New experimental and numerical approaches

Dautriat J.^{1-2*}, Gland N.², Dimanov A.¹, Youssef S.², Vizika O.²

* Corresponding author: jeremie.dautriat@ifp.fr

LMS

Reservoir engineering – Anisotropic permeabilities evolution of reservoir rocks under pressure – 09/29/2007

Context of our study :

Reservoir permeability drop due to compaction during the production

- Primary recuperation \longrightarrow Pore Pressure P_p decreases
- Effective stresse increases

$$\sigma_{eff} = \frac{2\sigma h + \sigma v}{3} - Pp$$

- Effective vertical stress increases (dependent of the distance to the borehole)
- Horizontal permeability dependency of the production

Motivations :

Relation between the evolution of the stress field anisotropy and the transport properties anisotropy ? Effects of the stress path on reservoir compressibility ? \rightarrow Reservoir simulation

© IFP

EXPERIMENTAL SET-UP

Triaxial cell specially designed to directional permeabilities measurements

Special Core sleeve equipment

Tridirectional Permeabilities:

Axial permeability measurements: kaz,FL & kaz,ML

- Classical between inlet and outlet of the sample
- Pore pressure sampling at the mid-length of the sample

Radial permeability measurements: k_{rx} & k_{ry}

• 2 pairs of injector/receptor at the contact of lateral sample surface.

ЧĻ

Special Core sleeve equipment

Tridirectional Permeabilities:

Axial permeability measurements: kaz,FL & kaz,ML

- Classical between inlet and outlet of the sample
- Pore pressure sampling at the mid-lenght of the sample

Radial permeability measurements: k_{rx} & k_{ry}

• 2 pairs of injector/receptor at the contact of lateral sample surface.

Complementary measurements:

Sample strains:

- Axial displacement of the upper piston : external LVDT
- Radial strains : Cantilever fixed on the core sleeve

Porosity Evolution:

• ΔV_p recorded by ISCO Pump during each confining pressure increase.

Modified Darcy law: Geometric Factor Calculation using Finite Elements Method

Modified Darcy law :
$$\frac{Q}{A_a} = -G \frac{k_r}{\mu} \frac{\Delta P}{D}$$

True radial flow Equivalent Darcy flow
 $Q_n = A_n \frac{k_n \Delta P_n}{\mu D}$ $Q_a = A_a \frac{k_a \Delta P_a}{\mu D}$
Effective cross-section Area Injector Area
Considering an isotropic permeability case :
Geometric factor $G = \frac{A_a}{A_n} = \frac{\Delta P_n}{\Delta P_a}$
FEM simulation $\rightarrow G = 0.18$
Bai & al. SPE#78188 (2002)

Energy Environment

EXPERIMENTAL RESULTS

© IFP

Tested Samples

Fontainebleau Sandstones:

Porosity: 5.4 to 8% Permeability: 2.5 to 30mD

→ Hydrostatic loading

Bentheimer Sandstones:

Porosity: 24% Permeability: 3000 mD

Hydrostatic and Deviatoric loading at low confining pressure

Estaillades Limestones:

Porosity: 27%

Permeability: 150mD

---> Hydrostatic and Deviatoric loading at low confining pressure

Experimental results : Low permeability sandstone (Fontainebleau)

HYDROSTATIC LOADING

SAMPLE 1 : $\phi = 5.4\%$

Ref: David C.(1993) JGR; Korsnes et al.(2006) Tectonophysics

Experimental measurements validation on Fontainebleau sandstones

Confrontation of measured k- ϕ and a model of diagenetic compression of Quartz aggregates

Grain Pore Throat Model*

$k \propto$	$(\phi^{1-\upsilon})$	$-\phi_r^{1-\upsilon}$	1
	V		

 ϕ_r : Residual Porosity; U: Geometrical Exponent defined as $S \propto \phi^{\nu}$

* Chauveteau G. (2002) SPE#73736

Experimental results : High permeability sandstone (Bentheimer)

Experimental results : intermediate permeability limestone (Estaillades)

Experimental results : Intermediate permeability limestone (Estaillades)

High Resolution Micro-Scanner Slides ($3 \ \mu m$ resolution)

BEFORE LOADING

AFTER LOADING

Experimental results : Intermediate permeability limestone (Estaillades)

© IFP

CONCLUSIONS #1

- Simultaneous radial and axial permeability measurements are feasible.
- Classical axial permeability measurements may be affected by end effects.
- The pressure dependency of permeabilities is well captured.

ON GOING EXPERIMENTAL WORK:

- Investigation of the influence of strains localization on flow properties (In-situ Observations)
- Focus on stress paths more representative of reservoir conditions.

PORE SCALE MECHANISMS MODELISATION

© FP

17

Modelisation of pore-scale mechanisms

Equivalent Pore Network extraction*:

Pores: Equivalent Volume spheres <u>Throats:</u> Cylindrical channels

Output data:

Throats dimension: L_T , $r_T \& AR$ Equivalent pores volumes: ϕ Network connectivity

Microtomography 3D Reconstruction

Individual Pore Indexation

* Youssef et al. (2007) SCA

Porosity threshold

Pore Network Skeletonization <u>local minimum radius</u>

Modelisation of pore-scale mechanisms : Fluid flows and compaction coupling

Transport properties simulation	Network compaction implementation
Individual channel conductance :	Spherical Pores:
$g = \frac{\pi}{r^4}$	$r_p \cong r_{p,0} (1 - \gamma_p (p - p_0))^*$
$\frac{8 L}{Problem formulation}$	$ \gamma_p = \frac{(1+\nu)}{2E}^{**} $
In the throat between pores i and j $q_{ij} = g_{ij}(P_i - P_j)$	<u>Cylindrical Pore Throats</u> : $r_T \cong r_{T,0} (1 - \gamma_T (p - p_0))^*$
In the Pores : $\sum_{i \to j} q_{ij} = 0$	$\gamma_T = \frac{(1+\nu^2)}{E}$
	l_T pressure dependency neglected
Matrix formulation : $G \bullet \dot{P} = \dot{S}$	$g_T(P) \longrightarrow G(P) \longrightarrow k(P)$
Resolution of network effective hydraulic conductivity	 * Bernabé et al. (1982) <i>Mech. of Materials.</i>; Bernabé et al. (1995) JGR ** Jaeger et Cook (1976) Fundamental of Rock Mechanics.

Ч

Modelisation of pore-scale mechanisms : Bentheimer Sandstone Example

Modelisation of pore-scale mechanisms : Bentheimer Sandstone Example

Energy Environmenl

21

CONCLUSIONS #2 : MICRO-TOMOGRAPHY CONTRIBUTION

• Simple pressure dependency model can be applied on the equivalent pore network.

ON GOING NUMERICAL WORK:

- Alternative description of throats dimensions
- Investigation of the anisotropic distribution of the channels
- FEM simulation of the coupled effects of deforming matrix and fluid flows (TRUE GEOMETRY OF THE POROSITY)

THANKS FOR YOUR ATTENTION

23

New Experimental Set-up : Triaxial cell specially designed to directional permeabilities measurements

Pmax = 69 MPa Max Using Temperature = 130°

Experimental results : Low permeability sandstone (Fontainebleau)

Sample 2 : $\phi = 8\%$

Directional permeability evolution SAMPLE 2

0