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Abstract  

Bromine monoxide (BrO) and sulphur dioxide (SO2) abundances as a function of the 

distance from the source were measured by ground-based scattered-light Multi AXis 

Differential Optical Absorption Spectroscopy (MAX-DOAS) in the volcanic plumes of 

Mt. Etna on Sicily, Italy in August-October 2004 and May 2005 and Villarica in Chile in 

November 2004. BrO and SO2 spatial distributions in a cross section of Mt. Etna’s plume 

were also determined by Imaging DOAS. We observed an increase in the BrO/SO2 ratio 

in the plume from below the detection limit near the vent to about 4.5 x 10-4 at 19 km 

(Mt. Etna) and to about 1.3 x 10-4 at 3 km (Villarica) distance, respectively.  Additional 

attempts were undertaken to evaluate the compositions of individual vents on Mt. Etna. 

Furthermore, we detected the halogen species ClO and OClO. This is the first time that 

OClO could be detected in a volcanic plume. Using calculated thermodynamic 

equilibrium compositions as input data for a one–dimensional photochemical model, we 

could reproduce the observed BrO and SO2 vertical columns in the plume and their ratio 

as function of distance from the volcano as well as vertical BrO and SO2 profiles across 
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the plume with current knowledge of multiphase halogen chemistry, but only when we 

assumed the existence of an ”effective source region”, where volcanic volatiles and 

ambient air are mixed at about 600°C (in the proportions of 60% and 40%, respectively) 

 

1. Introduction 

The chemistry of volcanic plumes can give insights into volcanic processes, which could 

help to improve the forecast of volcanic eruptions [e.g., Oppenheimer et al., 2003]. 

Volcanic plume chemistry is also of atmospheric relevance since volcanic aerosols and 

trace gases can have significant climatic impacts [e.g., Robock, 2000]. Despite their 

importance the chemical processes occurring in volcanic plumes are poorly understood. 

One reason for this is the difficulty of obtaining measurements of volcanic gas 

compositions. 

Inorganic halogen species (X, X2, XY, XO, HOX, XONO2, HX, where X, Y = Cl, Br, I) 

have been known to be produced in the lower atmosphere either by degradation of 

organic halogen compounds or by oxidation of halides (X-) e.g. from sea salt [e.g., Yvon 

and Butler, 1996; Finlayson-Pitts et al., 1989; Platt and Hönninger, 2003; von Glasow 

and Crutzen, 2003]. In this article we focus on a third potentially significant source of 

halogens to the atmosphere: volcanic emissions. BrO was detected in a volcanic plume 

for the first time at Soufriere Hills volcano on Montserrat [Bobrowski et al., 2003], and 

has subsequently been measured at other volcanoes (a brief description of BrO levels and 

emissions of five different volcanoes can be found in Bobrowski and Platt [2006]). So far 

BrO has been detected at all volcanoes where the authors carried out measurements at 

distances exceeding about 1 km. Recently, ClO has also been detected in several volcanic 

plumes [Lee et al., 2005; Bobrowski, 2005].  

Gerlach [2004], based on theoretical considerations, argued that BrO is not a primary 

product of volcanic degassing, and suggested that its formations is due to high-
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temperature oxidative reaction of magmatic gases with atmospheric components. More 

recently, Martin et al. [2006] presented more detailed equilibrium calculations for 

volcanic gas – air mixtures.  

Here we present measurements of halogen oxides and SO2 sampled at two different 

volcanoes, and discuss results from a one-dimensional numerical model simulating, for 

the first time, the temporal evolution and mechanisms of reactive halogen formation in 

volcanic plumes. By comparing field and model data, we test whether the measurements 

can be explained by known reaction mechanisms for the troposphere (for an overview 

see, e.g. Platt and Hönninger [2003] or von Glasow and Crutzen [2003]). Section 2 

describes the instruments and locations where field data were acquired as well as the 

numerical model, the measurement results are discussed in section 3. The results of the 

model study are analyzed in section 4, which is followed by a concluding discussion in 

section 5. 

1.1 Chemical reactions in volcanic plumes.  

In comparison to the background troposphere, very unique environmental conditions can 

be found in volcanic plumes. First, a huge number of solid and liquid particles is 

available (e.g., Vie Le Sage [1983]; Mather et al. [2003] and references therein), which 

provide a larger surface area for chemical reactions than normally found in the 

atmosphere. Second, besides other gases, high amounts of acids (HCl and H2SO4) are 

typically emitted or rapidly formed, which is reflected in the high acidity observed in the 

vicinity of volcanic vents [e.g., Delmelle et al., 2003; Allen et al., 2006]. The temperature 

in the initial plume is very high compared to ambient air, and because water vapour is, 

with carbon dioxide and sulphur species (SO2 and H2S), one of the main constituents of 

gaseous volcanic emissions [Symonds et al., 1994], the initial humidity is also quite high 

compared to the background atmosphere. 
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As suggested by field studies and numerical simulations [Francis et al., 1995, 1998; 

Gerlach, 2004; Aiuppa et al., 2005], halogens are mainly emitted by volcanoes as 

hydrogen halides (e.g., HCl, HBr). Nevertheless, it has been shown by thermodynamic 

models that significant amounts of atomic halogen species (i.e., Cl, Br) can be produced 

by high-temperature oxidative dissociation in a volcanic gas-air mixture [Gerlach, 2004; 

Aiuppa et al., 2005, Martin et al., 2006], particularly above the so-called compositional 

discontinuity, at which drastic changes in the speciation of gases occur [Gerlach and 

Nordlie, 1975].  The subsequent dilution of the volcanic gas-air mixture with ambient air 

leads to the entrainment of O3 and HOx at the plume-edges promoting the onset of auto-

catalytic radical reactions, including the oxidation of atomic species (XO, X = I, Br, Cl), 

in particular bromine:  

                          X + O3   → XO + O2                                (R1) 

The presence of ozone and HOx at the edges of the plume – mainly from entrainment and 

possibly from in situ formation of HO2 under the high-temperature, high-humidity 

conditions in the early plume - leads to the rapid recycling of halogen oxides: 

  XO  +  HO2   → HOX + O2   (R2)  

 HOBr(gas) + Br-
(aqueous)  + H+

(aqueous)     → Br2(gas)  +  H2O  (R3) 

The required H+ (the reaction occurs at appreciable rates only at pH < 6.5 [Fickert et al., 

1999]) is supplied by strong acids, such as H2SO4, which are abundant in volcanic plumes 

(see above).  The halogen molecule Br2 is rapidly photolysed (at time scales on the order 

of minutes) to release the halogen atoms, which in turn react rapidly with O3 (reaction 

R1); if ozone is available this will usually be the most likely process. Typical conversion 

time constants (O3 ≈ 30 ppb) via R1 for e.g. X = Br are around 1 s.  Bromine atoms are 

regenerated by photolysis of BrO:  
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  BrO + hν → Br + O                              (R4) 

R4 in combination with reaction R1 leads to a photo-stationary state between Br and BrO 

with BrO/Br of the order of 10.  In summary, reaction R3 followed by photolysis of Br2, 

R1 and R4 promotes to a reaction cycle with the net result: 

BrO(gas) +  O3  +  Br -
(aqueous)  +  H+

(aqueous)  XSurface, HO⎯⎯⎯⎯⎯→  2 BrO(gas)+products          (R5) 

Effectively one BrO molecule is converted into two by oxidizing bromide at particle 

surfaces, of course at the expense of particle bromide. This process leads to an 

exponential growth of the concentration of gaseous BrO in the atmosphere (as long as 

there is ozone available), which gave birth to the term “bromine explosion” [Platt and 

Lehrer, 1997; Wennberg, 1999].  Using the term “bromine explosion” we refer to the 

non-linear increase in BrO concentrations similar to the auto-catalytic release mechanism 

of bromine from sea salt, which has been observed in polar regions.  

In addition to bromine, Cl atoms (and ClO) could be produced via  

HOBr(gas)  +  Cl-
(aqueous)    + H+

(aqueous)    → BrCl(gas)  +  H2O   (R6) 

followed by photolysis of BrCl and reaction R1.  At high concentrations of BrO and ClO 

the following reactions take place: 

BrO + ClO  → OClO + Br                             (R7) 

   →  O2 + Cl + Br                                    (R8) 

                               →  BrCl + O2                              (R9) 

OClO and BrCl are readily photolysed to ClO and O, Br and Cl, respectively. 

All above reaction mechanisms have been studied in detail in the laboratory and been 

found to be of importance in the tropospheric release of halogens from salts (see 

overviews of von Glasow and Crutzen [2003] and the compilations of Sander et al. 
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[2003] and Atkinson et al. [2004]).  One of the goals of this study is to investigate if these 

reaction mechanisms can also reproduce the measured BrO, ClO and OClO 

concentrations in volcanic plumes. 

 

2 Methods and study area 

2.1 The experimental set-up 

At both Mt. Etna and Villarica Miniaturized Multi Axis Differential Optical Absorption 

Spectroscopy (Mini-MAX-DOAS) instruments were used to study the plume 

composition. The Mini-MAX-DOAS-system consists of an entrance optic (quartz lens 

with a focal length of 40 mm, and a lens diameter of 20 mm, field of view approximately 

0.6°) coupled to a quartz fibre bundle, which transmits the light into a commercial 

miniature fibre optic spectrometer (OceanOptics Inc., USB2000) with a spectral 

resolution of 0.7 nm. This unit is placed inside an air tight metal housing and connected 

to a stepper motor gear combination, which can be mounted on a tripod. The stepper 

motor can turn the metal housing and therefore point the telescope at different elevation 

angles between 0° and 180° (from horizon to horizon, the telescope is pointed to the 

zenith in case of 90°). For a detailed description see Bobrowski and Platt [2006]. An 

UG5 filter blocks the visible light (wavelength > 400 nm) to reduce the stray light in the 

spectrometer. To prevent direct sun light from being scattered into the fibre and as a 

protection from acid rain a tubular black sun shield (22 mm diameter, 80 mm length) is 

attached in front of the entrance optics. 

In order to reduce the dark current of the detector, a Charge Coupled Device (CCD), and 

to stabilize the optical bench the complete USB2000 spectrograph was cooled to a 

temperature of +10 °C during the measurements and for the measurements at the top of 

the volcanoes to 0 °C. Stabilizing the temperature of the spectrometer and detector 

readout electronics also reduced the temperature drift of the electronic offset signal. To 
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avoid water condensation the whole unit was made airtight and silica gel was added to 

keep the interior dry in case of leakage. The entire system (computer, cooling system, 

spectrometer and stepper motor) operates for several hours with a small lead acid battery 

(7.2 Ah) by using a handheld computer (Toshiba e400). Automatic data acquisition is 

performed by the special software package PocketDOAS [Lowe, 2004] running on a 

handheld computer. The complete measurement procedure, including the stepper motor 

drive changing the direction of view of the entrance optics, can be controlled by 

PocketDOAS.  

The Imaging DOAS (IDOAS) instrument was used in May 2005 at Mt. Etna to 

investigate the spatial BrO/SO2 distribution in the volcanic plume. IDOAS combines 

characteristics of the imaging spectroscopy, like spatial resolution, and the DOAS 

technique and therefore produces two-dimensional visualisations of trace gas 

distributions. The instrument used in this study utilizes an imaging spectrograph (Jobin –

Yvon UFS200, f/# = 3.2) and a two-dimensional detector (ANDOR BU 420-BU, CCD, 

255 vertical and 1024 horizontal pixels) to record spectral information from 280 nm to 

380 nm of a solid angle of 0.09° width and 13.1° height. The instrument optics focuses 

light on the vertical entrance slit of the spectrograph, which images the slit on a column 

of the CCD detector (255 spatial pixel), whereas the light is spectrally resolved on a row 

(1024 spectral pixel) of the CCD detector. After the readout of the CCD, the spectral data 

of one vertical column with the solid angles (0.09° by 13.1° see above) is acquired. The 

instrument used in this study can cover a horizontal angle range of up to 70°. The 

horizontal resolution is given by the number of column scans and the azimuth angle 

between consecutive scans which is controlled by the scanning mirror.  The vertical 

resolution is limited by the 255 pixels of the CCD detector. For a detailed description of 

the IDOAS [see Lohberger et al., 2004; Bobrowski et al., 2006; Louban, 2005].  

2.2 Data Evaluation 
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The software WinDoas V2.10 from IASB (Belgium Institute for Space Aeronomy, [Fayt 

and Van Roozendael, 2001]) was used to derive the slant column densities (SCD) of BrO, 

ClO, OClO and SO2 from the recorded spectra of both instruments. 

As the light source is scattered sunlight, the solar Fraunhofer lines that modulate the 

radiation outside of the Earth’s atmosphere have to be removed carefully in order to 

allow sensitive measurements of trace species. As Fraunhofer reference spectrum (FRS, 

I0(λ)) a background spectrum after each plume scan was chosen and care was taken that 

the FRS did not contain absorption by the volcanic plume. To remove broadband 

structures as well as the effects of Rayleigh and Mie scattering a 2nd order polynomial 

was also fitted. For the evaluation of bromine monoxide a wavelength range containing 4 

absorptions bands from 332 to 352 nm was chosen. Reference spectra of BrO, NO2, O3, 

SO2, O4, a ‘Ring-spectrum’ (to remove the effect of rotational Raman scattering in the 

atmosphere) and the FRS were simultaneously fitted to the measurement spectra using a 

nonlinear least squares method [Stutz and Platt, 1996], which is implemented in the 

evaluation software WinDoas (for further details see Bobrowski [2005] and Bobrowski 

and Platt [2006]). 

The ‘Ring effect’ is caused by rotational Raman scattering [Fish and Jones, 1995] and 

leads to a reduction of the observed optical densities of solar Fraunhofer lines depending 

on the atmospheric light path.  

The column densities of SO2 and ClO were determined in the range from 306 to 315 nm, 

encompassing 3 ro-vibrational absorption bands of SO2 and 2 of ClO. Besides SO2 and 

ClO, a reference spectrum of O3, a FRS and ‘Ring-spectrum’ as well as a 2nd order 

polynomial were included in the fit. 

OClO was evaluated in the range from 362 nm to 390 nm and 341 nm to 390 nm, with 3 

and 6 absorption bands, respectively. Reference spectra of OClO, BrO, NO2, O3, SO2, O4, 

a ‘Ring-spectrum’ and the FRS were simultaneously fitted as well as a polynomial of 
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third and fifth order, respectively. Both evaluations lead to the same result (within a 2 σ 

error). 

 

2.3 Model description and setup 

The one-dimensional model MISTRA [von Glasow et al., 2002] was used to simulate the 

evolution of an air column that has been influenced by volcanic emissions. We compare 

the model results with observed column densities of BrO, ClO, OClO, and SO2 in order 

to test if our current knowledge of atmospheric multi-phase halogen chemistry is 

sufficient to simulate the observations in volcanic plumes. The model describes in detail 

the chemical processes occurring in the gas and aerosol phase. In the microphysical part 

of the model the growth of the particles as well as the interaction of microphysics with 

radiation is considered, however, the current model version does not include aerosol 

collision/coalescence or new particle formation. The chemical mechanism focuses on 

halogens; it has been updated from von Glasow and Crutzen [2004] according to Sander 

et al. [2003] and Atkinson et al. [2004] and includes 170 reactions in the gas phase 

(including photolysis) and 265 in the aqueous phase (including equilibria and 

heterogeneous reactions).  

The basic setup of the model runs is that a column of air is moving over a volcano where 

the plume is emitted as a puff into three adjacent model layers at about 3340m. This 

column of air is then advected downwind according to the model wind speed of 10 m s-1.  

We ignore any local effects of the mountain orography on the flow and account for 

increased turbulence by adjusting our entrainment parameters (see below). Tests have 

shown that the vertical model layer depth ∆z should not be greater than 10m in order to 

avoid unrealistic stepwise entrainment of unpolluted air from above when the plume 

expands to the next higher model layer. This effect is strongly reduced with ∆z=10m, 
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compared to ∆z=15m or 20m, though still occurring as evident as spikes in the BrO 

vertical column (see Figure 11, especially case “pure”).  

Vertical dilution of the plume is calculated explicitly with the standard turbulent diffusion 

routine in the model [Mellor and Yamada, 1982], while horizontal dilution is taken into 

account with a simple parameterization, assuming that the horizontal evolution of the 

plume corresponds to a Gaussian plume (see e.g. Seinfeld and Pandis [1998]). Close to 

the source the horizontal plume width is proportional to the time elapsed since plume 

emission, at greater distance it is proportional to the square root of the time. Note, that by 

using this approach we assume the expanding plume to be well mixed horizontally up to 

the width of the Gaussian plume. The composition of the entrained background air is 

taken from a second model run with the same initialization but without emission of a 

volcanic plume. 

Our tests have shown that the values obtained for the plume width calculated after 

Seinfeld and Pandis [1998] (equations 18.22, 18.24, 18.25) drastically overestimate the 

stability of the plume, probably because the empirical parameters were derived for plume 

release close to the ground. Therefore we artificially increased the dilution by specifying 

a minimum entrainment coefficient based on a comparison of measured SCD and 

modelled vertical columns of SO2.  

Next to the dilution of the plume with background air the specification of the composition 

of the initial plume is crucial. We calculated the composition of the fresh plume (plume 

in the uppermost part of the vent) with the commercial software HSC (Outokumpu Tech., 

Finland), assuming thermodynamic equilibrium within the volcanic gas – air system. The 

fact that high temperature volcanic gases are equilibrium systems at pressure – 

temperature – oxygen fugacity (P-T-fO2) conditions of the melt has long been recognised 

[Gerlach and Nordlie, 1975].  In line with recent modelling efforts satisfactorily using the 

same HSC software [Gerlach, 2004; Martin et al., 2006], we assume the gases to be in 
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equilibrium also in the case of high temperature air-volcanic gas mixtures, particularly 

when reaction kinetics proceed faster than air-dilution itself which we assume to be the 

case for T≥ 600 °C.  The HSC software uses a free-energy minimization algorithm in 

order to calculate the molecular equilibrium composition of a gas mixture, given its 

starting elemental composition, T and p.  We show model runs for different initial 

elemental compositions formed by variable mixtures of volcanic gases and ambient air, 

where Etna’s volcanic gas composition (H2O, 78%; CO2, 8.7%; SO2, 2.6%; HCl, 1.3%; 

HBr, 0.006 %) is from Aiuppa et al. [2005] and additional calculations with HSC.  

Furthermore, we compare model runs based on this data with a run based on the numbers 

from Gerlach [2004] for mean compositions of arc volcanoes at 900oC (“arc mean”) with 

a mixture of 85% plume air and 15% background air for several types of volcanoes.  As 

Mt. Etna is not an arc volcano; we use the data from Gerlach [2004] not to compare them 

to field data but to show the differences in the plume evolution in the model for different 

types of volcanoes. The initial composition of the aerosol is taken from Allen et al. 

[2006], whereas the aerosol size distribution is taken from Watson and Oppenheimer 

[2000].  

The operator splitting time step for aerosol microphysics, transport, and chemistry is 10 s. 

Within these 10 s, the set of chemical equations is solved with an automatically adjusted 

sub-time step with a Rosenbrock solver. To avoid numerical instabilities we include an 

equilibration step for aerosol and gas phase after the plume dilution has been calculated 

in each time step. The model runs start at local noon, the plume is emitted into free 

tropospheric air 11 minutes after model start.  Note, that only the first approximately 30 - 

60 minutes of the plume evolution in the model is covered by the measurements. The 

comparison of model results with volcanic data is difficult as data even from the same 

campaign has usually been sampled at different locations and/or different times. The 

system is expected to have, and many measurements show that, a strong day-to-day, 
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campaign-to campaign, volcano-to-volcano variability. However, for halogen oxides and 

aerosol often only single data points are available. Many of the reactive gas data only 

refer to the total column but do not include variations across the plume, hardly any in-situ 

data of gases in the plume are available. The initial plume composition is derived from 

thermodynamical equilibrium calculations for “typical” Etna conditions as explained 

above but one might expect them to vary during different stages of volcanic activity. In 

summary, no exact fit of field data and model results can be expected; therefore we 

present only qualitative and semi-quantitative comparisons. 

2.4 Measurement locations 

Mt. Etna  

Mt. Etna is situated on Sicily, an island to the south of Italy in the Mediterranean Sea 

(37.73° N, 15.00° E). Mt. Etna, one of the largest and most active continental volcanoes 

in the world, started its activity about 0.6 Ma ago [Bonaccorso et al., 2004]. The base of 

the volcano is about 60km·by 40km and its summit reaches 3340 m above the sea level. 

Below an elevation of about 2900m Etna has the typical shape of a shield volcano. It is 

adorned with more than 200 craters on its slopes. Much of the volcano’s surface is 

covered by historic lava flows, mostly hawaiitic in composition (e.g., SiO2, 45-52 wt. %; 

Na2O-K2O, 5-7 wt. %). The mountain shows eruptive as well as quiescent activities. 

During 2001 and 2002-2003, two large flank eruptions took place [Andronico et al., 

2005; Behncke and Neri, 2003]; since February 2003, the activity of Etna has taken the 

form of persistent quiescent degassing occurring from the four active summit craters 

(Bocca Nuova (BN), Voragine (VOR), Southeast (SE) and Northeast (NE), see also 

Figure 6.1). More recently, on September 7, 2004, a new effusion event on Etna’s eastern 

flank started, which stopped on March 13, 2005 [Burton et al., 2005]. This eruption fell 

partly into the measurement period. 
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In August 2004 DOAS data were collected from Pizzi Deneri (Fig. 2, point c), on Etna’s 

NE upper flank. In azimuthal direction the telescope pointed about 3 km downwind from 

the summit while the telescope elevation angles were increased from 15° to 55° in steps 

of 5°, continuing with 80°, 100° and 110°. During September-October 2004 

measurements at different sites were carried out as marked by red dots in Figure 1. The 

telescope elevation angles were chosen depending on the observation site and the 

direction of the plume. Most of the observations took place on the eastern flank of Mt. 

Etna at Rifugio Citelli (Figure 1 d), 6 km downwind of the summit.  

On October 1, 2004 an attempt was made to scan plumes originating from different 

summit vents, before they were mixed to investigate possible differences in emission 

characteristics. 

In May 2005 three Mini-MAX-DOAS instruments were operated, allowing the 

simultaneous determination of the plume BrO/SO2 ratio from three different locations (at 

increasing distances from the summit area). Additionally, measurements were carried out 

with the IDOAS instruments on several days, however only the data of May 10, 2005 are 

considered here. On May 9 2005, a very sunny day, simultaneous Mini-MAX-DOAS 

measurements at 6, 10 and 19 km took place on the eastern flank of Mt. Etna (Figure 1 

red triangles). Every day measurements were carried out at Rifugio Citelli, to investigate 

short-term temporal variations of BrO/SO2 ratios inside the volcanic plume. The plume 

was scanned with telescope elevation angles ranging from 0° up to a maximum of 130° in 

usually 5° to 10° steps depending on the actual plume-shape at the time.  

Insert Figure 1 

Villarica  

Villarica is situated in the southern Andes in Chile (39.3° S, 71.4° W). It is a basaltic-

andesitic open–vent stratovolcano with a height of 2847 m above sea level and with a 

long historic record that includes fatal eruptions [Witter et al., 2004]. A very large 
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(Volcanic Eruption Index VEI = 5) eruption was dated at ca. 1810 B.C. by using the 

radiocarbon method. The first historic eruption was recorded in 1558. Since then 

numerous small gas explosions occurred throwing incandescent blobs of lava above the 

crater rim. Larger eruptions and lava flows were less frequent. Since the end of the last 

eruption in 1985 an active lava lake has been present in the summit crater and the volcano 

has been continuously degassing [Moreno et al., 1994]. 

Measurements at Villarica volcano were performed on November 17, 2004 (Figure 1 

Villarica point (b)) and November 24, 2004 (Figure 1 Villarica point (a)). On November 

17, 2004 the MAX-DOAS instrument was pointed about 3 km downwind of the summit 

of the volcano and the plume was scanned at telescope elevation angles 1°, 24°, 27°, 30°, 

33°, 36°, 39°, 50°, 60°, 70°, 90° above the horizon. On November 24, 2004 an expedition 

to the top of the volcano was successfully carried out and measurements near the crater 

rim took place for 1 hour. A white cloud layer could be seen below the measurement site 

and a puffing plume was observed, probably caused by intermittent lava spattering inside 

the main degassing vent. The plume was scanned from 5° to 29° with steps of 3° above 

the horizon; two spectra at 90° and 150° (away from the plume) were taken. 

 

3) Results and discussion 

3.1. Investigation of spatial BrO distribution in volcanic plumes 

In tropospheric volcanic plumes, the loss of sulphur dioxide via reaction with OH and/or 

uptake into particles is slow, at least in the early plume stages and under ash-free 

conditions [e.g., McGonigle et al. 2004]. Therefore, the evolution of SO2 concentration is 

dominated by dilution, and the ratio of other species to SO2 enables us to separate 

changes caused by chemical processes and dilution. In order to investigate the chemical 

evolution of BrO with time in the plume, we measured at different distances from the 
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crater and calculated the ratio of BrO to SO2. However, simultaneous measurements at 

different distances are available only for the campaign in May 2005. 

Insert Figure 2 and 3 

Figures 2 and Figure 3 show examples of individual plume scans of typical BrO and SO2 

SCDs at Mt. Etna and Villarica, respectively. During the field campaigns of August – 

October 2004, data for different distances ((a) several 100s of metres, (b) 1.5km, (c) 3km, 

(d) 6km, and (e) 19km) could not be collected simultaneously as only two instruments 

were available. No BrO (> 4 x 1013 molecules/cm2) could be detected in the “near-vent” 

plume of the Voragine crater at Mt. Etna (see Figure 2 a). At a distance of 1.5 km (Figure 

2.b), which corresponds to a plume age of about 300 s (assuming a wind velocity of 

5m/s), BrO can already be clearly detected in the plume. Due to the dispersion of the 

plume, the SCDs decrease significantly as the plume propagates downwind, which leads 

to higher relative errors further downwind for BrO as well as for SO2 (Figure 2e).  The 

ratios of BrO to SO2 at several distances from the crater are shown as dotted bars in 

Figure 4; they increase with distance from the crater. As the 2004 measurements for 

different distances were not taken on the same day, one might argue that the variations in 

BrO/SO2 may be caused by differences in volcanic activity, rather than by chemical 

processes in the plume. On May 9 2005, however, we repeated the experiment by 

measuring simultaneously at three distances from the summit region of Mt. Etna (6km, 

10km, 19km) and found the same pattern, namely an increase of the BrO to SO2 ratio 

with distance  and therefore with chemical processing time within the plume (see Figure 

2 and 4 - red solid bars). 

Insert Figure 4 
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Assuming, as mentioned above, that the [SO2] changes in the first kilometres of a 

volcanic plume are only due to dilution but not chemistry (see McGonigle et al. [2004] 

and our model results) the change in the BrO to SO2 ratio has to be caused by BrO 

production in the plume. This is plausible and supported by our model runs and is also 

consistent with the findings of Oppenheimer et al. [2006].  The same conclusion can be 

drawn for the data collected at the volcano Villarica, see Figure 3 and 4 (blue, solid bars). 

In May 2005 additional measurements were carried out with the IDOAS instrument with 

the aim to investigate the spatial distribution of BrO and SO2 in the plume of Mt. Etna in 

detail. In order to improve the current BrO detection limit for the IDOAS, measurements 

with the viewing direction along and not perpendicular to the plume were undertaken on 

the May 10, 2004, thus increasing the light paths inside the plume.  

Figure 5 shows one vertical plume profile of the BrO/SO2 ratio, calculated from the 

simultaneously measured two-dimensional BrO and SO2 distributions within the plume. 

In this case BrO SCDs of each IDOAS-image row were outlined against the SO2 SCD 

values of the same IDOAS-image row. A linear fitting procedure gains the gradient, 

which is the BrO/SO2 ratio in this part of the investigated plume and the correlation 

coefficient R. Due to the higher spatial resolution (0.1° x 0.26°) compared with the Mini-

MAX-DOAS measurements, the structure of the BrO/SO2 ratio inside the plume is 

revealed. BrO, in comparison to SO2, is enhanced at the edges of the plume, which can be 

explained by increased entrainment of O3-rich ambient air into the volcanic plume 

margins. This effect is also present in our model calculations (see below). 

We are aware that the relative error of the BrO SCDs at the plume edges is increased due 

to the shorter light paths inside the volcanic plume. Nevertheless, even considering these 

higher errors (which are included in the calculation for the error bars in Figure 5) the 

increasing trend of the BrO/SO2 ratio is still visible. 
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Insert Figure 5 

Due to favourable conditions on October 1, 2004 (it was a very clear day and the clouds 

which appeared around midday were below the measurement site), we investigated the 

composition of plumes released by individual craters of Etna. As can be seen from Figure 

6.1 the measurement site (red triangle) is located in between the plumes from the NE and 

the VOR craters. We made a scan through both plumes by aiming perpendicular to the 

plume axis and scanning from a telescope elevation angle of 15° to 160°, therefore first 

probing the plume from the NE crater and then the one from the VOR crater (see  Figure 

6.1). This shows a higher BrO/SO2 ratio to the northeast of the measurement site  

(telescope elevation angles 15° – 70°on Figure 6.2 ), dominated by the NE crater plume 

than to the southwest (telescope elevation angles 90° - 140°) dominated by the VOR and 

BN crater plumes. 

Insert Figure 6 

These observation suggest an enrichment of halogens at the NE crater (or a depletion of 

SO2) in comparison with the Voragine crater and Bocca Nova; this is also supported by 

routine filter pack measurements carried out over 2004 [Aiuppa et al. 2005]. 

3.2. Investigation of temporal variations in the BrO/SO2 ratio 

Further observations were made in order to investigate not only the spatial variation of 

the BrO/SO2 ratio, but also the temporal variations of the BrO/SO2 ratios. To achieve this, 

measurements from one fixed position (Rifugio Citelli about 6 km downwind the summit; 

Figure 1 red dot and triangle (d)) were carried out during both field-campaigns (2004 and 

2005). This location was chosen due to the favoured westerly winds at Mt. Etna and the 

consequential higher possibility of plume overpasses over this area.  
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The BrO/SO2 ratio appears to be quite stable during mid October and slightly higher than 

in September (see Figure 7.1). Results of May 2005 measurements are more scattered 

than those from September-October 2004 field campaign. The BrO/SO2 average from 

2005 value exceeds those from 2004. The weather during both time series changed from 

very sunny to very cloudy including some rain events and can be considered as similar 

for both periods.  No exceptional activity at Mt. Etna was recorded in May 2005 (see for 

further information the weekly reports of Catania: www.ingv.ca.it). An explanation for 

the larger scatter of the BrO/SO2 ratios in May 2005 could be found in the greater 

variability in the wind direction (see Figure 7.2), possibly resulting in varying influence 

of the NE and Voragine crater, which have significantly different BrO/SO2 (see Figure 

6.2).  From Rifugio Citelli often only part of the plume could be measured and it is likely 

that at a distance of 6 km the plumes of the NE and Voragine craters are still not 

completely mixed so that the observed difference in the BrO/SO2 ratio is indeed caused 

by the different crater plumes. The wind data suggest that it is possible that the plume of 

the NE crater influenced the May 2005 measurements more than the measurements 

carried out in September and October 2004. As shown above and by Aiuppa et al. [2005], 

the NE crater is - relative to SO2 - richer in halogen compounds than, for instance, 

Voragine.   

Insert Figure 7 

3.3. Detection of OClO and ClO 

August 5, 2004 was very clear in the morning and measurements were made at Pizzi 

Deneri 3 km downwind from the crater (site c in Figure 1). The plume was studied under 

several telescope elevation angles and trace gas SCDs were quite high as the plume was 

relatively narrow. One plume scan from this day is taken as an example to present the 

data for OClO and ClO, in addition to BrO and SO2 (Figure 8). The SCDs of these four 
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species are plotted as a function of the telescope elevation angle and error bars for 1 

sigma error resulting from the DOAS-fit, a nonlinear least-square fit (Levenberg-

Marquard), are shown for each data point. Peak SCD’s of OClO and ClO reached 2.45 x 

1014 and 2.1 x 1017 molecules/cm2, respectively. Both chlorine oxides correlate well with 

BrO and SO2 in the plume (see Figure 8). The OClO/SO2 ratio is 5.7 x 10-5, which is 

about one quarter of the BrO/SO2 ratio, which in this case is 2.1 x 10-4. ClO is about 20 

times less abundant in the plume than SO2 but there are some problems with the ClO 

evaluation [Bobrowski, 2005]. Strong absorption bands of ClO are located at ≤ 308nm. At 

these wavelengths the solar intensity is quite low (due to O3 absorption), thus the photon 

shot noise - already a limiting factor for a good quality evaluation - is relatively high. The 

other problem is the possible interference of absorption of other trace gases in this 

wavelength region. Several evaluation settings were investigated. They clearly showed 

that care has to be taken when deriving informations on the ClO abundance in volcanic 

plumes with scattered - sunlight DOAS. Only data from very sunny days should be used. 

Further research and improvements are necessary in the future, like an improved Ring 

spectrum. 

Due to these experimental problems it is very valuable to have further indications for the 

presence of chlorine oxides. OClO is produced in the reaction of ClO with BrO (R7) and 

therefore a good indication for the presence of ClO. During this study OClO was detected 

in the troposphere for the first time. Therefore an example of a fitting result (the optical 

density of the OClO absorption as a function of wavelength) from the centre of the plume 

is shown in Figure 9. Since the absorption structures of OClO are located at longer 

wavelengths its detection is much more reliable than that of ClO. 

Insert Figure 8 

Insert Figure 9 
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4. Model results and discussion 

Simulations with the model introduced in section 2.3 show that we can reproduce the 

measured columns of BrO and SO2 much better when we specify the composition of the 

initial plume according to the results of a thermodynamic equilibrium speciation model 

for a mixture of volcanic gases and ambient air, rather than pure volcanic gases. Such a 

mixture results in a plume with higher oxygen content but lower temperature than for a 

case with “pure” volcanic volatiles, leading to a modified speciation which especially 

increases the concentration of dihalogens and reduces SO2.  Gerlach and Nordlie [1975] 

were the first to describe the so-called compositional discontinuity, which leads to a 

drastic change in the speciation at a certain ratio of ambient air to volcanic volatiles. A 

higher fraction of ambient air additionally implies smaller temperatures of the gas 

mixture (e.g., 600°C instead of 1100°C for pure volcanic volatiles) which again leads to 

changes in the speciation of the gas mixture. We refer to the part of the crater where the 

very first interactions between the volcanic volatiles and ambient air occur, leading to 

these distinct changes in the plume composition, as the “effective source region”. This 

region is shown schematically in Figure 12.  

In the following, we discuss model runs with four sets of different initial compositions of 

the plume based on thermodynamic equilibrium speciation models (see Table 1 for the 

initial gas phase composition of four different model runs) All runs include aerosol phase 

chemistry, as runs that do not take aerosol chemistry into account showed that the 

observations, especially the BrO levels, could not be reproduced. The results that 

compare best with measurements from Mt. Etna are from a run with a mixture of 60% 

volcanic gases and 40% ambient air at 600oC (this run is abbreviated with “60-40”). 

Furthermore, we show results from a run with an initial composition of 85% volcanic air 

and 15% ambient air at T=900oC (“85-15”) and pure volcanic gases at 1100oC (“pure”). 

These three runs are for Mt. Etna magmatic gas composition, whereas the initial 
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conditions for the fourth run are taken from Gerlach [2004], for mean compositions of 

arc volcanoes at 900oC (“arc mean”). As mentioned above, the latter case is not 

appropriate for a comparison with data from Mt. Etna; we show it to highlight the 

possible range of halogen chemistry in volcanic plumes in general.   

Figure 10 shows the results for case “60-40” as a function of altitude and time since 

model start.  Directly after plume release all ozone is titrated by NO, the latter being a by-

product of high-temperature air-volcanic gas reactions [Martin et al., 2006]. Due to the 

temperature difference between the plume and ambient air the plume rises, increasing the 

entrainment of O3-enriched air from above. The speciation of the bromine compounds in 

the plume depends on the initial NOx content of the plume (or more precisely: the 

formation of NOx in the effective source region): in cases “85-15” and “arc mean” the 

resulting NO2 reacts with Br producing BrNO2 whereas in case “60-40” the NOx 

concentrations are high enough to titrate all O3 but not high enough to make BrNO2 the 

main reservoir of bromine, in this case most bromine exists as Br-atoms. During this 

time, BrO in the model is only formed at the upper and lower plume edges because the 

ozone concentrations are close to zero in the core of the early plume. In all discussed 

model runs dilution with background air leads 10-20 minutes after plume release to a 

strong decrease in the concentrations of all species that had been emitted or produced in 

the effective source region and to a replenishment of O3, which then reacts with Br to 

produce BrO. In the model this leads to a gradual build-up of BrO (see Figure 10) that 

has also been observed in the measurements (see Figures 3-5). The high BrO mixing 

ratios are sustained above the pmol mol-1 level in the model for about 3 hours by the 

heterogeneous “bromine explosion” recycling mechanism described in the introduction  

until dilution of the plume by entrainment of background air becomes too strong. The 

scenario “pure” is distinctly different from the others, as here very little NOx is “emitted”. 

BrO formation at the upper and lower plume edges starts earlier than in the other runs. 
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These comparisons show that differences between the various scenarios are mainly 

caused by different levels of NOx and the speciation of halogens which is a strong 

function of temperature and the fraction of ambient air in the effective source region. 

We calculated the vertical column densities of BrO, SO2, OClO, and ClO from the model 

(see Figure 11) for comparison with the field-measured slant column densities. Note that 

the spikes in the BrO vertical columns are caused by the vertical expansion of the plume 

into the next higher level (see Section 2.3), therefore starting the “bromine explosion” 

mechanism in each model level where plume air is mixed with ambient air containing O3.  

These spikes are model artefacts which would only be avoidable with an even higher 

vertical resolution, however they do not affect the overall model results but highlight the 

importance of the “bromine explosion” mechanism. The magnitude of the modelled BrO 

columns are very similar to the measured values and differ little between the different 

scenarios even though the amount of gas phase bromine (including HBr) that the model 

was initialized with varies by 3 orders of magnitude among the different runs, showing 

that cycling between the gas and aqueous phases and the entrainment of O3 are the key 

processes in determining BrO. The evolution with time is different for each scenario, case 

“pure” being the one that compares least well with the measurements as its BrO vertical 

column stays approximately constant with time. The other three runs show a gradual rise 

of BrO caused by the “bromine explosion” mechanism. The different timing is a 

consequence of the different initial compositions of the plume resulting in earlier or later 

“ignition” of the “bromine explosion” in each case. 

The calculated SO2 columns also compare well with the measurements. They are mainly 

determined by dilution as gas phase oxidation via OH is negligible due to very small 

concentrations of O3 and therefore OH in the plume, all other gas phase loss reactions of 

SO2 are too slow under atmospheric temperatures [see Sander et al., 2003 and Atkinson et 

al., 2004].  Uptake of SO2 to the particles is limited due to the very low aerosol pH. 
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These results and the discussion earlier in this article indicate that SO2 can be regarded as 

quasi-passive tracer, so that the use of ratios like BrO/SO2 will help us to understand 

bromine photochemistry in the plume. The initial SO2 concentration is a strong function 

of plume composition and case “60-40” compares best with the measurements but its 

dilution still seems to be somewhat delayed compared to measurements.  

All runs show a gradual rise in the BrO/SO2 ratios (see Figure 11a, b), the temporal 

evolution being determined both by the initial SO2 concentration and the photochemical 

evolution of BrO. Again case “60-40” shows the best agreement with the measurements, 

matching the measured numbers well (see Figure 11a vs. 4; note that the plume is emitted 

11 minutes after model start). The model also reproduces the IDOAS measurements, 

showing that the BrO/SO2 ratio has a maximum at the upper and lower plume edges (see 

Figures 6 and 10, note that the IDOAS measurements were made within the first 30 

minutes after plume release). According to the model, the BrO columns stay fairly 

constant for some time (see Figures 11a, b).  As already explained, the SO2 

concentrations are mainly determined by dilution so that the BrO/SO2 ratio keeps 

increasing for about 2-3 hours after plume release until dilution has decreased the 

concentrations of all compounds in the plume strongly (see Figure 11b).  According to 

the horizontal dispersion parameterization that we are using, the plume width is about 

15km three hours after plume release. During this time, the bromine speciation in the 

model also changes drastically.  In the first hour after plume release gas phase bromine is 

largely in the form of Br, then BrO becomes the main bromine-species and eventually, at 

the same time as the BrO/SO2 ratio starts decreasing, most gas phase bromine is present 

as BrCl. HBr is never a dominant gas phase bromine reservoir as it is rapidly taken up by 

particles and re-released as Br2 or BrCl to the gas phase, except probably in the near-vent 

plume.  The shifts in the bromine speciation are caused by the varying O3 concentrations 

and the non-linearity’s in the chemical system, for example caused by the BrO self 
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reaction. These model predictions – the continued rise in the BrO vertical column and the 

shape of the BrO/SO2 ratio as function of distance/time from the plume - should be tested 

in future field campaigns. 

The initial plume composition as well as the entrainment rate are the main factors in 

determining the temporal evolution of the BrO vertical columns in the model and the 

ratio of the BrO/SO2 columns. Overall, the comparison of the ratio of the BrO and SO2 

columns show very good agreement with the measurements, especially when taking into 

account the uncertainties of the composition of the initial plume and the simplicity of our 

mixing approach.  

The comparison of the column densities of ClO and OClO between model and 

measurements, however, shows a very large underestimation by the model of up to 4 

orders of magnitude. Only in case “60-40” the mismatch is reduced for ClO to a factor of 

about 30 (in Figure 11a the ClO vertical columns are depicted with different scaling to 

show the differences between the four model scenarios). Since ClO is the precursor for 

OClO (via self-reaction and reaction with BrO), we cannot expect to obtain realistic 

OClO levels in the model without first having realistic ClO values. In order to facilitate 

the following discussion we define the sum of all gas phase chlorine as Cltot and Clx=Cltot 

– HCl, and Brtot and Brx accordingly. The release of Clx is highest in case “60-40” and is 

the reason why here initially high ClO vertical columns are present in the model. The 

release of Cltot is similar in the different model scenarios. In contrast to HCl, HBr is 

rapidly taken up by particles resulting in a small difference between Brtot and Brx, 

whereas the opposite is true for Cltot and Clx. For bromine this means that in the model 

most bromine is rapidly recycled between the gas and aerosol phase.  Chlorine, however, 

remains largely in the gas phase in the less reactive form of HCl and is only taken up in a 

minor fraction as particulate Cl-. This difference between chlorine and bromine is mainly 

caused by the different acidity constants for HCl and HBr and the very low particle pH.  
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This points to a possible explanation for the large mismatch between model and field 

results for ClO: the lack of efficient recycling mechanisms in the model that convert 

HCl/Cl- into more reactive chlorine at low pH. Another possibility is an erroneous initial 

plume composition in the model. Additional tests showed that assuming even higher 

fractions of ambient air in the “effective source region” for the plume would not improve 

the results. If the model prediction of an almost O3-void plume is correct, the early-plume 

ClO and OClO signals in the MAX-DOAS observations would either have to come from 

the edges of the plume only, as O3 is the main prerequisite for both BrO and ClO 

formation  or some chlorine-specific inter-conversion reactions among different chlorine 

oxides could be occurring in the plume. These options and further model scenarios will 

be explored in a forthcoming publication (von Glasow, in preparation). 

5. Conclusion 

This study is a first detailed account of the potential photochemical processes occurring 

in quiescently degassing volcanic plumes, highlighting the potential importance of 

volcanoes for tropospheric photochemical processes. The measurements of the slant 

column densities of BrO and SO2 in volcanic plumes at two volcanic sites (Etna in 

Southern Italy and Villarica in Chile) and their comparison with a numerical model 

suggest that BrO is formed by heterogeneous photochemistry downwind of the crater. 

The comparison with first model studies are qualitatively and semi-quantitatively in good 

agreement, provided that the initial plume composition corresponds to a high-T (600°C) 

volcanic gas-ambient air mixture (in the proportions of 60% and 40%, respectively). The 

increase in BrO in our model is caused by the entrainment of O3 rich air into the 

previously O3-free plume and the subsequent start of the “bromine explosion” 

mechanism. This is consistent with the experimental finding that both the BrO vertical 

columns and the BrO/SO2 ratio increase with time and that BrO is not uniformly 

distributed over the plume cross section, but rather shows maxima at the plume edges, 
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where entrainment of O3-rich air is highest. The chlorine oxides ClO and for the first time 

OClO were detected as well in the plume of Mt. Etna. Both species are, however, 

dramatically underestimated by the model, pointing to some unaccounted for chemistry 

and/or an an initial plume composition that varies from that which we calculated using a 

thermodynamic-equilibrium speciation model. 

In summary, our comparison of field observations with an atmospheric photochemical 

model initialized using the results from a thermodynamic equilibrium model, suggests 

that the processes in the plume occur in the following steps (see Figure 12): 

1) Degassing of hot (~1100°C) volcanic gases from the silicate melt. Due to the high 

temperatures, gas-phase equilibrium at the melt T-P-fO2 conditions can be 

assumed [Symonds et al., 1994], and the composition of the volcanic gas phase is 

likely to be a mixture of H2O, CO2 and SO2 – plus minor  gaseous hydrogen 

halides (HCl and HBr) and particles – in the proportions given by Aiuppa et al. 

[2005]. Immediately after emission a mixture of volcanic volatiles and ambient air 

(the “volcanic plume”) with still high temperatures (~600°C) forms. According to 

the thermodynamic equilibrium model, the resulting high oxygen concentration in 

this gas mixture in comparison to the pure volcanic gas case leads to dramatic 

changes in halogen and nitrogen speciation. These changes have already been 

described for other compounds by Gerlach and Nordlie [1975] as “compositional 

discontinuity” and provide reactive precursors for the following photochemical 

processes in the atmosphere (especially for halogens and NOx). We refer to the 

region in the crater where the initial mixing of volcanic volatiles with ambient air 

occurs under high temperatures as the “effective source region” 

2) Subsequently, further mixing with ambient air rapidly cools the plume (within 

several minutes) to temperatures close to ambient conditions and water vapour 

condenses onto particles. Ozone is entrained with the ambient air at the plume 
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edges, starting radical chemistry. Hydrogen halides (in particular HBr) dissolve in 

the liquid layer of the particles. 

3) Once OH and HO2 radicals are available, the specific conditions in the plume 

(large specific surface area, acidity, humidity) lead to the autocatalytic release of 

reactive halogen species (BrO, ClO) from the halides (“bromine explosion”) due 

to rapid cycling between the gas and aqueous phase. 

The model results suggest that the BrO levels remain high for about 2-3 hours after plume 

release and that the BrO/SO2 keeps increasing during this time. This finding should be 

tested in upcoming field campaigns. More data on chlorine compounds in the plume, 

especially their temporal evolution, are needed in order to improve our understanding of 

chlorine chemistry in the plume. To facilitate the assessment of the influence of the 

emissions of slowly degassing volcanoes on atmospheric chemistry, measurements 

further downwind in the plume and not only in the first 10-20 km are needed. 
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Table 1 

Initial composition of the gas phase compounds for the model runs in mixing ratio (mole 

mole-1).  See text for explanation of the four different cases. 

 

Figure Captions: 

Figure 1 

(a) Map of the Mt. Etna volcano and its surroundings. The measurement sites of 2004 are 

marked by red dots, the measurement point of 2005 by red triangles. 

(b) Map of the Villarica volcano and surroundings, the red dot shows the measurement 

site on November 17, 2004 and November 24, 2004, the blue arrow indicates the wind 

direction on the November 17, 2004. 

Figure 2 

One example of a plume scan for each distance ( crater rim (several tenth of km from the 

vent) – (a) 100s of metres (“0 km”), (b) 1.5km, (c) 3km, (d) 6km, (e) 19km)  measured at 

Mt. Etna in 2004. The slant column densities of BrO (blue – left y-axis) and SO2 (red – 

right y-axis) are plotted versus the telescope elevation angle of the telescope. 

Figure 3 

One example of a scan for the Villarica plume at the summit (a) and 3 km further 

downwind (b). The slant column densities of BrO (blue) and SO2 (red) are plotted versus 

the telescope elevation angle of the telescope. 

Figure 4 
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The BrO/SO2 ratios for the different measurements at distances up to 19 km from the 

summit. The autumn 2004 data from Mt. Etna is shown as red dotted bars (average value 

over three days or more measurement days on the specific locations except for the data 

close to the source and at 19km distance which only contain few data points from only 

one day) and 2005 data as red solid bars. The 2004 Villarica data is displayed in solid 

blue bars.  

Figure 5 

Vertical profile of the BrO/SO2 ratio as a vertical profile of the plume was calculated 

from the two-dimensional BrO and SO2 distributions measured by the Imaging DOAS 

instrument. The measurements were taken at a distance of  about 10 km downwind of the 

crater region on the eastern flank of Mt. Etna on the May 10, 2005 between 2:00 pm and 

2:30 pm. The highest BrO/SO2 values are found at the edges of the plume, which is 

additionally indicated by the solid line. R on the right panel shows the correlation 

coefficient for every single calculated BrO/SO2 ratio. 

Figure 6.1 

Location of the measurement on October 1, 2004 (red triangle) and of different craters  

(NE - Northeast crater, SE - Southeast crater, BN - Bocca Nova, VOR – Voragine). 
 
The grey shading indicates the volcanic gas emission (plumes of the different craters). 
 

Figure 6.2 

 One example of a plume scan of Mt. Etna October 1, 2004. Measurements were carried 

out at a height of 2900 m on the southern side of Mt. Etna. The slant column densities of 

BrO (blue) and SO2 (red) are plotted over the telescope elevation angle of the telescope. 

Two plumes with different BrO/SO2 ratios are observed, for further explanation see text.  
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Figure 7.1 

The calculated BrO/SO2 ratio for all measurements carried out at Rifugio Citelli, situated 

about 6 km downwind on the eastern flank of Mt. Etna (see Figure 1 point d). Temporal 

variations are visible on short and ‘longer’ timescale. A general trend shows an increased 

scatter in the BrO/SO2 value in 2005, which can be explained by the scatter in wind 

directions (see text). 

Figure 7.2 

Wind directions for October 10 – 18, 2004 and May 5 – 19, 2005. 
 
 

Figure 8 

One example of a plume scan of Mt. Etna August 5, 2004.  Measurements were carried 

out at Pizzi Deneri scanning the plume 3 km downwind of the summit (see Figure 1, 

point c). The slant column densities of BrO (blue circles), SO2 (red triangles), ClO (cyan 

diamond), OClO (dark yellow square) are plotted over the telescope elevation angle. 

Figure 9 

Spectral fit result for one example of OClO detection. The fit was done with WinDoas 

V2.10 from IASB (Belgium Institute for Space Aeronomy, [Fayt and Van Roozendael, 

2001]) in the spectral range of 362 – 390 nm. The left panel shows the OClO absorption 

bands in red, the measured spectrum in black. The right panel shows the residual for this 

fit, with a peak to peak optical density of 1.5 %. The spectra was taken on the 5th of 

August at noon at an telescope elevation angle of 35 °. 

Figure 10 
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Model simulation: Contour plots of the vertical and temporal evolution of model run “60-

40”.  Shown are the mixing ratios in mol mol-1 for the main compounds and the molar 

ratio of BrO/SO2. Time is in minutes since model start and altitude in m.  The plume is 

emitted 11 minutes after model start at an altitude of 3340 m.  The spatial extent of plume 

can best be seen from log(SO2). 

Figure 11a: 

Temporal evolution of the first 80 minutes after model start of the calculated vertical 

columns (in molecules/cm2) for the measured species. The colour code is as follows: case 

“60-40” – black, solid line, “85-15” – ‘red’, dashed line, “pure” ‘green’, dash-dotted line, 

“arc mean” ‘blue’, dotted line (see text for an explanation of the different scenarios).  As 

the vertical columns of ClO differ strongly between the model scenarios, the ClO VCD is 

plotted twice with different scaling in order to show both the differences between the runs 

and the maximum numbers for run "60-40".  In the model the plume is emitted after 11 

minutes as marked by the vertical red lines, the measurements cover roughly the first 30-

60 minutes after plume release.  The approximate range of the measurements for the 

BrO/SO2 ratio is indicated by the shaded region, where the distance from the crater has 

been converted to time since emission assuming a wind speed of about 7 m s-1.   

Figure 11b 

Same as Figure 11a for BrO vertical column and the ratio BrO/SO2 but shown until the 

end of the model runs to highlight that the BrO/SO2 ratio continues to rise downwind of 

the crater (showing a maximum more than two hours after plume release) even though 

the BrO vertical column decreases strongly. 
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Figure 12  

Sketch of processes in a volcanic plume: after emission of volcanic gases, that mix with 

ambient air and thus forming a plume; ozone becomes available and radical chemistry 

starts. As a consequence the initial hydrogen halides are heterogeneously converted to 

halogen oxides. See text for more details. 
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 „60:40“ „85:15“ pure arc mean 

NO 2.7500e-06 2.5704e-05 1.2600e-11 1.9950e-05 

NO2 2.5700e-07 1.9050e-07 1.5800e-14 1.0000e-07 

SO2 3.7200e-03 2.0890e-02 2.6000e-02 1.5800e-02 

H2SO4 7.7600e-05 3.8900e-07 7.2400e-13 6.3100e-07 

O3 1.5800e-14 0 0 0 

H2O2 3.1623e-11 1.2300e-09 3.1600e-13 1.7780e-09 

HCl 7.7630e-03 1.0965e-02 1.2880e-02 6.3100e-03 

HOCl 2.7500e-07 4.4670e-07 3.9800e-12 2.2400e-07 

Cl2 3.4670e-05 4.0740e-06 6.3100e-12 1.0000e-06 

HBr 8.5100e-06 3.8900e-05 6.3360e-03 1.0000e-05 

HOBr 8.9000e-08 1.9500e-08 7.0000e-08 2.8200e-08 

Br2 2.7540e-06 1.7780e-07 1.3900e-07 1.2590e-08 

BrCl 2.2390e-05 1.8620e-06 2.1500e-06 2.5120e-07 

CO 7.9000e-14 3.7150e-09 1.1200e-09 3.7000e-09 

SO3 1.1700e-02 1.2300e-03 8.5000e-11 1.0000e-03 

CO2 5.2500e-02 7.4000e-02 4.6000e-02 4.6000e-02 

OH 1.1500e-08 3.3110e-06 1.3500e-10 3.1620e-06 

HO2 4.0740e-10 1.7780e-08 2.5200e-13 6.3100e-09 

Cl 2.5120e-07 6.6070e-06 1.1700e-10 2.5120e-06 

ClO 6.9180e-09 5.2480e-08 3.1600e-13 1.5850e-08 

Br 1.6600e-06 1.3200e-05 5.3700e-04 3.1620e-06 

BrO 5.2480e-01 4.1690e-09 6.2300e-09 6.3096e-10 

H2O 4.6770e-01 6.6370e-01 9.1900e-01 9.1900e-01 

 


