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Context of our study :

Reservoir permeability drop due to compaction during the production
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• Primary recuperation Pore Pressure Pp
decreases

• Effective stresse increases

• Effective vertical stress increases
(dependent of the distance to the borehole)

• Horizontal permeability dependency of the
production

khkh

σv

Motivations :Motivations :
Relation between the evolution of the stress field anisotropy and the transport 
properties anisotropy ?
Effects of the stress path on reservoir compressibility ?       Reservoir simulation
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EXPERIMENTAL SET-UP
Triaxial cell specially designed  to directional 

permeabilities measurements

Pmax = 69 MPa
Tmax = 130°C
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TridirectionalTridirectional PermeabilitiesPermeabilities::

Axial Axial permeabilitypermeability measurementsmeasurements:: kkaz,FL az,FL & k& kaz,MLaz,ML
• Classical between inlet and outlet of the sample
• Pore pressure sampling at the mid-length of the sample

Radial Radial permeabilitypermeability measurementsmeasurements:: kkrxrx & k& kryry
• 2 pairs of injector/receptor at the contact of lateral
sample surface.

Back 
Pressure

ISCO 
PumpInjector Peek items

Sample

Core Sleeve

ΔP sensor

Special Core sleeve equipment
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Special Core sleeve equipment

ComplementaryComplementary measurementsmeasurements::

SampleSample strainsstrains::
• Axial displacement of the upper piston : external LVDT
• Radial strains : Cantilever fixed on the core sleeve

PorosityPorosity EvolutionEvolution::
• recorded by ISCO Pump during each

confining pressure increase.
pVΔ

TridirectionalTridirectional PermeabilitiesPermeabilities::

Axial Axial permeabilitypermeability measurementsmeasurements:: kkaz,FL az,FL & k& kaz,MLaz,ML
• Classical between inlet and outlet of the sample
• Pore pressure sampling at the mid-lenght of the sample

Radial Radial permeabilitypermeability measurementsmeasurements:: kkrxrx & k& kryry
• 2 pairs of injector/receptor at the contact of lateral
sample surface.

x

yz
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Considering an isotropic permeability case :

Anisotropic permeabilities evolution 
of reservoir rocks under pressure

Modified Darcy law: 
Geometric Factor Calculation using Finite Elements Method
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True radial flow Equivalent Darcy flow
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Bai & al. SPE#78188 (2002) 
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EXPERIMENTAL RESULTS
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Tested Samples

Fontainebleau Fontainebleau SandstonesSandstones::

Porosity: 5.4 to 8% Permeability: 2.5 to 30mD

Hydrostatic loading

BentheimerBentheimer SandstonesSandstones::

Porosity: 24% Permeability: 3000 mD

Hydrostatic and Deviatoric loading at
low confining pressure

EstailladesEstaillades LimestonesLimestones::

Porosity: 27% Permeability: 150mD

Hydrostatic and Deviatoric loading at
low confining pressure
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Experimental results : Low permeability sandstone (Fontainebleau) 

HYDROSTATIC LOADING  SAMPLE 1 : φ = 5.4%

kaz,FL

kaz,MLkrx

kry

k0az,FL   = 2.5 mD
k0az,ML = 2.5 mD
k0ry = 4.8 mD

Ref: David C.(1993) JGR; Korsnes et al.(2006) Tectonophysics

Fortin et al.(2006) JGR

FL ML
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Experimental measurements validation on Fontainebleau sandstones
Confrontation of measured kConfrontation of measured k--φ φ and a model of diagenetic compression of Quartz aggregatesand a model of diagenetic compression of Quartz aggregates

Grain Pore Throat Model*

( )411 υυ φφ −− −∝ rk
: Residual Porosity;      : Geometrical Exponent

defined as 
rφ υ υφ∝s

Verified for 3 Fontainebleau Samples
( low porosity and low permeability )* Chauveteau G. (2002) SPE#73736
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Experimental results : High permeability sandstone (Bentheimer) 

k0az,FL= 1840 mD ; k0az,ML= 2900 mD
k0ry = 2825 mD

HYDROSTATIC LOADING



12

©
IF

P
Anisotropic permeabilities evolution 
of reservoir rocks under pressure

Z

X

Brittle failure: =  53.5 MPa

Effective Elastic moduli calculated in 
the range of axial stress [20:40] MPa :

E = 10.3 GPa
= 0.2

aσ

υ

Rupture influence on 3D permeabilities

Axial:

Radial:

kaz,FL before failure= 1185 mD
kaz,FL after failure= 1560 mD

krx before failure = 2139 mD
krx after failure = 631 mD

« UNIAXIAL » LOADING

Sulem et Ouffroukh (2005) Rock Mech. and rock eng.
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k0az,FL = 152 mD
k0az,ML= 162 mD
k0ry = 70 mD

Anisotropic permeabilities evolution 
of reservoir rocks under pressure

Experimental results : intermediate permeability limestone (Estaillades) 

k0az,FL = 20 mD
k0az,ML= 20 mD
k0ry = 13 mD

AL

P*

P*

Homogeneous Pore Collapse
P* = 30 MPa
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Experimental results : Intermediate permeability limestone (Estaillades) 

BEFORE LOADING AFTER LOADING

5 mm 5 mm

High Resolution Micro-Scanner Slides ( 3 μm resolution)
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Experimental results : Intermediate permeability limestone (Estaillades) 

BL

AL



16

©
IF

P
Anisotropic permeabilities evolution 
of reservoir rocks under pressure

CONCLUSIONS #1

• Simultaneous radial and axial permeability measurements 
are feasible.

• Classical axial permeability measurements may be affected 
by end effects.

• The pressure dependency of permeabilities is well captured.

ON GOING EXPERIMENTAL WORK :

Investigation of the influence of strains localization on flow 
properties (In-situ Observations)
Focus on stress paths more representative of  reservoir 
conditions.
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PORE SCALE MECHANISMS 
MODELISATION
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Modelisation of pore-scale mechanisms
Equivalent Pore Network extraction* :

Microtomography 3D
Reconstruction

Porosity threshold

Pore Network
Skeletonization 

local minimum radius

Individual Pore 
Indexation

Pores: Equivalent Volume spheres
Throats: Cylindrical channels

Output data:

Throats dimension: LT, rT & AR
Equivalent pores volumes: 
Network connectivity

φ
* Youssef et al. (2007) SCA
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Modelisation of pore-scale mechanisms : Fluid flows and compaction coupling

Transport properties simulation 

L
rgh

4

8
π

=

SPG
ρρ

=•

Individual channel conductance :

Problem formulation :

)( jiijij PPgq −=

Network compaction implementation

Resolution of network effective 
hydraulic conductivity

Spherical Pores: 
*

00, ))(1( pprr ppp −−≅ γ
**

2
)1(

Ep
υγ +

=

Cylindrical Pore Throats: 
*

00, ))(1( pprr TTT −−≅ γ
**2 )1(

ET
υγ +

=

Tl pressure dependency neglected

)(PgT )(PG )(Pk
*   Bernabé et al. (1982) Mech. of Materials. ; Bernabé et al. (1995) JGR
**  Jaeger et Cook (1976) Fundamental of Rock Mechanics.

0=∑
→ ji

ijq

In the throat
between pores i and j

In the Pores :

Matrix formulation :
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Modelisation of pore-scale mechanisms : Bentheimer Sandstone Example

Extracted equivalent pore network 
Volume = 500x500x500    x6μm

Pin

Pout

%5.24exp =φ %4.24=CTμφ
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Modelisation of pore-scale mechanisms : Bentheimer Sandstone Example

Extracted equivalent pore network 
Volume = 500x500x500    x6μm

Pin

Pout

mDk 3000exp =
mDk CT 847=μ

%10, <CTkA μ

Discrepancy lies to the definition of rT
(minimum local pore throat radius) 

L
rg T

h

4

8
π

=
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CONCLUSIONS #2 : 
MICRO-TOMOGRAPHY CONTRIBUTION

• Simple pressure dependency model can be applied on the 
equivalent pore network.

ON GOING NUMERICAL WORK :

Alternative description of throats dimensions 
Investigation of the anisotropic distribution of the channels

FEM  simulation of  the coupled effects of deforming matrix 
and fluid flows (TRUE GEOMETRY OF THE POROSITY)
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THANKS FOR YOUR 
ATTENTION
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New Experimental Set-up :
Triaxial cell specially designed to directional permeabilities measurements

Pmax = 69 MPa
Max Using Temperature = 130°

Inlet
outlet

PΔ

Pressure cell
Isco Pumps

100 MPa

Porous media
Isco Pump

50 MPa
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Experimental results : Low permeability sandstone (Fontainebleau) 

Sample 2 : φ = 8%

k0az,FL= 29.2 mD
k0az,ML= 31.1 mD
k0rx = k0ry = 19.5 mD

Preliminary Experimental Conclusions :Preliminary Experimental Conclusions :
- Radial and axial permeabilities values differences
due to G calculation

- Intermediate axial permeability measurements looks
more consistent than classical measurements

kaz,FL

kaz,MLkrx

kry
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