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Abstract 

Helium isotope ratios of olivine and pyroxene phenocrysts from Plio-Quaternary volcanic 

rocks from Southern Italy (seven Eolian Islands, Mt. Vulture, Etna, Ustica, Pantelleria) range 

from 2.3 to 7.1 Ra. Importantly the phenocryst 3He/4He correlate well with whole rock Sr 

isotopic composition (0.70309-0.70711) reflecting the mixing of two sources. A significant 

contribution of He from crustal contamination is recorded only occasionally (e.g., pyroxenes 

from Vulcano). When merged with data from the Roman Comagmatic Province, a 

remarkably strong near-linear He-Sr isotope correlation is apparent. The general northward 

decrease in 3He/4He corresponds to an increase in 87Sr/86Sr (and decrease in 143Nd/144Nd and 
206Pb/204Pb) that is due to increasing metasomatic enrichment of the mantle wedge via 

subduction of the Ionian-Adriatic plate. Calculations based on the ingrowth of 4He in the 

wedge and on the 4He content of the subducting crust show that mechanisms of enrichment 

in radiogenic He are effective only if the wedge is strongly depleted in He relative to best 

estimates of the depleted mantle. This can be accommodated if the process of metasomatism 

by the subduction fluids depletes the mantle wedge. The 3He/4He of Pantelleria, Etna, Iblei, 

Ustica, Alicudi and Filicudi basalts (7.0 ± 0.6 Ra) define the mantle composition least 

affected by subduction-related metasomatism. Although these volcanoes are from a variety of 

tectonic regimes (subduction-related, intraplate, rifting) their similarities suggest a common 

origin of geochemical features. Their characteristics are consistent with a HIMU-type mantle 

that is either younger than the Cook-Austral island end-member, or has a lower 238U/204Pb. 
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1. Introduction 

Helium isotopes in arc basalts trace the contribution of mantle- and crust-derived volatiles in 

the generation of melts at subduction zones. The 3He/4He of oceanic arc basalts are 

commonly in the range 6-8 Ra (where Ra is the atmospheric 3He/4He; 1.39 x 10-6) [Poreda 

and Craig, 1989]; values that are typical of normal mid-ocean ridge basalts (MORB) are in 

the range of 8 ±1 Ra [Farley and Neroda, 1998]. Helium in crustal fluids is enriched in 

radiogenic 4He produced by the decay of U and Th. Crustal-radiogenic He is typically less 

then 0.1 Ra [O’Nions and Oxburgh, 1988], the large difference from mantle values make He 

isotopes a powerful tracer of crust-derived volatiles in magmatic systems. The absence of a 

significant contribution of radiogenic He in oceanic arc basalts implies that the subduction of 

altered oceanic crust and oceanic sediments does not enrich the mantle wedge in radiogenic 

helium. This is likely due to the loss of He from the down-going slab in the early stages of 

subduction prior to reaching the zone of magma generation in the mantle wedge [Hilton et 

al., 1992, 2002]. 

Crustal contamination of arc magmas erupted through continental crust is common and is 

typically reflected in the low 3He/4He of pyroxene phenocrysts compared to cogenetic olivine 

[e.g. Hilton et al., 1993a,b]. The presence of radiogenic helium in the mantle wedge source 

region of basalts is only recorded in two arcs: the east Sunda-Banda arc, Indonesia [Hilton et 

al., 1992] and the Roman Comagmatic Province (RCP) of central-northern Italy [Martelli et 

al., 2004]. At both arcs continental crust (or continent-derived sediment) is currently being 

subducted and it is tempting to assume that crustal-radiogenic helium has been recycled into 

the mantle wedge. This would require models of global He isotope systematics to be 

reconsidered.  

In our previous work on the Roman Comagmatic Province (Latium and Campania regions) 

we showed that the basaltic rocks display a coherent correlation between the He and Sr 

isotope compositions that implied the two elements are strongly coupled during the 

subduction process [Martelli et al., 2004]. However, it was unclear whether the low 3He/4He 

resulted from post-metasomatic radiogenic ingrowth in a He-poor mantle or addition of 

radiogenic He from subducting crust. Here we complete the systematic survey of the He 

isotopes in Italian Plio-Quaternary basalts by reporting new data from the volcanic provinces 

of southern Italy; specifically the Vulture volcanic region, the Aeolian islands, Ustica, Etna 

and Pantelleria. The helium isotope data are combined with new Sr and Pb isotope 
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determinations in order to constrain the characteristics of the sub-Italian mantle and the 

source of radiogenic helium in mantle wedge.  

 

2 Geochemistry and geodynamic setting of south Italy volcanism 

The Plio-Quaternary mafic volcanic rocks of the Italian peninsula (Figure 1) display extreme 

petrologic and geochemical variation. Volcanic rocks with more than 4% MgO have 

K2O/Na2O that range from 0.1 to 10 [Peccerillo, 2005]. Calc-alkaline to shoshonitic rocks 

dominate the Aeolian Islands, Na-alkaline at Etna, Ustica and the Iblean plateau, K-alkaline 

and calc-alkaline rocks are typical of the RCP, while basalts from the Sicily Channel are 

alkaline [Ellam et al., 1989; Wilson and Bianchini, 1999]. These differences are largely a 

function of the complex geodynamic history of the region over the last 300 Myr [e.g. 

Peccerillo and Turco, 2004]. The Plio-Quaternary volcanism reflects the latest part of this 

process, and is in large part due to the subduction of the Ionian-Adriatic plate in the last 25-

30 Myr [Doglioni et al., 1999].  

The Aeolian volcanic arc has been generated by melt production in the mantle above the 

westward subduction of the Ionian plate [Barberi et al., 1973]. Volcanic activity dates back 

to at least 600 ka, and active volcanism occurs today at Vulcano, Stromboli and Panarea.  

Although there is ample evidence that the magmas underwent interaction with crustal rocks 

[e.g. Ellam et al., 1989; De Astis et al., 2000], regional-scale isotopic and trace variations are 

difficult to explain by assimilation, and unacceptably large degrees of contamination are 

often required to account for the Sr-Nd-Pb isotopic composition of many basalts [e.g. 

Stromboli; De Astis et al., 2000]. The Eolian islands display a large range in ratios of large 

ion lithophile elements (LILE) over high field strength elements (HFSE) and Sr, Nd and Pb 

isotopic compositions. From west (Alicudi and Filicudi) to east (Stromboli) (Figure 1) 

potassic basalts become relatively more important than calc-alkaline basalts, Sr isotope ratios 

and LILE/HFSE ratios increase, and Nd and Pb isotope ratios decrease [Calanchi et al., 

2002]. These major geochemical changes reflect the heterogeneties in the sub-Italian mantle 

[Peccerillo, 2005]. It is well established that the mantle heterogeneity has been produced by 

fluids released by the subducting Ionian-Adriatic plate over the last 30 million years [Civetta 

et al., 1981; Beccaluva et al., 1991; Peccerillo, 1999; Wilson and Bianchini, 1999]. The 

ultimate origin of the fluids that have metasomatised the sub-Italian mantle is, however, not 

well established. Several hypotheses have been developed to explain the observed trace 

elemental and isotopic composition variation in south Italian basalts: melts produced by 
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continental sediments [Beccaluva et al., 1991], aqueous fluids [De Astis et al., 2000; Santo et 

al., 2004], aqueous fluids plus silicate melts [Wilson and Bianchini, 1999], carbonate plus 

silicate component [Conticelli et al., 2004]. 
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Monte Vulture is an isolated stratovolcanic centre in south central Italy, east of the Roman 

and Campanian alignment (Figure 1). It is located at the outer front of the Apennine orogen 

at the edge of the Apulian foreland [Beccaluva et al., 2002]. Magmatism is dominated by Na-

K-rich tephrites and phonolites which were erupted between 800 and 100 ka [Peccerillo, 

2005]. Like the volcanic rocks of the Tyrrhenian margin the Monte Vulture volcanics have 

high LFSE/HFSE and negative Ta, Nb and Ti anomalies, which are attributed to a subduction 

origin. However, basaltic flows from Monte Vulture have lower Th/Nb and distinctive LREE 

and P enrichment which is argued to reflect a contribution from intraplate magmatism 

[Beccaluva et al., 2002]. Recent studies suggest that Monte Vulture sits above a region where 

the subducting slab has become detached, permitting sub-African asthenospheric mantle to 

mix with sub-Tyrrhenian mantle. The sub-Tyrrhenian mantle was previously metasomatised 

by subduction-related fluids [De Astis et al., 2006]. 

The basaltic volcanism of Etna and Ustica is distinct from most of the south Italian arc 

volcanism. Both centres appear to be related to NW-SE faulting in the subducting Adriatic 

plate that has driven upward flow of mantle melts [Gvirtzman and Nur, 1999; Doglioni et al., 

2001; Trua et al., 2003]. Na-alkaline magmatism dominates at Etna. Both sub-alkaline and 

alkaline basalts were erupted at Ustica from 750 to 130 ka.  The Iblean plateau is the foreland 

of the Apennine subduction and has not been involved in subduction processes. The Iblean 

basalts, basaltic andesites and nephelinites, with sodic alkaline and sub-alkaline affinity, 

were erupted between 7.5 and 1.5 Ma. 

Pantelleria island is located approximately 100 km south-west of Sicily in the Sicily Channel. 

It is situated on a NW-SE trending rift that appears to be the result of trans-tensional 

tectonics along the northern margin of the African Plate [Boccaletti et al., 1987]. Mafic 

magmas are transitional- to weakly-alkaline and were erupted between 300 and 5 ka 

[Peccerillo, 2005]. Trace element ratios (e.g. Ta/Yb, Th/Yb, Nb/Zr) have intraplate 

characteristics [Wilson and Bianchini, 1999]. 

 

3. Samples and analytical procedures 

To determine the He isotope composition of the mantle beneath southern Italy, fresh olivine 

and/or pyroxene phenocryst-bearing basaltic lavas or pyroclastic deposits were sampled from 
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the each of the Aeolian islands, Ustica, Pantelleria, Vulture and Etna (Figure 1). Details of 

sample location and rock-type are given in Table 1. To avoid cosmogenic 
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3He contamination 

most samples are from road-cuts or rapidly eroding slopes. Samples are less than 210 ka and 

most have 3He/4He that are higher than similar aged basalts from the Campania-Latium 

regions of the RCP where a significant contribution of radiogenic 4He was excluded [Martelli 

et al., 2004]. These observations suggest that even for new samples we can exclude massive 

presence of radiogenic 4He. 

Helium isotopes were measured in gases released by in vacuo crushing of olivine and 

pyroxene phenocryst separates using procedures similar to Stuart et al. [2000]. The hydraulic 

crusher used in this study does not release lattice-hosted radiogenic [Stuart et al., 2003] or 

cosmogenic He [Williams et al., 2005]. Strontium isotopes were measured on powdered 

basalt whole rock samples used for helium isotope measurement, or on the powders of 

pyroxene from the pyroclastic rocks that remained after in vacuo crush extraction of helium 

[Martelli et al., 2004]. Lead isotope determinations on three basalt samples from Pantelleria 

used the procedures of Ellam [2006]. 

 

4. Results  

The 3He/4He and 87Sr/86Sr values of south Italy basalts are presented in Table 1 and Figures 2 

and 3. The phenocryst 3He/4He ratios range from 2.3 to 7.1 Ra which overlaps and extends to 

higher values the range recorded by basaltic rocks from the Campanian and Roman provinces 

[0.44-5.2 Ra, Martelli et al., 2004] (Figure 3). The most radiogenic 3He/4He ratios are 

recorded by Strombolian basalts (2.7-4.8 Ra).  These values overlap the 3He/4He of the 

Campanian province as recorded by basalts from Procida and Vesuvius [2.5-5.2 Ra, Martelli 

et al., 2004]. The highest 3He/4He of Strombolian basalts overlap values recorded by flows 

from Salina, Lipari and Vulcano (4.5-5.5 Ra).  

The two Panarea samples display very different 3He/4He (La Fossa; ~3 Ra and Punta 

Torrione; ~6 Ra). These flows belong to different volcanic series that are interpreted to be 

derived from different mantle sources. The Punta Torrione flow belongs to the calc-alkaline 

basalt series that are similar in composition to the western arc, while La Fossa is 

geochemically similar to Stromboli [Calanchi et al., 2002]. The separate sources are also 

reflected in the different 87Sr/86Sr of the La Fossa (0.7053) and Punta Torrione flows 

(0.7046). 
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The western-most Aeolian islands (Alicudi and Filicudi) have the highest 3He/4He (6.7-7.1 
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a). These are similar to the values measured in olivine-bearing basalt flows from Ustica 

(~6.6 Ra) and Etna [6.3-7.1 Ra; Marty et al., 1994, this work]. Olivine phenocrysts from three 

alkali basalt flows from Pantelleria have similarly high 3He/4He (7 Ra). Olivine from a 

pyroclastic surge and a xenolith from Monte Vulture have 3He/4He of ~6 Ra. 

In general the olivine 3He/4He are consistent with values of magmatic gases and aqueous 

fluids from each volcanic centre (see Figure 4 for detailed description), confirming that the 

fluids’ maximum 3He/4He generally reflects the degassing of magmatic bodies at depth 

[Martelli et al., 2004]. In the case of Vulcano, the fumarole 3He/4He are greater than the 

phenocryst 3He/4He (Figure 4). Similar features have been observed at Cerro Negro 

[Nicaragua, Fisher et al., 1999], Canary Islands [Hilton et al., 2000] and Etna [Rizzo et al., 

2006]. This may reflect subtle temporal changes in He isotopic composition of the mantle 

source or crustal contamination  [Hilton et al., 1993a, b], or the fractionation of magmatic He 

isotopes  in fumarole gases [Rizzo et al., 2006]. 

Whole rock 87Sr/86Sr range from 0.70308 to 0.7071 (Table 1, Figure 2). This overlaps with 

the range recorded by basaltic rocks from the Campanian and Roman provinces [Martelli et 

al., 2004] (see Figure 3), but extends to lower values. Aeolian island basalts display nearly 

the complete range of 87Sr/86Sr: from 0.70367 at Alicudi to 0.7071 at Stromboli. These values 

are indistinguishable from previous determinations of Aeolian basalts [Calanchi et al., 2002 

and references therein]. The Monte Vulture basalt 87Sr/86Sr (0.70564) falls within the range 

recorded in a more extensive study by De Astis et al. [2006]. The most unradiogenic Sr 

isotope ratios are recorded by basalts from Pantelleria (0.70308-0.70311) and Ustica 

(0.70320-0.70332), which are again similar to previous measurements [Civetta et al., 1998; 

Trua et al., 2003].  

 

5. Discussion 

5.1 He-Sr isotope systematics of Italian Plio-Quaternary volcanism 

It is widely accepted that much of the geochemical variation of Italian Plio-Quaternary 

volcanism reflects variation in mantle composition [e.g. De Astis et al., 2000; Gasperini et 

al., 2002; Peccerillo and Lustrino, 2005]. Trace element and Sr, Nd and Pb isotope variation 

demonstrate a progressive northward mantle enrichment [e.g. Gasperini et al., 2002]. A 

correlation trend in He-Sr isotope space defined by the Roman Province basalts has 

previously been interpreted as a binary mix between a high 3He/4He-low 87Sr/86Sr 
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asthenospheric mantle source and a low 3He/4He-high 87Sr/86Sr component consistent with 

metasomatically-altered mantle [Martelli et al., 2004]. The new He-Sr isotope data from 

southern Italy continue this trend to higher 
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3He/4He and lower 87Sr/86Sr, re-affirming the 

general trend of a southward 87Sr/86Sr decrease that is associated with increasing 3He/4He 

(Figure 3). The high 3He/4He-low 87Sr/86Sr end of the array is defined by Pantelleria, Ustica, 

Etna and the western Aeolian islands (Alicudi and Filicudi). The 3He/4He (6.7-7.1 Ra) and 
87Sr/86Sr (0.7030-0.7036) overlap published values of basalts from the Iblean plateau [Trua et 

al., 1998; Sapienza et al., 2005] and represent the best estimate of mantle uncontaminated by 

fluids from subducting crust and/or sediments.  

Basalts with 3He/4He lower than the south Italy maximum (~7 Ra) contain radiogenic He. In 

the prevailing hypothesis this is derived from the mantle wedge [Martelli et al., 2004]. 

However, crustal contamination of magmas prior to eruption is recorded occasionally in 

south Italian volcanism [Ellam and Harmon, 1990; De Astis et al., 2000]. Of the eight co-

genetic olivine and pyroxene phenocrysts (Table 1), the pyroxene from three samples have 

lower 3He/4He than the olivine. This could be indicative of subtle crustal contamination and 

consequently pyroxene 3He/4He measurements can be only considered a lower limit on the 

magmatic value. It is notable that basalts from Vulcano display a range of 3He/4He (3.3 to 4.9 

Ra) that is not reflected in a concomitant change in 87Sr/86Sr (Figure 2). This probably 

originates from the addition of crustal-radiogenic He to a He-poor magma, probably due to 

shallow degassing [Hilton et al., 1993b]. The 87Sr/86Sr of the basalts is less sensitive to 

crustal contamination as the Sr concentration of the basaltic melts is higher than in the 

contaminating crust [Ellam and Harmon, 1990]. Similar conclusions were proposed by Ellam 

and Harmon [1990] based on the Sr-O systematics in the Aeolian lavas. 

The Plio-Quaternary Italian basalts appear to define a near-linear trend in He-Sr isotope 

space (Figure 3). This coherent relationship between He and a lithophile radiogenic isotope 

tracer is rare. Its occurrence over a large part of 87Sr/86Sr observed in mantle rocks argues 

strongly against it being fortuitous. The lowest 87Sr/86Sr are consistent with previous 

determinations of uncontaminated sub-Italian mantle (0.7025) [e.g., Gasperini et al. 2002].  

However, there is considerable uncertainty in the 87Sr/86Sr of the crustal component due in 

large part to the apparently high 87Sr/86Sr of the most enriched Tuscan lamproites [~0.715; 

Conticelli and Peccerillo, 1992; Gasperini et al., 2002]. It is frequently argued that the 

Tuscan volcanic rocks involve a third “crustal” component with more radiogenic Sr than is 

present elsewhere in Italian Plio-Quaternary volcanism [e.g. Rogers et al. 1985; Ellam et al. 

1989; Gasperini et al., 2002]. The well-defined isotopic composition of crustal He can be 

 8



combined with the coherent He-Sr isotope relationship (Figure 3) to establish the 87Sr/86Sr of 

the crustal component. Simply extrapolating a linear fit to an end-member with 
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3He/4He < 

0.1 Ra (undiluted radiogenic He) implies that the crustal component has 87Sr/86Sr ~ 0.712 

(Figure 3). One implication of the essentially linear 3He/4He-87Sr/86Sr trend exhibited by the 

data (Figure 3) is that the (He/Sr) of the crustal component mantle must be similar to the 

(He/Sr) of the unaltered mantle in the wedge (K = (He/Sr)c/(He/Sr)m ranges between 1 and 4; 

c: crust, m: mantle). In Figure 5 we have plotted compilations of He-Nd and He-Pb isotope 

measurements from Italian basalts (see figure caption for details). Although the data were not 

measured on the same samples they appear to define binary mixing trends similar to the He-

Sr isotope trends. For a mantle component with 143Nd/144Nd = 0.51305 and 206Pb/204Pb = 

19.9, and crustal component with 143Nd/144Nd = 0.51205 and 206Pb/204Pb = 18.55, KHe-Nd and 

KHe-Pb range between 0.3 and 3 (Figure 5). In this case the K values do not change 

significantly if Tuscan lamproites are considered because their 143Nd/144Nd and 206Pb/204Pb 

are similar to Latium basalts [Peccerillo, 2005]. This result is consistent with the near-linear 

or slightly curved Sr-Nd and Sr-Pb isotope trends of Italian basalts without inclusion of the 

Tuscan rocks [e.g. Gasperini et al., 2002]. 

  

 

5.2 The origin of radiogenic He in Italian Plio-Quaternary volcanism 

The low helium isotope ratios of basalts from the eastern Aeolian islands and mainland Italy 

[down to ~ 1 Ra, Martelli et al., 2004] are atypical of subduction zones. The absence of 

radiogenic He in oceanic arc basalts and fluids suggests that the direct addition of radiogenic 

He by subduction of oceanic lithosphere is unlikely [Patterson et al., 1994; Dodson and 

Brandon, 1999; Bach and Niedermann, 1998; Hilton et al., 2002]. The presence of 

radiogenic He in the Plio-Quaternary basalts of Italy, therefore, relies on a continental source. 

The presence of subducted continental crust in Italy is well documented [e.g. Carminati et 

al., 2005]. The Banda arc is the only other subduction zone where low 3He/4He basalts result 

from interaction of the mantle wedge with the subducting continental crust [Hilton et al., 

1992]. In contrast to Italy, the He isotope composition of Banda arc basalts appears not to be 

strongly coupled to Sr isotopes and other petrogenetic tracers [Hilton et al., 1992]. The low 
3He/4He of the Banda arc basalts has been attributed to contamination of the mantle wedge 

by subduction of continental crust [Hilton et al., 1992]. However, the isotopic-trace element 

signature of Italian arc basalts supports contamination of the mantle wedge by fluids derived 

from subducted crustal rocks [Gasperini et al., 2002; Peccerillo, 2005]. A sharp change in 
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3He/4He at Banda (from 6 to 1.2 Ra) over a 70 km-wide zone is interpreted as a transition 

between the subduction of oceanic and continental slabs [Hilton and Craig, 1989]. The 

existence of an oceanic-continental crust transition in Italy is unclear [e.g. Amato and 

Montone, 1997] and the 
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3He/4He distribution shows no sharp change consistent with a net 

transition. 

The radiogenic He in the mantle wedge may originate from two sources; (i) the 4He ingrowth 

in the mantle wedge after metasomatic enrichment of U and Th, and/or (ii) addition of 

crustal-radiogenic He to the mantle wedge via fluids from the subducted slab.  

The effect that both processes have on altering the isotopic composition of mantle He 

depends strongly on the initial concentration of the unmodified mantle. This is an admittedly 

poorly-constrained parameter. The depleted MORB-mantle (DMM) source has a relatively 

well-established He concentration (1.5 x 10-5 cc STP/g) [Allegre et al., 1986-87; Sarda and 

Graham, 1990]. In common with other studies [e.g. Dunai and Baur, 1995; Hilton et al., 

2000; Shaw et al., 2006] in the following discussion we use DMM He concentrations for 

illustrative purposes, although it should be borne in mind that the sub-Italian mantle may 

have a slightly different He concentration.  

(i) The duration of the ingrowth of 4He due to metasomatic addition of U and Th from the 

slab is limited. Westward subduction of the Ionian-Adriatic plate started no earlier than 30 

Ma [Doglioni et al. 1999] and provides an upper limit for the duration of ingrowth. The 

metasomatised mantle has a maximum content of 200 ppm U and 950 ppm Th and this 

produces 1.5 x10-6 ccSTP 4He /g  in 30 Myr [Martelli et al., 2004]. This is sufficient to lower 

the 3He/4He of a DMM source (typically 7-9 Ra) by less than 10% and cannot explain the low 

ratios of Italian basalts. Post-metasomatic He ingrowth can only decrease mantle 3He/4He 

significantly if the initial mantle He concentration is two orders of magnitude or less than 

DMM concentration.  

(ii) For the radiogenic He in the Italian basalts to originate in subducted continent-derived 

material we require a mechanism to transport the crustal He to the fluids that metasomatise 

the mantle wedge. Of the common rock-forming minerals, garnet likely has the highest 

closure temperature [Tc = 600°C, Dunai and Roselieb, 1996] and will transport the crustal-

radiogenic He to the greatest depth. It is worth noting that if Tc of He in garnet is as low as 

proposed by Blackburn and Stockli [2006] (110-300°C), He would not be transported at 

significant depth. In order to estimate the maximum amount of He that could be transferred 

to the mantle wedge above the subducting slab, we assume that all the He produced in the 
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garnet of the crustal basement is entirely transferred to the wedge via an aqueous fluid or 

melt (Table 3, Figure 6). Using the parameters in Table 3 we estimate that the Adriatic 

basement has approximately 1.1 x 10
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-6 cc 4He STP/g. The effect that the subduction of this 

He has on decreasing the mantle 3He/4He ratios depends the volume of mantle that it affects. 

Figure 7 illustrates that, assuming an initial [He]DMM, the addition of crustal He decreases the 
3He/4He to 1 Ra only if the volume of metasomatised mantle is very small (E-W extension = 

7 km). This is not compatible with the geographic distribution of the contaminated wedge as 

we can assume that the E-W extension should be at least 45 km (i.e., the distance from 

Vesuvio to Ischia in Campania region, both contaminated by the subduction). In order to 

satisfy this constraint, the initial [He] of the mantle should be lower than 6 x 10-7 cc STP/g. 

Therefore, neither post-metasomatic ingrowth nor the direct addition of crustal He can 

explain the low 3He/4He mantle that is prevalent in the Italian magmatism if it starts with 

DMM He concentrations. A mantle reservoir with He concentration low enough for either 

mechanism to have generated the radiogenic 3He/4He would rapidly evolve low 3He/4He 

(unless buffered by the addition He from elsewhere). It is highly unlikely that a low [He] 

HIMU mantle reservoir could consistently evolve the remarkably constant 3He/4He that is 

typical of the global HIMU mantle-source [Hanyu and Kaneoka, 1997]. Instead, it is more 

likely that mantle He is lost as a result of the process of metasomatism. One mechanism may 

be that the percolation of the metasomatic fluid devolatilises the mantle wedge in a manner 

similar to that during aqueous/carbonic fluid infiltration through crustal rocks [Bickle and 

Baker, 1990]. Studies of incipient charnockite formation in southern India, for instance, 

suggest that a dehydration reaction front propagates through the silicate rock due to 

advection of an infiltrating CO2-rich fluid [Harris and Bickle, 1989]. This process tends to 

remove the soluble components, including the inert gases, leaving behind a U- and Th-rich 

but He-poor mantle that is susceptible to radiogenic ingrowth. Although we cannot rule out 

the possibility that a proportion of the radiogenic He in the sub-Italian mantle is derived from 

the infiltrating metasomatic fluids, post-metasomatic ingrowth can account for the low 
3He/4He and coherent He-Sr isotope trend if the mantle wedge was sufficiently degassed 

during metasomatism.  

 

5.3 Mantle source of south Italian volcanism 

The He isotopic composition of Pantelleria, Alicudi, Filicudi, Ustica and Etna (6.7-7.1 Ra) 

are the highest in the region and imply that crustal fluids have not significantly modified the 
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He isotopes of the mantle source. This range overlaps values of xenoliths from Iblean plateau 

basalts [7.3 ± 0.3 R
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a; Sapienza et al., 2005]. Anyway, if we consider the Sr, Nd and Pb 

isotopes, the uncontaminated mantle end member should be restricted to Etna, Iblei and 

Pantelleria (Figure 3 and 5). 

In plots of Sr vs. Pb and Nd vs. Pb isotopes the most primitive (i.e., not contaminated by the 

subduction) Italian volcanism lies intermediate between compositions that are typical of sub-

oceanic depleted mantle (DMM) and HIMU-type mantle (high µ = high 238U/204Pb) [Civetta 

et al., 1998; Gasperini et al., 2002]. Some authors [e.g. Peccerillo, 2003; De Astis et al., 

2006] have argued that the relatively depleted mantle melts in southern Italy are 

compositionally similar to the deep mantle proposed to originate in the so-called Focal-zone 

(FOZO) of ocean island basalts [e.g. Hart et al. 1992]. Hart and co-workers argue that the 

FOZO mantle is the source of high 3He/4He in ocean island basalts. If this is correct, this 

implies that the Italian volcanism should have 3He/4He higher than typical values of MORB, 

conceivably up to 50 Ra [Stuart et al., 2003]. Although there is abundant evidence that the 

high 3He/4He mantle has a composition similar to depleted mantle [e.g. Stuart et al., 2003], 

the low 3He/4He of the uncontaminated basalts clearly rules out FOZO mantle beneath 

southern Italy and the Sicily Channel. The average 3He/4He of olivine from Alicudi, Filicudi, 

Ustica, Etna, Iblei and Pantelleria is 6.8 ± 0.2 Ra. Although this does not unequivocally rule 

out a depleted mantle source [MORB: 8 ± 1 Ra; Farley and Neroda, 1998] it is remarkably 

similar to the average 3He/4He of the HIMU end-member [6.8 ± 0.9 Ra; Hanyu and Kaneoka, 

1997, Moreira and Kurz, 2001] as defined by basalts with 206Pb/204Pb > 20.3.  

Also, the presence of the EM1-type enriched mantle [87Sr/86Sr ~ 0.705 and 143Nd/144Nd ~ 

0.51245; Zindler and Hart, 1986, Hofmann, 1997] has been suggested to explain the isotopic 

composition of basalts from Alicudi [Peccerillo et al., 2004] and Pantelleria [Civetta et al., 

1998]. 3He/4He of EM1-type basalts is not precisely determined [Hanan and Graham, 1996; 

Eiler et al., 1997] and consequently cannot be used to distinguish a contribution. The Pb 

isotope composition of the Pantelleria basalts (206Pb/204Pb = 19.32-19.67; Table 2) overlaps 

the range previously measured [206Pb/204Pb =19.09-19.69; Esperanca and Crisci, 1995] and 

is significantly more radiogenic than EM1 [206Pb/204Pb = 17.0-18.5; Hofmann, 1997], clearly 

indicative of HIMU-type mantle. 

The maximum 143Nd/144Nd and 206Pb/204Pb measured in basalts from Etna, Iblei and 

Pantelleria are between 0.51290 and 0.51302 and 19.8 and 20.0, respectively [Marty et al., 

1994; Civetta et al., 1998; Gasperini et al., 2002]. Such values are in the range of the Low 

Velocity Composition, as defined by Hoernle et al. (1995), a uniform geochemical reservoir 
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that beside southern Italy is tapped by volcanism of the Canary islands and Central European 

volcanic province (Massif Central, Eifel, Rhine graben, Lower Silesia, western Pannonian 

basin). The magmatism of this province has also been included into the Common Mantle 

Reservoir (CMR), a widespread igneous province developed within the Mediterranean sea 

and surrounding regions [Lustrino and Wilson, 2007]. Importantly, helium isotopes in the 

European Cenozoic Provinces [Dunai and Baur, 1995; Gautheron et al. 2005], and north 

Africa [Barfod et al., 1999; Beccaluva et al. 2007a,b] are indistinguishable from the south 

Italy average. These regions have very different lithospheric history and tectonic regimes. 

For instance, Pantelleria is associated with lithospheric rifting, Iblei is a foreland region and 

Etna is a mixed intraplate-subduction volcanism [Schiano et al., 2001; Tonarini et al., 2001]. 

The near-identical Sr, Nd, Pb and He isotope geochemistry of the volcanics favours a 

regionally common mantle origin over local explanations. For instance, it is difficult to 

reconcile an origin for the south Italian mantle composition in locally upwelling deep mantle 

[Gasperini et al., 2002] and in absence of geophysical evidence for the necessary slab 

window [e.g. Lucente et al., 1999]. A common source for the European/African volcanism 

has been related to the broad upwelling of a deep mantle plume based on geophysical 

observations [Hoernle et al., 1995]. It is well-established that the enriched trace element 

composition and isotope geochemistry of HIMU-like mantle can be generated by the storage 

of small volume alkali- and volatile-rich melts at the base of the oceanic and continental 

lithosphere for a few 100 million years [Halliday et al., 1995; Niu and O’Hara, 2003; Panter 

et al., 2006]. Recent geochemical studies of xenolith suites from the Europe and North Africa 

have shown that the HIMU signature has been generated by enrichment of lithosphere by 

fluids and melts [e.g. Pilet et al., 2005; Beccaluva et al., 2007b]. 

The Pb isotope composition of south Italian basalts are less radiogenic than the Cook-Austral 

islands and St. Helena basalts that define the HIMU end-member [Chaffey et al., 1989; 

Woodhead et al., 1996]. Carbonatite metasomatism has been proposed for the origin of the 

HIMU characteristics [Hauri et al., 1993]. This hypothesis is not fully supported by the 

geochemistry of the Italian basalts. The anomalies evident in the trace-elements patterns of 

carbonatite, in particular high Zr/Hf [~60, Chakhmouradian 2006], are not observed in the 

Italian basalts. For example, using the database of Peccerillo (2005), the average Zr/Hf of 

Etna, Iblean and Pantelleria basalts is 46 (n = 298). The standard model predicts an origin for 

the south Italian mantle as a mix between HIMU and a pre-existing depleted mantle end-

members [e.g. Civetta et al., 1998; Gasperini et al., 2002]. However, the similarity of the Pb, 

Sr, Nd and He isotope composition of intraplate volcanism across Europe and North Africa is 
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difficult to reconcile with a two component mixing process that, by it’s nature, will vary 

spatially and temporally. It seems more likely that the HIMU-like signature reflects a single 

mantle composition that has either not had as long as the Cook-Austral island source to 

grow-in radiogenic Pb, or has a lower 
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238U/204Pb. The absence of depleted mantle is 

supported by the incompatible trace element signature of melt inclusions in olivine 

phenocrysts from Ustica, Etna and Iblean plateau that are remarkably similar to typical 

HIMU [Schiano et al., 2004]. Therefore the alternative explanation is that the south Italy 

mantle end-member has been generated by enrichment of the lithosphere by alkaline 

carbonate-rich melts. In this case passive asthenospheric mantle uprising and decompression 

melting is linked to tensional stresses in the lithosphere during Cenozoic reactivation and 

rifting. 

 

6. Conclusions  

Helium isotopes in phenocrysts from mafic volcanic rocks from south Italy (Pantelleria, 

Etna, Iblei, Ustica and western Aeolian islands) have an almost homogeneous 3He/4He (6.7-

7.1 Ra). The different tectonic environment of these sites (stable cratonic, intraplate, 

subduction, rifting) appears to have no strong effect on the isotopic signature of basalts. The 

He-Sr-Pb isotope composition rules out an origin in deep mantle origin like FOZO and is 

consistent with either a HIMU younger than Cook-Austral island or with lower 238U/204Pb. 

Helium isotopes from all Italian Plio-Quaternary volcanism correlate well with Sr, Nd and Pb 

isotopes. The general northward increase in radiogenic He, Sr and Pb and unradiogenic Nd 

reflects the progressive contamination of the mantle wedge by metasomatic fluids released by 

the subducting Ionian-Adriatic plate. Calculations based on the ingrowth of 4He in the wedge 

and on the 4He content of the subducting crust show that mechanisms of enrichment in 

radiogenic He are effective only if the wedge is He-depleted. This can be accommodated if 

the process of metasomatism depleted the mantle wedge. 
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Figure 1. Map of southern Italy showing the volcanic regions sampled in this study.  Material 
previously studied by Martelli et al. (2004) includes Latium (Alban Hills and Mt. Vulsini), 
Roccamonfina (Rocc.), Flegrean Fields (F.F.), Ischia, Procida and Vesuvio (Ves.). The 
arrows indicate the direction of the subduction. Geographic map after Valensise and Pantosti 
[2001], modified. 
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Figure 2. He-Sr isotope covariation in Plio-Quaternary basalts from Aeolian islands. Helium 
isotopes are determined by in vacuo crushing of olivine (squares) and pyroxene (circles) 
phenocrysts.  
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Figure 3. 87Sr/86Sr vs 3He/4He for Italian Plio-Quaternary volcanism. Helium isotopes are 
measured in olivine (squares) and pyroxene (circles) phenocrysts. Latium and Campania data 
after Martelli et al. [2004]. The field representing Iblei uses data from Sapienza et al. [2005] 
and Trua et al. [1998]. Etna data are from Marty et al. [1994] and this work. DMM and 
HIMU data after Hofmann [1997], Hanyu and Kaneoka [1997], Farley and Neroda [1998]. 
In the K notation, c: crust, m: mantle.  
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Figure 4. A comparison of the 3He/4He of phenocryst-hosted fluid inclusions with 3He/4He of 
free gases from the same volcanic district. Data from Vulsini, Albani, Flegrean Fields (F.F.) 
and Vesuvio (Ves.) are from Martelli et al. [2004]. Free gas data from Etna [Caracausi et al., 
2003], Pantelleria [Parello et al., 2000], Stromboli [Inguaggiato and Rizzo, 2004], Vulcano 
[Tedesco et al., 1995] and Panarea [Caliro et al., 2004]. 
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Figure 5 (a) 3He/4He vs. 143Nd/144Nd and (b) 3He/4He vs. 206Pb/204Pb constructed using our He 
isotope determinations [this work; Martelli et al., 2004] except for Etna [Marty et al., 1994] 
and Iblei [Sapienza et al., 2005]. Pb and Nd isotope measurements after: this work; 
Hawkesworth and Vollmer, [1979]; Ellam et al., [1989]; Francalanci et al., [1993]; Marty et 
al., [1994]; D’Antonio et al., [1996]; Ayuso et al., [1998]; Civetta et al., [1998]; Pappalardo 
et al., [1999]; Gasperini et al., [2002]; Calanchi et al., [2002]; Conticelli et al., [2002]; 
Armienti et al., [2004]; Peccerillo et al., [2004]; Sapienza et al., [2005]. DMM and HIMU 
data after Hofmann [1997]; Hanyu and Kaneoka; [1997]; Farley and Neroda [1998].  
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Figure 6 

Simplified model used to calculate the amount of crustal He that the subducting plate 
may transport into the mantle wedge in the Roman Province. The structure of the Adriatic 
continental crust is after Finetti et al. [2001] and Mele and Sandvol [2003]. Slope of the 
slab is 60° [Carminati et al., 2005]. The a segment is the E-W extension of contaminated 
wedge (grey area, see Figure 7).  
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Figure 7. The effect that the direct addition of crustal radiogenic He from the subducting 
Adriatic plate (Table 3) will have on the 3He/4He of the mantle wedge beneath north Italy. 
Given that the slope of the slab is constrained (Figure 6), the E-W extension of the wedge 
allows to calculate the volume of the wedge. With the ratio Volumecrust / Volumewedge we can 
calculate the concentration of crustal He eventually transferred into the wedge.  
It is assumed that the initial mantle has 3He/4He = 7.6 Ra (the highest ratio measured in the 
area), He concentration similar to MORB-source mantle (see text) and has already been 
contaminated by the He produced by ingrowth. 3He/4He decreases significantly only if the 
volume of mantle wedge involved is small. 
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888  

Place Sample  Location N Location E Weight 
(g) 

3He/4He 
(R/Ra) ±1s 

He 
10-9 cc/g 

87Sr/86Sr 

Alicudi AL ol 38° 33’ 13.1” 14° 21’ 42.2” 0.65 7.07 ± 0.33 2.50 0.703670 ± 15 
Alicudi GA ol 38° 32’ 45.9” 14° 20’ 24.2” 1.19 6.79 ± 0.12 8.40 0.704051 ± 15 
Alicudi GA px 38° 32’ 45.9” 14° 20’ 24.2” 1.40 6.52 ± 0.13 6.10  
Filicudi Mte Guardia ol 38° 33’ 34.4” 14° 34’ 27.1” 0.75 6.66 ± 0.24 7.00 0.704403 ± 15 
Filicudi Mte Guardia px 38° 33’ 34.4” 14° 34’ 27.1” 1.25 5.06 ± 0.08 8.00  
Salina T.d. Porri ol 38° 32’ 52.8” 14° 49’ 54.0” 1.00 5.35 ± 0.34 2.30 0.704544 ± 18 
Salina T.d. Porri px 38° 32’ 52.8” 14° 49’ 54.0” 0.91 4.50 ± 0.12 2.00  
Lipari M.S. Angelo px 38° 27’ 53.9” 14° 56’ 09.9” 2.30 4.60 ± 0.12 2.50 0.705629 ± 13 

Vulcano Vulcanello ol 38° 25’ 22.6” 14° 57’ 12.4” 0.96 3.97 ± 0.69 0.33 0.704628 ± 15 
Vulcano Vulcanello px 38° 25’ 22.6” 14° 57’ 12.4” 5.43 2.29 ± 0.40 0.096  
Vulcano V-250 ol 38° 23’ 31.1” 14° 58’ 02.7” 0.85 4.35 ± 0.19 2.70 0.704367 ± 15 
Vulcano V-375 px 38° 23’ 50.5” 14° 59’ 10.6” 3.45 4.89 ± 0.11 6.70 0.704710 ± 15 
Vulcano Dicco px 38° 22’ 50.0” 14° 59’ 34.8” 2.96 3.36 ± 0.75 0.19 0.704715 ± 15 
Vulcano Molineddo px 38° 23’ 47.8” 14° 58’ 42.6” 3.68 4.44 ± 0.17 0.97 0.704761 ± 13 
Vulcano P. Luccia px 38° 23’ 43.1” 14° 59’ 09.2” 2.00 4.37 ± 0.32 0.81 0.704560 ± 14 
Panarea P. Torrione px 38° 37’ 46.7” 15° 04’ 16.1” 2.41 6.09 ± 0.34 1.70 0.704664 ± 15 
Panarea La Fossa px 38° 38’ 01.0” 15° 04’ 30.0” 2.10 3.10 ± 1.75 0.042 0.705374 ± 15 

Stromboli Neo ol 38° 48’ 33.5” 15° 13’ 30.4” 1.50 2.71 ± 0.18 4.00 0.706799 ± 13 
Stromboli Neo px 38° 48’ 33.5” 15° 13’ 30.4” 1.53 2.51 ± 0.29 0.82  
Stromboli 2003 Biondo ol 38° 47’ 34.8” 15° 12’ 57.7” 1.51 2.90 ± 0.37 0.022 0.706171 ± 17 
Stromboli 2003 Biondo px 38° 47’ 34.8” 15° 12’ 57.7” 0.86 3.32 ± 0.26 0.053  
Stromboli La Petrazza ol 38° 47’ 33.7” 15° 14’ 16.0” 0.86 4.64 ± 0.46 0.99 0.706026 ± 17 
Stromboli La Petrazza px 38° 47’ 33.7” 15° 14’ 16.0” 2.02 4.78 ± 0.09 3.90  
Stromboli S. Bartolo ol 38° 48’ 23.2” 15° 14’ 10.1” 0.80 3.41 ± 0.26 1.70 0.707115 ± 16 
Stromboli S. Bartolo px 38° 48’ 23.2” 15° 14’ 10.1” 2.21 3.18 ± 0.08 2.30  

Ustica Faro ol 38° 41’ 45.0” 13° 09’ 23.1” 2.02 6.65 ± 0.21 0.69 0.703322 ± 18 
Ustica Spalmatore ol 38° 41’ 35.6” 13° 09‘ 25.2” 2.08 6.49 ± 0.32 0.28 0.703200 ± 15 

Vulture* P6 ol 40° 56’ 09.7” 15° 35’ 31.1” 6.31 6.02 ± 0.03 230 0.705648 ± 19 
Vulture* P6 px 40° 56’ 09.7” 15° 35’ 31.1” 6.13 6.06 ± 0.03 2900  
Vulture V10 ol 40° 56’ 09.7” 15° 35’ 31.1” 6.12 6.03 ± 0.07 0.45 0.704258 ± 19 

Etna  2003 ol n.a n.a 2.04 6.60 ± 0.10 1.40 0.703450 ± 15 
 889 

890 
891 

Table 1. 3He/4He of olivine and pyroxene phenocrysts, and whole rock 87Sr/86Sr, of basalts 
from southern Italy. *Data after Paternoster, [2004].
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Sample Location N Location E Phase Weight (g) 3He/4He 
(R/Ra) 

87Sr/86Sr [He]
(10-9 cc/g) 

 

143Nd/144Nd 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 

C. Bruciata 36° 49’ 37.5 11° 57’ 22.2 ol 1.06 7.12 ± 0.30 0.70309 ± 15 1.9 0.51301 ± 1 19.637 ± 5 15.701 ± 4 39.229 ± 13 
P.Guardia 36° 50’ 10.7 11° 58’ 04.3 ol 1.10 7.00 ± 0.20 0.703082 ± 15 4.2 0.51302 ± 1 19.324 ± 5 15.645 ± 4 38.913 ± 9 

P.S. Leonardo 36° 50’ 09.2 11° 56’ 43.6 ol 1.15 6.95 ± 0.15 0.70311 ± 19 2.3 0.51300 ± 1 19.675 ± 5 15.672 ± 5 39.203 ± 10 

 
 
Table 2.  He, Sr, Nd and Pb isotopic data of Pantelleria basalt. 
 

 



 
 
 
 

  REFERENCE 
U in garnet 2 ppm Extrapolated from De Wolf et al., [1996]; 

 Jung and Mezger, [2003] 
Th/U in garnet 2 Extrapolated from De Wolf et al., [1996]; 

 Aciego et al., [2003]; Jung and Mezger, [2003] 
Garnet  in the basement 1 % Extrapolated from Montanini and Tribuzio, [2001] 

Age of the Adriatic basement 310 Ma Montanini and Tribuzio, 2001; Finetti et al., [2001] 
Length of subducted Adriatic crust  170 km Carminati et al., [2005] 

Thickness of the basement 25 km Finetti et al., [2001]; Carminati et al., [2005] 
 Radiogenic 3He/4He  0.03 Ra O’Nions and Oxburgh, [1988] 

 
Table 3. Parameters to calculate the amount of radiogenic He produced and accumulated 
in the subducting crust. We assume that He of the sediments is degassed in the early 
stages of the subduction while He of the basement is entirely transferred into the mantle 
wedge. Following Carminati et al. [2005], the entire basement is subducted. We 
considered the basement formed by the lower crustal rocks studied by Montanini and 
Tribuzio [2001]. Such parameters give an accumulation of 4He of 1.1 x 10-6 ccSTP/g in 
the subducting crust.  
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