is a slight modification of F1 (as close
as we like to F1) that shows the required roots.
However, in general F2 is not the spectrum of a
compact supported function, and therefore the
searched result has not been reached yet. There-
fore, let χ2(z) be the inverse Fourier Transform
of F2(k), and χ3(z) be the truncated version of
χ2(z) in the interval [−a, a], i.e. χ3 be defined as 

(3.4)

Let us now outline two inequalities. First, since
the Fourier transform is an isometry (Kantorovic
and Akilov, 1982), we have

. (3.5)

Second, as an easy consequence of the defini-
tion of χ3(z) we have 

(3.6)

In fact, reminding that both χ1 and χ3 have com-
pact support included in [−a, a], it results
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Therefore, due to the first triangular inequality
(Kantorovic and Akilov, 1982)
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At this point, let F3(k) be the Fourier transform
of χ3(k). F3(k) is a continuous function because
it is the spectrum of a compact supported square
integrable function. Moreover, since the Fourier
transform is isometric, we have 

. (3.9)

Let F4(k) be a «corrected version of F3(k)» con-
structed in the same fashion in which F2(k) had
been built starting from F1(k), so that F4(k) is
equal to zero in the points k1, k2, ..., kN. More-
over, this time we require a new value for M,
such as it is guaranteed

. (3.10)

Of course, we can do this because the choice of
M is arbirtary. 

Going on, χ4(k) is the inverse Fourier trans-
form of F4(k) and the cycle begins again. The
procedure is iterated by subsequent truncations
in the space domain and subsequent «correc-
tions» in the spatial frequency domain. For each
even value of the index w, a correction in the
«k-domain» occurs, and it is imposed that

. (3.11)

Consequently, for each even value of w, it results 

. (3.12)

For each odd value of w, a truncation in the «z-
domain» occurs. The truncation guarantees
that, for each odd value of w, it results 
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and, consequently, it also results 

(3.14)

In this way, two sequences of functions χ1, χ2,
..., χn, ... and F1, F2, ..., Fn, ... are identified. 
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From eqs. ((3.11)-(3.14)), both these suc-
cessions verify the Cauchy condition (let us re-
mind that we have chosen K>1), i.e. the condi-
tion that the quantity =
vanishes versus the index w. Therefore, due to
the completeness of the space L2, two limit
functions χL and FL exist for the two succes-
sions χ1, χ2, ..., χn, ... and F1, F2, ..., Fn, ... re-
spectively (Kantorovic and Akilov, 1982).
Moreover, FL is the Fourier transform of χL be-
cause of the continuity of the Fourier operator. 

The sought function is χL. In fact, χL is a fun-
ction supported within the interval [−a, a] be-
cause it is definitively closer and closer to any
one of the truncated (compact supported) func-
tions χ2w−1, on condition that w is high enough.
Moreover, the spectrum of χL assumes the value
zero in the points k1, k2, ..., kN. In order to show
this fact, let us outline that FL is a regular (in par-
ticular continuous) function, because it is the
Fourier transform of a compact supported func-
tion. Therefore, we have that F1, F2, ..., Fn, ... is
a succession of continuous functions that con-
verges towards a continuous limit. In these con-
ditions, it is easy to recognize that the conver-
gence in L2 also guarantees the punctual conver-
gence, even if it does not in general (Kantorovic
and Akilov, 1982).

In order to complete the proof, however, we
still have to guarantee that χL is not a null func-
tion, otherwise only a trivial result would have
been found. In order to show this fact, let us
note that, due to the first triangular inequality 

(3.15)

In this last passage we have exploited again the
hypothesis K>1, which guarantees the conver-
gence of the geometrical series of ratio 1/K. In-
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initial function χ1 (in other words, the null
space of the semi-discrete operator at hand is
dense in L2(−a, a)). Due to the arbitrary choice
of χ1, therefore, it is easy to guarantee that χL is

= .3=f+f= ++

+f

f+ ...+ + + =++

+

+#

+#

=

K K K K K K

K K K K
K

K

1 2 1 2 1 2

3 3 3
1

1
1

3

L w w

n n

n

1 1 2 2 3 1

2 2

2

f

χ χ χ χ χ χ χ χ− − − −

+

− − −

−

b l

F Fw w 1− −w w 1χ χ− −

a non null function. For example, one can re-
quire that 

(3.16)

A being some positive constant. Consequently,
by virtue of the second triangular inequality
(Kantorovic and Akilov, 1982), we have 

(3.17)

and this completes the proof.

4. An example

This section illustrates the method for the
construction of a compact supported function
whose spectrum shows some (imposed) roots, ex-
posed in the previous section, in a particular case. 

Therefore, let us suppose that we have to
identify a function supported in the interval 
[−1, 1] on the z-axis, and let us suppose that we
require that the spectrum of this function has 
to assume the value zero in the points −0.7π
(≅−2.199) and 0.7π (≅+2.199) on the k-axis. The
initial point is chosen equal to the function

(4.1)

therefore, the «first function» in the spectral do-
main is given by 

(4.2)

which shows the first roots at k=±π (here,
sinc(k) is meant as sin(k)/k). According to the
procedure explained in the previous section, let
us choose K=1.2, and let us specify a corrected
version of F1 which shows the required roots.
Based on eq. 12 and on the parity of the sinc
function, F2 can be chosen as
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according to the previous section, we have to
choose M1 such as

(4.4)

On condition that the supports of the correcting
roof functions do not superpose to each other, it
can be seen that the norm at the left-hand side of
inequality (4.4) is equal to ,
and therefore relationship (4.4), joined to the con-
dition that the supports of the roof functions do
not superpose to each other, provides the condi-
tion

(4.5)

In the case at hand, the second member of (4.5)
is equal to 0.7 π, so we can choose M1= 0.7π.

At this point, the Inverse Fourier Transform
of F2 provides
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And the truncation in spatial domain provides

(4.7)

The Fourier Transform of χ3 provides

(4.8)

where the symbol ⊗ stands for convolution
product. At this point, F4 is given by 

(4.9)
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Fig. 2. Graphs of χ2, χ4, χ6 and χ8, dimensionless units.
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And M2 has to guarantee that 

(4.10)

Inequality (4.10) can be solved essentially in
the same way of inequality (4.4). Therefore, the
condition on M2 is still given by relationship
(4.5) on condition that we change K in K2 and
4sinc2(0.7π) in ⎟F3(0.7π)⎥. For this numerical
example, the «compatible» value M2=0.4π has
been chosen. The procedure, which at this point
is straightforward, has been iterated up to χ8

and F8 (the subsequent compatible values
M3=0.2π and M4=0.1π have been chosen).

Figure 2 represents the first four χn func-
tions with even index (those with odd index are
truncated, therefore they automatically verify
the required condition about the support of the
searched function). It can be seen that χ4 and χ6

are indistinguishable from a function supported
in the interval (−1, 1). 

Figure 3 represents the first four Fn func-
tions with odd index (those with even index are
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«corrected», therefore they automatically show
the two required roots ±0.7π). It can be seen
that the first roots of F5 and F7 occur very near
to the required points ±0.7π≅±2.199.

5. Conclusions

This paper has shown a new proof of the
non-uniqueness of the solution of the problem
of the reconstruction of a compact supported
function from a finite number of samples of its
spectrum. This problem is, in particular, related
to Diffraction Tomography, as shown in Sec-
tion 2. 

The problem has been formally afforded in
1D cases, but the extension to 2D or 3D cases is
straightforward. In fact, the isometric properties
of the Fourier transform hold also in N-dimen-
sional cases (for any integer N), as well as the
triangular inequalities and all the mathematical
statements exploited in Section 3. The only dif-
ference is that in an N-dimensional case we
should perform the corrections in the spectral
domain by making use of some N-dimensional
version of the roof function (which can be pro-
vided by the product between N one-dimen-

Fig. 3. Graphs of F1, F3, F5 and F7, dimensionless units.
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sional roof functions versus each of the spectral
variables). 

A further development thought of is the ex-
tension of the proof presented here to the case
of a finite number of samples of the Laplace
Transform rather than the Fourier Transform.
This extension is not straightforward for sever-
al reasons (e.g., some isometric properties of
the Fourier Transform do not hold any longer
for the Laplace Transform). However, such an
effort seems worth trying, because it would al-
so allow lossy cases to be considered in a rigor-
ous way (Lesselier and Duchene, 1996).
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