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Abstract 

A stable isotope record from a stalagmite collected from Antro del Corchia cave (Apuan Alps, 

Central Italy), supported by 17 uranium-series ages, indicates enhanced regional rainfall between 

ca. 8.9 and 7.3 kyr cal. BP at the time of sapropel S1 deposition. Within this phase, the highest 

rainfall occurred between 7.9 and 7.4 kyr cal. BP. Comparison with different marine and lake 

records, and in particular with the Soreq Cave record (Israel), suggests substantial in-phase 

occurrence of enhanced rainfall between the Western and Eastern Mediterranean basins. There is no 

convincing evidence for major climatic change at the time of the “8.2 ka event”. 
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1. Introduction 

In contrast to the last glacial period, climate proxy records show that the Holocene has been 

characterised by only minor temperature fluctuations (Alley et al., 1997). However, significant 

oceanographic and hydrologic changes have occurred, particularly in the middle and low latitudes 

(Mayewski et al., 2004). A notable example is the climate associated with sapropel S1, which was 

deposited in the eastern and central Mediterranean basins during the Early-Mid Holocene (ca. 6600-

9500 yr cal BP: e.g. Emeis et al., 2000). Sapropels are organic-carbon-rich layers usually found 

intercalated with the more typical organic-poor carbonate sediments of the Mediterranean. Several 

hypotheses exist on the origin of sapropels (e.g. Rohling, 1994; Emeis et al., 2000). Many of these 

invoke an increase in terrestrial runoff, most likely from the Nile basin (Krom et al. 2002; Sperling 

et al. 2003). This runoff appears to have reduced surface-water salinity, with consequent deep-water 

stratification and anoxia (Emeis et al. 2000). Sapropels are climatically significant because they are 

thought to be linked to episodes of enhanced monsoon activity corresponding to minima in Earth’s 

orbital precession (Rossignol-Strick et al., 1982; Emeis et al. 2000). 

 

Most of the lithostratigraphic evidence for S1 is found in marine cores of the Adriatic Sea, and the 

Ionian and Levantine Basins (Emeis et al., 2000; Giunta et al., 2003; Fig. 1). However, its 

distribution through these basins is discontinuous (Ariztegui et al., 2000), and its timing is difficult 

to constrain due to varying degrees of preservation, problems with calibrating marine radiocarbon 

ages and the spatial complexity of the circulation and biogeochemical changes which took place 

(e.g. Thomson et al., 1999; Siani et al., 2001). In spite of its tropical origin, there is increasing 

evidence that the zone which experienced increased rainfall at this time included the Mediterranean 

region itself (Rossignol-Strick, 1999; Kallel et al., 1997, 2000; Bar-Matthews et al., 2000, 2003; 

Magny et al., 2002). In order to better define the climatic conditions throughout the Mediterranean 

region and to assist in land-sea correlations of this event, well-dated terrestrial records are needed 

from archives sensitive to millennial-scale changes in regional hydrology. 



 

Speleothems are cave calcium carbonate deposits with a demonstrated capacity for preserving 

climate changes during Mediterranean sapropel events (Bar-Matthews et al., 2000;2003; Bard et al., 

2002). In this paper, we present a precisely dated isotopic record from a speleothem collected from 

Antro del Corchia, central Italy, which displays direct evidence of increased rainfall in the region 

during the period of S1 deposition and provides an opportunity for correlation with nearby marine- 

and lake-core records. 

 

2. Methods 

Our data are derived from a ca. 25 cm-tall inactive stalagmite (CC26) collected in situ from a deep 

chamber within Antro del Corchia (43° 59’ N, 10° 13’ E; Fig. 1). The regional setting and cave 

characteristics are described in detail by Drysdale et al. (2004). After sectioning, the internal 

stratigraphy of CC26 revealed several phases of deposition (Fig. 1). Radiometric 230Th-234U dating 

of 17 samples by multi-collector inductively coupled plasma mass spectrometry (Hellstrom, 2003; 

Table 1) revealed that the upper ca. 160 mm section grew continuously from the Late Glacial to the 

Little Ice Age. This upper section was microsampled for stable isotope analysis at a 200 µm 

interval. The powders were processed using an Analytical Precision AP2003 continuous-flow stable 

isotope ratio mass spectrometer. The stable isotope data were fitted to a depth-age model using a 

technique previously described by Drysdale et al. (2005) (Fig. 2). All ages are reported as calendar 

years. Further details of analytical methods are provided in the Supplementary Material. 

 

3. Results and interpretation 

 
The complete isotope time series is shown in Figure S1 of the Supplementary Material. Here we 

focus on the interval from 5 to 10 kyr, which brackets the period of S1 deposition. The most 

prominent feature of this interval in the CC26 record is the reduction in δ18O that commences 



stepwise at ca. 8.9 kyr and terminates abruptly at 7.3 kyr (Fig. 2). Three possible mechanisms may 

explain this interval of low δ18O values. The first concerns changes in regional air temperatures, 

which can alter air temperatures inside the cave (Gascoyne, 1992). Cave air temperature controls 

the degree of isotopic fractionation between cave drip waters and the calcite deposited from them. If 

drip water δ18O remains constant, an increase in cave temperature will cause a reduction in calcite 

δ18O at a rate of ca. -0.24‰/°C (at temperatures between 5 and 10°C: Kim and O’Neill, 1997). 

However, previous speleothem work from western Italy has shown that cave-temperature effects are 

likely to be counterbalanced by the influence of changing regional air temperatures on rainfall δ18O, 

which is estimated to be 0.2-0.3‰/°C (Bard et al., 2002). Hence, if a temperature increase alone 

occurred, it would have had an indistinguishable effect on speleothem δ18O at this site.  

 

A second possible mechanism is the “rainfall amount” effect (Dansgaard, 1964), where rainfall 

δ18O decreases as rainfall amount increases. This is regarded as a principal mechanism driving 

variations in rainfall δ18O (and therefore drip-water and speleothem δ18O values) in the 

Mediterranean region (Bar-Matthews et al., 2000; Bard et al., 2002). In previously studied Corchia 

stalagmites, intervals of low δ18O correspond to wetter and warmer climatic periods (Drysdale et 

al., 2004; 2005), suggesting that the amount effect is coupled to regional temperatures. Such a 

coupling presumably arises due to greater evaporation from warmer versus cooler sea surfaces in 

the moisture source regions (i.e. the North Atlantic and Western Mediterranean).  

 

A third possibility is a change in the composition of the vapour source. Studies of Western 

Mediterranean marine cores show evidence of reduced sea-surface δ18O during the time of S1 

formation (e.g. Emeis et al., 2000; Kallel et al., 1997; 2000). For example, compared to the 

beginning of the Holocene, evidence from the Alboran and Southern Tyrrhenian Seas suggests a 

salinity decrease of ca. 3‰ during S1 deposition (Kallel et al., 1997; 2000; Emeis et al., 2000). This 



decrease was partially recovered at the end of sapropel deposition. Today, the δ18O/salinity ratio for 

the Mediterranean Sea is ca. 0.26 (Pierre, 1999). Although this ratio may have been higher during 

S1 deposition (e.g. Emeis et al., 2000), a first-order estimate of the reduction in sea-surface δ18O 

during S1 based on the above ratio is ca. 0.8 ‰. This may have been partly attributed to increased 

runoff to the marine environment from higher rainfall over continental areas bordering the 

Mediterranean (e.g. Kallel et al., 1997). Given that the Western Mediterranean supplies about 40% 

of the moisture reaching central-western Italy (Bard et al., 2002), a more 18O-depleted sea surface 

would have caused a reduction in the δ18O of vapour, leading to a depletion in the isotopic 

composition of the recharge waters reaching the cave. 

 

Whilst there is marine-core evidence for a change in moisture-source composition, support for 

rainfall amount must be sought from other properties of CC26. One potential source of supporting 

data is the δ13C time series. The full Holocene δ13C time series for CC26 displays the typical 

interglacial pattern found in older Corchia speleothems, where isotopic values steadily decrease the 

further an interglacial progresses (Figure S1), probably due to the time lag required for post-glacial 

soils to establish above the cave (Drysdale et al., 2004). The range of δ13C values in CC26 is 

comparable with those predicted from the δ13C of the dissolved inorganic carbon in modern cave 

drip waters (-4.1±0.6‰; Doveri et al., 2005). Such an enrichment in 13C can be attributed to the 

relatively high δ13C of the source rock (up to +2.5‰) and to the low contribution from soil CO2. 

The latter would be expected from a recharge area characterised by steep terrain, very low soil cover 

and sparse vegetation. Since the rock value is time-constant, periodic change in soil CO2 production 

is the most likely factor driving δ13C variations. 

 

Removing the long-term trend in δ13C reveals its shorter-term structure (Figure S1). Between 5 and 

10 kyr, the δ13C displays a complex pattern of multi-centennial-scale oscillations. However, several 



of these oscillations are superimposed over a relatively broad and prominent interval of decreased 

δ13C extending between ca. 8.5 and 7.3 kyr, with the most 13C-depleted values found between ca. 

7.9 and 7.4 kyr (Fig. 2). Increases in rainfall and temperature can increase soil CO2 productivity 

(e.g. Raich and Schlesinger, 1992) and reduce speleothem δ13C (Genty et al., 2003). Increased 

rainfall can also limit the opportunity of prior calcite precipitation during seepage (Fairchild et al., 

2000), a process that may enrich δ13C along the percolation pathway due to excessive degassing of 

CO2. Thus, the broad period of lower values between ca. 8.5 and 7.3 kyr probably reflects an 

increased input of soil CO2, potentially due to increased rainfall and temperatures, and/or a rainfall-

driven decrease in prior calcite precipitation along the flow path. The period of lowest δ13C values 

substantially matches the plateau of lowest δ18O values, which possibly indicates the period of 

maximum amount of rainfall through S1 in this part of the Mediterranean (ca. 7.9 to 7.4 kyr). 

 

Therefore, the coupled δ18O and δ13C evidence from CC26 suggests an increase in rainfall at the 

site. This increase in rainfall appears to have reduced sea-surface salinity in the Western 

Mediterranean Sea, and in turn the isotopic composition of the derived vapour.  

 

4. Discussion and conclusions 

The timing of the shift in δ18O (8.9 ± 0.2 to 7.3 ± 0.2 kyr) is consistent with recent estimates of the 

duration of S1 inferred from marine cores taken adjacent to the Italian peninsula (Ariztegui et al., 

2000; Giunta et al., 2003; Rolph et al., 2004). The central Italian crater lakes of Albano and Nemi 

(Fig. 1) also preserve evidence for warmer and wetter conditions during S1 deposition (Ariztegui et 

al., 2000; Rolph et al,. 2004), although establishing the precise timing of the inferred S1 interval 

from these sites is difficult due to dating uncertainties (Oldfield, 1996). The timing is also broadly 

consistent with the speleothem record from Soreq Cave (Israel), where the event is bracketed 

between 8.5 and 7 kyr (Fig. 3; Bar-Matthews et al. 2000). The small age offset between the two 



records has to be considered in the context of age uncertainties. During this interval, the Soreq δ18O 

attains its lowest Holocene values, consistent with the rainfall amount effect which has been 

invoked as a major driver of δ18O over the last 240 kyr at this site (Bar-Matthews et al., 2000; 

2003), whereas the δ13C shows an extreme increase of up to ~8‰ during S1, presumably due to a 

reduction in biogenic CO2 input to the percolation waters caused by either catastrophic soil erosion 

or a percolation rate so rapid that CO2 equilibration between infiltration water and soil air was not 

attained (Bar-Matthews et al., 2000).  

 

Many eastern and central Mediterranean marine sites preserve an interruption in S1 deposition, 

which is usually manifested as a break in organic-rich mud deposition, thought to reflect a brief 

return to deep-water ventilation (Rohling et al., 1997; De Rijk et al., 1999; Ariztegui et al., 2000; 

Giunta et al., 2003). The duration and the precise timing of this interruption is debated (e.g. Rohling 

et al., 1997; Ariztegui et al., 2000; Giunta et al., 2003), with estimates varying from ca. 500 to 150 

yr during the interval ca 8.0-7.5 kyr (Ariztegui et al., 2000). It is equivocal whether such an 

interruption is preserved in CC26. Closer inspection reveals at least two minor “reversals” in 

isotopic trends (e.g. at ca 8.3 and 8.6 kyr; Fig. 2), but these are of relatively low magnitude. This 

precludes a direct correlation of the S1 interruption with the CC26 record.  

 

In many records of the Northern Hemisphere there is a prominent climatic deterioration centred at 

8.2 kyr (Alley et al., 1997; Alley and Ágústsdóttir, 2005). The lack of prominence of such an event 

in CC26 is surprising given its apparent widespread extent. Pollen records from Lago di Vico 

(Magri and Parra, 2002) suggest that in central Italy at ca. 8.1 kyr there is a prominent decrease in 

arboreal cover indicating drier conditions, which might be consistent with the minor δ18O reversal 

observed in the CC26 record at ca 8.3 kyr. However, Emeis et al. (2000) did not find evidence for 

an increase of surface salinity in the Western Mediterranean Sea at this time, as would be expected 

from reduced continental runoff, whilst in the eastern part of the basin an increase of surface sea 



salinity is evident (Emeis et al., 2000). This indicates that the Western Mediterranean surface water 

was still depleted in 18O, which may have buffered the isotopic signal in the rainfall reaching the 

cave.  

 

In conclusion, the stable isotope record from CC26 provides the first precisely dated evidence for 

enhanced rainfall in the Western Mediterranean basin during the time of sapropel S1 formation. The 

combined δ18O and δ13C evidence suggests the phase of highest rainfall probably occurred between 

7.9 and 7.4 kyr, whilst comparison with different marine and lake records, and, in particular, with 

the Soreq Cave record, indicates substantial in-phase occurrence of enhanced rainfall between 

Western and Eastern Mediterranean basins.  
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Figure 1 - Upper: The Mediterranean basin showing the location of Antro del Corchia and the main 

study sites discussed in the text, including the Levantine Basin (1), the Ionian Basin (2) and the 

Adriatic Sea (3). Lower: Polished section of CC26 stalagmite. Note the popcorn-shaped layers in 

the lower part of the section indicating slow growth and hiatus. The dashed line indicates the 

growth axes sampled for stable isotopes analyses. The locations of reconnaissance U-Th analyses 

(LA-MC-ICPMS: laser ablation multi-collector inductively coupled plasma mass spectrometry) are 

also shows as reference points. 

 



 

 

Figure 2 – Upper: depth-age model of CC26. Lower: δ18O and δ13C time series for the 5-10 kyr 

period. The shadowed area represents the time of Sapropel S1 deposition according to Emeis et al. 

(2000). Note that the age of sapropel deposition varies according to different authors.  



 

Figure 3 – Comparison between the CC26 isotopic record and the Soreq cave isotopic record during 

sapropel S1 deposition (the shadowed area as for Fig. 2; the timing of the interruption of S1 is also 

shown; data from Ariztegui et al., 2000). 

 



 
Sample Depth (mm) U (ppb) [230Th/238U] [234U/238U] [232Th/238U] × 103 Age (kyr) [234U/238U]init 

CC26-4 4.1 (0.3) 6481 0.0046 (4) 0.6639 (13) 0.1068 (15) 0.75 (7) 0.6632 (13) 
CC26-5 27.0 (0.3) 4256 0.0151 (4) 0.6643 (13) 0.1982 (15) 2.48 (7) 0.6619 (13) 
CC26-3 45.4 (0.3) 4217 0.0235 (4) 0.6652 (14) 0.1719 (70) 3.90 (7) 0.6615 (14) 
CC26-6 54.3 (0.3) 4657 0.0278 (4) 0.6647 (18) 0.1116 (20) 4.65 (7) 0.6602 (18) 
CC26-7 68.2 (0.3) 4976 0.0333 (4) 0.6690 (15) 0.0531 (7) 5.57 (7) 0.6638 (15) 
CC26-2 77.4 (0.3) 5240 0.0359 (4) 0.6714 (13) 0.0502 (25) 6.00 (6) 0.6658 (13) 
CC26-8 84.6 (0.3) 4710 0.0390 (6) 0.6719 (16) 0.0357 (6) 6.54 (11) 0.6657 (17) 
CC26-9 86.2 (0.3) 5781 0.0391 (7) 0.6745 (15) 0.0246 (11) 6.52 (12) 0.6685 (15) 
CC26-10 95.9 (0.3) 4734 0.0430 (8) 0.6767 (19) 0.0305 (18) 7.16 (13) 0.6700 (19) 
CC26-11 102.3 (0.3) 4560 0.0452 (7) 0.6718 (15) 0.0136 (6) 7.62 (12) 0.6647 (16) 
CC26-12 108.0 (0.3) 5513 0.0475 (9) 0.6744 (14) 0.0419 (28) 7.98 (16) 0.6669 (15) 
CC26-13 112.1 (0.3) 5478 0.0487 (10) 0.6737 (18) 0.0245 (14) 8.20 (18) 0.6660 (18) 
CC26-14 123.1 (0.3) 4796 0.0522 (8) 0.6755 (14) 0.0166 (17) 8.80 (14) 0.6673 (15) 
CC26-15 133.3 (0.3) 4745 0.0565 (10) 0.6775 (18) 0.0125 (13) 9.54 (18) 0.6686 (19) 
CC26-16 141.7 (0.3) 5292 0.0597 (10) 0.6750 (20) 0.0292 (15) 10.14 (18) 0.6655 (21) 
CC26-1 150.7 (2.0) 4265 0.0639 (9) 0.6729 (20) 0.0224 (17) 10.93 (17) 0.6626 (21) 
CC26-17 151.6 (0.3) 6461 0.0659 (10) 0.6744 (17) 0.0199 (11) 11.26 (18) 0.6639 (18) 

 

Table 1. Corrected Th-U ages for stalagmite CC26. The activity ratios have been standardized to the 

HU-1 secular equilibrium standard, and ages calculated using decay constants of 9.195 × 10-6 

(230Th) and 2.835 × 10-6 (234U). Depths are from tip, whilst the numbers in brackets are the 95% 

uncertainties.  

 

 



 

Supplementary Material 

 

 

Figure S1 – The complete δ18O and δ13C time series of CC26 for the upper 160 mm (top two 

panels). The lower panel contains the detrended δ13C time series, where the second order 

polynomial fit (black line) was subtracted from the raw δ13C data. 



Methods 

Stalagmite CC26 was sectioned longitudinally and micromilled using a lathe housed at the Research 

School of Earth Sciences, The Australian National University. We used a 200±10 µm sampling 

interval, which yielded 795 samples. The stable isotope composition of CO2 gas released by 

reaction with 105% H3PO4 at 70 ºC was measured using an AP2003 mass spectrometer at the 

SUERC laboratory (Glasgow, UK). Isotopic results are reported using the conventional δ notation 

in per mille (‰), with reference to the Vienna Pee Dee Belemnite (V-PDB) standard; the δ18O of 

waters cited in the text are quoted with reference to Vienna Standard Mean Ocean Water (V-

SMOW). Mean analytical reproducibility (±1σ) was ±0.06‰ and ±0.07‰ for carbon and oxygen, 

respectively. 

 

For U/Th dating, homogenised samples of up to 50 mg were extracted using a 0.7 mm (n = 15) and 

1 mm drill bits (n = 2). Subsamples of ca. 10 mg were dissolved and spiked with a mixed 229Th/233U 

tracer before removal of the carbonate matrix using Eichrom TRU-Spec ion-exchange resin. The 

purified uranium and thorium fraction was introduced in dilute nitric acid to a Nu Instruments MC-

ICPMS, where 230Th/238U and 234U/238U activity ratios were measured simultaneously using a 

parallel ion-counting procedure that allows for full internal standardization of ion-counter gain, 

elemental fractionation and mass bias. Full details of the technique are provided in Hellstrom 

(2003). 

 


