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Earthquake Occurrence in Geometrically
Complex Systems

. Focus - Earthquakes and slip with non-planar faults and fault systems
. Principal result: Complex geometry introduces several new system-scale processes
that do not operate with single planar faults or small arrays of planar fault segments —

very strong affect on the characteristics of earthquake occurrence

Two related efforts are underway
1) Development of a large-scale earthquake simulation of earthquake in fault systems

« Computationally fast, quasi-dynamic
* 10%-106 earthquakes M3.5-M8.0
- Rate-state friction — clustering including foreshocks and aftershocks

« Complex geometry

* Interactions of complex faults with embedding media
 Off-fault stress relaxation and seismicity



Southern California Earthquake Center (SCEC)
Community Fault Model
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Region ~ 600x 400km Total fault length > 5000km




Fast fault system earthquake simulator

Boundary elements - Okada

~35,000 fault elements (single processor G5)
§ Detailed representation of fault network geometry

§ Simulations of M3.5-8 for southern California
3D stress interactions
Strike-slip, dip-slip and mixed mode fault slip
Repeated Simulation of 10° - 10° events
Basic elements of rate-state friction
§ Healing by log time
§ Time- and stress-dependent nucleation
§ Full representation of normal stress history effects
Inputs
§ Fault slip rate (currently loading by backslip)
§ Rate-state parameters: A, B, (Dc does not enter equations)
§ Elastic modulii, shear wave speed 3, stress intensity factor for rupture



Fast fault system earthquake simulator

- Computations are based on changes of fault sliding state using the
method of Dieterich (1995)
§ 0 - Locked fault: aging by log time of stationary contact
§ 1 — Nucleating slip: analytic solutions with rate-state friction
§ 2 — Earthquake slip: quasi-dynamic — slip speed is fixed by shear
impedance
_ 2PAS
G
* No simultaneous equations to solve

§ During earthquakes slip, the initiation or termination of slip at an element
requires one multiply and one divide operation to update stressing rate
conditions at every element

0o

S’i =K.J, , where K, =T;-uN,

y-j>’

§ Computation time scales by N~ where N is the number of elements
§ 100,000 events with 30,000 fault elements ~ 12hrs



M8 event on fault with 10,000 fault elements

2x vertical exaggeration

QuickTime™ and a
GIF decompressor
are needed to see this picture.

Simulation:
° fﬂo,goggéents, 10,000 elements M8 events:
. ~ -
D e Duration 215s, 204s
: Implicit shear wave speed 3km/s e Rupture speed 2.2-2.4 km/s
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Cumulative number of events
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Stress change and slip in a M7.1 earthquake
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This event, which ruptured nearly the entire fault surface, was followed by M6.5, M5.4 and M6.3

events 64, 82 and 96 seconds, respectively following the mainshock. In a real earthquake this tight
clustering might be interpreted as a single composite earthquake event.
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Composite plot of earthquake clustering formed by stacking the records of seismic activity
relative to mainshock times [from Dieterich, 1995]. Events in excess of the background rate,
normalized by the number of mainshocks.



Clustering in synthetic catalog

Single planar fault
All events (50,000), ~M4.3-7.2

- Simulation
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Waiting-time distribution of events 27.0 are quasi-periodic with cov = 0.02 for single
fault system. Aperiodicity of large increases with increasing numbers of faults



200 m Compressive Stepover

Segmented fault with 200 m
compressional step-over (M26.0)
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QuickTime™ and a
GIF decompressor
are needed to see this picture.

End of first M7 event—27.9 s

21 aftershocks in interval between
first and second M7 events

Start of second M7 event — 169 s



Shear stress change (MPa)
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Slip and shear stress change for simulated M7.1 event on a fault with fractal fault roughness. Model is for strike-

slip faulting (left-lateral) with 1,500 fault elements. This event was taken from a simulation with 50,000

earthquakes M3.5-M7.2. Nucleation occurred at the black element.



System-scale phenomena with complex geometries
Fault slip and off-fault seismicity

Individual faults exhibit
approximately self-similar
roughness

San Francisco Bay Region



System-scale phenomena with complex geometries
Fault slip and off-fault seismicity

Individual faults exhibit
approximately self-similar
roughness

Fault systems also appear
to be scale-independent

San Francisco Bay Region
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Fault in the Monterrey Formation




Random Fractal Fault Model

Ampl. o« 81"

S_olve for slip usmg b.oundgry elements. H = Hurst exponent
Simple Coulomb friction with u = 0.6

At ref length /=1,
Periodic B.C, or slip on a patch A SS0ES NGl

rms (slope) = B
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NORMALIZED SLIP
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NORMALIZED SLIP
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Fault slip and stress changes

Smooth fault Fault with self-similar roughness

Global slip Global slip




Yielding and Stress Relaxation

» Stresses due to heterogeneous slip cannot increase without limit -
some form of steady-state yielding and stress relaxation must occur

RMS Slope o 1"
Slope of 0.01 — shear strain = 0.01, — brittle failure

 In brittle crust, stress relaxation may occur by faulting and
seismicity off of the major faults.
@ Instantaneous failure and slip during earthquake
@ Post-seismic — aftershocks
@ Interseismic — background seismicity

* Yielding will couple to the failure process, by relaxing the back
stresses



Steady-state yielding by earthquakes: B =0.10
EQ rate « Coulomb stress rate o« Long-term slip rate

M'

Coulomb stress rate
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from fault with random fractal roughness

e Stressing due to fault slip at constant long-term rate

* Model assumes steady-state seismicity at the long-term
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Average long-term earthquake rate by distance
from fault with random fractal roughness

Scaling:

Roed™ , where n=D-H

D =2 for 2D systems
D =3 for 3D systems
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Aftershocks
Earthquake rates following a stress step

Earthquake rate R =

Following a stress step ~ R= N
[exp(;) -1 [exp(_tﬂ +1

Immediate aftershocks at t=0 R

Dieterich, JGR (1994), Dieterich, Cayol, Okubo, Nature, (2000)



Initial Aftershock Rate /Background Rate
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Rate-State Stress Relaxation

Concept for stress relaxation: Assume stresses fluctuate around a
steady-state condition where the long-term growth of interaction
stresses due to fault slip is balanced by off-fault yielding.

Change of stress during earthquake

Elastic response

/I//I/



Rate-State Stress Relaxation

Concept for stress relaxation: Assume stresses fluctuate around a
steady-state condition where the long-term growth of interaction
stresses due to fault slip is balanced by off-fault yielding.

Change of stress during earthquake Relaxed state (+ tectonic stressing)

_ Elastic response
Elastic response +

Rate - state relaxation
/L/L/L/



Rate-State Stress Relaxation

Relaxation rate is proportional to earthquake rate, Rxg where

R-—L, dy=—"[dt-yas]
YT, ao

Relaxation rate of individual stress components

C, 1
R = 20 - —|di-ANy.do.
5=k dy, ag[dt Ayydo ]
1
Ao (t)=-C | ——dt

Factors C and A vary spatially.

C is set to make net long-term stressing (from tectonic loading, fault slip, and off-fault
relaxation) equal to zero.

AE = +1 if long-term slip — stress increase

A is a sign function with values of 1. 3
Y -1 if long-term slip — stress decrease




Off-fault stress relaxation for a full earthquake cycle
t.=11 yr, T=150 yr
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Off-fault stress relaxation for a full earthquake cycle
t.=11 yr, T=150 yr

Coseismic
Coulomb
stress change
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Off-fault stress relaxation for a full earthquake cycle
t.=11 yr, T=150 yr

Coseismic
Coulomb
stress change
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Off-fault stress relaxation for a full earthquake cycle
t.=11 yr, T=150 yr
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Coulomb

stress change
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Stress change budget for a full earthquake cycle

Stress change due to slip

Stress change
MPa

10




Stress change budget for a full earthquake cycle

Stress change due to slip

Stress change
MPa
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Stress change budget for a full earthquake cycle

Stress change due to slip

Stress change
MPa
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Stress change budget for a full earthquake cycle

Stress change due to slip

Stress change
MPa
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Stress change budget for a full earthquake cycle

Stress change due to slip

Stress change
MPa
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Fault Slip: Effects of Fault Roughness, Tectonic
loading and Off-Fault Stress Relaxation

Slip due to remote tectonic loading
(no stress relaxation)
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Fault Slip: Effects of Fault Roughness, Tectonic
loading and Off-Fault Stress Relaxation

Slip due to remote tectonic loading Remote+load|ng (B=0.5
(no stress relaxation) Off-fault relaxation )
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Fault Slip: Effects of Fault Roughness, Tectonic
loading and Off-Fault Stress Relaxation

Slip due to remote tectonic loading Remote+load|ng (B=0.5
(no stress relaxation) Off-fault relaxation )
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Fault Slip: Effects of Fault Roughness, Tectonic
loading and Off-Fault Stress Relaxation

Slip due to remote tectonic loading Remote+load|ng (B=0.5
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» Partitioning between far field loading and off-fault yielding is controlled by fault geometry

Partitioning of Fault Loading
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 Partitioning among relaxation processes is controlled by Ac

Fraction of total fault loading
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Evidence for Time Dependence of

Prior to Coalinga
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Decrease of Stress Heterogeneity
with Time and Distance

(Background Deviatoric Stress = 100 bars)

Stress Orientations Become More Uniform with Time and Distance
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Decrease of Stress Heterogeneity
with Time and Distance

(Background Deviatoric Stress = 100 bars)

Stress Orientations Become More Uniform with Time and Distance
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Decrease of Stress Heterogeneity
with Time and Distance

(Background Deviatoric Stress = 100 bars)

Stress Orientations Become More Uniform with Time and Distance
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Decrease of Stress Heterogeneity
with Time and Distance

(Background Deviatoric Stress = 100 bars)

Stress Orientations Become More Uniform with Time and Distance
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Decrease of Stress Heterogeneity
with Time and Distance

(Background Deviatoric Stress = 100 bars)

Stress Orientations Become More Uniform with Time and Distance
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