

Euro-Conference on Rock Physics and Geomechanics

Erice, Sicily, 25-30 Sept 2007

Influence of grain boundary structure on the kinetics of pressure solution

C.J. Spiers & R. van Noort

Department of Earth Sciences, Utrecht University, The Netherlands

Acknowledgements to:

Siese de Meer, André Niemeijer, Rian Visser, Xiangmin Zhang

Intergranular pressure solution: ubiquitous in the wet crust

- Compaction of sedimentary rocks
- Healing, sealing and creep of faults
- Salt tectonics
- Deformation at low metamorphic grade
- Compaction of depleted reservoirs ?

So: Much interest in quantifying IPS rates

Pressure solution and grain boundary structure

Universiteit Utrecht

Theory: Compaction creep

Dissolution Control:

$$\mathscr{A}_{s} = I_{s} \cdot \frac{\sigma_{e}}{d} \cdot f_{s}(\phi)$$

Diffusion Control:

$$\mathscr{A}_{d} = [DCS] \cdot \frac{\sigma_{e}}{d^{3}} \cdot f_{d}(\phi)$$

Precipitation Control:

$$\mathscr{X}_p = I_p \cdot \frac{\sigma_e}{d} \cdot f_p(\phi)$$

When σ_e is high: $\sigma_e \rightarrow \frac{1}{\Omega} \exp\left\{\frac{B\sigma_e\Omega}{RT} - 1\right\}$

Controlling kinetic parameters

[DCS], I_s and I_p depend on:

- GB structure (fluid form + thickness)
- Diffusive properties of intergranular fluid
- Mechanism & kinetics of interfacial reactions

Quantifying IPS = resolving these unknowns via experiments !!!!!!

σ_s(dry) = 2.1 MPa σ_s(wet) = 2.1 MPa T = 295 K Φ = 27.55 %

Post-mortem gb structure

Experiments on NaCl

Diffusion Control:

$$\mathscr{A}_{a} = [DCS] \cdot \frac{\sigma_{e}}{d^{3}} \cdot f_{d}(\phi)$$

 $DCS \approx 10^{-19} \text{ m}^3 \text{ s}^{-1} \text{ at } 20^{\circ}\text{C}$

 $\Delta H \approx 24.5 \text{ kJ/mol}$

Spiers et al (1990)

But....what was the grain boundary structure (S) during deformation ?

NaCI-CaF₂ contact

FTIR Micro-Mapping [111] orientation

De Meer et al (2005)

Mean fluid thickness ~100 nm

Spectra for individual points

(S= 300,140 & 55 nm, top down)

Change in peak position reflects changes in hydrogen bonding and water structure in thin fluid film; '3000 peak' related to hydrohalite (NaCl·2H₂O)??

NaCl contacts undergoing IPS: Summary

- Rough evolving gb structure on (111) & (100) contacts
- Mean fluid thickness S = 20-200 nm
- Charged surfaces >> structuring of H₂O
- Dissolution rate data yield DCS >>>- $D \approx D_{bulk}/10....$ at room T ($DS \approx 10^{-18} \text{ m}^3 \text{ s}^{-1}$)
- *D* consistent with compaction, bicrystal, surface force data

Compaction experiments on calcite (Zhang & Spiers 2005)

- **Temp:** 20 150 °C
- Eff stress: 4-40 MPa
- **Pore fluid:** CaCO₃ solution Added Mg²⁺, PO₄³⁻
- Materials: Crushed limestone Pure calcite (5-50 μm)

Grain size (µm)

10

Calcite: Microstructures

Crushed limestone 28-45 μ m $\sigma_e = 30$ MPa, T = 150 °C $P_f = 15$ MPa

Dissolution pit in cleaved calcite flake

Calcite: Experiment vs. Theory

Solid lines: Model predictions for diffusion controlled IPS with $DS = 1.8 \times 10^{-18} \text{ m}^3 \text{ s}^{-1}$

Calcite: Effect of Mg²⁺, phosphate and flow-through

Summary for calcite

- IPS obtained
- Active grain boundary structure probably rough
- Diffusion control in pure systems, low strain (DS = 1.8 x 10⁻¹⁸ m³ s⁻¹)
- Precipitation control in impure systems, high strains
- Mg²⁺ and PO₄³⁻ strongly reduce compaction rates

Isostatic compaction tests on quartz sand (400-600 °C)

Quartz sand: Microstructures

Creep data v. dissolution controlled IPS model

Summary for quartz

- IPS obtained at 400-600 °C
- Active grain boundary structure probably rough
- Still some contact microcracking at 400-500 °C
- Dissolution control offers best explanation for rates

General inferences and questions

- Rough, non-equilibrium gb structure seems widespread
- Salt: Diffusion controlled IPS (gb fluid 20-200 nm thick)
- Calcite + quartz: Diffusion control unlikely in nature (rough gb's, high D, reaction control, impurity effects)
- Extrapolated lab laws for quartz + calcite too fast: WHY? Grain boundary healing >>> yield stress for IPS ?

Criterion for healing a rough grain boundary

Universiteit Utrecht

$$\frac{2\gamma_{sl}}{\delta}\Omega_{s}\left(\cos\frac{\theta}{2}-\cos\frac{\theta_{eq}}{2}\right)-\frac{\left[\left(\sigma_{n}-P_{f}\right)/\alpha\right]^{2}}{2E}\Omega_{s}>0$$

$$(\sigma_n - P_f) < \sigma_{crit} = 2\alpha \sqrt{E \frac{\gamma_{sl}}{\delta} \left(\cos \frac{\theta}{2} - \cos \frac{\theta_{eq}}{2}\right)}$$

GB healing predictions for quartz rocks

Conclusion:

Perhaps gb healing is a serious possibility for limiting pressure solution in rocks !!

Thank you for your attention !!!

In-situ FTIR spectroscopy

NaCl loaded in [100] direction

(S= 270,135, 75 & 25 nm, top down)

Contact stress ~ 4 MPa

Mean fluid thickness after 5 days $\approx 50~nm$

Loading in [111] direction

3450 peak is "normal" peak for NaCl solutions

Effect of Grain size : Crushed limestone

Strain rate v. grain size at fixed strains (%)

150 °C, 30 MPa (Crushed limestone)

Log(grain size)(micron)

Effect of phosphate concentration vs. precipitation rate coefficient

Compaction experiments on quartz sand (Niemeijer et al 2002)

Conditions:

- Temperature: 400-600 ° C
- Isostatic P: 300 MPa
- Fluid P: 150-250 MPa

