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Abstract 

 This paper achieves three goals: 1) It demonstrates that crack tips governed by friction 

laws including slip–weakening, rate– and state–dependent laws, and thermal pressurization of 

pore fluids, propagating at super–shear speed have slip velocity functions with reduced high 

frequency content compared to crack tips traveling at sub–shear speeds. This is demonstrated 

using a fully dynamic, spontaneous, 3–D earthquake model, in which we calculate fault slip 

velocity at nine points (locations) distributed along a quarter–circle on the fault where the 

rupture is traveling at super–shear speed in the in–plane direction and sub–shear speed in the 

anti–plane direction. This holds for a fault governed by the linear slip–weakening constitutive 

equation, by slip–weakening with thermal pressurization of pore fluid and by rate– and     

state–dependent laws with thermal pressurization. The same is also true even assuming a 

highly heterogeneous initial shear stress field on the fault. 2) Using isochrone theory we derive 

a general expressions for the spectral characteristics and geometric spreading of two pulses 

arising from super–shear rupture, the well–known Mach wave, and a second lesser known 

pulse caused by rupture acceleration. 3) The paper demonstrates that the Mach cone 

amplification of high frequencies overwhelms the deamplification of high frequency content in 

the slip velocity functions in super–shear ruptures. Consequently, when earthquake ruptures 

travel at super–shear speed, a net enhancement of high frequency radiation is expected, and the 

alleged “low” peak accelerations observed for the 2002 Denali and other large earthquakes are 

probably not caused by diminished high frequency content in the slip velocity function, as has 

been speculated. 

  

 Key words: Earthquake, dynamic rupture, governing laws, super–shear velocity, isochrone 
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theory, numerical simulations. 

 

1. Introduction 

The problem of the rupture propagation at speeds greater that shear wave velocity has 

received the increasing interest of theoretical and numerical studies, laboratory experiments 

and observations of real–world events. Using analytical models of non–spontaneous, purely  

in–plane (mode II) crack Burridge (1973), Freund (1979), Broberg (1994, 1995) and 

Samudrala et al. (2002) demonstrated that rupture can stably propagate at super–shear rupture 

velocity. At the same time numerical simulations showed that spontaneous ruptures governed 

by a linear slip–weakening friction law (Andrews, 1976a; Das and Aki, 1977a; Das, 1981; 

Bizzarri et al., 2001 in the 2–D, purely in–plane case and Day, 1982; Madariaga and Olsen, 

2000; Bizzarri and Cocco, 2005 (BC05 in the following); Day et al., 2005 in the 3–D one) as 

well as spontaneous ruptures obeying to rate– and state–governing laws (Okubo, 1989 in the  

2–D case and BC05 in the 3–D one) exhibit, for carefully chosen values of governing 

parameters, a jump from sub– to super–shear rupture velocities.  

On the other hand, pioneering laboratory experiments made by Wu et al. (1972) and by 

Johnson et al. (1973) showed that super–shear stick–slip motion occurred after a stable sliding. 

More recently it has been found (Rosakis et al., 1999; Xia et al., 2004) that shear cracks from 

either projectile impact loading or shear loading with exploding–wire–nucleation can propagate 

at intersonic speed in homalite.  

In spite of this profusion of analytical, numerical and laboratory evidence it is well known 

that observations of crustal earthquakes have revealed that most ruptures tend to propagate 
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with an average velocity that is about 80% of the shear wave velocity (e. g. Heaton, 1990). 

However, there are a few earthquake ruptures which appear to have propagated with a velocity 

greater that the shear wave velocity: the M6.5 1979 Imperial Valley, California, EQ (Olson and 

Apsel, 1982; Archuleta, 1984; Spudich and Cranswick, 1984), the M7.4 1999 Kocaeli (Izmit), 

Turkey, EQ (Bouchon et al., 2000, 2001), the M7.2 1999 Ducze, Turkey, EQ (Bouchon et al., 

2001), the M8.1 2001 Kokoxili (Kunlun), Tibet, EQ (Bouchon and Vallee, 2003; Bhat et al., 

2007); the M7.9 2002 Denali, Alaska, EQ (Ellsworth et al., 2004; Dunham and Archuleta, 

2004; Aagaard and Heaton, 2004; Dunham and Archuleta, 2005); the M6.0 2004 Parkfield, 

California, EQ (Liu et al., 2006), and the 1906 San Francisco, California, earthquake (Song et 

al., 2007). However, there is some debate regarding the robustness of the conclusions made in 

above–mentioned papers (see for instance Archuleta, 1984; Bouin and Bernard, 1994; Delouis 

et al., 2002). Much uncertainty about the observation of super–shear rupture is mainly due to 

the lack of sufficient strong motion records (Bhat et al., 2007). 

The above list suggests that large (M > 7.1) strike–slip earthquakes have an increased 

tendency to rupture at super–shear speed, and more importantly, M ~ 8 strike–slip earthquake 

might preferentially rupture at super–shear speed. Because these earthquakes are potentially the 

most damaging, it is important to determine whether super–shear rupture speed might have 

some systematic effect on ground motions. Three competing effects have been identified. Both 

Spudich and Frazer (1984; henceforth SF84) and Bernard and Baumont (2005; henceforth 

BB05) have noted that super–shear ruptures emit a Mach cone having enhanced high 

frequencies. BB05 further noted that sustained super–shear propagation can radiate a locally 

planar or conical wave front having less geometric spreading than that radiated from sub–shear 

rupture. Spudich and Oppenheimer (1986, their Figure 8) found that in ruptures with highly 
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variable rupture velocity, most of the high frequency radiation comes from numerous very 

compact loci of super–shear rupture.  On the other hand, Ellsworth et al. (2004) and BB05 have 

noted that in classical fracture mechanical models, crack tip singularities emit diminished high 

frequency motion when traveling at super–shear speeds, which might nullify the Mach cone 

enhancement of high frequencies. Ellsworth et al. (2004) specifically proposed this to explain 

the reduction of high frequency motion at Pump Station 10 during the Denali earthquake, 

compared to the predictions of ground motion prediction relations. More generally, newly 

developed ground motion prediction relations based on data from the recent large earthquakes 

listed above (e.g. Abrahamson and Silva, 2008; Boore and Atkinson, 2008; Campell and 

Bozorgnia, 2008; Chiou and Youngs, 2008) show that peak acceleration reaches a limit at high 

magnitudes, which may be related in part to the  super–shear rupture velocity in these 

earthquakes, although the 1999 Chi–Chi, Taiwan, earthquake, which was sub–shear, also 

shows this limited ground motion.  

There is theoretical evidence suggesting that super–shear ruptures emit diminished high 

frequency motion. From the analytical solutions found by Burridge (1973) of a                   

non–spontaneous (i.e., with prior imposed constant rupture velocity), purely in–plane,        

self–similar problem, Andrews (1976b), using a simple Coulomb fracture criterion (i.e., 

without governing law), predicts that the slip velocity pulse v is of the form 

 

(1) 

 

where H(.) is the Heaviside function and ta is the arrival time of the crack at the chosen 

distance from the initiation where v is calculated. In equation (1) the exponent a
(A)

 is equal to 

( ) ( ) ( )aa
a ttHtttv        

(A)  −−∝ −
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1/2 in the sub–shear regime (formally when the rupture velocity vr is lower than or equal to the 

Rayleigh velocity vR); in the super–shear one (i.e., if vS ≤ vr ≤ vP) a
(A)

 increases from 0 at vr = vS 

up to 1/2 for vr equal to the Eshelby speed (vE 
df
=  2 vS; Eshelby, 1949) and then decreases 

down to 0 when vr = vP . This implies that slip velocity pulse will have less high frequency 

when the crack is traveling with super–shear rupture speed and more high frequency when it is 

sub–shear
(1)

. This simply because ( ) ( )aa ttHtt      0  −− −  has less high frequency (Fourier 

amplitude spectrum ∝ ω
–1

) than ( ) ( )aa ttHtt      1/2  −− −  (Fourier amplitude spectrum ∝  ω
–1/2

). 

Andrews (1976b) also showed that slip velocity pulses in smoothed fracture models might also 

show the same modification of their high–frequency components, although he did not specify a 

constitutive laws. 

 One of the goals of the present paper is to see if the above conclusion about the Fourier 

spectrum of slip velocity is valid also in the case of a fully spontaneous, truly 3–D rupture 

developing on a planar fault governed by different constitutive equations. It is well known (see 

for instance Madariaga and Olsen, 2000; BC05) that in the 3–D rupture problem vr increases 

continuously up to the P–wave speed without having any forbidden range (from vR to vS), 

typical of the purely in–plane rupture problems. In the light of this fact, the result of Andrews 

tells us nothing about the exponent a
(A)

 — and therefore about the high frequency content of 

the slip velocity pulse — for vR ≤ vr ≤ vS . In addition to this limitation, Andrews’ conclusion is 

related to a problem in which, by definition, there is no coupling between the two components 

of fault slip, fault slip velocity and traction, as on the contrary our model considers (see BC05 

for more details). A second goal is to use kinematic isochrone theory (Bernard and Madariaga, 
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1984; SF84) to investigate the effects of super–shear rupture speed on the Fourier spectrum of 

far–field pulses generated by the spontaneous rupture calculation. We break our study into 

dynamic and kinematic parts for several reasons. First, the use of isochrone theory enables us 

to derive some mathematical insight into the nature and types of radiated pulses, insights that 

would not emerge from a completely numerical calculation. Second, it is computationally 

infeasible to perform a completely numerical finite difference calculation in our broad 

frequency band at far–field receivers. Third, we are attempting to separate a complicated 

phenomenon into individual component parts that are more easily understood. We are not 

proposing that such a mixed dynamic/kinematic approach is suitable for modelling ground 

motions in the far–field from arbitrary heterogeneous rupture models.  

 In summary, this paper achieves two main goals: 1) it demonstrates that crack tips 

governed by friction laws including slip–weakening, rate– and state–dependent laws, and 

thermal pressurization of pore fluids, propagating at super–shear speed have slip velocity 

functions (SVFs) with reduced high frequency content, and 2) it demonstrates that the Mach 

cone amplification of high frequencies overwhelms the diminution of high frequency content in 

the SVFs in such rupture models. Consequently, when earthquake ruptures travel at         

super–shear speed, a net enhancement of high frequency radiation is expected, and the alleged 

“low” peak accelerations observed for the 2002 Denali and other large earthquakes are 

probably not caused by diminished high frequency content in the SVF, contrary to the 

speculations of Ellsworth et al. (2004) and BB05.  

We achieve goal 1 in two ways. First, we compare the spectra of SVFs at fault points in 

the anti–plane (sub–shear) and in–plane (super–shear) directions at equal radii from the 

hypocenter of a rupturing fault with spatially uniform properties. We have done this, rather 
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than comparing in–plane points in two separate rupture models, one everywhere sub–shear and 

one somewhere super–shear, because creation of the two rupture models for the latter test 

requires variation of so many parameters between the two rupture models (i.e., stress drops, 

slip–weakening distances, etc.) that the comparison is difficult to interpret. Second, we 

compare the spectra of SVFs at super–shear and sub–shear points in a highly heterogeneous 

rupture model.  

We achieve goal 2 by deriving the spectral amplification of  S–waves expected during 

super–shear rupture compared to sub–shear, and then applying that amplification to the slip 

velocity spectra observed at fault points having super–shear rupture speed. By the term 

“spectral amplification” we mean the modification of some spectrum, such as a slip velocity 

spectrum or a ground displacement spectrum, by a multiplicative function of frequency, 

typically ω
γ
, where γ can be positive or negative. The spectral amplification might result from 

Mach cone effects or diminution of the crack tip singularity, for example.  

 

2. Isochrone theory and super–shear rupture speed 

2.1. Theoretical development 

 In this section we show that super–shear rupture speed boosts the Fourier amplitude 

spectrum (FAS) of the far–field ground motion radiated from a kinematic slip model (a 

prescribed slip function having realistic wavenumber spectrum) by a factor of frequency 

between ω
1/2

 and ω
1 

in the frequency band governing peak acceleration, approximately         

10–50 Hz, compared to sub–shear rupture of the same slip distribution. Of course, BB05 and 

Dunham and Archuleta (2005) have already shown (in the far– and near–field, respectively) 
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that super–shear rupture speed in models having spatially smooth slip causes the radiated pulse 

to be temporally differentiated compared to the sub–shear case. However, since isochrone 

theory as implemented by Bernard and Madariaga (1984) and SF84 is a high frequency         

far–field approximation, it is worthwhile to verify that the approximation is valid in the         

10–50 Hz range rather than only above 1000 Hz. Note that isochrone theory can be extended to 

give the exact broad–band response including near–field terms in a whole space (Joyner and 

Spudich, 1994).  

 SF84 noted that enhanced high frequencies can be radiated from places on a fault where 

there are stationary points (extrema and saddle points) of the arrival time function, i.e. points 

where isochrone velocity is singular. Sustained super–shear propagation causes a local 

minimum of arrival time, the situation investigated by BB05. However, acceleration of rupture 

speed to super–shear causes a saddle point of the arrival time function, also yielding a high 

frequency pulse which is less well known. Since no such stationary points exist for sub–shear 

rupture velocity, there are no sub–shear equivalents to these pulses.  

 The characteristics of these two pulses can be derived theoretically. Rewriting equation (8) 

of SF84 with a slight change of notation, the i–component of far–field S–wave displacement is: 

  

    (2) 

 

where A is the fault area, (x,y) is a position on A, ( )tfr&  is the slip velocity time function, T is the 

S–wave arrival time function (sum of rupture time and S–wave arrival time), and S
ir Gs ⋅=  iF  

is the product of the slip vector and the Green’s function amplitude vector (see SF84 for exact 

definitions of these terms). (2) can be rewritten as 

( ) ( ) ( ) ( )( )∫∫ −=
A

iri yxyx,Ttyx,F*tftu d d     δ&
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(3) 

 

where I(t) is the integral over the fault and where we have dropped the i subscript. Note that 

I(t) contains all the effects of wave propagation and the kinematic rupture model, except for the 

SVF. Denoting temporal Fourier transforms by overbars, (3) may be written as u = f r I  or 

Ifu r
&&   = . I(t) is the ground velocity pulse if ( ) ( )ttfr δ = & . Burridge (1963) investigated the 

behavior of I(t) at relative minima, maxima, and saddle points of T. Let 
OO yx

xy, T
yx

T
,

 
∂
∂

∂
∂

= , 

let (xO,yO) be the coordinate of the stationary point of T, and let TO ≡ T(xO,yO). For a minimum 

at (xO,yO) (the case of 0 >xx,T , 0 >yy,T , 0 =xy,T ), Burridge expanded T in a Taylor series 

around (xO,yO), and retaining only the leading term he found:  

( ) ( ) ( )Oyy,xx,OO TtTTy,xFtI    2 21
−≅

−
δπ .    (4) 

Therefore,  

( ) ( ) ( )Oryy,xx,OO TtfTTy,xFtu    2 21
−≅

−
π     (5) 

 

This corroborates BB05’s result that the far field displacement pulse from sustained         

super–shear rupture propagation has the same time function as the fault slip at high frequency. 

However, the term 21
,,

−
yyxxTT  contains the combined directivity and geometric spreading of 

the pulse, and will vary depending on the receiver location. Equation (5) generalizes BB05’s 

result to arbitrary super–shear rupture time distributions. BB05’s equation (A5), showing that 

( ) ( ) ( ) ( )( ) ( ) ( )tItfyxyx,Ttyx,F*tftu r
A

r *   d d     =−′= ∫∫ δ
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the pulse from a linear super–shear rupture front does not decay with distance, and their 

equation (A7), showing cylindrical spreading of a pulse from a circularly expanding        

super–shear rupture front, are easily derived from (5).  

 When rupture accelerates gradually from sub– to super–shear speed, arrival time T can 

have a saddle point at (xO,yO), and in this case Burridge found 

 

( ) ( ) ( ) 121    2 1 −−
−−≅ Oyy,xx,OO TtTTy,xFtI π

π
                          (6) 

Therefore,      

 

                        (7)

   

The term inside brackets is the definition of the Hilbert transform H[.] of fr (t − To) , so the 

displacement pulse from a saddle point is the Hilbert transform of the slip function at (xO,yO): 

 

     (8) 

 

Because the FAS of the Hilbert transform is the same as the FAS of its argument, the saddle 

point pulse (from rupture acceleration to super–shear) has exactly the same spectral enrichment 

as the pulse from an arrival time minimum (sustained super–shear pulse). Note also that the 

expression for directivity and geometric spreading of the pulse from an accelerating rupture 

front has the same form in (8) as the constant speed pulse in (5).  

 

( ) ( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
−
−

−≅ ∫
− '

'

'1/2  
,, d  

  
    1   ,2   t

tt
TtfTTyxFtu Or

yyxxOO π
π

( ) ( ) ( )[ ]    ,2   1/2  
,, OryyxxOO TtfTTyxFtu −−≅

− Hπ
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2.2. A computed example 

 In this section we wish to demonstrate the amount of spectral enrichment expected from 

super–shear rupture propagation in a simple kinematic model with realistic slip heterogeneity.  

To verify that the spectral predictions of the above section persist in a more realistic kinematic 

rupture model, we created a slip distribution with a k
–2

 spectral fall–off at high radial 

wavenumber (yielding an ω
–2

 displacement spectrum) and a correlation distance of 6 km, 

following equation (A11) of Mai and Beroza (2002) derived from slip distributions of real 

earthquakes. BB05 (their Figure 6) have done a similar calculation, but we show our result in 

the spectral rather than the time domain. Our slip distribution was biased positive so that it had 

no negative slip and was tapered linearly to zero at its edges over distances of 2–5 km (Figure 

1). The SVF was chosen to be ( ) ( )ttfr δ  =& . The rupture front was a straight line parallel to the y 

axis moving in the +x direction at either constant sub– or super–shear speed (Figures 1a and b) 

or accelerating to super–shear speed (Figure 1c). We used isochrone theory to calculate ground 

displacement pulses (specifically I(t), because ( ) ( )ttfr δ  =& ) from this slip model for three 

rupture velocity cases, constant sub–shear velocity, constant super–shear velocity, and 

acceleration to super–shear speed. Time windows for Fourier analysis were chosen to exclude 

artificial pulses generated by isochrones either crossing corners of the fault or being tangent to 

the fault edges. The calculated pulses correspond well to the theoretical expectations. In the 

super–shear case (second row of    Figure 1) the arrival time function has a relative minimum at 

TO = 13.4 s, and the ground velocity is dominated by a delta function at 13.4 s although much 

smaller radiation from the fault continues to arrive until 19.0 s, corroborating the expectation 

from (5) that the ground velocity is dominated by the super–shear critical point, and that 
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ground velocity should look like the slip velocity. The third row shows the case of accelerating 

rupture leading to a saddle point at TO = 17.1 s, which causes a ( ) 1−− OTt  singularity, as 

expected from (8)
(2)

. The top row shows the case of sub–shear rupture speed, in which the 

arrival time function has no stationary point. Radiated ground motions are much smaller in this 

case, and the spectral fall–off of the velocity pulse (Figure 2) is proportional to ω
–1

, as 

expected, compared to the flat spectra from the two super–shear cases (dashed and thin lines in 

Figure 2). (For our choice of ( )tfr& , a slip heterogeneity spectrum proportional to k
–α

 causes a 

velocity spectrum proportional to ω
–α +1

 for sub–shear rupture. The ground velocity spectrum 

of the super–shear pulses is dominated by the singularity and is largely unaffected by the slip 

heterogeneity spectrum. For the case of α = 1.5, which is the smallest permissible value of the 

wavenumber exponent (Andrews, 1980), the sub–shear S–wave spectrum would be 

proportional to ω
–1/2

, while the super–shear spectrum would still be flat.) 

 In summary, the spectrum of the super–shear S–wave pulse (more specifically, the 

spectrum of I(t)) is enriched by a factor of at least ω
1/2

 compared to the sub–shear spectrum, 

and is enriched by a factor of ω when the slip heterogeneity spectrum is proportional to k
–2

 at 

high wavenumber. This spectral amplification will persist for any other choice of ( )tfr& , as long 

as the spectrum of ( )tfr&  varies sufficiently slowly on the fault to allow this term to be taken 

outside the integral in (2). We will comment on the validity of this approximation later. Like 

BB05, we note that the physical causes of high frequency ground motion differ between the 

sub–shear and super–shear cases, and that isochrone theory is applicable in both cases in the far 

field. In the sub–shear case, spatial variations of slip and rupture velocity on the fault cause 
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high frequency motions that radiate to the far field (see for example (16) of SF84), and the 

spectrum of these motions is controlled by the heterogeneity spectrum on the fault. In the   

super–shear case, the high frequency ground motion spectrum is only slightly affected by the 

slip heterogeneity spectrum, and is primarily controlled by the spectrum of the SVF. Of course, 

our rupture front in these models is quite simple, and more complicated rupture propagation, 

possibly having several regions of super–shear speed, would be expected in a heterogeneous 

slip model such as this. In such a more realistic model, we expect that each region of super–

shear speed would radiate pulses like those of Figure 1b and 1c.  

 

3. The fault model 

3.1. The numerical scheme 

In this paper we solve the fundamental elasto–dynamic equation, free from body forces, 

using the truly 3–D (i.e., not simply mixed–mode; both components of fault slip are found 

from one vectorial constitutive relation, so that rake rotation can be calculated realistically), 

second–order in space and in time, finite difference, conventional–grid based code presented in 

BC05. The problem is fully dynamic, in the sense that we consider inertia in the whole time 

window of numerical computations and we do not use the Radiation Damping Approximation 

(Rice, 1993). We recall here the basics of the model and mainly the differences with respect to 

BC05; the reader can refer to that paper for all the details and for the analysis of convergence 

and stability. 

Referring to Figure 3, in the Cartesian coordinate system Ox1x2x3 the spatial computational 

domain Ω 
(FD)

 is discretized using parallelepipeds having edges parallel to coordinate axes. In 
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Ω 
(FD)

 the vertical plane S = {x | x = (x1, x2
f
, x3)} contain the fault Σ (now is Σ  ⊆ S and not  

Σ  = S as in BC05), having normal unit vector n̂  // 2x̂  ≡ (0,1,0). 

 For sake of simplicity we restrict numerical experiments presented and discussed in the 

remainder of this paper to the special case of a linearly elastic rheology: a Regular–Node is 

therefore governed by the Hooke’s law. On the contrary, on the fault surface Σ  we may 

prescribe different constitutive relations, as described in the following. The implementation of 

the fault boundary condition (FBC) is done using the traction–at–split–node (TSN) technique, 

and the introduction of the fault governing law is discussed in detail in BC05. The plane x3 = 0 

is the free surface and the other five planes are absorbing and not cyclic or fixed as in B05. In 

that way, as we reduce (but do not completely eliminate) the pollution of radiation reflected by 

or interacting with domain boundaries, we can study wide temporal windows and relatively 

large fault planes with a very fine spatial discretization in a computationally feasible domain, 

since we can reduce the extension of Ω 
(FD)

 in the direction normal to the fault. All numerical 

details about absorbing boundary conditions (ABCs) are given in Appendix A. In principle, 

this will obviously limit the recording of particle motions only in a narrow region surrounding 

the fault, but this is not a problem, as in the following of the paper we are interested in the   

on–fault time series. Because of the narrowness of our computational domain in the direction 

normal to the fault, the influence of the boundary conditions affects our on–fault time series in 

three (models A to C) of the four models presented here. However, the influence of the 

boundary does not affect our inferences of the relative spectral levels of sub–shear and    

super–shear slip velocities, and we present a model (model D in Section 7) unaffected by 

boundary conditions that supports this belief.  
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3.2. The fault governing law 

We can regard a constitutive equation as an analytical relation describing the dependence 

of the fault friction τ on various physical observables (see equation (3.2) in BC05). The shear 

traction )(n̂Τ  acting on Σ  (      2
23

2
21

)( σσ +=n̂Τ ,{σ2j} j = 1, 3 being the components of the 

stress tensor) is subjected to the boundary condition )(n̂Τ  = τ .  

In tribology there is no general consensus about the law that best describes an earthquake 

rupture (see Ohnaka, 2003 and Bizzarri and Cocco, 2006c for a review); in the literature two 

main classes of friction laws have been introduced: slip–dependent laws and rate– and      

state–dependent laws. In this paper we will adopt the linear slip–weakening (SW in the 

following) law (Ida, 1972; Andrews, 1976a, 1976b): 

 

(9) 

 

where τu = µuσn
eff

 and τf = µfσn
eff

 are the maximum, yield (or also static) stress and the kinetic, 

residual (or also dynamic) level, respectively and u is the fault slip (no opening or material 

interpenetration is allowed in the numerical experiments presented and discussed in this paper, 

as in BC05). The time required for the traction to drop from τu down to τf defines the 

breakdown zone time (see also Figure 1a in Cocco and Bizzarri, 2002). σn
eff

 is the effective 

normal stress, i.e., the modulus of the normal traction )(n̂Σ = − σn
eff

n̂  = − (σn − pfluid) n̂  (being 

σn the normal stress (namely – σ22) and pfluid the pore fluid pressure; stresses are assumed to be 

negative for compression), while d0 is the scale length that controls the decrease of frictional 

( )
⎪⎩

⎪
⎨

⎧

≥

<−−
=

0

0
0

, 

 , 

du

du
d
u

f

fuu

τ

τττ
τ
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resistance with increasing cumulative fault slip, a behavior commonly observed in laboratory 

experiments in a variety of specimens, including intact, saw–cut, and jointed rocks, as well as 

overconsolidated clay samples. The weakening behavior is also described (Okubo, 1989; 

Cocco and Bizzarri, 2002; Bizzarri and Cocco, 2003) within the framework of the more 

elaborate rate– and state–dependent friction laws (Ruina, 1983; Roy and Marone, 1996, among 

many others).    

 

4. Results for a dry fault  

4.1. The model configuration 

 In this section we will discuss results obtained assuming that fault friction obeys equation 

(9) in the case of constant effective normal stress; in the following we will refer to this 

configuration as model A. The computational domain Ω 
(FD)

 is discretized by adopting a 

homogeneous mesh of cubes and the medium is Poissonian and elastic everywhere except on 

the fault surface (i.e., in the split–node area) Σ  (see Table 1 for details), where the initial 

traction ( )( ) ( )( )( ),0,sin 0, ,,0,cos  31310 xxxx ϕϕτ=0Τ  acts at t = 0, ϕ  being the azimuth (i.e., the 

rake angle), which is assumed to be initially 0°. 

 Nucleation is obtained following the procedure introduced for the 2–D problems by 

Bizzarri et al. (2001). In a circular region centered on the hypocenter H and having radius rnucl , 

the fault strength τ
fault 

is the minimum of the value arising from equation (9) and that obtained 

from a time–weakening function 
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(10) 

 

 

where tforce = tforce(x1,x3) is the onset time in a generic fault point (x1,x3) of a non–spontaneous 
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be equal to 0.01 m/s. This value is two orders of magnitude smaller than the typical peak slip 

velocity which is attained in the numerical experiments presented in this paper. Our value of vl 

is compatible with that (1 mm/s) used by Day et al. (2005) to capture what happens in most of 

the breakdown zone in numerical experiments on homogeneous faults where the rupture 

always accelerates to a seismic regime. From the rupture time array it is trivial to calculate the 

rupture speed vr, which is simply the inverse of the slowness
(4)

: 

  

     (12) 

 

 We choose the value if 0.01 m/s for vl because the high frequency radiation from the fault 

is generated by the rapid increase of the fault slip velocity at the crack tip and by the peak in 
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pre–stress 0Τ  (namely in the in–plane direction) the rupture accelerates up to super–shear 

velocity, reaching a value (4209 m/s) which is very close the Eshelby speed (vE = 4243 m/s for 

our parameters); on the contrary, in the anti–plane direction vr always remains sub–shear, as 

already numerically demonstrated by BC05. Moreover, it is evident from Figure 4 and from 

Table 2 that there are intermediate regions where vr increases from sub– to super–shear rupture 

velocity, passing through the rupture velocity interval forbidden in 2–D (e.g. Andrews, 1976b). 

BC05 showed that in a truly 3–D fault model, such as that considered here, there is a complex 

coupling of the purely in–plane and the purely anti–plane modes of propagation, accompanied 

by a rake variation during rupture propagation, especially in the breakdown zone, and this is 

different from the behavior that occurs in self–similar elliptical crack enlargement, where the 

slip is everywhere parallel to the pre–stress direction (Burridge and Willis, 1969).  

 

4.3. Spectra of the fault slip velocity 

 In Figure 5 we plot the magnitude of the Fourier amplitude spectra (FAS) of the fault slip 

velocity time series at nine locations considered (black triangles in Figure 4). All locations in 

this numerical experiment are at a distance of 3000 m from H (this guaranties that results are 

not affected by the imposed nucleation procedure) and at different azimuths with respect to H 

(see Table 2). As a consequence of the linear SW governing law with constant effective normal 

stress, all the locations experience the same stress drops (both static, ∆τs df
= τ0 – τf , and 

breakdown, ∆τb df
= τu – τf), but different rupture velocities. SVFs for locations 1, 5, and 9 are 

shown in Figure 6, left column. In this and all other models, the FAS is the spectrum of the 

magnitude of the fault slip velocity time series. The same basic procedure was used to calculate 
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the FAS for all models, although some parameters differed. All locations’ slip acceleration 

time series were terminated by a cosine–taper of duration tdur starting at a delay tstart after the 

first non–zero value (i.e., the onset time). The termination of the acceleration time series was 

chosen to exclude the back–propagating healing phases from unslipped parts of the models, 

external to the TSN area Σ. The tails of the tapered accelerations were padded with zeros and 

integrated to velocity, shown by the black lines in Figure 6. The tails of these velocities were 

gradually cosine tapered to zero (not shown in Figure 6), and the tapered slip velocities were 

normalized to have one meter of total cumulative slip (not shown), a value that may be 

associated with a  M ~ 7 event. In the case of model A we used tstart = 0.5 s and tdur = 0.1 s for 

the acceleration taper and tstart = 0.3 s and tdur = 0.7 s for the velocity taper (left column in 

Figure 6).  

 The results seen in Figure 5 for model A are generally duplicated for the other models. 

Spectra (solid lines) agree at low frequency but diverge above 10 Hz. In all models’ 

calculations a numerical oscillation occurs at some frequency, that frequency always being the 

lowest for anti–plane locations (see the arrow at 80 Hz for locations 7, 8, and 9 in Figure 5) and 

highest for in–plane locations (about 180 Hz for location 1, not visible in Figure 5). These 

oscillations are visible in Figure 6, left column. Because of the numerical oscillation, the       

in–plane and anti–plane locations’ spectra cannot be compared in the band marked “not valid” 

on the figure, although the in–plane spectra are usually valid well into that band
(5)

. 

 The general result in Figure 5, as will be seen in the other models, is that in the band where 

the FAS diverge (10–40 Hz in this case), the FAS of the pure in–plane location (1) is in the 

middle of the group, the location closest to the super– to sub–shear transition (3 in this case) 

has the lowest FAS, and the FAS of the sub–shear locations (4 to 9) exceed those of the   
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super–shear. This verifies the predictions of Burridge (1973) and Andrews (1976b) that   

super–shear crack tips should have less abrupt slip velocity onsets than sub–shear tips. As in 

the models presented below (Sections 5 and 6), the location with the lowest FAS experiences 

the largest rake rotation within the breakdown zone. 

 The relative quantitative effect of super–shear enhancement of high frequency radiation 

can be shown  compactly on Figure 5. Because Ifu r
&&   = , multiplication of each of the spectra 

(solid lines) by the spectrum of I(t) gives the spectrum of ground motion from the kinematic 

model corresponding to I(t) with each SVF. Let I > α( ) be the spectrum of I(t) for a super–shear 

rupture velocity and slip distribution having wavenumber spectrum k
–α

, and let I < α( ) be the 

same for sub–shear rupture velocity. From Figure 2 we know I > 2( ) I < 2( )= ω , and from the 

discussion we know that I > 1.5( ) I < 1.5( )= ω1 2. In other words, for ( ) ( )ttfr δ = & , super–shear 

rupture speed boosts the radiated spectrum of a sub–shear k
–2

 slip model by a factor of ω, and it 

boosts the spectrum of a k
–1.5

 slip model by ω
1/2

. Consequently, to see the relative spectral 

levels of ground motions from sub– and super–shear rupture, we must boost the super–shear 

slip velocity spectra by a factor of ω or ω
1/2

, for k
–2

 or k
–1.5

 slip models, respectively. 

 The dashed and dotted FAS in Figure 5 are the FAS of super–shear locations (solid lines 

for 1, 2, and 3) scaled by ω and ω
1/2

, respectively, to simulate the spectral enhancement of the 

radiated S–waves expected for super–shear rupture speed compared to sub–shear ruptures for 

slip heterogeneity spectra that follow k
–2

 and k
–1.5

 at high wavenumber, respectively (Figure 2). 

They show that the spectral enhancement expected from super–shear propagation exceeds the 

diminution of spectral amplitude caused by super–shear reduction of the crack tip singularity. 
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Consequently, Figure 5 contradicts the speculation of Ellsworth et al. (2004) and BB05 that a 

super–shear induced reduction of the crack–tip singularity caused the Pump Station 10 

accelerations to be “low”. 

 In the preceding (and subsequent) discussion we make an implicit (and physically 

reasonable) assumption that allows us to use isochrone theory, which assumes spatially slowly 

varying slip SVFs, and numerical results from spatially uniform initial conditions, to infer the 

characteristics of radiation from heterogeneous ruptures. Real–world ruptures will have spatial 

variations of slip amplitude and rupture velocity. There will be some high–slip patches over 

which the rupture front travels at sub–shear speed and some other patches over which there is 

super–shear speed. Because the slip is not uniform in these patches, they will radiate high 

frequency motions to the far field, governed by isochrone theory. The assumption we have 

made is that the differences between the FAS of sub–shear and super–shear SVFs obtained 

from the solution of the spontaneous problem will approximate the differences between the 

FAS of the SVFs of the sub–shear and super–shear patches, respectively. In other words, if we 

observe that the FAS of our sub–shear locations has more high frequency content than the FAS 

of our super–shear locations, the same will be true of small slip patches in heterogeneous 

models that slip at sub–shear and super–shear speed. In Section 7 we present a heterogeneous 

spontaneous rupture model that supports this assumption.  

 

5. FAS in case of temporally varying effective normal stress 

 The second configuration we consider (model B, Table 1) includes time–variable effective 

normal stress due to pore fluid pressure changes. The latter, in turn, are caused by the physical 

phenomenon of the thermal pressurization (frictional heat enhances the pore fluid migration) 
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for which the analytical solution is given by Bizzarri and Cocco (2006a, 2006b). More 

explicitly, we consider equation (9) of Bizzarri and Cocco (2006a), from which we can clearly 

see that, in each fault node and at every time level it is necessary to store in memory all the 

value of fault slip velocity and of fault traction in that fault point for all previous time levels. 

This cause a very massive computer memory request, much larger than in the case of model A 

(for which this time convolution is not necessary, pfluid being constant through time); we have 

therefore considered a different spatio–temporal discretization in this case. However, we 

maintained the depth of the hypocenter H unchanged with respect to model A, and 

consequently all effects of the free surface are exactly the same in the two models. Thermal 

pressurization parameters are the same as those listed in Table 1 of Bizzarri and Cocco 

(2006a). 

From the distribution of the rupture speed reported in Figure 7 (the calculation is plotted 

only up to time t = 1.21 s for clarity, as done in Figure 4) it is evident that also in this case the 

crack tip bifurcates and the rupture accelerates up to super–shear velocity. It is interesting to 

note that the initial value of the strength parameter S is 1.5 in this case and without the 

inclusion of thermal pressurization we would have only sub–shear velocity in the            

spatio–temporal domain considered. As already pointed out by Bizzarri and Cocco (2006a, 

2006b), the variation of pore fluid pressure and consequently the progressive decrease of the 

effective normal stress will cause a temporally variable S which increases (with respect to the 

dry case) the dynamic load of the slipping points, causing in turn the rupture front bifurcation 

and the transition to super–shear velocities, and enhances the instability of the fault, increasing 

the peak fault slip velocity. Now the maximum vr is well above vE and the fault region where 

the crack tip is traveling with super–shear velocity is wider (compare Figures 4 and 7, plotted 
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for clarity using the same color scale); now also locations located up to azimuth of – 45° 

(where the propagation modes II and III are identically operating) have vr > vS .  

We plot in Figure 8 the FAS in the nine fault locations listed in Table 2 and marked in 

Figure 7; all the locations on are placed at the same distance from H considered in model A and 

the depths are (practically) the same. Owing to the greater numerical demands of this 

calculation, time series were much shorter, necessitating different taper parameters. 

Acceleration taper parameters were tstart = tdur = 0.11 s, and velocity taper parameters were   

tstart = 0.5 s and tdur = 2.0 s. Untapered and acceleration–tapered velocity time series (prior to 

the final velocity taper) are shown in Figure 6, middle column. In this case we can see the 

effects of numerical oscillation at frequencies ranging from about 80 Hz for in–plane locations 

down to 25 Hz for location 9 at  – 90° azimuth (Figures 6 and 8). We can compare FAS only 

up to a frequency of 10 Hz, below which the time evolutions are unaffected by spurious 

oscillations
(6)

. Owing to the brevity of the acceleration–tapered time series and to the 10 Hz 

upper limit, for this model there is a very narrow frequency band in which the various 

locations’ FAS can be compared, perhaps 3–10 Hz. Consequently, the results of this model 

must be regarded as tentative, although they are in general agreement with both other models. 

As in the case of model A, we can see that the fault slip velocity FAS of sub–shear 

locations are higher than super–shear ones in the 3–10 Hz band: the sequence of the locations 

with increasing FAS is: 5, 4, 3, 2, 1, 6, 7, 8, 9 (underlined numbers are super–shear locations). 

As in the model A, the super–shear location closest to the super– to sub–shear transition, 

location 5 at – 45° azimuth, has the lowest FAS. As in Figure 5, the dashed and dotted FAS in 

Figure 8 are the FAS of super–shear locations (solid lines for 1 to 5) multiplied by ω and ω
1/2

 



Super–shear speed and high frequency content 

 26

respectively, to simulate the spectral enhancement expected in the radiated S–waves for slip 

heterogeneity spectra that follow k
–2

 and k
–1.5

 at high wavenumber, respectively. In the band 

below 10 Hz the FAS corrected for super–shear pulse enhancement (1 to 5, dotted and dashed 

lines) exceed the FAS of the sub–shear locations (6 to 9, solid lines).  

 

6. FAS of rate and state model with thermal pressurization 

All the results presented in previous sections refer to faults governed by linear SW law 

(equation (9)). We have also considered a case (model C; parameters are listed in Table 1) in 

which we adopt the Dieterich–Ruina law (Linker and Dieterich, 1992; Bizzarri and Cocco, 

2006a, 2006b): 

     

     (13) 

 

 

where the temporal variation of the effective normal stress, caused by thermal pressurization of 

pore fluid, are coupled with the state variable Ψ by way of the dimensionless constant αLD. 

Nucleation is obtained through the spontaneous evolution of the state variable, as described by 

Bizzarri et al. (2001) and by BC05; the model parametrization, as well as the locations 

locations, are identical to model B. The resulting rupture velocity distribution on the fault plane 

(Figure 9) is very similar to that obtained in models A and B (see Figures 4 and 7), showing a 

concentration of fault points experiencing super–shear velocity in a cone having axis 

coincident with x1 (see also Table 2).  
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 Even in the case of constant governing parameters and pre–stress, the presence of thermal 

pressurization (model B) as well as the adoption of rate– and state–dependent friction (model 

C) cause the stress drop to be not uniform on the fault plane (see for instance Bizzarri and 

Cocco, 2006a, 2006b; Tinti et al., 2005, their Figure 2b), unlike model A. 

 The beginning of the slip velocity was deemed to start at 0.015 s before the time when v 

exceeded 0.1 m/s, in order to capture the slow initial acceleration of slip velocity. An 

acceleration taper of duration tdur = 0.1 s was applied to the end of each slip acceleration trace, 

where the total duration of the acceleration trace was not allowed to exceed 0.6 s (Figure 6, 

right column). This procedure varied slightly from the tapering of models A and B, by using a 

different length acceleration–tapered time series for each fault location. We did this because 

the SVFs for model C were much lower frequency than the other models’ SVFs, and 

prolonging the retained time series gave us a broader usable FAS bandwidth.  FAS in Figure 10 

confirm what we have previously observed in models A and B. In the frequency range 5–20 Hz 

sub–shear locations are richer in high frequency content than super–shear ones; the sequence of 

the locations having increasing value of FAS amplitude is: 3, 4, 2, 1, 5, 6, 7, 8, 9 (underlined 

numbers indicate again locations where rupture speed is super–shear). As in previous models, 

location 4 (the super–shear location closest to the sub–shear one) has the lowest FAS. On the 

contrary, the purely anti–plane location (9) exhibits the higher FAS, indicating that the increase 

in fault slip velocity is faster that in case of other locations. Finally, we would remark that the 

knee at 30 Hz in the FAS of location 9 is due to numerical oscillations and we can probably 

trust numerical results up to 20 Hz. As in models A and B, the FAS of super–shear locations  

(1 to 4) scaled by ω and ω
1/2

 (dashed and dotted lines, respectively) to simulate the spectral 

enhancement expected in the radiated S–waves for  super–shear pulse enhancement exceed the 
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FAS of the sub–shear locations (5 to 9, solid lines).  

 

7.  Results for a highly heterogeneous initial shear stress model 

 We have calculated the spontaneous rupture of model D, having a highly heterogeneous 

stress field, that supports two assumptions made in this paper, namely 1) that the differences 

between the FAS of sub–shear and super–shear SVFs obtained from the solution of the 

spontaneous problem in homogeneous stress models (e.g. A, B and C) will approximate the 

differences between the FAS of the SVFs of the sub–shear and super–shear patches, 

respectively, in heterogeneous models, and 2) that the influence of boundary conditions is not 

biasing our observation that sub–shear FAS are richer in high frequencies than super–shear 

FAS. In model D the linear SW friction law with constant effective normal stress is assumed 

on the fault; as in all previous models, the initial shear stress field has only one non–null 

component (i.e., ϕ = 0), but now it follows a self–similar distribution (following equation 

(B12) in Frankel and Clayton, 1986), with a correlation distance (parameter a in equation (B3) 

of Frankel and Clayton, 1986) of 400 m. The obtained stress distribution is such that in some 

patches of the fault the maximum yield stress is exceeded and therefore rupture initiation 

occurs and then the rupture will spontaneously propagate.     

 Figure 11 shows the distribution on the fault plane of the initial stress (Figure 11a), rupture 

times (Figure 11b), and local rupture speeds (Figure 11c). Model D is not a realistic model of 

an earthquake because slip initiates at several locations simultaneously. However, this attribute 

ensures that almost all of the fault ruptures before the arrival time, 0.62 s, of the first P 
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reflected from the x2 boundary 1.6 km from the fault surface. Hence, the SVFs of all points 

more than 1.6 km from any boundary are uncontaminated until 0.62 s.  

 Our goal was to calculate average sub– and super–shear FAS for locations that were not 

near a hypocenter and that were unaffected by reflections from any boundary. Model D has 

many points that ruptured at either sub– or super–shear speed (Figure 11c). We saved the SVFs 

of 99 locations on the whole fault surface. From these we excluded SVFs from locations that 

were less than 1.6 km from the free surface and from the edges of the slipped zones. We 

retained locations that ruptured in the time window that started mid–way into the rupture 

process (between 0.16 and 0.32 s), and for these locations we calculated FAS on the first 0.32 s 

of their SVFs, using the usual acceleration taper strategy with tstart = 0.19 s, tdur = 0.13 s and a 

subsequent velocity taper with tstart = 0.5 and tdur = 2.0 s. (The selected time window and 

duration admit a maximum of 0.02 s of tapered reflected P for some locations, but the “broad” 

time window was necessary to get enough sub–shear locations.) We retained the six sub–shear 

locations having rupture velocity vr in the range 2.0 to 2.76 km/s, and we retained the seven 

super–shear locations having vr > 3.4 km/s. The average FAS of each group is shown in Figure 

11d. The SVFs usually have a numerical oscillation at about 70 Hz. Owing to the short 

duration (0.32 s) of the retained SVFs, we believe that the spectra are controlled by padding 

and tapering assumptions below about 6 Hz. Therefore, the valid bandwidth for comparing 

sub– and super–shear FAS is about 6–30 Hz. 

  From Figure 11d we can see that the average sub–shear (blue) FAS is about a factor of 1.5 

or 2 above the super–shear FAS (red). This factor is slightly smaller than the very approximate 

factor of 3 found in models A, B, and C. However, model D spectra support both of our 

assumptions: 1) that sub–shear FAS have greater high frequency content than super–shear FAS 
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in heterogeneous models as well as in homogeneous models A, B, and C, and 2) that the 

relationship of the FAS is not affected by the boundary condition. Model D confirms our 

conclusion that when the super–shear FAS are multiplied by ω or by ω
1/2

, owing to the Mach 

cone effect, the Mach cone effect has a stronger amplification than the diminution caused by 

the reduction of the super–shear FAS crack tip “singularity”.  

 

8. Discussion and conclusions 

 In this paper we have used results from Burridge (1963) to derive a general expression for 

the geometric spreading of far–field super–shear S pulses. We have shown that the same 

spectral amplification is expected in a pulse radiated from sustained super–shear propagation 

(i.e., a pulse caused by a minimum of arrival time) and in a pulse radiated from an accelerating 

rupture (i.e., caused by a saddle point of arrival time), compared to a pulse from the same slip 

distribution and SVF rupturing at sub–shear speed. That spectral amplification should be 

proportional to ω or ω
1/2

, respectively, for slip heterogeneity spectra that follow k
–2

 and k
–1.5

 at 

high wavenumber.  

  We have also shown that in a fully dynamic, spontaneous and truly 3–D earthquake model 

with uniform friction the slip velocity in fault points where rupture edge is traveling with 

super–shear speed has less high frequency content than that calculated in points where rupture 

velocity is sub–shear. This holds for a fault governed by the linear, or classical, slip–weakening 

constitutive equation (model A), by slip–weakening with temporally variable effective normal 

stress (caused by the thermal pressurization of pore fluid; model B) and by the fully non–linear 

rate– and  state–dependent laws (model C). This also holds when a highly heterogeneous initial 

shear stress field is assumed on the fault (model D). These conclusions agree with previous 
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inferences based on a non–spontaneous (i.e., with prior imposed constant rupture velocity), 

purely in–plane, self–similar problem without constitutive law.  

 The application of the ω or ω
1/2

 amplification to our super–shear slip velocity FAS causes 

them to exceed the FAS of the sub–shear locations, suggesting that S pulses from super–shear 

rupture should be richer in high frequency than pulses from sub–shear rupture, despite the 

diminution of the crack–tip singularity caused by super–shear propagation. This implies that 

the “low” (compared to previous relations) peak accelerations predicted by newly developed 

ground motion prediction relations for large magnitude events (e.g. Abrahamson and Silva, 

2008; Campell and Bozorgnia, 2008; Boore and Atkinson, 2008; Chiou and Youngs, 2008) are 

probably not caused by super–shear rupture. 
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Footnotes 

 
(1)

 Here words “less” and “more” refer to the spectra of pulses that have been normalized in 

order to have the same value at low frequency.  

 
(2)

 Note that for this case, the slip distribution is the same as for the other cases, but the 

portion between – 10 and 0 km has been removed to exclude a potentially interfering pulse 

from a local minimum of the arrival time function, located at about – 5 km along strike. 

 
(3)

 For a Poissonian medium (as considered in this study) for the same constitutive 

parameters, the value arising from equation (11) is greater than the critical distance derived in 

purely in–plane case by Andrews (1976b), ( ) 02 
0

(II)  
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gradual transition between the non–spontaneous and the spontaneous regime. 

 
(4)

 The quantity in equation (12) is what Day (1982) called local, or tangent, rupture speed, 

to distinguish it from the average, or secant, rupture speed, which in turn is expressed as 
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= . In general vr’ is everywhere less than vP ⎯ as a 

consequence of principle of causality ⎯ and it may be sub–shear even if vr is super–shear.  

 
(5)

 Our assumption is that a solution is unaffected by oscillations at frequencies somewhat 

lower than those at which the oscillations appear, as shown by the frequency bands marked 

“not valid” in Figures 5, 8, and 10. Even if the problem is non–linear, in our simulations the 

oscillations never become large enough to introduce fault slip velocity zeros (i.e., early arrest 

of sliding). Additionally, the (small) reflections originating from the borders of the TSN region 
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Σ (behaving like an impenetrable barrier and generating healing phases) were excluded by 

choosing a time window that did not include them.  

 
(6)

 We determined the 10 Hz limit by inspecting the FAS of a signal we created that closely 

simulated the numerical oscillation time series, consisting of a sine wave with time–varying 

frequency and exponentially decaying envelope. 
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Appendix A. Domain boundary conditions 

 The plane x3 = 0 is the free surface, that is the traction–free condition is imposed:         

)(n̂
jT  = niσij = 0. Taking into account that ˆ n  // 3x̂  ≡ (0,0,1) the previous requirement is simply: 

σ3j = 0. 

 The remaining five planes are absorbing (i.e., non reflecting) and not cyclic or fixed as in 

BC05. A node belonging to one of such an absorbing plane is a special node for which the 

Absorbing Boundary Condition (ABC) is applied. We impose the ABCs on each component     

l = 1, 2, 3 of the particle velocity U& accordingly to the formula (cfr. Peng and Toksöz, 1994, 

1995; Moczo, 1998): 

 

 

(A.1) 

 

 

where superscript m denotes the actual time level and subscripts j and k indicate the position of 

the node along x1 and x3, respectively. Equation (A.1) is valid for the left boundary x1 = 0  (i.e., 

i = 1), while for the right boundary x1 = x1end
 (i.e., i = iend) the condition (A.1) becomes: 
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 In equations (A.1) and (A.2), that are analogously writable for boundaries x2 = 0, x2 = x2end
 

and x3 = x3end
, coefficients {Apq}p,q = 1,2,3 depend on the choice of ABC scheme (e. g. Clayton 

and Engquist, 1977; Reynolds, 1978; Emerman and Stephen, 1983; Higdon, 1991; Peng and 

Toksöz, 1994, 1995; Liu and Archuleta, 2000, personal communication). The best absorption is 

obtained in our cases adopting the following coefficient matrix Apq 

  

   (A.3)  

 

where:  
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QXT =   Wb/(Wb − 1) 

NI = vP∆t/∆x 

 

 In equations (A.4) wCFL is the Courant−Friedrichs−Lewy ratio (defined as vS ∆t/∆x, where 

∆x ≡ ∆x1 = ∆x2 = ∆x3) and Wb is a sensitivity factor (in numerical experiments presented and 

discussed in this paper we assume Wb = 0.4).  

 After the calculation of mU&  and mU  in regular (i.e., internal) nodes, particle velocity at 

time level m is calculated for nodes belonging to walls, following equations (A.1) and (A.2); 
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for nodes belonging to boundary edges mU&  is calculated as arithmetic average of values 

arising from the two walls of which the edges is the intersection. Finally, values in corners are 

obtained as arithmetic average of values coming from the three walls that have that corner in 

common. Updated particle displacement components at actual time level m are derived by 

numerical integration from updated particle velocity components.  
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Figure Captions 

Figure 1. Particle velocity pulses radiated from a heterogeneous slip model having three 

different rupture time functions and the same slip velocity function ( ( ) ( )ttfr δ  =& ). Pulses 

calculated 14 km perpendicular to (0,0). Top row: uniform sub–shear rupture speed         

(vr = 0.9vS). Middle row: uniform super–shear rupture speed (vr = 1.5vS). Bottom row: 

rupture speed increases from sub–shear to super–shear, left to right. The slip distribution in 

this case is the same as in the previous two cases, but now the fault extent is smaller. Left 

column: slip model (colors) and contours of arrival time function (gray and black lines). 

Right column: ground velocity pulses (fault parallel component). Brackets show analysis 

window for calculating spectra. 

 

Figure 2. Fourier amplitude spectra (FAS) of particle velocity pulses radiated from the three 

heterogeneous slip models in Figure 1. Sub–shear FAS is proportional to 1/f, whereas both 

super–shear models (sustained super–shear propagation (dashes) and accelerating rupture 

speed, causing the saddle point (thin line)) have flat velocity spectra.  

 

Figure 3. Schematic representation of the fault model used in this paper. The vertical plane   

S contains the fault Σ  (Σ  ⊆ S) and n̂  is the unit vector normal to the fault. The total 

traction acting on the positive side of Σ is: )()()(     nnn ˆˆˆ ΣΤ +=T . The black star indicates the 

earthquake hypocenter H and dotted lines represent the ends of the computational spatial 

domain Ω 
(FD)

. 
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Figure 4. Rupture speed on the fault plane in the case of model A, dry slip–weakening (see 

Table 1), calculated from equation (12). Blue portions of the fault identify the unbroken 

areas, while black star denotes the earthquake hypocenter; black triangles indicate the 

locations of the locations where FAS of fault slip velocity is calculated. Only for graphical 

clarity the rupture speed is calculated not in the whole temporal window of the 

computation, but only up to time t = 1.29 s.  

 

Figure 5. FAS of the fault slip velocity time series in the nine locations displayed in Figure 4 

for the dry slip–weakening model. Asterisks indicate locations where rupture speed is     

super–shear. Solid lines: unmodified FAS. Dashed and dotted lines: FAS of super–shear 

locations multiplied by ω and ω
1/2

, respectively. Vertical arrow shows the lowest frequency 

peak caused by numerical oscillation in slip velocity. “Not valid” shows the range of 

frequencies in which anti–plane and in–plane FAS cannot be compared owing to          

anti–plane numerical oscillation.   

 

Figure 6. Slip velocity time series for three locations of each model. Columns left–to–right 

show models A, B, and C, respectively. Rows top–to–bottom show fault locations 1, 5 and 

9, respectively. Gray line is original slip velocity function. Black line is the integrated 

tapered slip acceleration time series. Not shown is the effect of a final gradual taper applied 

to the integrated slip acceleration (black line). 

 

Figure 7. The same as in Figure 4, but in case of temporally variable effective normal stress 

(model B; see Table 1). White portions on the fault are region where the rupture speed 
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exceeds the value of 4500 m/s. Only for clarity the rupture speed is calculated up to time    

t = 1.21 s.  

 

Figure 8. FAS of the fault slip velocity time series in the nine locations displayed in Figure 7 

for the thermal pressurization model. Asterisks indicate locations where rupture speed is 

super–shear. Solid lines: unmodified FAS. Dashed and dotted lines: FAS of super–shear 

locations scaled by ω and ω
1/2

, respectively. Vertical arrow shows the lowest frequency 

peak caused by numerical oscillation in slip velocity. “Not valid” shows the range of 

frequencies in which anti–plane and in–plane FAS cannot be compared owing to          

anti–plane numerical oscillation. 

 

Figure 9. The same as in Figure 4, but in case of Dieterich–Ruina governing law (model C; see 

Table 1). Now the rupture velocity is displayed considering the whole time window 

considered. 

 

Figure 10. FAS of the fault slip velocity time series in the nine locations displayed in Figure 9 

for the rate and state and thermal pressurization model. Asterisks indicate locations where 

rupture speed is super–shear. Solid lines: unmodified FAS. Dashed and dotted lines: FAS 

of super–shear locations multiplied by ω and ω
1/2

, respectively. Vertical arrow shows the 

lowest frequency peak caused by numerical oscillation in slip velocity. “Not valid” shows 

the range of frequencies in which anti–plane and in–plane FAS cannot be compared owing 

to anti–plane numerical oscillation. 
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Figure 11. (a) Along strike–component of the shear stress on the fault at t = 0 in the case of 

model D (see Table 1). (b) Distribution of the resulting rupture times. Purple regions 

identifies fault patches where the initial shear stress overcomes the maximum yield stress 

and therefore region where rupture starts to nucleate. (c) Distribution of the rupture speed, 

again calculated using equation (12). White region emphasize fault nodes experiencing 

super–shear rupture velocity. (d) Comparison of average FAS of six sub–shear locations 

(blue line) and seven super–shear locations (red line), showing that the average sub–shear 

FAS has about twice the amplitude of the super–shear FAS in the 6–30 Hz band where the 

taper parameters permit a valid comparison. Coordinates of selected locations are listed 

(see Section 7 for details). 
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Tables 

Table 1. Medium and constitutive parameters adopted in this study. 

Parameter Value 
Medium and discretization parameters 

 Model A Models B and C Model D 
λ = G 27 GPa 
vP 5196 m/s 
vS 3000 m/s 
ρ 3000 Kg/m

3
 

Ω 
(FD)

 

box that extends  
9010 m in x1 
direction, 300 m in 
x2 and 9000 m in x3 

box that extends  
5625 m in x1 
direction, 750 m in 
x2 and 5600 m in x3 

box that extends  
9020 m in x1 
direction, 3200 m 
in x2 and 9000 m in 
x3 

Σ  

{ x | x1∈ [60,8960] 

m, x2 = x2
f
 = 150 m, 

x3∈ [0,8950] m } 

{ x |x1∈ [150,5500] 

m, x2 = x2
f
 = 375 m, 

x3∈ [0,5475] m } 

{ x |x1∈ [120,8920] 

m, x2 = x2
f
 = 1600 

m, x3∈ [0,8900] m}
∆x1 =  ∆x2 =  ∆x3 ≡ ∆x 10 m (a)

 25 m (a)
 20 m (a)

 
facc

(s)
 (b)

 50 Hz 20 Hz 25 Hz 

Number of nodes in Ω 
(FD)

 25 165 831 1 569 375 32 747 561 
∆t 1.6970 × 10

−4
 s (a)

 5.0649 × 10
−4

 s (a)
 3 × 10

−4
 s (a)

 
ωCFL 0.0509 0.0608 0.045 
Number of time levels 20 000 2800 8000 

H ≡ (x1
H
, x2

H
, x3

H
) (4510,150,4500) m (1125,375,4500) m 

Patches where the 
yield stress is 
exceeded; see 
Section 7 

tend 3.38 s 1.42 s 2.4 s 
vl 0.01 m/s 
σn

eff
 = σn − pfluid0

f
 (at t = 0) 30 MPa 

ϕ(x1, x3,0) 0° (c) 

Constitutive parameters  

 Model A Model B Model C Model D 
 
Governing law 
 

Slip–
weakening 

Slip–
weakening 

Dieterich− 
Ruina 

Slip–
weakening 
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Variable effective normal 
stress (i.e., thermal 
pressurization included) 

No Yes Yes No 

τ0  20 MPa 20 MPa 19.2 MPa 

Highly 
heterogen,; 
see Section 7 
and Figure 
11a 

µu 0.93333 0.81667 - 0.93333 
µf 0.33333 0.56667 - 0.33333 

S (at t = 0) 0.8 1.5 - 
Highly 
heterogen,; 
see Section 7 

a - - 0.009 - 
b - - 0.014 - 
αLD - - 0.53 - 
d0 (or L) 0.1 m 0.1 m 0.01 m 0.1 m 

 

 (a)
 This spatio–temporal discretization satisfies the convergence and stability conditions 

discussed BC05: their equation (A.4) gives 5.47 m = 3 ∆ x > vP∆t = 0.88 m for model A,  

8.66 m = 3 ∆ x > vP∆t = 2.63 m for models B and C and 24.64 m = 3 ∆ x > vP∆t = 1.56  m 

for model D. From equations (A.5) of BC05 we have that the critical temporal and spatial 

sampling for model C are: ∆t* = 
( )

=
−

  
    4 eff

nCFL

S

ab
Lv

σω
ρ  2.5 s  and  ∆x* = 

( )
=

−
  

    4 2

2

eff
nCFL

S

ab
Lv

min

σω

ρ
 

1.21 × 10
6
 m, respectively (ωCFL is the Courant–Friedrichs–Lewy ratio). Therefore both the 

continuum approximation conditions in (A.6) of BC05 are comfortably satisfied. See also 

Bizzarri and Cocco (2003) for a discussion of the convergency analysis.  

 
(b)

 This is the value of the critical frequency up to which time series of waves propagating 

in the medium surrounding the fault are unaffected by oscillations due to spatial grid 

dispersion. For a regular point (i.e., not a split node) and for homogeneous medium this 
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frequency can be expressed as facc
(s)

 = vS/(6 × Max{∆x1, ∆x2, ∆x3}).
 

 (c)
 As in BC05, the fault surface Σ is oriented by means of the normal unit vector               

n̂  // 2ê  ≡ (0,1,0) (see Figure 3) and the shear component )(n̂Τ of the traction )(n̂T is applied on 

the positive side of Σ, that is that extending in the direction of ascending x2 coordinates. 

Therefore the adopted value of ϕ identifies a left–lateral fault. 
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Table 2. Rupture velocity in the nine locations considered models A to C presented and 

discussed in this study. The asterisk following the value of vr indicates that it is super–shear.  

Absolute 
coordinates 

(x1, x3) 
(m) 

 
Rupture velocity 

vr 
(m/s) 

 
Location 

# 

Azimuth 
angle 
with 

respect  
to H 

 
Model  

A 
 

Models 
 B and C Model A Model B Model C 

1 0° (7510,4500) (4125,4500) 4209  * 5510  * 4099  * 

2 − 11.25° (7450,3900) (4075,3900) 4047  * 4728  * 3902  * 

3 − 22.5° (7280,3340) (3900,3350) 3460  * 4936  * 3629  * 

4 − 33.75° (7000,2820) (3625,2825) 2734 4563  * 3291  * 

5 − 45° (6630,2370) (3250,2375) 2724 4217  * 2945 

6 − 56.25° (6180,2000) (2800,2025) 2803 2904 2584 

7 − 67.5° (5660,1720) (2275,1725) 2612 2980 2456 

8 − 78.75° (5100,1550) (1700,1550) 2553 2883 2584 

9 − 90° (4510,1500) (1125,1500) 2561 2903 2468 
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Figure 3 
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 eff
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