

Interpretation of permeability change due to effective stress with special focus on pore space geometry

Coupling of hydro-mechanical properties of porous media

Guido Blöcher, Harald Milsch & Günter Zimmermann

Two different sandstones (Flechtinger and Bentheimer) were investigated:

•Determine the effective pressure $(p_{eff}=p_c-p_p)$ dependency of Skempton coefficient B and the permeability k

•Analysing the pore space geometry

•Derive linkages between pore space geometry and transport properties

Skempton Coefficient B Measurement at the Mechanical Test System MTS

Sample dimension: length: 10cm diameter: 5cm

Experiment conditions: fully undrained

pre-conditioned confining pressure range $p_c = 5$ to 60MPa

Measurement:

pore pressure p_p

 $\frac{\text{Result:}}{\text{Skempton coefficient}} B = -\frac{1}{2}$

$$A = \frac{dp_p}{dp_c}$$

Permeability Measurement at the High-Temperature-Pressure (HTP) Permeameter

Sample dimension:

length: 4cm diameter: 3cm cross sectional area A=7.07cm²

Experiment conditions:

drained T=40°C 0.1 molar NaCl- brine confining pressure range $p_c = 5$ to 47MPa pore pressure range $p_p = 2.5$ to 42MPa flow rate range Q = 0.05 to 30 ml/min

Measurement:

pore pressure gradient $grad(p_p)$

<u>Result:</u> permeability $k = -\frac{Q^* \eta}{A^* grad(p_p)}$

Results of the Laboratory Experiments

HELMHOLTZ

ASSOCIATION

EMFCSC, Erice, Sicily, 25 - 30 September, 2007

HELMHOLTZ

Pore Space Analysis Porosity

<u> Bentheimer</u>

total porosity: 19.23-26.35 pore radii: 40-110 microns pore cavity to throat ratio: small

Flechtinger:

total porosity: 9.54-10.73 pore radii: 6.5-200 microns pore cavity to throat ratio: high

Pore cavity-throat-ratio

- mercury injection assumes cylindrically shaped pores → determined radius is close to pore throat radius
- 2D image analysis directly determines the pore radii

→Gap between Mercury injection and 2D image analysis indicates the pore cavity to throat ratio

Pore Space Analysis Pore Model

	Measured pore types			
	2D Image	Skempton	Permeability	
	Analysis	Experiment	Experiment	
Catenary pores	Х	Х	Х	
Cul-de-sac pores	X	X		
Closed pores	Х			
Note: The ratio of Catenary, Cul-de-sac and Closed pores is changing				
due to effective pressure				

6

HELMHOLTZ

Analytical Examination of Permeability and Skempton Coefficient

B(p _{eff} =0MPa)	0.1373
$k(p_{eff}=0MPa) [m^2]$	7.81E-09
dB/dp _{eff} [1/MPa]	-4.5E-06
$dk/dp_{eff}[m^2/MPa]$	-5.7E-13
B(p _{eff} =0MPa)	0.1373
$k(p_{eff}=0MPa) [m^2]$	0
dB/dp _{eff} [1/MPa]	-4.5E-06
dk/dp _{eff} [m ² /MPa]	0
B(p _{eff} =0MPa)	0.4085
$\frac{B(p_{eff}=0MPa)}{k(p_{eff}=0MPa) [m^{2}]}$	0.4085 1.10E-08
$\begin{array}{c} B(p_{eff}=0MPa)\\ k(p_{eff}=0MPa) \ [m^2]\\ dB/dp_{eff} \ [1/MPa] \end{array}$	0.4085 1.10E-08 -4.5E-05
$B(p_{eff}=0MPa)$ $k(p_{eff}=0MPa) [m^{2}]$ $dB/dp_{eff} [1/MPa]$ $dk/dp_{eff} [m^{2}/MPa]$	0.4085 1.10E-08 -4.5E-05 -2.3E-12
$B(p_{eff}=0MPa)$ $k(p_{eff}=0MPa) [m^{2}]$ $dB/dp_{eff}[1/MPa]$ $dk/dp_{eff}[m^{2}/MPa]$ $B(p_{eff}=0MPa)$	0.4085 1.10E-08 -4.5E-05 -2.3E-12 0.4085
$B(p_{eff}=0MPa)$ $k(p_{eff}=0MPa) [m^{2}]$ $dB/dp_{eff} [1/MPa]$ $dk/dp_{eff} [m^{2}/MPa]$ $B(p_{eff}=0MPa)$ $k(p_{eff}=0MPa) [m^{2}]$	0.4085 1.10E-08 -4.5E-05 -2.3E-12 0.4085 7.81E-09
$B(p_{eff}=0MPa)$ $k(p_{eff}=0MPa) [m^{2}]$ $dB/dp_{eff} [1/MPa]$ $dk/dp_{eff} [m^{2}/MPa]$ $B(p_{eff}=0MPa)$ $k(p_{eff}=0MPa) [m^{2}]$ $dB/dp_{eff} [1/MPa]$	0.4085 1.10E-08 -4.5E-05 -2.3E-12 0.4085 7.81E-09 -4.5E-05

Pore Space Analysis Circularity

Numerical Examination of Skempton Coefficient

Skempton coefficient varies for each single pore from 0.32 to 0.68 dependent on the pore shape

ELMHOLTZ ASSOCIATION

EMFCSC, Erice, Sicily, 25 - 30 September, 2007

Two mechanisms lead to a change in porosity, Skempton coefficient and permeability with changing effective stress:

1. A pore separation by closing of pore throats

- Caternary pore \rightarrow Cul-de-sac pore leads to a decrease of permeability
- Cul-de-sac \rightarrow Closed pore leads to a decrease of Skempton coefficient
 - The separation of pores depends on the pore cavity to throat ratio

2. A poro-elastic deformation of the pore space itself

- poro-elastic deformation affects porosity, Skempton coefficient and permeability
 - The change in Skempton coefficient is highest
 - Irregularly shaped pores are more susceptible to poro-elastic deformation

Qualitative Interpretation for Flechtinger Sandstone

Observation:

- High circularity
- High pore cavity-throat-ratio
- Continuous decrease of permeability and Skempton coefficient with effective pressure increase

No change of the pore shape

Separation of pores

Interpretation:

Cut-off of flow path leads to a change in permeability and Skempton coefficient

Qualitative Interpretation for **Bentheimer Sandstone**

Observation:

- Low circularity (irregular pore shapes)
- Low pore cavity-throat-ratio
- effective pressure and no significant change in permeability

Sensitive for poro-elastic deformation

No separation of pores

High decrease in Skempton coefficient at low High poro-elastic deformation at low effective pressure. After stiffening of the frame work no further change in B and k.

Conclusion

- Two types of sandstone (Flechtinger and Bentheimer) were investigated
- Both samples show differences in effective pressure dependencies as expressed by their Skempton coefficient and permeability
- By means of a three pore type model in combination with a heterogeneous pore space geometry change a qualitative interpretation is possible

Future Work

- A quantification of the geometry change will be necessary
- A direct method to measure the geometry change due to effective pressure change must be developed
- Further experiments to validate the results of this work