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Abstract 

Lava flows represent a challenge for physically based modeling, since the mechanical 

properties of lava change over time. This change is ruled by a temperature field, which needs 

to be modeled. MAGFLOW Cellular Automata (CA) model was developed for physically 

based simulations of lava flows in near real-time. We introduced an algorithm based on the 

Monte Carlo approach to solve the anisotropic problem. As transition rule of CA, a steady 

state solution of Navier-Stokes equations was adopted in the case of isothermal laminar 

pressure-driven Bingham fluid. For the cooling mechanism, we consider the radiative heat 

loss only from the surface of the flow, and the change of the temperature due to mixture of 

lavas between cells with different temperatures. The model was applied to reproduce a real 

lava flow occurred during the 2004-2005 Etna eruption. The simulations were computed 

using three different empirical relationships between viscosity and temperature. 
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Introduction 

Simulating lava flowing down the slopes of a volcano requires understanding how the thermal 

and rheological properties of the lava and emission rate out of the crater all vary with time 

and space (Miyamoto and Sasaki 1998). In order to generate complex trajectories due to the 

interactions between lava flows and the underlying topography, we need to model the main 

mechanical features of lava and the way they evolve over time depending on temperature. 

Another difficulty is to compute the simulation of lava flows at acceptable rates (Del Negro et 

al. 2005). A number of previous models have been developed dealing with various aspects of 

flow emplacement and cooling. However, due to the complexity of these processes, most of 

these models are based on empirically obtained equations for very simple cases, and they are 

difficult to apply in general conditions. Some of them are intended mainly as an aid to hazard 

assessment, rather than to analyze flow dynamics (Young and Wadge 1990; Wadge et al. 

1994), while others focus on the effects produced by lava flows on composite channel shapes 

(Macedonio and Longo 1999; Harris and Rowland 2001). Recently, Favalli et al. (2005) have 

applied a stochastic approach to estimate solely the areas potentially exposed to lava 

inundation, neglecting both the temperature and rheology of lava. Costa and Macedonio 

(2005) have instead adopted a generalized set of depth averaged equations, including an 

energy equation, to describe lava flow propagation on smooth topographies. 

An alternative to differential equation methods for modelling very complex phenomena is 

represented by Cellular Automata (CA), one of the first parallel computing paradigms. Lava 

flows represent a phenomenon, with features matching the CA paradigms: the system 

evolution may be described as based on local interactions of their constituent parts. Crisci et 

al. (1986) were the first to introduce the CA approach in simulating some real lava flows. 

They designed a three dimensional CA model that was successively reduced to a two 

dimensional model (Barca et al. 1993) to shorten computation time. However, in this case, the 

CA transition function was defined introducing some parameters that do not appear in the 

governing physical equations. A numerical simulation of lava flows similar to CA was used 

by Ishihara et al. (1990), who started from Navier-Stokes equations and deduced numerical 

formulations for discrete space and time intervals. Miyamoto and Sasaki (1997) claimed of 

improving the Ishihara’s method by considering the self-pressure gradient for simulating lava 
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flows on a flat terrain, and introducing a reduced random space method to eliminate the mesh 

bias without increasing calculation time. However, when the cooling effect is taken into 

account, this technique does not solve the cell geometry problem and, above all, leads to non-

physical solutions. 

Our Laboratory for the Technological Advance in Volcano Geophysics (called TecnoLab) has 

been developing a different approach of CA for physically based modeling of lava flows. In 

particular, we developed the MAGFLOW Cellular Automata model to forecast possible lava 

flow paths and to predict in near real time the evolution of the phenomena during ongoing 

eruptions (Vicari et al. 2007; Herault et al. 2007). An algorithm based on the Monte Carlo 

approach to solve truly the anisotropic problem was also included in MAGFLOW. As 

evolution function of CA, we took a steady state solution of Navier-Stokes equations into 

account, in the case of isothermal laminar Bingham fluid driven by the effect of self-gravity. 

In the evolution function, there are parameters that characterize globally the CA model and, 

therefore, the lava flow through its physical properties. Moreover, MAGFLOW takes into 

account both the thermal and rheological properties of the lava flow and the effusion rate, 

providing the propagation time and thickness of the flow, without forget the importance of 

computation time. The model was validated comparing simulated lava flows with the real 

ones of 2001 Etna eruption, showing that the code works properly fitting well-constrained 

eruption data sets (Vicari et al. 2007). 

The 2004-2005 lateral eruption at Etna volcano provided the first opportunity to verify the 

ability of our model to predict the path of lava flows while the event was ongoing and to 

produce different scenarios as eruptive conditions changed. Really, we used the MAGFLOW 

model while the eruption was under way and the thermal and rheological properties of lava 

flow outpouring were (and are) unknown. Since the effects of lava viscosity on flow 

morphologies are well known, the simulations were computed using three different empirical 

relationships between viscosity and temperature validated on basaltic rocks such as Etna 

volcano. Results obtained by comparing the three simulated cases with the real event are 

briefly summarized.  

 

 

Model Description 

The MAGFLOW model is based on Cellular Automata (CA) in which the states of the cells 

are the thickness of lava and the quantity of heat. The states of the cells are synchronously 
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updated according to local rules that depend on values of the cell and the values of neighbors 

within certain proximity. In this way, the CA can produce extremely complex structures from 

the evolution of rather simple and local rules. The evolution function of MAGFLOW is a 

steady state solution of Navier-Stokes equations for the motion of a Bingham fluid on an 

horizontal plane subject to pressure force, in which the conservation of mass is guaranteed 

both locally and globally. This kind of evolution function induces a strong dependence on the 

cell geometry and position of the flux, with respect to the symmetry axis of the cell. This 

feature affects the results significantly, and becomes a serious issue especially for calculations 

of large-scale lava flows. In order to solve this problem we used a Monte Carlo approach 

(Vicari et al. 2007). It consists of a set of experiments. For each one we consider a cellular 

automaton that has randomized neighborhood. We define the neighborhood as all cells (i) that 

are distant from the central cell less than a specified value. Therefore, we count neighbors as 

those cells whose centers lie inside a circle of a certain radius. The mean values of states of 

the cells (thickness of lava and quantity of heat) are computed over the set of experiments. 

With this method, we can get cell geometry free results and can calculate large-scale lava 

flows with no artificial anisotropy. 

Once the MAGFLOW structure was defined, we had to establish the evolution function of the 

model, or the way in which the cells evolve. Starting from the general form of the Navier-

Stokes equations, we used the basic equations governing fluid motion considering the flow 

driven by the pressure gradient due to the variation of flow depth. In this way, it is possible to 

examine flows on a slightly inclined or horizontal plane (steady state solution of Navier-

Stokes equations). In our simulation code, we assume that the lava flow is a Bingham fluid 

characterized by yield strength (Sy) and a plastic viscosity (η), and that it advances as an 

incompressible laminar flow. The basic formula to calculate the flux on an inclined plane was 

introduced in volcanology by Dragoni et al. (1986). They deduced a steady solution of 

Navier-Stokes equations for a Bingham fluid with constant thickness (h), which flows 

downward due to gravity. The flux (q) is: 
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where , hcrhha /= cr is the critical thickness and Δx the distance between two adjacent cells. 
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Other models based on this formulation were proposed in the past (e.g. Ishihara et al. 1990), 

but they did not consider the flow driven by pressure gradient. This case was introduced by 

Miyamoto and Sasaki (1997), and Mei and Yuhi (2001). The critical thickness (hcr) depends 

on the yield strength and the angle of the slope (α), as described: 
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where ρ is the density of lava, g the acceleration due to gravity, Δz the difference in height 

between two cells, and Δh the thickness increase in the cell. Lava moves on when the 

thickness attains the critical value and the basal stress exceeds the yield strength (Rocchi et al. 

2004). The viscosity and the yield strength of lavas depend mainly on the temperature (T) 

(Pinkerton and Stevenson 1992; Harris and Rowland 2001) as below: 

 bTaT +=)(logη  (3) 

 dTcTSy +=)(log  (4) 

Since the dependence of lava viscosity on temperature is one of main factors controlling the 

flow shape, we used three different empirical relationships (Pinkerton and Norton 1995; 

Ishihara et al. 1990; Giordano and Dingwell 2003) validated on basaltic rocks such as Etna 

volcano in order to forecast a reliable path of lava flows. The values of viscosity coefficients 

(a and b) are reported in Table 1. The coefficients of yield strength c and d are fixed 

respectively to c=13.0997 and d=-0.0089 (Ishihara et al. 1990). 

In the same way, it is possible to calculate lava cooling. At any time t, the heat content of lava 

(Qt) in each cell is carried in accordance with the flow motion. The temperature of the lava in 

a cell is considered as uniform: vertical temperature variation is neglected. For the cooling 

mechanism, we consider the radiative heat loss (∆Qt,r) only from the surface of the flow (the 

effect of conduction to the ground and convection with the atmosphere is neglected), and the 

change of heat (∆Qt,m) due to mixture of lavas between cells with different temperatures, 

hence: 

 rtmtttt QQQQ ,, Δ−Δ+=Δ+  (5) 

where: 
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where T is the temperature of the central cell, Ti the temperature of neighbor cells, qi is the 

flux between the central cell (i.e. the cell for which the state variables are updated) and its i-

neighbor, cv the specific heat, ε the emissivity of lava, σ the Stefan-Boltzmann’s constant 

(5.68*10-8 J m-2 s-1 K-4) and A is area of the cell. Then, the new temperature from the 

calculated heat is: 
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where  is the thickness. The necessary data to run MAGFLOW are the digital elevation 

model (DEM) for the volcano, the lava effusion rate at vent, and the physical and rheological 

properties of lava. At the initial state, the thickness of lava at each cell is set to zero. The lava 

flow starts discharging at a certain rate from a cell (or more cells) corresponding to a vent. 

The thickness of lava at the vent cell increases by a rate calculated from the volume of lava 

extruded during each time interval (of course, the flow rate for each vent can change in time). 

When the thickness at the vent cell reaches a critical level, the lava spread over the neighbor 

cells. Next, whenever the thickness at any cell exceeds the critical thickness, the lava flows to 

the adjacent cells. 

tth Δ+

 

 

Application to the 2004 Etna eruption 

The MAGFLOW model proposed here was applied to reproduce the lava flow occurring 

during the early phase of the 2004-2005 Etna eruption. Timely predictions of the areas likely 

to be inundated by lava flows are of major interest to hazard managers during a volcanic 

eruption. In order to estimate the amount of damage that can be caused by a lava flow, it is 

useful to be able to predict the size and extent of such flows. Numerical simulation is a good 

tool to examine such events. With such simulations, one can explore various eruption 

scenarios and these can specifically be used to estimate the extent of the inundation area, the 

time required for the flow to reach a particular point and resulting morphological changes. We 

simulated the effusive activity taking place during the first forty-six days of the eruption, for 

which some field data for input and comparison are available (e.g. Burton et al. 2005). The 
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eruption was characterized by outpouring of degassed lava from two main vents (vent A at 

2620 m; vent B at 2320 m) and a number of ephemeral vents (vent C at 2220 m; vent D at 

2130 m; vent E at 2150 m; vent F at 2050 m) within Valle del Bove (INGV-CT 2004a). On 23 

October, the lava flow field covered an area of about 0.84 km2 reaching the maximum length 

of about 2.5 km and expanding downhill to an elevation of 1670 m (Fig. 1). Field surveys of 

lava flow thickness allowed to constrain lava volumes between 10.5 and 18.2 x 106 m3. 

The simulations were produced taking into account the active phases of each vent. Based on 

field observations at vents we assumed daily effusion rates for the lava flow ranging from 2.8 

to 4.9 m3/s for the whole period of the simulation (INGV-CT 2004b). As a topographic basis, 

we used the digital elevation model of the Etna maps with a 1:10000 scale (the spatial grid 

resolution was Δx = Δy = 10 m). Finally, the typical parameters for Etna lava flows used in 

the simulations are reported in Table 2 (Kilburn and Guest 1993; Harris et al. 1997). 

In order to obtain a reliable forecasting of areas exposed to lava inundation, the simulations 

were computed with the three different viscosity relationships reported in Table 1. The 

simulated lava flows after forty-six days of eruption are shown in Figs. 2, 3 and 4. The 

different colors of the flow are associated with various thickness values. The MAGFLOW 

model is able to reproduce the behavior of real lava flow and the order of magnitudes of the 

quantities involved such as thickness or temperature. The comparison between the three 

simulations shows the strong dependence of the model on the variation of viscosity law (the 

other parameters are unchanged in the three different simulations). As expected, viscosity 

plays a significant role in flow morphology: it appreciably affects length, width, area, and 

thickness. During a simulation, heat transfers at the surface of the lava and inside the flow 

causes the temperature to decrease, enabling the transition from a low viscosity behaviour to a 

highly viscous one. When viscosity is low, the lava flows faster, and therefore the flow 

becomes longer and a slightly thinner, but the width of lava is not greatly affected by 

viscosity. The simulation with the Giordano and Dingwell (2003) law is rather elongated and 

canalized in two main branches, and its length is about 25 per cent longer than the real event 

(Fig. 2). Instead, the simulation with the Ishihara et al. (1990) law reproduces the principal 

lava body with sufficient precision, but its expansion is slightly shortened downhill and 

widened eastward compared to that of the actual one (Fig. 3). Finally, we can see that the 

simulation with the Pinkerton and Norton (1995) law produces the best fit for the extension of 

the whole lava field (Fig. 4). Although the narrow branches of the lava flow could not be 

reproduced, the outline of the simulated lava flow almost matched that of the actual one. 
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Some discrepancies in the inundation area were found at the branches of lava streams and at 

the margins of main streams. These are largely due to insufficient precision of maps of the 

pre-eruptive topography and to the size (10 m) of the sampling interval in the horizontal 

dimension, this being large with respect to the widths of lava streams (Mazzarini et al. 2005). 

Moreover, it is worth noting that we considered only the main ephemeral vents in the 

simulations, indeed many secondary ephemeral vents occurred here in the central part of flow 

field (INGV-CT 2004a; 2004b). Finally, the values of the effusion rate were obtained by few 

field measurements (the uncertainty associated is unknown). In these conditions, we believe 

that the results of the simulation, compared with the real lava flow field, can be considered 

satisfying. 

 

 

Conclusions 

During the 2004-2005 Etna eruption, the MAGFLOW model was used to forecast 

hypothetical scenarios of diverse evolutionary typologies of the event. That is, while the 

eruptive event was under way, several enquiries were made to determine the risk of areas 

becoming inundated. A number of simulations were carried out to answer these issues, which 

have indicated the possible future scenarios.  

The comparison between the real lava flow and the MAGFLOW simulations may be 

considered satisfactory in relation to the geometric characteristics. Evident differences, such 

as the greater length and wider extension in the terminal part of the simulated event from that 

of the actual one can be justified by the topographic inaccuracies and imprecision of the input 

data. For real case events, the degree of efficiency using MAGFLOW with the aim of hazard 

assessment and mitigation is closely correlated with the presence of an efficient monitoring 

system of the event. We can only simulate realistic scenarios with data collected from real 

events. The potential of the MAGFLOW program depends obviously on the reliability of 

input data. 

Finally, lava flow growth depends on the characteristics of the magma supply system, lava’s 

physical and rheological properties, topography, and on the ambient conditions of the 

atmosphere (Harris and Rowland 2001). Many of these characteristics can change during an 

eruption and produce diverse lava flow behaviors. A parametric study on the major 

computational variables in order to guarantee an adequate resolution of the main large-scale 

processes and to optimize computer time should be conducted. 
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Table captions 

Table 1 - Viscosity coefficients 

Table 2 - Typical parameters for Etna Lava Flows 

 

Figure captions 

Fig. 1 - Fractures and lava flow field map as of 23 October 2004, with inset showing a 

thermal image of the main structures (see reports of INGV-CT Section available at 

http://www.ct.ingv.it) 

Fig. 2 - Simulated lava thickness of the 23 October 2004 Etna lava flow computed using the 

relationship between viscosity and temperature as proposed by Giordano and Dingwell (2003) 

(see inset plot) 

Fig. 3 - Simulated lava thickness of the 23 October 2004 Etna lava flow computed using the 

relationship between viscosity and temperature as proposed by Ishihara et al. (1990) (see inset 

plot) 

Fig. 4 - Simulated lava thickness of the 23 October 2004 Etna lava flow computed using the 

relationship between viscosity and temperature as proposed by Pinkerton and Norton (1995) 

(see inset plot) 
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Relationship a b 

Ishihara et al., 1990 28.1613 -0.01810 

Pinkerton and Norton, 1995 29.4343 -0.01965 

Giordano and Dingwell, 2003 25.3496 -0.01677 

 

Table 1 - Viscosity coefficients 

 13



 

Parameter Symbol Value Unit 

Density of lava ρ 2600 kg m-3

Specific heat cv 1150 J kg-1 K-1

Emissivity of lava ε 0.9 - 

Temperature of solidification Ts 1173 K 

Temperature of extrusion Te 1360 K 

 

Table 2 - Typical parameters for Etna Lava Flows 

 

 14



 
 

 

Fig. 1 - Fractures and lava flow field map as of 23 October 2004, with inset showing a 

thermal image of the main structures (see reports of INGV-CT Section available at 

http://www.ct.ingv.it) 
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Fig. 2 - Simulated lava thickness of the 23 October 2004 Etna lava flow computed using the 

relationship between viscosity and temperature as proposed by Giordano and Dingwell (2003) 

(see inset plot) 
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Fig. 3 - Simulated lava thickness of the 23 October 2004 Etna lava flow computed using the 

relationship between viscosity and temperature as proposed by Ishihara et al. (1990) (see inset 

plot) 
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Fig. 4 - Simulated lava thickness of the 23 October 2004 Etna lava flow computed using the 

relationship between viscosity and temperature as proposed by Pinkerton and Norton (1995) 

(see inset plot) 
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