Improved interpretation of T₂ distributions fl NMR relaxation measurements for a bette prediction of low permeabilities

J. Arnold¹, H. Pape¹, R. Pechnig¹, C. Clauser¹, S. Anferova², E. Talnishnikh² and B. Blümich²

¹Applied Geophysics and Geothermal Energy, E.ON Energy Research Center ²Institute of Technical and Macromolecular Chemistry

brought to you

itation

similar papers

at core.ac.uk

Outline

- Motivation
- NMR relaxation mechanisms
- NMR Instrumentation
- New model theory
- Permeability results
- Conclusions

2/15

Motivation

Motivation

Instrument

Relaxation

Model Theory

- Permeability prediction from measured NMR decay times (T₂)
- Mobile NMR core-scanner for rapid well-site analysis

Permeability

NMR Relaxation - T₁

 T_1 relaxation time: alignment of proton spins in external field \rightarrow porosity

Motivation

Instrument

Relaxation

Model Theory

Permeability

NMR Relaxation – T₂

T₂ realxation time: repeated tipping of spins by external radio-frequency field B₁ followed by decay of transverse magnetization

 \rightarrow T₂ decay curve;

Permeability

- \rightarrow pore size distribution;
- \rightarrow permeability

Model Theory

5/15

Halbach core-scanner

- Weight: 8 kg
- B₀: 0.3 T
- G: 0.3 T/m
- Frequency: 13 MHz

Anferova, S., Anferov, V., Arnold, J., Talnishnikh, E., Voda, M. A., Kupferschläger, K., Blümler, P., Clauser, C., Blümich, B., 2007. Improved Halbach Sensor for NMR Scanning of Drill Cores, *Magnetic Resonance Imaging*, *25*, 474–480.

Motivation

Instrument

Relaxation

Model Theory

| Permeability

Conclusion

NMR Relaxation Rates

MotivationInstrumentRelaxationModel TheoryPermeabilityConclusion

Surface Relaxivity

8/15

Permeability

Standard equation for permeability

[2] Kenyon et al., 1988.

$$k_{T_{2,\text{LM}}} = a T_{2,\text{LM}}^2 \varPhi^4$$

 $a = 4 \text{ mD/ms}^2$

k : permeability [md] $T_{2,Lm}$: logarithmic mean of T_2 [ms] Φ : porosity [-]

Motivation

2D T1-T2 correlation map

Sandstone sample AC15: Φ = 9 %

10/15

Motivation

Instrument

Relaxation

Model Theory

Permeability

New Model Theory

11/15

Motivation

Instrument

Relaxation

Model Theory

Permeability

Correction of T2 distribution

Permeability results

Kozeny-Carman equation
using
$$r_{corr}(T_{2,LM})$$
:
 $k = \left(\frac{1}{8}\right) \frac{\Phi}{T} r_{corr}^2(T_{2,LM})$

T : tortuosity

Standard $T_{2,LM}$ equation: $k = a T^2_{2,LM} \Phi^4$

Mobile tool for use on drilling platforms

- Standard permeability calculation scheme for high porosity rocks
- Improved permeability prediction for low porosity rocks taking into account increasing diffusion effects
- ļ Individual calibration required for each formation

Conclusion

Tool

Permeability

to the German Science Foundation (DFG) for operating grants BL 231/26-1/2 to B. Blümich and CL 121/16-1/2 to C. Clauser within the DFG ODP/ICDP priority program.