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Abstract

Because paleoseismology can extend the record of earthquakes back in time up to 

several millennia, it represents a great opportunity to study how earthquakes recur 

through time and thus provide innovative contributions to seismic hazard 

assessment. 

A worldwide compilation of a database of recurrence from paleoseismology was 

developed in the frame of the ILP project “Earthquake Recurrence Through 

Time”, from which we were able to extract five sequences with 6 and up to 9 

dated events on a single fault. By using the age of the paleoearthquakes with their 

associated uncertainty we have tested the null hypothesis that the observed inter-

event times come from a uniform random distribution (Poisson model). We have 

made use of the concept of likelihood for a specific sequence of observed events 

under a given occurrence model. The difference dlnL of the likelihoods estimated 

under two hypotheses gives an indication of which between the two hypotheses 
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fits better the observations. To take into account the uncertainties associated to 

paleoseismological data, we used a Monte Carlo procedure, computing the 

average and the standard deviation of dlnL for 1000 inter-event sets randomly 

obtained by choosing the occurrence time of each event within the limits of 

uncertainty provided by the observations. Still applying a Monte Carlo procedure, 

we have estimated the probability that a value equal to or larger than each of the 

observed dlnLs comes by chance from a Poisson distribution of inter-event times. 

These tests have been carried out for a set of the most popular statistical models 

applied in seismic hazard assessment, i.e. the Log-normal, Gamma, Weibull and 

Brownian Passage Time (BPT) distributions. In the particular case of the BPT 

distribution, we have also shown that the limited number of dated events creates a 

trend to reducing both the observed mean recurrence time and the coefficient of 

variation for the studied sequence which can possibly bias the results. Our results 

show that a renewal model, associated with a time dependent hazard, and some 

kind of predictability of the next large earthquake on a fault, only for the Fucino 

site, out of the five sites examined in this study, is significantly better than a plain 

time independent Poisson model. The lack of regularity in the earthquake 

occurrence for three of the examined faults can be explained either by the large 

uncertainties in the estimate of paleoseismological occurrence times or by 

physical interaction between neighbouring faults. 
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1. Introduction

In the last decades the use of probabilistic, time-dependent models of earthquake 

occurrence has grown up in the context of seismic hazard analysis. The basic idea for 

time-dependent models is to consider the earthquake occurrence as a quasi-periodic 

process (Shimazaki and Nakata, 1980): stresses which cause earthquakes are slowly 

built up by plate movements until the stress or deformation energy reaches a critical 

value, at which a rupture occurs. This idea has been worked out in the characteristic 

earthquake model (Schwartz and Coppersmith, 1984). According to this model, 

strong earthquakes have a general inclination to repeat themselves along the same 

fault segment or plate boundary. The occurrence of a characteristic earthquake 

ruptures the entire segment and relieves tectonic stress within the segment. The same 

idea is also the basis of the

seismic gap hypothesis (McCann et al., 1979), according to which the earthquake 

hazard is small immediately following the previous large earthquake and increases 

with time since the latest event on a certain fault or plate boundary. Kagan and 

Jackson (1991, 1995) tested this hypothesis for earthquakes on the circum-pacific belt 

using an ensemble of seismic zones because of the shortness of the seismic record 

within a single zone. Their result did not support the seismic gap hypothesis, as the 



fault segments that had experienced higher activity in the former period of time 

appeared to be more active also in the following period of test.

In order to assess the validity of the seismic gap hypothesis for its possible 

application to seismic forecasting, a probabilistic approach is used for comparison 

with a null hypothesis. Earthquake occurrence is regarded as a point process, and the 

inter-event time is modelled by a probability density function (pdf). In this respect, 

the null hypothesis is that for which the earthquake process has no memory 

(described by a uniform Poisson model). For a uniform Poisson model, whose pdf is a 

negative exponential function, only one parameter, the inter-event time, is necessary 

for a complete description. Conversely, the gap hypothesis needs a more complicated 

model, named renewal model, whose pdf contains a further free parameter, 

conditioning the shape of the distribution in terms of its periodicity. The pdf for a 

renewal model exhibits a maximum for inter-event times close to its expected 

recurrence time.

The present paper belongs to the kind of studies that aim to the evaluation of the 

seismic gap hypothesis through statistical methods. The two compared hypotheses of 

earthquake recurrence are the gap and null hypothesis. In this respect this work can 

be considered a development of the paper published by Console et al., (2002). Their 

method was based on the comparison of the coefficient of variation observed for real 

seismic sequences with the distribution of the same parameter computed from a large 

number of simulations obtained from the Poisson hypothesis. In this case the 



comparison is made on the likelihood function computed for the real and simulated 

sequences.

2. Method

In the context of seismic forecasting one of the most popular investigation methods is 

the hypothesis testing through a stochastic procedure. We compare two hypotheses: 

the first one represents the reference model, commonly accepted; and the second is 

the alternative hypothesis. In this study the reference model (the null hypothesis) is 

described by the exponential distribution in the continuous domain, while the 

alternative model (the gap hypothesis) is described by renewal models (Log-Normal, 

Gamma, Weibull and Brownian Passage Time distributions).

The comparison between these models and the Poisson model has been carried out 

introducing the concept of likelihood, L, of a given realisation of a stochastic process 

under a given assumption. The function L is defined as the hypothetical probability 

that a set of events would yield a specific outcome under a specific hypothesis.

The log-likelihood function is evaluated for both the null hypothesis (ln LP) and the 

gap hypothesis (ln LG). Regarding the first one, described by the exponential 

distribution, ln LP is defined as:
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where N is the number of observed events, t(N) is the occurrence time of the most 

remote earthquake of the sequence, and Trm, is the mean inter-event time (or 

recurrence time).

The ln LG of the gap hypothesis, described by renewal models, is:
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where Tr(j) is the time difference, or inter-event time, between the j-th and the (j+1)-

th event and f(Tr(j)) is the pdf.

As stated in the introduction, in this study we consider four kinds of statistical 

families, i.e. the Log-normal, the gamma, the Weibull and the Brownian passage time 

(BPT) distributions.

The pdf of the Log-normal distribution is :
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where  and  are the mean and standard deviation of the logarithm of the inter-event 

time.

The Log-normal statistical family has been evaluated estimating the shape parameter 

 both from the data and assuming the fixed value  = 0.4 (Wells and Coppersmith, 

1994): this value describes the shape parameter of a quasi-periodic seismic sequence. 

The increasing of  represents the decrease of the periodicity of the seismic 

sequence. When   1 earthquakes occur at random over the time. Evaluating   from 

data, the following equation is used:
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The pdf of the Gamma distribution is:

























)(

exp
)(

)(

1
))((

1
jTrjTr

jTrf

where  and  are the shape and the scale parameters of this statistical family, 

respectively:
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where Trm and sd(Trm) are the mean and the standard deviation of the inter-event 

times in the sample:
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The pdf of the Weibull distribution is:
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where  and  are the shape and the scale parameters, respectively. In particular the 

scale parameter of the Weibull distribution is coincident with the mean value of the 

inter-event times, Trm. Instead  is the inverse of the coefficient of variation, or 

aperiodicity, defined as the ratio between the standard deviation and the mean of the 

observed inter-event time.

 The pdf of the BPT distribution is (Ellsworth et al., 1999; Matthews et al.,  2002):
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where Trm is the mean value of the inter-event time and Cv is the coefficient of 

variation (or aperiodicity).

The difference between the log-likelihood for the null hypothesis and the gap 

hypothesis is defined as:

PG LLLd lnlnln  .

A positive dlnL means that the sequence is better described by the gap hypothesis 

than by the null hypothesis.

To take into account the effect of the uncertainties of paleoseismological data on the 

estimate of dlnL values, we have used a Monte Carlo procedure. So, we have 

computed the average and the standard deviation of dlnL from a thousand inter-event 

sets randomly obtained by choosing the occurrence time of each event within the 

limits of uncertainty provided by the observations. In this procedure it is assumed that 

the real occurrence time has a uniform probability distribution within such time 

limits.

In order to check the statistical significance of the dlnL results we have followed a 

standard procedure. This procedure consists in finding out the confidence level by 

which a hypothesis can be rejected with respect to the other. According to a standard 

practice, we can reject one of the two hypotheses only if the confidence level is 

higher than 95%. In this test we are interested in testing if the null hypothesis of the 

Poisson model can be rejected in light of the available paleoseismological data for 



any of the observed sites. Still making use of a Monte Carlo procedure, we have built 

up a thousand synthetic sequences based on a uniform Poisson distribution for the 

same number of events and the same total time covered by the observed data for each 

fault. Then we have computed the desired confidence level from the percentile 

corresponding to the real dlnL value in the synthetic distribution. It corresponds to the 

probability that a value equal or smaller than the observed dlnL comes by chance 

from casual fluctuations of a uniform random distribution (Console et al., 2002).

3. Data

Sequences of events on a single structure are quite infrequent to observe because the 

time interval covered by historical and instrumental catalogues is often too short 

when compared to the average recurrence time of individual faults. Since 

paleoseismology can extend the record of earthquakes of the past back in time up to 

several millennia, it represents a great opportunity to study how seismic events recur 

through time and thus provide innovative contributions to seismic hazard assessment 

(Figure 1).

Based on these considerations, for the present study we have used data from the 

Database of "Earthquake recurrence from paleoseismological data" developed in the 

frame of the ILP project "Earthquake Recurrence Time" (Pantosti, 2000). One of the 

main aims of this database is to resume the information concerning the recurrence 

through time of strong earthquakes occurred along seismogenic faults by means of 

paleoseismological study. It includes information about the analyzed sites (fault, 



segmentation, location, kinematics, slip rates) as well as the definition of 

paleoearthquakes (type of observation for event recognition, type of dating, age, size 

of movement, uncertainties). The database contains prevalently faults for which more 

than two dated events (one inter-event) exist.

In this work we have considered sites whose seismic sequence is composed of at least 

six events. Focusing the attention on the Mediterranean area, we have extracted five 

sequences of earthquakes: the Fucino fault in Central Italy, the Irpinia and the 

Cittanova fault in Southern Italy, the Skinos fault in Central Greece and El-Asnam 

fault in Northern Algeria (Figure 2). Each paleosismological site was investigated by 

scientists who proposed an interpretation of the seismic sequence combining the 

instrumental and historical earthquake records with paleoseismological study 

(Galadini and Galli, 1999; Galli and Bosi, 2002; Pantosti et al., 1993; Collier et al., 

1998; Meghraoui and Doumaz, 1996).

It is evident that in all the sites only the youngest events are characterized by an exact 

occurrence time because they are instrumental or historical, instead most of them are 

paleoseismological, thus their age is affected by uncertainty (Figure 3 and Table 1). 

These uncertainties are related to the availability of chronological constrain in the 

stratigraphic sequence and to the uncertainty that affect the single radiocarbon date.

4. Results and discussion

By using the ages of paleoearthquakes with their associated uncertainties, we have 

compared the renewal (gap hypothesis) and the uniform Poisson (null hypothesis) 



models. We have considered the Log-normal distribution in two ways: first using the 

shape parameter  obtained from the real sequences, and then fixing it at the value 

0.4 considered appropriate by Wells and Coppersmith (1994). The comparison has 

been made between the log-likelihoods of the observed sequences under each model 

to test which of them fits better the observations for a number of studied sites. The 

other renewal models considered here are the Gamma, the Weibull and the BPT 

distributions.

For each of the five fault sites we have computed the mean inter-event time Trm with 

its uncertainty (see the first column of Tables 2 and 3). Then, for every renewal 

model, we computed also the shape parameter with its error and the difference dlnL

between the log-likelihood obtained from the renewal and the Poisson models. The 

values of these parameters are reported in Tables  2 and 3, where each pair of 

columns refers to each renewal model separately. These results are discussed in the 

following subsections.

4.1 Log-normal distribution

Looking at the values referring to the shape parameter  when this parameter is 

obtained from the observations (Table 2), we see that only for the Fucino fault 

(0.206  0.021) is smaller than the standard value 0.4 adopted by Wells and 

Coppersmith (1994). This means that only the seismic sequence of this site exhibits a 

significantly high periodicity, while the earthquake occurrence of other sequences is 



characterized by less regularity and more casuality. The largest   value belongs to 

the Skinos site ( =1.07  0.44) suggesting that this sequence follows the Poisson 

model reasonably well.

Since all the dlnL values are positive, we could apparently infer that the seismic 

sequences are characterized by a non random behaviour (Table 2). However, looking 

at the dlnL values with their uncertainties, it is easy to notice that only for the Fucino 

fault this value is clearly higher than zero, while for the others the errors are 

comparable with the corresponding dlnL values.

As said earlier, the statistical significance of the comparisons has been investigated 

by means of a Monte Carlo procedure. One thousand synthetic sequences have been 

simulated under the Poisson model, and the dlnL  values so obtained have been sorted 

out in increasing order. Figure 4 shows the cumulative distributions of the synthetic 

dlnL values for the five faults of the Mediterranean area. For each site, the plots show 

the comparison between the  const Log-normal distribution and the Poisson 

distribution.

We can observe that in correspondence of the zero value of the x-axis (dlnL=0) all 

the plots cross a value pretty close to 50%. It means that the simulations yield 

approximately the same number of positive and negative results for dlnL. The 

percentage of simulations that fall below the observed dlnL value indicates the level 

of confidence by which the null hypothesis can be rejected. Table 4 shows these 

results in terms of the confidence level, , for each of the models and each of the 



sites considered in this study. Only for the Fucino fault we can reject the null 

hypothesis with  >95%.

Looking at the plots for the =0.4 Log-normal distribution we can notice that the 

range of the x-axis is much wider (-150;10) and the dlnL=0 value is between the 70 

and 80 percentile (Figure 5). The dlnL values of Skinos and El Asnam faults are 

negative and thus their earthquake sequences appear characterized by random 

occurrence of seismic events, rather than by quasi-periodical behaviour. Although the 

dlogL of the other sites are positive, we can't reject the null hypothesis by the 95% 

confidence level criterion in any case, even for the Fucino fault.

The evident difference between the Log-normal distribution with  const  and 

=0.4 is caused by the capacity of the former to adjust the shape parameter to the data. 

Thus, computing  from the data, the shape parameter improves the performance of 

the renewal model with respect to the Poisson hypothesis.

4.2 Gamma distribution

Considering the Gamma distribution from a theoretical point of view, one can expect 

that its behaviour should not be so different from that of the  const  Log-normal 

distribution, because the pdfs of these renewal models are similar to each other and 

the only difference is the more or less prominent peak.

Indeed, the ln LG values, and so the dlnLs, of the Gamma distribution are comparable 

with those of the  const  Log-normal family (Table 2). However, the corresponding 



confidence levels are different from each other: for the Gamma model s are higher 

than those of the other renewal model. The reason of the remarkable difference is the 

wider range of dlnL that is (-15;15). Its  meaning is the following: when we introduce 

the experimental dlnL in the plot of the synthetic simulations, this is considerably 

shifted right-ward and so its confidence level results higher. For the Gamma 

distribution the probability that a dlnL value is smaller than or equal to the observed 

one comes from a random distribution, is higher than the same probability evaluated 

with the Log-normal statistical family.

The point dlnL=0 is in the middle of the x-axis (Figure 6), thus the number of the 

simulations with dlnL>0 and to the number of the simulations with dlnL<0 are 

balanced. Then the probability of having a dlnL value higher or less than 0 from a 

random distribution is similar.

The smallest dlnL belongs to the Skinos fault whose shape parameter   is equal to 

2.1  1.6 as shown for the Log-normal distribution. Instead, the Fucino fault is 

characterized by a high shape parameter,  =26.4  7.2, and high dlnL, so for this 

fault we can reject the null hypothesis with  =99.45%   0.70% (Table 4).

4.3 Weibull distribution

Regarding the Weibull distribution, when its shape parameter   is higher than 1, the 

sequence of earthquakes has a quasi-periodic behaviour; instead, when  <1 the 

seismic sequence is clustered. The studied Mediterranean sites have shape parameter 

larger than 1, thus this points out the regular behaviour of these seismic sequences. 



We could draw the same conclusion also looking at the values of dlnL (Table 3). 

Indeed also for this renewal model the dlnLs are positive even if we take into account 

the fact that their uncertainties have the same order of magnitude of the average 

values.

From Tables 3 and 4 we can immediately see that the quasi-periodic behaviour of the 

Fucino fault, already observed from the previous statistical families, is even more 

evident in this case: its shape parameter is 4.23  0.55, its dlnL is 9.70  0.29 and the 

confidence level, by which the Poisson distribution can be rejected, is almost equal to 

100%.

Moreover, another feature of this statistical model is that the values of , dlnL and 

for the Irpinia and Cittanova faults are almost equal to each other. This suggests that 

according to the Weibull distribution, these two seismic sites have a similar 

behaviour of recurrence. Also, this renewal model shows that the most random 

sequence is that of the Skinos fault, even if its shape parameter is equal to the  of the 

El Asnam site.

Figure 7 shows plots for the comparison between the Weibull and Poisson 

distributions. We can clearly observe that the point dlnL=0 is close to the 30 

percentile, thus the number of simulations with positive dlnL is much higher than the 

number of simulations with dlnL<0.

All the features considered for the Weibull model (shape parameters   higher than 1, 

positive dlnLs, and the location of the point dlnL=0) confirm that this renewal model 

fits well the real seismic sequences.



However, the superiority of this renewal model on the Poisson distribution is not 

effective because when we compare the observed dlnL with those of simulations, we 

can reject the Poisson distribution with  >95% only for the Fucino fault, as shown 

with the Log-normal and Gamma distributions.

4.4 BPT distribution

The BPT distribution confirms the general trend of the previous renewal models. The 

Fucino fault is still featured by the highest value of dlnL with a low uncertainty 

(Table 3). Instead, the Cittanova, Skinos and El Asnam faults have negative dlnLs, 

which denote a random behaviour of these seismic sequences.

Looking at the shape parameters Cv they are similar to the   values for the  const  

Log-normal distribution. In detail, the Cv of the Skinos fault,  Cv=0.76  0.18, is 

lower than that of the other renewal model,  =1.07  0.44. This suggests that 

considering the BPT distribution as renewal model, the observations show behaviour 

a bit closer to a quasi-periodical one. Even if the Cvs of the BPT family are 

comparable with those of the  const  Log-normal distribution, the dlnLs of the BPT 

are more similar to the dlnL values of the =0.4 Log-normal distribution.

Regarding the confidence level, only the  value of the Fucino fault is higher than 

95% (Table 4), allowing the rejection of the null hypothesis just in this case.

Looking at the plots of the BPT model we can see that also the zero of the x-axis is 

between the 60 and 80 percentile as in the plots of the  =0.4 Log-normal 



distribution (Figure 8). This means that the number of simulations with negative 

value of dlnL is higher than the number of simulations with dlnL>0.

For this renewal model we have carried out a further test. For each fault we have built 

up, through a Montecarlo procedure, synthetic BPT distributions characterized by the 

same number of events and the same total time covered by the observed data. The 

computer code allows for the arbitrary choice of the inter-event time Trm (input) and 

the coefficient of variation Cv (input). For each of these synthetic distributions, the 

corresponding Trm (output) and Cv (output) were computed. Repeating the procedure 

1000 times, we have obtained an average Trm (output) and Cv (output), which are not 

necessarily the same as the respective input parameters. By means of a trial and error 

procedure, it was easy to find which pair of input parameters Trm (input) and Cv 

(input) would provide the same output values as observed from the real seismic 

sequence.

The results of these simulations, reported in Table 5, show that both the inter-event 

time Trm(output) and the coefficient of variation Cv (output) are systematically 

smaller than the respective Trm (input) and Cv (input). In some cases, as for the 

Skinos and El Asnam faults, such difference is substantial.

We have then iterated the analysis carried out for the other renewal models, using 

Trm (input) and Cv (input) as they were the parameters estimated directly from the 

observations. In this way we have obtained new dlnL values and the relative 

significance level  for all the five faults (Table 6). These results don't change the 



conclusions which have been achieved directly from the real observations, though 

they show a smaller  value for both the Fucino and Irpinia faults.

5. Conclusions

In this paper we have tested the seismic recurrence of earthquake sequences to assess 

their characteristics of random or regular occurrence. With the only exception of the 

Fucino fault, whose regularity is a statistically significant feature, the analyzed 

seismic sequences appear characterized by irregular behaviour. We can show this 

conclusion by the comparison between the Log-normal, Gamma, Weibull and BPT 

distributions, and the exponential distribution.

Our analysis has pointed out a slight superiority of the Weibull model with respect to 

the others, as it can fit the data with a larger value of dlnL . However, the difference 

is not clearly significant. Indeed, a clear difference among these distributions could 

be easily noted only for high values of the recurrence time and for high values of 

their shape parameters.

We should take into consideration the uncertainty inherent in the paleoseismological 

data, because geological expressions of the past earthquakes are not easily 

discernible. Moreover, uncertainties affect the age estimates of the paleoearthquake 

due to both the dating methods and to the availability of dating evidence in the 

stratigraphic sequences. In a few cases these uncertainties may be comparable to or 

even larger than one seismic cycle. Only for the Fucino fault, the observed 

occurrence times for all the events are constrained within very narrow ranges. A 



rigorous statistical approach to the problem of the uncertainties in the observations of 

recurrence times for seismic hazard assessment has been introduced by Rhoades et 

al., (1994) and Rhoades and Van Dissen (2003). In this study we have made use of 

the Monte Carlo method for dealing with such uncertainties.

The lack of regularity in the earthquake occurrence may be explained either by non-

deterministic fault behaviour or by interaction between different faults. Indeed, 

closely spaced faults are characterized by a stress field that affects each other, 

possibly interacting with failure triggering processes. Consequently, for a more 

precise study of the seismic forecasting it will be necessary to consider the stress 

transfer between neighbouring faults in somehow more deterministic way.
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Figure captions

Figure 1 - Distribution of events along a hypothetical seismic structure compared with 

the length of instrumental, historical and paleoseismological catalogues of seismicity. 

We may have short time window within which we can observe how earthquakes 

recurred in the past even using historical record that may span between a few centuries 

to a couple of millennia. Paleoseismology can extend the record of past earthquakes 

back in time up to several millennia representing a good opportunity to investigate 

how strong earthquakes recur through time.

Figure 2 - Location of the sites of the Mediterranean area considered in this study.

Figure 3 - Time distribution of earthquakes for each sequence. The most recent ages 

of the events of each sequence are mostly historical and are indicated by single solid 

lines, whereas for the paleoseismic events the ages are indicated by mean ages (solid 

lines) and the associated uncertainties (shaded areas).

Figure 4 - Cumulative distributions of dlnLs for a thousand  synthetic sequences 

compared with the observed dlnL with its uncertainty, for each studied fault of the 

Mediterranean area. The ordinate of the real dlnL in the synthetic distribution gives 



the probability that the observed dlnL comes by chance from a random distribution. 

These plots show the comparison between the  const Log-normal and the Poisson 

distribution.

Figure 5 - As in Figure 4, for the comparison between the = const Log-normal and 

the Poisson distribution.

Figure 6 - As in Figure 4, for the comparison between the Gamma and the Poisson 

distribution.

Figure 7 - As in Figure 4, for the comparison between the Weibull and the Poisson 

distribution.

Figure 8 - As in Figure 4, for the comparison between the Brownian Passage Time 

and the Poisson distribution.

Figure 9 - As in Figure 4, for the comparison between the "modified" BPT and the 

Poisson distribution for each analysed site.

Table 1 - Age of the events for the sites analyzed in the present study. Historical 

earthquakes are indicated by a single date whereas for the paleoseimic events the age 

is characterized by a more or less wide range of uncertainty.



Table 2 - Results of studied seismic sequences for the comparison of the  const  

and =0.4 Log-normal, and Gamma, with the Poisson distribution. For each site it is 

shown: the mean inter-event time Trm, the shape parameter  , the difference of log-

likelihood between the renewal model and the Poisson distribution dlnL. Every value 

is shown with its uncertainty, except for the fixed shape parameter =0.4, which 

comes from the literature.

Table 3 - Results for the comparison between the Weibull and  Brownian Passage 

Time renewal models, and the Poisson distribution.

Table 4 - Significance levels with their uncertainties by which the Poisson distribution 

can be rejected. These values refer to the five Mediterranean sites and to different 

renewal models.

Table 5 - The shape parameter Cv and the mean value of the inter-event times Trm of 

a Poisson distribution given as input, compared with the corresponding Cv and Trm

values of the BPT model obtained as output. All these values are shown for all the 

Mediterranean seismic sequences.

Table 6 - Results (difference of log-likelihood between the two hypothesis, dlnL, and 

confidence level  with their uncertainties) for the comparison between the 



"modified" BPT and the Poisson distributions. "Modified" BPT model means that as 

input values, Cv(input) and Trm, we have provided the parameters estimated from the 

specific analysis carried out for the BPT model (see Table 5).



Abstract

Because paleoseismology can extend the record of earthquakes back in time up to 

several millennia, it represents a great opportunity to study how earthquakes recur 

through time and thus provide innovative contributions to seismic hazard 

assessment. 

A worldwide compilation of a database of recurrence from paleoseismology was 

developed in the frame of the ILP project “Earthquake Recurrence Through 

Time”, from which we were able to extract five sequences with 6 and up to 9 

dated events on a single fault. By using the age of the paleoearthquakes with their 

associated uncertainty we have tested the null hypothesis that the observed inter-

event times come from a uniform random distribution (Poisson model). We have 

made use of the concept of likelihood for a specific sequence of observed events 

under a given occurrence model. The difference dlnL of the likelihoods estimated 

under two hypotheses gives an indication of which between the two hypotheses 

fits better the observations. To take into account the uncertainties associated to 

paleoseismological data, we used a Monte Carlo procedure, computing the 

average and the standard deviation of dlnL for 1000 inter-event sets randomly 

obtained by choosing the occurrence time of each event within the limits of 

uncertainty provided by the observations. Still applying a Monte Carlo procedure, 

we have estimated the probability that a value equal to or larger than each of the 

observed dlnLs comes by chance from a Poisson distribution of inter-event times. 

These tests have been carried out for a set of the most popular statistical models 

Abstract
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applied in seismic hazard assessment, i.e. the Log-normal, Gamma, Weibull and 

Brownian Passage Time (BPT) distributions. In the particular case of the BPT 

distribution, we have also shown that the limited number of dated events creates a 

trend to reducing both the observed mean recurrence time and the coefficient of 

variation for the studied sequence which can possibly bias the results. Our results 

show that a renewal model, associated with a time dependent hazard, and some 

kind of predictability of the next large earthquake on a fault, only for the Fucino 

site, out of the five sites examined in this study, is significantly better than a plain 

time independent Poisson model. The lack of regularity in the earthquake 

occurrence for three of the examined faults can be explained either by the large 

uncertainties in the estimate of paleoseismological occurrence times or by 

physical interaction between neighbouring faults. 
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FUCINO IRPINIA CITTANOVA SKINOS EL ASNAM

Event 1 1915 AD 1980 AD 1783 AD 1981 AD 1980 AD

Event 2 508 AD 230 AD-620 BC 300-370 AD 1295-1680 AD 1329-1630 AD

Event 3 1442 BC 620-2330 BC 390 AD-4300 BC 990-1390 AD 1040-1280 AD

Event 4 3230-3450 BC 2460-4790 BC 4060-10770 BC 990-1390 AD 90 AD-400 BC

Event 5 5570-5894 BC 4790-6650 BC 4060-10770 BC 670-1165 AD 830-1256 BC

Event 6 7526-7929 BC 9230-13050 BC 10710-13770 BC 670-1165 AD 1985-2559 BC

Event 7 10053-10729 BC 2509-3040 BC

Event 8 2509-3040 BC

Event 9 4510-5350 BC

Table 1
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Log-normal with Log- normal with Gamma

 const  const

Sequence Trm (yr)  dlnL  dlnL  dlnL

Fucino 2051 ± 32 0.206  ± 0.021 6.50  ± 0.58 0.4 3.36 ± 0.11 26.4 ± 7.2 7.1 ± 2.0

Irpinia 2263 ± 167 0.61  ± 0.19 1.4  ± 1.2 0.4 1.4 ± 1.7 3.7 ± 2.9 1.2 ± 1.2

Cittanova 2802 ± 177 0.76  ± 0.34 0.9  ± 1.4 0.4 1.3 ± 9.7 3.9 ± 2.7 0.8 ± 1.4

Skinos 229 ± 28 1.07  ± 0.44 0.03  ± 0.67 0.4 -5 ± 11 2.1 ± 1.6 0.03 ± 0.47

El Asnam 862 ± 28 0.94  ± 0.25 0.15  ± 0.93 0.4 -4.3 ± 8.9 2.00 ± 0.46 0.52 ± 0.51
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Weibull        Brownian

Passage Time

Sequence Trm (yr)  dlnL Cv dlnL

Fucino 2051 ± 32 4.23  ± 0.55 9.70  ± 0.29 0.255 ± 0.037 8.01 ± 0.81

Irpinia 2263 ± 167 1.79  ± 0.70 1.96  ± 0.89 0.63 ± 0.19 0.8 ± 1.8

Cittanova 2802 ± 177 1.70  ± 0.57 2.1  ± 1.1 0.66 ± 0.21 -0.9 ± 7.7

Skinos 229 ± 28 1.40  ± 0.42 0.71  ± 0.43 0.76 ± 0.18 -8.0 ± 16

El Asnam 862 ± 28 0.94  ± 0.25 1.61  ± 0.51 0.720 ± 0.0.81 -4.6 ± 5.2
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 (%), Log-normal  (%), Log-normal  (%)  (%)  (%), Brownian

with  const with  const Gamma Weibull Passage Time

Fucino 99.30 ± 0.30 94.6 ± 1.6 99.45 ± 0.70 100.00 ± 0.30 99.96 ± 0.10

Irpinia 76 ± 20 77 ± 17 75 ± 21 81 ± 10 76 ± 24

Cittanova 65 ± 31 74 ± 33 66 ± 34 82 ± 13 51 ± 41

Skinos 52 ± 19 38 ± 42 54 ± 15 60 ± 11 18 ± 47

El Asnam 56 ± 23 31 ± 59 68 ± 13 75.1 ± 9.2 40 ± 25
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Cv Trm input Cv Trm  output

input yr output yr

Fucino 0.31 2051 ± 32 0.25 1913 ± 488

Irpinia 1.0 2263 ± 167 0.63 1858 ± 1212

Cittanova 1.1 2802 ± 177 0.66 2010 ± 1382

Skinos 1.55 229 ± 30 0.76 159 ± 127

El Asnam 1.03 862 ± 28 0.72 679 ± 500
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Cv input Trm dlnL 
yr

Fucino 0.31 2051 ± 32 5.76 ± 0.11 99.400 ± 0.080

Irpinia 1.0 2263 ± 167 0.72 ± 0.68 73 ± 13

Cittanova 1.1 2802 ± 177 -0.56 ± 3.2 54 ± 32

Skinos 1.55 229 ± 30 -2.57 ± 8.4 36 ± 43

El Asnam 1.03 862 ± 28 -1.5 ± 9.7 55 ± 37
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