

H. Pape

Applied Geophysics and Geothermal Energy E.ON Research Center of Energy RWTH Aachen University, D-52056 Aachen, Germany

Simulation of NMR-relaxation

Start with a pore radius distribution and a model of diffusion coupled pores

End with a relaxation time distribution

 R_{10} 12

 $3x$

 10

cluster of pores

simulation of NMRrelaxation

using a corresponding electrical circuit

 $16x$

 $R_{12,13}$

Simulation of surface relaxation for one pore class and longitudinal magnetization

corresponding electrical circuit

 $R_{NMR} = \rho_1^{-1}/S$ $T = R C = (\rho_1^{-1}/S)V$ $= (\rho_1^{-1} r/3)$

relaxation time

Simulation of surface relaxation for one pore class and transverse magnetization

corresponding electrical circuit

$R_{NMR} = \rho_2^{-1}/S$ $T = R C = (\rho_2^{-1}/S)V$ $= (\rho_2^{-1} r/3)$ $\rho_2 = 5.85 \rho_1 (9.53/r)^{0.43}$

relaxation time

Simulation of surface relaxation and diffusion for two connected pores

$$
P(t) = \sum_{i=1}^{n} P_i
$$

relaxation curve of pore cluster

normed to $P_{t=0} = 1$

for isolated pores

$$
P_i = V_i \exp\left(-\frac{t}{T_i}\right)
$$

relative volumes V_i with 1 1 *n* $\sum V_i =$ *i* =

*T*_i is a function of pore radius r_i

1 exp *n* $i = \sum_{ij}$ $j=1$ $\qquad \qquad$ \qquad \qquad j $P_i = \sum_{i=1}^{n} b_{ii} \exp\left(-\frac{t}{\sigma}\right)$ $=\sum_{j=1}^n b_{ij} \exp\left(-\frac{t}{T_j}\right)$ *n* for connected pores

$$
\sum_{j=1}^n b_{ij} = V_i
$$

The relaxation times T_i are common for all connected pores, however the coefficients b_{ij} are different.

Some b_{ij} may be negative.

relaxation curve of pore cluster from coefficients of connected pores

$$
P(t) = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} b_{ij} \right) \exp\left(-\frac{t}{T_j}\right)
$$

analytical calculation of NMR relaxation by solving a system of linear differential equations

example for a cluster of three pore classes

 $A =$

$$
Y' = AY
$$

\n
$$
P'_1
$$

\n
$$
Y' = P'_2
$$

\n
$$
Y' = P_1 \quad P_2 \quad P_3
$$

\n
$$
P'_3
$$

$$
\begin{array}{c|c|c} \displaystyle \left(\left(R_{\scriptscriptstyle NMR,1} \right)^{-1} + 11 \left(R_{\scriptscriptstyle diff,1_2} \right)^{-1} \right) & \displaystyle -11 \left(R_{\scriptscriptstyle diff,1_2} \right)^{-1} & 0 \\ \hline C_1 & C_1 & 0 \\ \displaystyle \frac{- \left(R_{\scriptscriptstyle diff,1_2} \right)^{-1}}{C_2} & C_2 & C_2 \\ \displaystyle \frac{- \left(R_{\scriptscriptstyle diff,2_3} \right)^{-1} + \left(R_{\scriptscriptstyle diff,2_3} \right)^{-1} + 16 \left(R_{\scriptscriptstyle diff,2_3} \right)^{-1} \right)}{C_2} & C_2 \\ \displaystyle \frac{- \left(R_{\scriptscriptstyle diff,2_3} \right)^{-1}}{C_3} & \frac{\left(\left(R_{\scriptscriptstyle NMR,2} \right)^{-1} + \left(R_{\scriptscriptstyle diff,2_3} \right)^{-1} \right)^{-1}}{C_3} & C_3 \\ \end{array}
$$

$$
R_{NMR,i} = (\rho S_i)^{-1} \qquad R_{diff,1_2} = D^{-1} l_{1_2} A_{cross,1_2}
$$

$$
R_{diff,2_3} = D^{-1} l_{2_3} A_{cross,2_3}
$$

relaxation time distribution for sub-clusters

relaxation function of sub-cluster

sub-clusters

relaxation time distribution

transverse magnetization compared to longitudinal magnetization

