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Abstract 

 

Using three different short-period electromagnetic sensors with resonant frequencies of 1 Hz 

(Mark L4C-3D), 2 Hz (Mark L-22D), and 4.5 Hz (I/O SM-6), coupled with three digital 

acquisition system, the PDAS Teledyne Geotech, the REFTEK 72A, and the Earth Data 

Logger PR6-24 (EDL), the effect of the seismic instruments on the horizontal-to-vertical 

spectral ratio (H/V) using seismic noise for frequencies less than 1 Hz has been evaluated. For 

all possible sensors - acquisition system pairs, the background seismic signal and instrumental 

self-noise power spectral densities have been calculated and compared. The results obtained 

when coupling the short-period sensors with different acquisition systems show that the 

performance of the considered instruments at frequencies < 1 Hz strongly depends upon the 

sensor-acquisition system combination and the gain used, with the best performance obtained 

for sensors with the lowest resonance frequency. For all acquisition systems, it was possible 

to retrieve correctly the H/V peak down to 0.1-0.2 Hz by using a high gain and a 1 Hz sensor. 

In contrast, biased H/V spectral ratios were retrieved when low-gain values were considered. 

Particular care is required when using 4.5 Hz sensors since they may not even allow the 

fundamental resonance frequency peak to be reproduced. 

 

Introduction 

 

It is well known that subsurface geology can strongly affect both the amplitude and 

lengthening of the earthquake-induced ground shaking recorded at the Earth surface. The 

assessment and consideration of local site amplification effects is mandatory for studies 

aiming at seismic hazard assessment, such as the calibration of ground motion prediction 

equations (GrMPEs) or the determination of ground-shaking scenarios computed for different 

levels of source and propagation complexity. Since local geology can vary significantly over 
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distances of only a few hundreds meters, the assessment of site response within large urban 

areas may require measurements at a large number of sites. 

Moreover, the chance of recording seismic events in earthquake-prone urban areas can be 

small, either due to a low signal-to-noise ratio or to a low rate of seismicity. Therefore, 

techniques that allow information about site response to be obtained without using earthquake 

recordings and at a low cost have recently gained popularity. Among these, the Nakamura 

technique (Nakamura, 1989) allows the estimation of the fundamental resonance frequency of 

a site from the peak in the horizontal-to-vertical (H/V) spectral ratio of microtremor 

measurements. The requirement of performing low-cost and rapid measurements therefore 

affects the choice of the equipment employed. For example, short-period sensors are often 

preferred to broad-band ones because of their ease of installation, their robust nature and their 

relatively low-cost. Due to budget limitations, microzonation studies based on seismic noise 

measurements are also performed by using low-cost, but lower dynamic range, acquisition 

system. 

It follows that when microtremor measurements are used to infer information about the site 

response, it is necessary to evaluate the contribution to the recorded seismic signal of both the 

ambient seismic vibrations, that is the signal that carries information about the source 

generating it and the medium trough which it propagates, and of the self-noise of the 

instruments. In fact, high instrumental noise can limit the exploitability of the seismic noise at 

frequencies lower than the sensor corner frequency, affecting the estimate of the fundamental 

resonance frequency of a site from the peak in the H/V. 

Previous studies were performed either to examine the effect of short-period sensors on the 

detection of the seismic noise signals at frequencies lower than 1 Hz (e.g. Riedesel et al., 

1990; Rodgers, 1992, Rodgers, 1994) or to test the performance of different kinds of seismic 

sensors by directly comparing the results obtained from the inferred H/V spectral ratio 

(Mucciarelli, 1998; Parolai et al., 2001). Recently, a comparison of results obtained from 
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different kinds of acquisition systems and sensors was carried out by Guillier et al. (2007), 

with an experimental design optimized for investigating the effects in the higher frequency 

range (> 1 Hz). 

In this study, differently from the previous ones, the effect of the acquisition system and 

sensor on the H/V peak, when it is expected to occur at frequencies lower than 1 Hz, is 

evaluated by considering three different short-period electromagnetic sensors with resonant 

frequencies of 1, 2, and 4.5 Hz coupled with three different digital acquisition systems. 

In this work, for each considered sensor and acquisition system couple, the Power Spectral 

Density (PSD) of the instrumental self-noise is first calculated and compared with the PSD of 

recordings from a broad-band station, which was installed in the area of Cologne at a site 

where the resonance frequency is expected to be at about 0.2 Hz (Parolai et al., 2004). Next, 

the broad-band seismic noise signal is combined with the self-noise and the H/V spectral 

ratios calculated and compared with those obtained by the original broad-band recordings. 

Finally, the results are discussed and suggestions for an optimized seismic noise acquisition 

for H/V spectral ratio calculations are provided. In the following, so as to avoid confusion 

when using different terms that are synonymous (ambient seismic vibration, seismic noise, 

microtremor, ambient noise), ambient seismic vibration will refer to the input in our system 

(digital acquisition system plus sensor). The output will be defined as the background seismic 

signal, which is the input combined with the instrumental self-noise. Moreover, two acronyms 

will be used: SPES instead of short-period electromagnetic sensor and DAS instead of digital 

acquisition system. 

 

Self-noise model and its reliability 

 

Similarly to Rodgers (1994), the acceleration power self-noise model for a SPES is described 

by: 
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where Sn indicates the suspension noise, En the total electronic noise, Qn the quantization 

noise, and |H(f)| is the modulus of the transfer function of the SPES. The signal loss due to the 
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where k is the Boltzmann’s constant, T is the sensor temperature in degrees Kelvin (fixed to 

293), ζ is the damping ratio, f0 is the resonant frequency of the spring-mass system and M is 

the sensor mass. 

The generalized total electronic noise En for the DAS considered in this study is  
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where fcv and fci are the corner frequencies for the voltage and current noise PSD, respectively. 

The resistor rp is the parallel combination of the damping resistor rd and the coil resistance rc 

(all in ohms), V00 and I00 are the high frequency levels of the operational amplifier (op-amp) 

voltage and current noise PSDs, respectively, while the factor of 2 is introduced because the 

instruments we consider, have 2 op-amp in the input stage. Therefore, the voltage noise term 

is doubled. 

The power spectral density of the quantization noise Qn  can be defined as: 

Nf
Qn 1

12

2Δ
=   V2/Hz        (4) 

where ∆ is the quantization interval, also called the least significant bit voltage of the DAS, 

and  is the Nyquist frequency (Sleeman et al., 2006). This formula defines the quantization Nf
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noise for an ideal analogue-digital converter (ADC) with no over-sampling and no digital 

anti-alias filtering. When the DASs are using ADCs of a sigma-delta type, as in our case, 

quantization noise can be empirically calculated by: 

C

SNRpeak

f
UQn 110

2

2
−=  V2/Hz       (5) 

where Upeak  is the peak input voltage, SNR is the full scale signal-to-noise ratio (dynamic 

range) in dB and  is the upper corner frequency of the (digital) anti-aliasing filter, typically 

~ 0.8  (Wesson, 2004). The signal-to-noise ratio varies with sampling rate, while the peak 

input voltage is inversely proportion to the gain. Generally, these SNR values for a specific 

sampling rate and U

Cf

Nf

peak values for a certain gain are available from the manufacturers. The Qn 

values adopted in this work are for a fixed sampling rate of 100 samples/sec and the extreme 

values to which the pre-amplifier gain of each recording system can be set. 

Figure 1 shows the self-noise PSD and the contribution of each term mentioned above when a 

EDL PR6-24 is coupled with the three SPESs, as well as the area delimited by the New Low 

Noise Model (NLNM) and New High Noise Model (NHNM) of Peterson (1993) (hereinafter 

called the Peterson Model). All parameters have been fixed according to Table 1 (SPES 

parameters) and Table 2 (DAS parameters). In the case of a gain of 1, the quantization noise 

Qn is generally the dominant term for frequencies higher than 0.07, while setting the gain to 

10 the electronic noise En is dominating especially in the low frequency range. Similarly, we 

find Qn provides the larger contribution to the self-noise at low gain, and En dominates for 

high gains, for the REFTEK 72A, which uses the same amplifier as the EDL (Figure E1a, 

electronic appendix), and for the PDAS Teledyne Geotech (Figure E1b, electronic appendix) 

which uses a different amplifier. Variability in the results also depends upon the SPES that is 

connected to the DAS, especially for high gain values.  
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Due to the strong dependence of the results on the gain used, in the following, the calculations 

are carried out considering gains of 1 and 10 for the EDL, 1 and 32 for the REFTEK 72A, and 

1 and 100 for the PDAS Teledyne Geotech, each representing extreme cases.  

In order to validate the self-noise model proposed in this paper, one can obtain a measure of 

the self-noise by substituting the SPES with an ohmic resistor that has the same resistance as 

the coil. However, such a resistor will not exactly represent the electric impedance of the 

unlocked SPES, and therefore this procedure is not meant to precisely measure the electronic 

self-noise (Wielandt, 2002). Recently, Holcomb (1989) and Sleeman et al. (2006), proposed a 

method based on coherency analysis that requires the recording of background seismic signal 

using two identical instruments that operate side by side and are exposed to the same input. 

The main assumption of this method is that the coherent part of the recordings is the ambient 

seismic vibration, while the incoherent part is related to self-noise (same contribution for each 

SPES). The limits of the method are that a relatively quiet location (30-40 dB ambient seismic 

vibration / self-noise) as well as careful installation is required, since tilt or misalignment 

could produce additional incoherent noise. In order to verify the reliability of our theoretical 

estimates of self-noise PDS, that have the advantage of being easily and rapidly calculated for 

each possible DAS and SPES couple, the coherency test was carried out using two Mark L4-

3C (1 Hz) connected to a 6-channel EDL PR6-24 (gain=10). The test was carried out in the 

Geodynamical Observatory Moxa (MOX) where the experimental conditions are optimal for 

this kind of test (http://www.geo.uni-jena.de/moxa). The obtained empirical self-noise curve 

is shown in Figure 2 and compared to that obtained from the theoretical approach. The 

excellent agreement of the results indicates the reliability of our theoretical estimates.  

 

Data and H/V spectral ratio calculation  
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A network of 44 seismic stations was deployed in the Cologne area between the end of April 

and the beginning of June 2001, with the aim of recording local and regional seismicity, and 

ambient seismic vibration (Parolai et al., 2004). In this study, 30 minutes of ambient seismic 

vibration recorded on May 15th starting from midnight at the station K38, equipped with a 

Güralp CMG-3ESPD seismic acquisition system and broad-band sensor (all in one), are 

considered. Figure 3 (top panels) shows the selected ambient seismic vibration time series. 

The 30 minutes of recording are divided into windows of 81.92 seconds with no overlapping. 

For each window, linear trend in the data were removed and a 5% cosine tapering function 

was applied to both ends. The PSD of each window were then calculated following 

McNamara & Buland (2004) after applying a Fast Fourier Transform (FFT) to the data. In this 

study we consider only the vertical (UP) and north-south (NS) components of ground motion, 

although similar results can be obtained for the east-west component. Figure 3 (bottom 

panels) shows the UP and NS component PSDs calculated on the first window with the 

Peterson Model. Although night recordings were selected, their PSDs exceeds the NHNM in 

the frequency range between 1 and 3 Hz, which is the frequency range generally considered to 

be strongly affected by anthropogenic activity. This excess can be also related to the industrial 

activity in the neighbouring city of Cologne (Plesinger & Wielandt, 1974). The PSD in the 

frequency range between 0.1 and 1 Hz is characterized by microseismic activity (Gutenberg, 

1921; for a recent review, see Webb 1998). The major areas for microseisms recorded in 

Germany had previously been identified as originating from the British and Norwegian costs 

(Gutenberg, 1921; Jung, 1934; more recently, Friedrich et al., 1998; Essen et al, 2003). The 

surface pressure map of the day of these recordings (e.g. 

http://www.wetterzentrale.de/topkarten/ fsreaeur.html) does not show any strong low pressure 

system over the North Sea. The absence of strong microseismic activity is also confirmed by 

values of PSD in the frequency range between 0.1 and 0.7 Hz which approach the NLNM. 

The behaviour of the lowest frequency part (below 0.1 Hz) of the horizontal component PSD 
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(down to 0.1 Hz) may be related to a tilt effect (Forbriger, 2006), due to the non optimal 

(temporary) installation of the broad-band sensor. However, a peak around 0.02 Hz is also 

mapped also in the time series (Figure 3 NS component) that may indicate the presence of 

infragravity waves (e.g. Webb, 1998). 

In this work, the background seismic signal at the output of the DAS (output) is computed by 

summing, in the time domain, the selected ambient seismic vibration (input) window at 

station K38 with the SPES and DAS instrumental self-noise (self-noise), that we model using 

equations (1) to (5). The self-noise signal in the time domain is estimated from the self-noise 

PSD while considering a random distribution of the phase. That is, the input seismic summed 

to the self-noise in the time domain and the PSD of the expected output is calculated. The 

output was estimated in the time domain instead of simply summing the PSD of the input and 

self-noise, since for the short time windows generally used for H/V spectral ratio calculations, 

an effect due to the cross-term of the PSD of the resultant signal cannot be excluded, although 

by averaging a large number of spectra, this effect is expected to be averaged out (but such a 

large number of windows are not always available in H/V spectral ratio studies). A test we 

performed (not shown here) showed that the expected PSD noise computed either directly by 

summing the PSD of the input and self-noise, or by computing the PSD of their sum in the 

time domain, are almost the same, with the most pronounced differences for frequencies 

where the two PSDs cross. Since the tests we carried out showed that our conclusions about 

the influence of the chosen DAS and SPES on the H/V spectral ratio results will not depend 

upon the scheme adopted for computing the expected PSD noise, we preferred to adopt the 

scheme that better predicted what it is expected for the analysis of actual data. The PSD of the 

output is then computed for each combination of SPES and DAS. In all, 18 different 

combinations are considered (three SPESs, three DASs with two different gain values for 

each). Finally, the H/V was calculated for each PSD and then the logarithmic average of the 
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spectral ratios obtained after splitting the input windows into 20 non-overlapping segments, 

each having a duration of 81.92 s. 

 

Results 

 

The results of all 18 combinations are described in the following. However, for the sake of 

brevity, only those regarding the EDL and part of those for the REFTEK 72A are shown. The 

complete set of results is presented in the electronic appendix.  

In general the results obtained for the different combinations of short-period SPES and DAS 

show that the performance of instruments at frequencies below 1 Hz strongly depends upon 

the combination of SPES, DAS and the gain used. 

 

- EDL PR6-24 

The PSD expected for a SPES connected to the EDL (Figure 4a) with the gain fixed to 1, 

shows the possibility of a Mark-L4-C-3D detecting input down to 0.1-0.2 Hz, as well as when 

the signal is approaching the NLNM. SPESs with a higher resonance frequency have less 

chance of correctly identifying input at lower frequencies (Figure 4b and 4c). In particular, 

using a 4.5 Hz SPES, the PSD of the input between 0.15 and 1 Hz can be retrieved from the 

output, only when the input level approaches the NHNM. For frequencies below 0.15 Hz, 

since the self-noise for the 4.5 Hz SPES is larger than the NHNM, the input characteristics 

cannot be retrieved using this type of SPES. The diminishing signal-to-noise ratio when 

increasing the resonance frequency of the SPES (Figure 4b and 4c) has a clear effect on the 

H/V spectral ratio. While the results obtained with a 1 Hz SPES (Figure 4a) agree well with 

those obtained by broad-band recordings, the H/V spectral ratio from 2 Hz-SPES recordings 

(Figure 4b) show an apparent shift of the resonant peak due to the intersection of the self-
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noise PSD and the input PSD at about 0.2 Hz, also leading to lower S/N ratios at higher 

frequencies. 

Both a large shift and a strong amplitude reduction of the H/V spectral ratio peak is shown 

when a 4.5 Hz SPES is used (Figure 4c). For the case of smaller spectral amplitudes (but still 

well within the NHNM and the NLNM), within this frequency range, the H/V spectral ratio of 

4.5 Hz SPES would not show any peak at all. Finally, it is worth noting that below 0.1 Hz the 

H/V spectral ratio of the original broad-band recordings show a strong increase with 

decreasing frequency. This suggests a likely problem in the installation of the broad-band 

sensor, with this behaviour probably due to the tilt of the sensor (Forbriger, 2006). 

Increasing the gain to 10 (Figure 4a, 4b and 4c) improves the ability to detect the spectral 

peaks in the ambient seismic vibration for the 4.5 Hz SPES, imitations in correctly retrieving 

the H/V spectral ratio peak are still observed for the 2 Hz and the 4.5 Hz SPESs. 

- REFTEK 72A 

The combination of the three SPESs with a REFTEK 72A (Figure E2a, E2b and E2c 

electronic appendix) while fixing the gain to 1 clearly shows a general worsening of the 

signal-to-noise ratio when compared to the same SPES and gain for the EDL case. In 

particular, a slight shift of the H/V spectral peak also affects the 1 Hz SPES results, while no 

peak at all is shown when a 4.5 Hz SPES is considered (Figure 5). 

Increasing the gain to 32, allows us to obtain results similar to those derived using the EDL 

with the gain set to 10. This is due to the strong reduction of quantization noise due to the 

increase in the pre-amplifier gain (Equation (4) and Figure E1a electronic appendix). 

- PDAS Teledyne Geotech 

Results obtained considering the PDAS Teledyne Geotech (Figure E3a, E3b and E3c 

electronic appendix) and fixing the pre-amplifier gain to 1 are nearly identical to those 

obtained for REFTEK 72A when using gain 1. In this case, since the generalized total 

electronic noise En of the two DAS (although having different amplifiers with different fcv , fci, 
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V00 and I00), as well as the quantisation noise Qn, are very similar, nearly identical self-noise 

PSD are obtained. 

When the gain is set to 100, the PDAS Teledyne Geotech provides results comparable with 

those obtained using an EDL and fixing the gain to 10, i.e. the best combination we found. 

The excellent performance of the PDAS Teledyne Geotech DAS is due to the strong reduction 

of the quantisation noise determined by increasing the gain (Figure E1b electronic appendix). 

 

Conclusions 

 

The main results from this study can be summarized as follow: 

- 1 Hz SPESs can be used to detect ambient seismic vibration down to 0.2-0.1 Hz, but 

generally require a large gain. In fact, for the case where input is approaching the 

NLNM of Peterson (1993) and when the gain is fixed to 1, spectral amplitudes below 

0.2 Hz can be masked by the self-noise. 

- 1 Hz SPESs can be used for estimating the H/V spectral ratio down to at least 0.2 Hz, 

but in this case, using the maximum possible gain for the EDL, the REFTEK 72A, and 

the PDAS Teledyne Geotech, (10, 32, 100, respectively). When the minimum gain for 

the latter two DAS is used, a slight bias in the peak is observed. The successful use of 

these SPESs for estimating the H/V spectral ratio at lower frequencies (below 0.2 Hz) 

strongly depends upon the input amplitude. 

- 2 Hz SPESs, combined with REFTEK 72A or PDAS Teledyne Geotech (setting the 

gain to 1), are not able to resolve ambient seismic vibration features at frequencies 

lower than 0.3 Hz for the case where the input is less than the average value between 

the NLNM and the NHNM of Peterson (1993). 

- 2 Hz SPESs always provide biased H/V spectral ratios (shifting toward higher 

frequencies the peak) at frequencies lower than 0.3 Hz. 
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- 4.5 Hz SPESs cannot detect ambient seismic vibration for frequencies lower than 0.6 

Hz if the gain is fixed to 1 (Figure 4c and E2c and E3c in electronic appendix). 

However, if a specially designed pre-amplifier is used, the performance of the 4.5 Hz 

sensor can be improved, increasing the S/N ratio to about 10 dB. 

- The H/V spectral ratio peak at low frequencies obtained by the 4.5 Hz SPES recording 

is always biased and, for some combinations (e.g. REFTEK and PDAS), may even 

vanish. 

The degree of bias in the H/V spectral ratio due to the DAS and SPES couple estimated in this 

study can be subject to variations, depending upon the level of input signal. However, the 

general tendency that was observed will still be valid. In particular, ambient seismic vibration 

recorded during periods of strong microseism might overstep the theoretical self-noise levels 

that we have calculated. However, we believe that our results provide a clear picture of the 

problems one can encounter when using certain seismic instruments. On the basis of these 

results, we suggest that when ambient seismic vibration in the frequency band between 0.1 

and 1 Hz is of interest only, 1 Hz SPESs are preferred instead of 2 and 4.5 Hz SPESs. We also 

suggest that the ambient seismic vibration measured in the field should be compared with the 

instrumental self-noise PSD of the SPES-DAS combination, employed especially when high-

resonance frequency SPESs are used.  

In this paper, we tested 3 SPESs and 3 DASs, all of which are available on the market or still 

in use. Our results can be extended to SPESs and DASs with similar characteristics and, we 

hope, may encourage the investigation of the PSD of self-noise of other DASs that we have 

not considered. 
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Figure and table captions

Table 1: SPESs parameters.

Table 2: DASs parameters.

Figure 1: Comparing different components of self-noise for the EDL: Electronic Noise 

(En grey), Quantization Noise (Qn black), Suspension Noise (Sn dashed black) 

and total self-noise (thick dashed grey); the grey shading indicates the area 

delimited by the NLNM and NHNM of Peterson (1993). Left: Results obtained 

for a gain equal to 1 and different SPESs. Right: Results obtained for a gain 

equal to 1o and different SPESs (1,2 and 4.5 Hz).

Figure 2: Comparison between estimates of theoretical self-noise (black) and 

experimental self-noise (grey) from the coherency test. The grey shading 

indicates the area delimited by the NLNM and NHNM of Peterson (1993).

Figure 3: (Top and middle) GURALP CMG-3ESPD broad-band recordings of ambient 

seismic vibration at the station K38 used in this study. (Bottom) PSD of the UP 

(black) and NS (grey) components of broad-band ambient seismic vibration 

recordings. Grey shading indicates the area delimited by NLNM and NHNM of 

Peterson (1993).

Figure 4a: Self-noise (dashed black), ambient seismic noise (input) from the broad-band 

recordings (black) and input plus self-noise PSD (thin grey) for the EDL DAS 

with gain=1 (left side) and gain=10 (right side) coupled with the 1 Hz SPES; 

the grey shading indicates the area delimited by the NLNM and NHNM of 

Peterson (1993). NS components are shown in the top panels while the UP 

components are in the centre. The bottom panels corresponding average H/V 

spectral ratio with 95% confidence interval of input from broad-band 

recordings (black) and average H/V spectral ratio with 95% confidence interval 

of input plus self-noise (grey). 

Figure 4b: Same as Figure 5a but for the EDL coupled with a 2 Hz SPES.

Figure 4c: Same as Figure 5a but for the EDL coupled with a 4.5 Hz SPES.

Figure 5:  H/V spectral ratio results for the REFTEK 72 A and different SPESs. Left: 

results for G=1. Right: results for G=32. Top: results for 1Hz SPESs. Bottom: 

results for 4.5 Hz SPESs.

 

17



Electronic Appendix captions

Figure E1a: Comparing different components of self-noise for the REFTEK 72A: 

Electronic Noise (En blue), Quantization Noise (Qn light blue), Suspension 

Noise (Sn green) and total self-noise (thick dashed red); the grey shading 

indicates the area delimited by the NLNM and NHNM of Peterson (1993). 

Left: Results obtained for a gain equal to 1 and different SPESs. Right: Results 

obtained for a gain equal to 32 and different SPESs.

Figure E1b: Comparing different components of self-noise for the PDAS: Electronic Noise 

(En blue), Quantization Noise (Qn light blue), Suspension Noise (Sn green) and 

total self-noise (thick dashed red); the grey shading indicates the area delimited 

by the NLNM and NHNM of Peterson (1993). Left: Results obtained for a gain 

equal to 1 and different SPESs. Right: Results obtained for a gain equal to 100 

and different SPESs.

Figure E2a: Self-noise (red), ambient seismic noise (input) from broad-band recordings 

(blue) and input plus self-noise PSD (thin green) for the REFTEK 72A DAS 

with the gain=1 (left side) and the gain=32 (right side) coupled with a 1 Hz 

SPESs; the grey shading indicates the area delimited by the NLNM and 

NHNM of Peterson (1993). NS components are shown in the top panels while 

the UP components are in the centre. The bottom panels show the 

corresponding average H/V spectral ratio with 95% confidence interval of 

input from the broad-band recordings (blue) and average H/V spectral ratio 

with 95% confidence interval of input plus self-noise (green). 

Figure E2b: Same as Figure 5a but for the REFTEK 72A coupled with a 2 Hz SPES.

Figure E2c: Same as Figure 5a but for the REFTEK 72A coupled with a 4.5 Hz SPES.

Figure E3a: Self-noise (red), ambient seismic noise (input) from broad-band recordings 

(blue) and input plus self-noise PSD (thin green) for PDAS DAS with the 

gain=1 (left side) and the gain 100 (right side) coupled with a 1 Hz SPES; the 

grey shading indicates the area delimited by the NLNM and NHNM of 

Peterson (1993). NS components are shown in the top panels while the UP 

components are in the centre. The bottom panels are the corresponding average 

H/V spectral ratio with 95% confidence interval of input from broad-band 

recordings (blue) and average H/V spectral ratio with 95% confidence interval 

of input plus self-noise (green). 

Figure E3b: Same as Figure 5a but for the PDAS coupled with 2 Hz SPES.

Figure E3c: Same as Figure 5a but for the PDAS coupled with 4.5 Hz SPES
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Short period electromagnetic sensor (SPES) Parameters
SPES Freq. [Hz] Gs [V/m/s] ζ M [Kg] rc [Ohms] rd [Ohms] rp [Ohms]

Mark L4C-3D 1,0 276,4 0,70 1,0000 5500,00 8900,00 3399,30
Mark L-22D 2,0 112,0 0,80 0,0728 5470,00 14300,00 3956,55

I/O SM-6 4,5 28,5 0,69 0,0111 375,00 10000,00 361,44

Table 1

Digital acquisition system (DAS) Parameters
DAS Gain Amplifier V00 [V2/Hz] fcv [Hz] I00 [A2/Hz] fci [Hz] Qn [V2/Hz]

EDL PR6-24 1 OP-227 9,00E-18 2,7 1,60E-25 140 7,22E-15
EDL PR6-24 10 OP-227 9,00E-18 2,7 1,60E-25 140 7,22E-17
REFTEK 72A 1 OP-27 9,00E-18 2,7 1,60E-25 140 3,02E-13
REFTEK 72A 32 OP-27 9,00E-18 2,7 1,60E-25 140 2,89E-16

PDAS 1 OP-77 1,00E-16 2,0 6,00E-26 200 2,50E-13
PDAS 100 OP-77 1,00E-16 2,0 6,00E-26 200 2,50E-17

Table 2
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