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We present the results obtained combining different techniques to determine the 

seismotectonic character of the Garfagnana region (northern Tuscany) where the 

existence of a rather complex fault system is acknowledged and somewhat mapped, but 

apart from the geological evidences, very little is known about its extension with depth 

and the regime.  

The seismic potential of the area is also well known. In fact it was characterized, in the 

past, by destructive earthquakes; in particular a major event (Ms=6.4) struck the 

Lunigiana-Garfagnana area in September 1920, but several macroseismic catalogues 

index many other earthquakes. According to these catalogues, the majority of the events 

occurred along a NW-SE alignment, thus with an orientation similar to that of the 

principal fault systems of the area, namely the Garfagnana North and the Garfagnana 

South. The evidence for a correlation between major events and the Garfagnana (N and 

S) faults is also confirmed by instrumental data. In fact, the most significant earthquakes 

of the Garfagnana-Lunigiana area occurred when seismometry was already well 
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developed. They have been recorded by several instruments, included in a phase–

reading process and the corresponding data have been published in several bulletins. 

The seismograms of these recordings are sometimes still available, even in digital 

format. The availability of both interpreted and raw data, provided that a careful selection 

is made, renders the application of a Joint Hypocentral Determination technique 

possible. The methodology and results are described in Solarino et al. 1996, and 

Solarino, 2002; 2005. The method is based on the concept that it is possible to account 

for all systematic errors that may bias the location of an earthquake by computing 

corrective factors in conjunction with the velocity model used for locations; all non-

systematic errors may instead be discarded by checking the single datum. The results 

show that 36% of the relocated events are in good agreement with the macroseismic 

location. 

On the other hand, the recent seismicity of the area under study is known at both a 

global (Chiarabba et al., 2005 ) and local scale (Solarino et al., 2002), the latter aspect 

due to the establishment, since 1999, of  a dense seismic network that monitors the 

area of Northern Tuscany. 

Although the data acquired in the last decade contribute to increase the quality of the 

database and, as a consequence, the constraints on the seismic locations, nevertheless 

the application of methodologies to get the best performances from the data have been 

designed and applied in areas with similar characteristics (Waldhauser and Ellsworth, 

2000) where they proved to be helpful in a more complete description of the sources.  

The work hereby presented consists in seismic tomography experiments (1D and 3D 

velocity models), the application of precise location algorithms NonLinLoc and HypoDD 

(very constrained and reliable locations) and the computation of focal mechanisms (fault 



orientation and source), all combined and compared with the constraints provided by 

geological studies.  

As known, the spatial and temporal distribution of earthquakes provide information on 

tectonic regime and material properties of an area, and on the depth of the brittle-ductile 

transition. Precise earthquake hypocentre locations are therefore the requirement to 

study structure and processes that trigger seismic activity. The accuracy of hypocentre 

locations must be of the same order of the size of the structures under study, and it 

depends on several factors. The most important are the number and type of available 

seismic phases recorded at the seismometers, the accuracy with which arrival times are 

measured, the network geometry , the knowledge of the crustal velocity structure and 

the linear approximation to a set of non-linear equations, which is assumed in the 

location process. 

The existence of many data can account for the first three quoted requirements, that is 

number and quality of available seismic phases and network geometry. In fact,  the 

seismicity of the study area is under constant monitoring by the national seismic network 

(RSNC – National Central Seismic Network)  and by a pool of local  stations, belonging 

to a regional network  (RSLG – Regional Seismic network of Lunigiana and 

Garfagnana), able to record lower magnitude seismicity.   

However,  the location process and its results may be improved by adopting alternative 

algorithms. In particular, in this study the procedure applied to improve and constrain the 

locations consists in 1) Calculating a reference 1-D model 2) Calculating a tomographic 

3-D model 3) Applying two precise location methods.  

The knowledge of both 1-D and 3-D velocity reference models is of paramount 

importance in the location process. A as-close-to-real-as-possible parametrization of the 



distribution of seismic velocity under surface is in fact needed to reconstruct the exact 

path of a seismic ray and then its origin. The a-priori or geological information about the 

earth’s structure of a given area are relative to the shallow layers, and do not account for 

the seismic ray paths at depth. On the other hand, the seismic velocities as provided, for 

example, by the DSS experiments indeed give information on deeper layers but are 

relative only to the shooting line, and cannot expanded to the whole area.  Ellsworth 

(1977) and Kissling (1988) proposed to use the coupled velocity-hypocentre problem to 

get information on the seismic velocity structure of a volume. The process consists in an 

iterative routine that starts from known a priori information and expands them to deeper 

layer by minimizing the travel time residuals of the data used in input. The model that 

best fits with the known information and minimizes best the residuals is then used as a 

reference for the location process. Thurber (1983) proposed a similar methodology in a 

3-D volume: the resulting model not only provides better and more constrained 

information on the velocity model but also gives an “image” of the structure (velocity, 

density, temperature) of the deeper earth. 

The location algorithms used in this study are the probabilistic , non-linear earthquake 

location method (NonLinLoc, Lomax and Curtis, 2001) and the double difference 

relocation technique (HypoDD hereinafter) of  Waldhauser and Ellsworth, 2000. 

The first methodology is based on a global search algorithm that can be performed in 

three different ways; in fact instead of a grid-search algorithm using successively finer, 

nested grids, the Metropolis-Gibbs or the Oct-Tree Importance sampling algorithms can 

be applied. The approach provides a complete description of location uncertainty 

estimates and can be used with any available velocity model (1-D or 3-D) and method of 

traveltime calculation.  



In the second method (HypoDD) the residuals between observed and theoretical 

traveltime differences are minimized for pairs of earthquakes at each station and the 

spatial offset between these events can be computed with high accuracy. The location 

method incorporates ordinary absolute traveltime measurements and/or cross 

correlation P and S wave differential traveltime measurements. This method is 

apparently independent from the velocity model, that must be mono-dimensional. 

953 earthquakes have been merged, picked and relocated first with a standard 

technique and then with improved location algorithms. 1-D and 3-D velocity propagation 

models have been computed and properly used. 

Figure 1 and 2 show a comparison between the NonLinLoc  and HypoDD locations, in 

plane and depth view respectively.  The star and square symbols show the position of 

the 1920 (macroseismic and instrumental) and 1995 events. The likely position of the 

Garfagnana North and South faults is also reported. The analysis of figure 1 reveals that 

the main trend of seismicity is oriented in a NW-SE direction, that is parallel to the most 

important faults of the area. In particular, the recent seismicity occurs at the northern 

edge of the Garfagnana North fault, while the Garfagnana South fault results quasi 

aseismic. The seismic line (C-D) crossing this seismicity cluster show a plane dipping 

30°  NE. A similar trend is confirmed by the tomographic cross sections. 

Since all earthquakes (figure 3) of the area have a transtensive character (Eva et al., 

2005), it is reasonable to attribute such a character to the fault, conversely to what 

proposed in DISS and in agreement with the findings of Ameri, 2005. 
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Fig.1 Comparison between high precision locations obtained with the NonLinLoc method (left panel) and 

HypoDD (right panel). The stars and  the square show the location of the 1920 and 1995 events 

respectively. The lines with dot show the orientation of the cross sections of fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 2 Cross sections along the lines of fig. 1; those on the left panels are based on the location obtained 

with the NonLinLoc technique. On the right: HypoDD. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig.3 Focal mechanisms computed with the first onset method. The majority of solutions have a 

transtensive character. 

 


