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Fault zones and fault gouge

Fault core: Accomodates most of the strain between the
plates. Typically 10’s of um to a few mm in
thickness.
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Simple Spring-Slider Model of Dilating
Granular Layer Showing Dilatancy

Hardening
Coulomb-Mohr Failure: T=C+ :U(Gn — Pp)

Displacement

Displacement



Experimental Design

e EXperiments are
conducted in a biaxial
deformation apparatus
using a triaxial pressure
vessel

e Double direct shear
geometry




Experimental Design

« Sample blocks have a 5 x
5 cm nominal contact
area

e Layers are constructed
using a specially
designed leveling jig at
an initial thickness of ~4
mm

 Contact area is grooved
to ensure that frictional
sliding occurs within the
layer rather than at the
edges




Experimental Design

 Normal stress (o) Is
applied by squeezing the
blocks together

o Shear stress (1) IS
generated by pushing the
center block down
through the granular
layers at a constant
velocity




Experimental Design




Experimental Results

e Initial run in at 10um/s
followed by a reduction to
lum/s

o Effective normal stresses
of 30, 20, 15, 10, 5, 2,
and 0.8 MPa were used

* Velocity steps were
conducted once the layer
had reached it's
approximate steady state
frictional strength
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Experimental Results

 Magnitude of dilation increases as the size of the velocity step

« Excellent correlation between dilation as measured by
physical expansion of the gouge layer and as measured by
the volume of fluid influx
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Experimental Results
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Hypothesis Test: Does initial porosity control
the magnitude of dilation?

 Repeated velocity steps
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Experimental Results
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Conceptual Model

Instantaneous Drained Dilation
increasing k
Pp
Undrained Development of Pore Pressure Drop
P increasing V
P decreasing DC
P S
Drained Evolution of Pore Pressure Drop
Pp A
2 increasing k
'.. decreasing V

Time



Model Description
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Dimensionless Pressure Drop (PD)

Model Results
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Conclusions

« Under these experimental conditions the dilatancy coefficient increases with
normal stress rather than decreases.

* Normally loaded (consolidated) samples show little change in the magnitude
of dilation with increasing strain, whereas over-consolidated samples show
initially increased dilation that gradually becomes indistinguishable from the
normally loaded sample.

« Our data suggest that low permeability, high slip velocity fault zones
undergoing shear induced dilation may exhibit transient reductions in pore
pressure and therefore increases in effective stress. This quasi-drained
behavior will have a dilatancy hardening effect on the gouge layer inhibiting
seismic rupture.

- Dilational decompression of the gouge layer is potentially very large
perhaps completely depressurizing low permeability layers in some cases,
but is likely not a major factor in our experiments where we document
drainage that is nearly synchronous with dilation.



Future Work

* Work to ensure that the permeabillity of the flow
distribution frits Is not the limiting factor in fluid flow in our
experimental system

« Determine dependency of € on layer thickness, and large
strain by setting them as experimental control variables

« Use low permeabillity, large thickness (high V) material
to measure the magnitude of dilatant strengthening

* Use real rather than simulated fault gouge to constrain
potential real world estimates of fault permeability
changes and pore pressure fluctuations
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