Can we map asperities
using b-values?
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L aboratory study:
Acoustic Emission (AE) experiments with granite samples

Mean b-value decreases systematically with increasing
confining pressure and differential stres
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b-value as stress sensor
Several case studies In different regions of the world

California
1997: Wiemer & Wyss> Parkfield and Morgan Hill
2000: Wyss et al. > San Jacinto and Elsinore
2001: Wyss - Hayward
2005: Schorlemmer & Wiemer - Parkfield
2007: Parsons - Calaveras

Mexico
2001: Zuniga & Wyss - Pacific Coast
Iceland e
2006: Wyss & Stefansson = Southern Iceland This list is not Complete’
France alltogether more than 20
1999: Sylvander = French Pyrenees case studies that map
Turkey spatial b-value distributions

2000: Oncel & Wyss = Izmit -
2002: Westerhaus et al. > Izmit (plus several studies of

Sumatra b-values beneath volcanoes
2005: Nuannin = off coast of NW Sumatra and in subduction zones)

Japan
2002, 2005: Wyss & Matsumura - Kanto-Tokai
2006: Nakaya - Kuril Trench



b-value as stress sensor
Several case studies In different regions of the world

1997: Wiemer & Wyss> Parkfield and Morgan Hill
2000: Wyss et al. > San Jacinto and Elsinore

2005: Schorlemmer & Wiemer = Parkfield
2007: Parsons = Calaveras

2002, 2005: Wyss & Matsumura - Kanto-Tokai



b-value as stress sensor
Outline

* General Issues of b-value Mapping

* Example Case Studies

2005: Schorlemmer & Wiemer - Parkfield

1997: Wiemer & Wyss> Parkfield and Morgan Hill
2000: Wyss et al. > San Jacinto and Elsinore

2002, 2005: Wyss & Matsumura - Kanto-Tokai
2007: Parsons - Calaveras

Currently: Tormann et al. > San Francisco Bay Area
* ALM — Asperity-based likelihood model for California
* CALM - Cross-sectional asperity likelihood model for California

* Testing Perspectives



General 1ssues of b-value mapping

Problems that each study adresses a little differently:

* Data quality
* Minimum number of events versus coverage
* Mc calculation

* Mapping radii



General 1ssues of b-value mapping

Problems that each study adresses a little differently:

* Data quality
* Minimum number of events versus coverage
* Mc calculation

* Mapping radii

* Data selection
* Temporal non-stationarity

* Non-linear FMDs



Parkfield

Schorlemmer & Wiemer, Nature, 2005

NCEDC 1931 - 2003
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Morgan Hill

Wiemer & Wyss, JGR, 1997

Morgan Hill 1971-1984.3
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Anomalies in b-value and local recurrence
time (M6+) in the nucleation area before
Morgan Hill 6.2 mainshock



Morgan Hill

Wiemer & Wyss, JGR, 1997

Morgan Hill 1971-1984.3
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b-values change a little but still show up
anomalously low just south of the
mainshock area

Anomaly in Tr is larger and stronger



San Jacinto-Elsinore
Wyss et al., JGR, 2000

Modern catalogue 1.2<=M<=5.0 (1981-1998)
6 historic mainshocks M>=5.6
5 of historic events ruptured substantial parts of the

4 mapped asperities



San Jacinto-Elsinore
Wyss et al., JGR, 2000
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Modern catalogue 1.2<=M<=5.0 (1981-1998)

6 historic mainshocks M>=5.6

5 of historic events ruptured substantial parts of the
4 mapped asperities

Anomalies in b-value and local recurrence times
correlate with mainshock locations and known
asperities

Much stronger, more clearly separated anomalies in
local recurrence times than b-values




Kanto-Tokal

Wyss & Matsumura, Tectonophysics, 2005

2002:
Calculation of b-value and local

recurrence time (TL) anomalies using
declustered data M>=1.5, 1980-1999
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TL of less than 1000 years includes 5 of
6 historic mainshock locations, covering

3? 13?.5 138 1385 139 1335 140
Longitude [deg] 12% of the study area
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Kanto-Tokal

Wyss & Matsumura, Tectonophysics, 2005

2002:

Calculation of b-value and local
recurrence time (TL) anomalies using
declustered data M>=1.5, 1980-1999
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TL of less than 1000 years includes 5 of
) 6 historic mainshock locations, covering
137 1375 138 1385 139 1395 140

Longitude [deg] 12% of the study area
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2005:

Correlation of local recurrence time
anomalies (2002) with seismicity
1999-2003.5

Latitude [deg]

= 13% of all and ~75% of M3.5+
seismicity fall into the 12% TL
anomaly areas (max: 83% of M3.8+) RN . _‘
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Calaveras
Parsons, JGR, 2007

Do temporal and spatial b-value variations portend M>=4.0 events?



Calaveras
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Do temporal and spatial b-value variations portend M>=4.0 events?

* temporal variations do not correlate with mainshock times

* spatial analysis:
* catalogue from 1968-2005, Mc=2.0
* boxes of 5x5 km, overlapping by 2.5 km
* define M>=4.0 events as test events - cut catalogue at M<4.0
* calculate b-value distribution for each of the 20 test events
* compare local b-value with mean b-value - significant deviation?



Calaveras
Parsons, JGR, 2007

Do temporal and spatial b-value variations portend M>=4.0 events?

* temporal variations do not correlate with mainshock times

* spatial analysis:
* catalogue from 1968-2005, Mc=2.0
* boxes of 5x5 km, overlapping by 2.5 km
* define M>=4.0 events as test events - cut catalogue at M<4.0
* calculate b-value distribution for each of the 20 test events
* compare local b-value with mean b-value - significant deviation?

C. Calaveras fault b-values 1968-2005
Maximum Likelihood solution

30 40 50
Distance (km)

b-value

0.75 0.88 1.00 1,13 1.25

Results: consistent (90%) inconsistent (90%) inconclusive
20: 6 1 13



Calaveras
Parsons, JGR, 2007

Is the forecast experiment a conclusive test?

* DATA QUALITYsince 1968 (e.g. magnitude shifts)

* ML MATHEMATICS correction for upper limit on magnitude range, deviations from
uncorrected formula will be significant?

* BIAS: large events have been taken out, aftershocks not, not comparable to San Jacinto

* TARGET MAGNITUDE: M4 too small to test asperities: rupture lengths of 1-2km
—> test is not sensitive to such small scale heteorogeneity (different radii, binning in
cylinders?)



Calaveras
Parsons, JGR, 2007

Is the forecast experiment a conclusive test?

* DATA QUALITYsince 1968 (e.g. magnitude shifts)

* ML MATHEMATICS correction for upper limit on magnitude range, deviations from
uncorrected formula will be significant?

* BIAS: large events have been taken out, aftershocks not, not comparable to San Jacinto

* TARGET MAGNITUDE: M4 too small to test asperities: rupture lengths of 1-2km
—> test is not sensitive to such small scale heteorogeneity (different radii, binning in
cylinders?)

Morgan Hill 1971-1984.3

C. Calaveras fault b-values 1968-2005
Maximum Likelihood solution

5 20 25 30 35 40
Distance in [km]

0.75 0.88 1.00 1.13 1.25




San Francisco Bay Area
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San Francisco Bay Area
All segments b-value 0.6-1.2

Depth [km]

5 _ . | San Andreas
10 -
15 - J HL
-20 T T T T T ) T T T
a 20 40 60 s 0 20 40 60
‘ 31: - ! - . . . i - n b" 1 . I | | | | | Ha ard
PR | & ” -
10 - - LN
12 ‘ ‘ ‘ l ] l ' — ‘ b T [ T T T
0 10 20 30 40 50 60 0 10 20 0 ) 10 0 20 0 0
. Calaveras
10 9 :
154 ] T T T b T T T T T -
0 10 20 30 0 0 10 20 30 40 50 0 10

' 5 Concord
10
15

20
0 51013 10 20 0 10 20

_54"' - | | | | | | | ] . San Gregorio
10— F L

a 10 20 30 40 50 &0 70 &0 90 100 ] 10 20 30 40 50 80

5l F Greenville Mt Diabolo SE
-10 ! -10 ]
j“S" B ’ 0.6 0.8 1 1.2 o

10 20 0 10 20 0 10 20




SFBA: Central Calaveras
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SFBA: Central Calaveras

Data Selection

WG02
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SFBA: Central Calaveras

Data Selection
WG02

h l | . " Wiemer/Wyss
‘ . (+-2km)

0
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Depth [km]

-10

Constant width

1

More physical based approach for associating
faults and events:

Bayesian statistics

* equal prior = pure distance-based
association

* slip rate weighted prior - faster faults
are more likely to produce
earthquakes

Wesson, 2003, BSSA
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SFBA: Central Calaveras

Data Selection
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SFBA: Central Calaveras

- Re-investigation
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SFBA: Central Calaveras

- Re-investigation

Depth [km]
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SFBA: San Andreas — Santa Cruz
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SFBA: Santa Cruz

= Non-linear FMDs
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SFBA: Santa Cruz
> Non-lineqr FMD§
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SFBA: Northern & Southern

Hayward
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SFBA: Northern & Southern
Hayward
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SFBA: From b-values to
probabilities

* (Calculate b-value for each point
* (Calculate a-value for each point
* Choose target magnitude

* (Calculate annual probability of
occurrence of an earthquake
equal to or larger Mtarg:




SFBA: All segments

Annual Probabilities M6+
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San Francisco Bay Area
Preliminary asperity map
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San Francisco Bay Area
Preliminary asperity map
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Model Summary

Three categories of studies:

1. Pure case study:
correlation with mainshocks/known asperities

2. Consisitency test
does medium scale seismicity continue to concentrate in low b-value areas?

3. Retro/Prospective test:
does microseismicity forecast large events® locations?
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3. Retro/Prospective test:
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Model Summary

Three categories of studies:

1. Pure case study:
correlation with mainshocks/known asperities

2. Consisitency test
does medium scale seismicity continue to concentrate in low b-value areas?

3. Retro/Prospective test:
does microseismicity forecast large events® locations?

1 2 3
Morgan Hill / Parkfield (1997) Kanto-Tokai (2005) San Jacinto (2000)
Hayward (2001) Calaveras (2007) Parkfield (2004)
Westerhaus (2001)
Mexico (2001) ‘
Kanto-Tokai (2002)
Sumatra (2005) This is where we need

San Francisco Bay Area (2007) more and systematic effort



ALM

Wiemer & Schorlemmer, SRL, Special Issue on RELM, 2007

Asperity-based Likelihood Model for California

Achievements

* First testable model forecasting
future seismicity on the basis
of

spatially varying b-values

* Submitted for prospective
testing within RELM




ALM

Wiemer & Schorlemmer, SRL, Special Issue on RELM, 2007

Asperity-based Likelihood Model for California

Achievements

* First testable model forecasting
future seismicity on the basis
of
spatially varying b-values

* Submitted for prospective
testing within RELM

Shortcomings
* No treatment of depth

* Oversimplifying low resolution
mapview approach




CALM

Cross-sectional Asperity Likelihood Model for California

Testable hybrid model: advanced ALM plus fault information

* Pseudo fault based testing grid: fine grid near fault, coarse grid off fault
—> to be developed by and for CSEP

* Near fault: real forecasts - EMR completeness, b-value and a-value mapping
e Off fault: background - PMC, a-value mapping and constant b-value

* Proper treatment of depth

= To be submitted as possible prototype for pseudo-fault-based
testing iIn CSEP



Issues of Testing ,,Physically*

How to test whether low b-values allow to map asperities?
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Issues of Testing ,,Physically*

How to test whether low b-values allow to map asperities?

* Problems in interpretation: what do we forecast by asperity mapping?
— nucleation point
— slip distribution
— maximum rupture extent = magnitude

* Can a number-per-gridpoint testing approach appropriately account for
these physical principles?

* How to formulate testable description of mapping information?

= Start with pseudo-fault based testing as envisioned in
CSEP:

rate and focal mechanism forecasts on fault based grid



