Prediction of Reservoir Permeability fro Petrography Characterisation

S. Baraka-Lokmane^{1,2,3}, I.G. Main¹, B.T. Ngwenya¹, S.C. El

¹ School of GeoSciences, University of Edinburgh, UK

² Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh

³ School of Environment and Technology, University of Brighton, UK

29th Course of the International School of Geophysiscs Euro-Conference of "Rock Physics and Geomechanics" on Natural hazards: thermo-h mechanical processes in rocks (EMFCSC, Erice, Sicily, 25-30 September, 2007) ck¹

K

core.ac.uk

Outline

HERIOT WATT I

Introduction

UTE OF

- Description of the rock material
- Fluid-rock interactions, regression results
- Conclusions

HERIOT WATT INSTITUTE OF

Introduction

Reservoir quality, primarily determined by the porosity and permeability of the relevant formations, can be a function of many controls including:

- Nature of the constituent minerals and cement;
- Degree of rock cementation;
- Degree of sorting or equivalently the particle size of the grains;
- Pore-size distribution.

Reservoir engineers, petrophysicists and exploration geologists have tried to obtain quantitative relationships between 2-D petrographic properties and 3-D petrophysical properties.

McCreesh et al., 1991; Ehrlich et al., 1991; Gerard et al., 1992; Passas et al., 1996; Mowers and Budd, 1996; Anselmetti et al., 1998; Ioannidis et al., 1996

Purpose of this study

- 1- A detailed characterisation of three sandstone reservoir samples
- Fife sandstone

UTE OF

- Locharbriggs sandstone
- Slick Rock Aeolian sandstone
- 2- Evaluation of the effect of mineralogy on permeability and prediction of reservoir permeability from petrography characterisation

IERIOT WATT INSTITUTE OF

Description of Rock Material

- X-ray Computer Tomography (CT-Scanner)
- Particle Size Analysis
- Petrography (thin sections analysis, using a point counting technique)
- Environmental Scanning Electron Microscopy (ESEM)

PETROLEUMENGINEERING & School of Engineering and Physical Sciences

- X-Ray Diffraction (XRD) Analyses
- X-Ray Fluorescence (XRF) Analyses
- Petrophysical description permeability and porosity

X-ray Computer Tomography (CT-Scanner)

measurement parameters advantages	disadvantages
3-D X-ray Computer Tomography• Rock heterogeneity• Relatively rapid method of measurement• Presence of iron and calcite• Not destructive method	 Interpretation of the grey scale is challenging Previous petrography analysis is

X-ray Computer Tomography (CT-Scanner)

HERIOT WATT

Slick Rock Aeolian sandstone

Fife sandstone

← Iron banding

Locharbriggs Sandstone

Fife sandstone

HERIOT

Particle Size Analysis

HERIOT WATT INSTITUTE OF

Particle Size Analysis

9

HERIOT WATT INSTITUTE OF

Method of measurement	Measured parameters	Comments on the advantages	Comments on the disadvantages
3-D Particle size	 Rock heterogeneity Mean grain size 	 useful to supplement porosity for empirical permeability estimation 	 Not always easy to obtain grains from a sandstone core

HERIOT WATT INSTITUTE OF

PETROLEUMENGINEERING & School of Engineering and Physical Sciences

HERIOT WATT UNIVERSITY

Petrography

Method of measurement	Measured parameters	Comments on the advantages	Comments on the disadvantages
2-D Point counting using thin sections	 Percentages of the different mineral constituents and porosity Identification of the dominant cement 	 Structural analysis Identification of rare minerals 	Time consuming
3-D XRD	Mineralogy composition	 Quantitative analysis Independent method from point counting Identification of the different types of clays 	 Minerals present with less than 1 % of the rock are not identified
3-D XRF	Chemical composition	• Quantitative analysis for most elements with concentrations as low as 1ppm	 time consuming

Composition of the three groups of samples shown in the Q-F-RF diagram of Folk (1974)

Petrography (thin sections analysis using po counting technique)

HERIOT WATT INSTITUTE OF

Slick Rock Aeolian sandstone

Locharbriggs Sandstone

Fife sandstone

HERIOT WATT INSTITUTE OF

PETROLEUMENGINEERING & School of Engineering and Physical Sciences

Environmental Scanning Electron Microscop (ESEM) Measurements

Method of measurement	Measured parameters	Comments on the advantages	Comments on the disadvantages
3-D ESEM/ EDX	 Wettability of the different minerals Mineral identification 	 Relatively rapid method of measurement 	•Qualitative and not quantitative method of measurement

Environmental Scanning Electron Microscop (ESEM) Measurements

Water wet quartz

HERIOT WATT INSTITUTE OF

Cement containing kaolinite, smectite and illite

Water wet feldspar

Very water wet clays

Environmental Scanning Electron Microscopy (ESEM) Measurements

Schematic diagrams of three levels of wettability

Intermediate in wetness condition

Environmental Scanning Electron Microscop (ESEM) Measurements

Water wet quartz

HERIOT WATT INSTITUTE OF

Cement containing kaolinite, smectite and illite

Water wet feldspar

Very water wet clays

HERIOT WATT INSTITUTE OF

V

PETROLEUMENGINEERING & School of Engineering and Physical Sciences

Petrographycal and petrophysical parameters of the 3 groups of

Sandstone	Locharbriggs	Slick Rock Aeolian	Fife
Brine permeability, k _l (mD)	706 ± 177	285 ± 71	1980 ± 388
Gas permeability, k _g (mD) (200 psi)	1424 ± 35	499 ± 49	1366 ± 63
k _g /k _l	$\textbf{2.1} \pm \textbf{0.7}$	1.9 ± 0.6	$\textbf{0.7} \pm \textbf{0.2}$
Porosity, Φ (%)	$\textbf{26.1} \pm \textbf{0.1}$	$\textbf{22.3} \pm \textbf{0.5}$	23 ± 3
Mean Grain size, MGS (μm)	199 ± 5	208 ± 28	348 ± 28
SiO ₂ content (%)	$\textbf{92.9} \pm \textbf{0.4}$	$\textbf{91.5} \pm \textbf{0.4}$	$\textbf{97.5} \pm \textbf{0.1}$
Cement content (%)	7 ± 2	10 ± 2	5 ± 1
Type of cement	illite, kaolinite, smectite, hematite	Calcite, illite hematite	kaolinite
Clays content (%)	6 ± 2	$\textbf{5.3} \pm \textbf{0.9}$	5 ± 2
Type of clays	illite, kaolinite, smectite	illite	kaolinite

Fife sandstones

- Most homogeneous rock material; the main detrital components are represented by quartz;

- Largest percentage of SiO₂ content (97.5 %),
- Largest mean grain size (348µm);
- Lowest percentage of cement (5 %).

These microstructural characterisations explain the highest values of permeability (k ~ 1980 mD)

- Good agreements between gas and liquid permeability; the only clay minerals are kaolinite (5 %).

Slick Rock Aeolian and Locharbriggs sandstones

- Higher values of the ratio between gas and liquid permeability (kg/kl ~2).
- Ilite (5.3%) for Slick Rock Aeolian sandstones

HERIOT WATT INSTITUTE OF

- Smectite, Illite and kaolonite (6 %) for Lochabriggs sandstones.

The swelling clays are responsible for the reduction of the liquid permeability.

- Smectite tends to swell when exposed to brine. It is very hydrophilic due to its "mobile" structure.

- Illite is a mineral that reacts with brine to a limited extent.

- Kaolinite is not prone to swelling with changes in water content. Kaolinite, having a stable, "rigid" structure (due to the strong book bonds) reacts with water to a minimum extent

Fluid-Rock Interactions

Liquid permeability is correlated to 1 to 5 petrographical / petrophysical parameters such as

- SiO₂,
- Clay,
- Cement
- Porosity
- Mean grain size (MGS)

Fluid-Rock Interactions

STITUTE OF

Cross-plots for k₁ versus percentage of SiO₂

Fluid-Rock Interactions

STITUTE OF

Fluid-Rock Interactions

STITUTE OF

Fluid-Rock Interactions

STITUTE OF

Cross-plots for k_l versus percentage of cement

Fluid-Rock Interactions

STITUTE OF

Regression results

Multi-variate regressions were performed using 2 to 5 variables of petrographic elements

Calculated parameters:

- Correlation coefficient (R²),
- Standard deviations (S.D.)
- Akaike's Information Criterion (AIC)

Akaike information criterion (AIC) H. Akaike (1973)

$$AIC3 = \left(-\left[\frac{n}{2}\right] * LnML\right) - p$$

$$ML = \sum (obs - pred)^2$$

where

n is the number of data points in the regression

p is the number of independently adjusted parameters within the model

ML is the maximum likelihood method

Ln is the natural log

	Regression results	ysical Sci	iences	IERIOT
Variables: petrographic elements	Least squares fit	R ²	S.D.	AIC
SiO2	a. k ₁ = 279.27% SiO ₂ – 25259.20	0.95	132.44	-100.30
MGS	<i>b. k</i> _l = 9.15μm MGS – 1439.50	0.72	319.35	-114.38
Φ	<i>c.</i> k ₁ = 220.73% Φ – 4194.40	0.60	392.63	-117.68
Cement	<i>d.</i> k ₁ = – 153.84% Cement + 1967.60	0.47	439.83	-119.49
Clay	<i>e.</i>	0.56	402.37	-118.07
SiO ₂ , MGS	f. k ₁ = 254.11% SiO ₂ + 1.13 μm MGS – 23181.2	0.95	132.68	-99.74
SiO ₂ , Clay	<i>g.</i> k ₁ = 283.78% SiO ₂ + 21.88% Clay – 25701	0.94	137.20	-101.68
SiO_2, Φ	h. k ₁ = 285.41% SiO ₂ – 7.86% Φ – 25656.60	0.94	137.04	-100.25
SiO ₂ , Cement	<i>i.</i> k ₁ = 265.82% SiO ₂ – 15.84% Cement – 23872.60	0.95	133.35	-99.81
MGS, Φ	<i>j. k</i> _l = 6.61μm MGS + 113.16% Φ – 3331.46	0.79	267.65	-110.96
MGS, Cement	<i>k. k</i> _l = 7.27μm MGS – 77.39% Cement – 331.71	0.78	273.31	-111.29
SiO ₂ , MGS, Clay	<i>I. k</i> _l = 259.75% SiO ₂ + 2.20μm MGS + 142.96% Clay – 24102.9	0.95	131.51	-98.96
SiO ₂ , MGS, Cement	<i>m. k</i> _l = 235.27% SiO ₂ + 1.28μm MGS – 18.25% Cement – 21308.2	0.95	132.31	-99.05
SiO ₂ , Cement, Clay	n <i>. k</i> _l = 266.92% SiO ₂ – 15.68% Cement + 4.70% Clay – 23981.40	0.94	138.78	-99.81
SiO ₂ , Clay, Φ	o. k ₁ = 294.77% SiO ₂ + 34.14% Clay – 10.85% Φ – 26496.90	0.94	142.09	-100.19
SiO_2 , MGS, Φ	ρ. k _l = 257.14% SiO ₂ + 1.10 μm MGS – 3.20% Φ – 23386.4	0.94	138.03	-99.73
MGS, Cement, Φ	q. k _ι = 5.69μm MGS – 59.35% Cement + 89.68% Φ – 2089.31	0.83	238.75	-108.49
MGS, Clays, Φ	r. k _ι = 5.73μm MGS – 97.57% Clay + 114.65% Φ – 3056.58	0.78	277.06	-110.88
SiO ₂ , MGS, Clay, Φ	s. k _ι = 272.01% SiO ₂ + 2.22μm MGS + 158.13% Clay – 12.34% Φ –24992.4	0.95	136.31	-98.83
SiO ₂ , MGS, Cement, Φ	<i>t. k</i> _l = 236.19% SiO ₂ + 1.27μm MGS – 18.20% Cement – 0.92% Φ – 21371.8	0.94	138.18	-99.05
SiO ₂ , MGS, Cement, Clay	<i>u. k</i> ₁ = 242.86% SiO ₂ + 2.20μm MGS – 15.71% Cement +125.82% Clay – 22379.9	0.95	132.77	-124.63
SiO ₂ , Cement, Clay, Φ	v. k ₁ = 275.45% SiO ₂ – 15.09% Cement + 14.15% Clay – 7.79% Φ – 24617.7	0.94	144.56	-99.77
SiO ₂ , MGS , Cement, Clay, Φ	w. k ₁ = 252.86% SiO ₂ +2.21μm MGS — 15.00% Cement +138.02% Clay – 9.30% Φ – 23127.4	0.94	138.61	-98.34

Results

Best Model

$\label{eq:k_l} \textbf{k_l} = \textbf{272.01\% SiO}_2 + \textbf{2.22} \mu m \ \textbf{MGS} + \textbf{158.13\% Clay} - \textbf{12.34\%} \ \textbf{\Phi} - \textbf{24992.4}$

 $R^2 = 0.95$ S.D.= 136.31 AIC = -98.83

Conclusions

This study shows that the permeability of sandstone cores can be predicted from the measurement of the percentages of silica (SiO₂), which can be performed with the help of XRF analyses using only 50 g of material from rock sample.

The results obtained in this study have useful application in the estimation of reservoir permeability where samples are not available for experimental testing.

Conclusions

The results of the different methods used were found to be consistent with each other, but the combination of a variety of methods has allowed a more complete characterisation of the rock samples than each method used on its own.

This study has shown that rock heterogeneity at the subcm scale may have a significant effect on reservoir petrophysical characterisation.

X-ray Computer Tomography (CT-Scanner)

The total radiological density depends on both the mineralogical and chemical composition of the rock and the porosity. The radiological density is expressed in Hounsfield modified units (H.M.U.).

• Very dark grey: quartz and feldspar, they have a physical density varying between 2.55 and 2.76 g/cm3. The quartz and feldspar have a low radiological density varying between –120 H.M.U. and –160 H.M.U.

• Dark grey: kaolinite, it has a low physical density () (2.60 g/cm3).

• Light grey: muscovite and illite, they have a medium physical density (2.80 g/cm3) and therefore a medium radiological density due to the presence in their chemical formula of potassium.

• Light grey: potassium feldspars (microcline) have a medium radiological density (-50 H.M.U.) and a physical density () (2.59 g/cm3).

• White: calcite is a very attenuating mineral; it has a physical density of 2.71 g/cm3 and a high radiological density (241 H.M.U.). Calcite, though only slightly denser (2.71 g/cm3) than quartz and potassium feldspar, is substantially more attenuating, owing to the presence of calcium.

• White: hematite has a physical density higher than the other minerals (5.26 g/cm3) and therefore a high radiological density due to the presence in its chemical formula of iron.

In sandstone cores, calcite and ferromagnesian minerals would likely be registered as an anomaly in X-ray scan.