Can we map asperities using b-values?

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Thessa Tormann (ETH)

Stefan Wiemer (ETH)

Danijel Schorlemmer (USC)

Jochen Woessner (ETH)

Amitrano, JGR, 2003

Amitrano, JGR, 2003

Laboratory study:

Acoustic Emission (AE) experiments with granite samples

Mean b-value decreases systematically with increasing

confining pressure and 1.8 o–value 1.6 1.2 All events Stage 1 -□- Stage 2 Stage 4 8.0 20 40 60 80 σ_3 (MPa)

Several case studies in different regions of the world

California

1997: Wiemer & Wyss > Parkfield and Morgan Hill

2000: Wyss et al. → San Jacinto and Elsinore

2001: Wyss → Hayward

2005: Schorlemmer & Wiemer → Parkfield

2007: Parsons → Calaveras

Mexico

2001: Zuniga & Wyss → Pacific Coast

Iceland

2006: Wyss & Stefansson → Southern Iceland

France

1999: Sylvander → French Pyrenees

Turkey

2000: Oncel & Wyss → Izmit 2002: Westerhaus et al. → Izmit

Sumatra

2005: Nuannin → off coast of NW Sumatra

Japan

2002, 2005: Wyss & Matsumura → Kanto-Tokai

2006: Nakaya → Kuril Trench

This list is not complete, alltogether more than 20 case studies that map spatial b-value distributions (plus several studies of b-values beneath volcanoes and in subduction zones)

Several case studies in different regions of the world

California

1997: Wiemer & Wyss→ Parkfield and Morgan Hill

2000: Wyss et al. → San Jacinto and Elsinore

2001: Wyss → Hayward

2005: Schorlemmer & Wiemer → Parkfield

2007: Parsons → Calaveras

Mexico

2001: Zuniga & Wyss → Pacific Coast

Iceland

2006: Wyss & Stefansson → Southern Iceland

France

1999: Sylvander → French Pyrenees

Turkey

2000: Oncel & Wyss → Izmit

2002: Westerhaus et al. → Izmit

Sumatra

2005: Nuannin → off coast of NW Sumatra

Japan

2002, 2005: Wyss & Matsumura → Kanto-Tokai

2006: Nakaya → Kuril Trench

This list is not complete, alltogether more than 20 case studies that map Spatial b-value distributions (plus several studies of b-values beneath volcanoes and in subduction zones)

b-value as stress sensor Outline

- General Issues of b-value Mapping
- Example Case Studies

2005: Schorlemmer & Wiemer → Parkfield

1997: Wiemer & Wyss→ Parkfield and Morgan Hill

2000: Wyss et al. → San Jacinto and Elsinore

2002, 2005: Wyss & Matsumura → Kanto-Tokai

2007: Parsons → Calaveras

Currently: Tormann et al. → San Francisco Bay Area

- ALM Asperity-based likelihood model for California
- CALM Cross-sectional asperity likelihood model for California
- Testing Perspectives

General issues of b-value mapping

Problems that each study adresses a little differently:

- Data quality
- Minimum number of events versus coverage
- Mc calculation
- Mapping radii

General issues of b-value mapping

Problems that each study adresses a little differently:

- Data quality
- Minimum number of events versus coverage
- Mc calculation
- Mapping radii
- Data selection
- Temporal non-stationarity
- Non-linear FMDs

Parkfield

Schorlemmer & Wiemer, Nature, 2005

Found temporal stationary very low b-value zone

Zone correlated well with the mainshock and aftershock locations of the 2004 M6.0 event

Morgan Hill

Wiemer & Wyss, JGR, 1997

Anomalies in b-value and local recurrence time (M6+) in the nucleation area before Morgan Hill 6.2 mainshock

Morgan Hill

Wiemer & Wyss, JGR, 1997

Anomalies in b-value and local recurrence time (M6+) in the nucleation area before Morgan Hill 6.2 mainshock b-values change a little but still show up anomalously low just south of the mainshock area

Anomaly in Tr is larger and stronger

San Jacinto-Elsinore

Wyss et al., JGR, 2000

Modern catalogue 1.2<=M<=5.0 (1981-1998)

6 historic mainshocks M>=5.6

5 of historic events ruptured substantial parts of the

4 mapped asperities

San Jacinto-Elsinore

Wyss et al., JGR, 2000

Anomalies in b-value and local recurrence times correlate with mainshock locations and known asperities

Much stronger, more clearly separated anomalies in local recurrence times than b-values

Kanto-Tokai

Wyss & Matsumura, Tectonophysics, 2005

2002:

Calculation of b-value and local recurrence time (TL) anomalies using declustered data M>=1.5, 1980-1999

TL of less than 1000 years includes 5 of 6 historic mainshock locations, covering 12% of the study area

Kanto-Tokai

Wyss & Matsumura, Tectonophysics, 2005

2002:

Calculation of b-value and local recurrence time (TL) anomalies using declustered data M>=1.5, 1980-1999

TL of less than 1000 years includes 5 of 6 historic mainshock locations, covering 12% of the study area

2005:

Correlation of local recurrence time anomalies (2002) with seismicity 1999-2003.5

- → 13% of all and ≈75% of M3.5+ seismicity fall into the 12% TL anomaly areas (max: 83% of M3.8+)
- $\rightarrow P_{rand} = 2*10^{-14}$

Parsons, JGR, 2007

Do temporal and spatial b-value variations portend M>=4.0 events?

Parsons, JGR, 2007

Do temporal and spatial b-value variations portend M>=4.0 events?

- temporal variations do not correlate with mainshock times
- spatial analysis:
 - catalogue from 1968-2005, Mc=2.0
 - boxes of 5x5 km, overlapping by 2.5 km
 - define M>=4.0 events as test events \rightarrow cut catalogue at M<4.0
 - calculate b-value distribution for each of the 20 test events
 - compare local b-value with mean b-value → significant deviation?

Parsons, JGR, 2007

Do temporal and spatial b-value variations portend $M \ge 4.0$ events?

- temporal variations do not correlate with mainshock times
- spatial analysis:
 - catalogue from 1968-2005, Mc=2.0
 - boxes of 5x5 km, overlapping by 2.5 km
 - define M>=4.0 events as test events \rightarrow cut catalogue at M<4.0
 - calculate b-value distribution for each of the 20 test events
 - compare local b-value with mean b-value → significant deviation?

Results: consistent (90%) inconsistent (90%) inconclusive 20: 6 1 13

Parsons, JGR, 2007

Is the forecast experiment a conclusive test?

- DATA QUALITY since 1968 (e.g. magnitude shifts)
- ML MATHEMATICS correction for upper limit on magnitude range, deviations from uncorrected formula will be significant?
- BIAS: large events have been taken out, aftershocks not, not comparable to San Jacinto
- TARGET MAGNITUDE: M4 too small to test asperities: rupture lengths of 1-2km → test is not sensitive to such small scale heteorogeneity (different radii, binning in cylinders?)

Parsons, JGR, 2007

Is the forecast experiment a conclusive test?

- DATA QUALITY since 1968 (e.g. magnitude shifts)
- ML MATHEMATICS correction for upper limit on magnitude range, deviations from uncorrected formula will be significant?
- BIAS: large events have been taken out, aftershocks not, not comparable to San Jacinto
- TARGET MAGNITUDE: M4 too small to test asperities: rupture lengths of 1-2km

→ test is not sensitive to such small scale heteorogeneity (different radii, binning in

cylinders?)

San Francisco Bay Area

San Francisco Bay Area

San Francisco Bay Area

San Francisco Bay Area All segments b-value 0.6-1.2

Data Selection

Data Selection

WG02 (+-5.5km)

Wiemer/Wyss (+-2km)

Constant width

More physical based approach for associating faults and events:

Bayesian statistics

- equal prior → pure distance-based association
- slip rate weighted prior → faster faults are more likely to produce earthquakes

0.6

0.7

0.8

0.9

Bayesian prob

Wesson, 2003, BSSA

Data Selection

→ Re-investigation

→ Re-investigation

SFBA: San Andreas – Santa Cruz

SFBA: Santa Cruz

→ Non-linear FMDs

SFBA: Santa Cruz

→ Non-linear FMDs

Transition zone between locked and creeping segment Slow earthquakes (San Juan Bautista)

- → Non-linear frequency-magnitude distributions
- → No sensible b-value calculation
- → Ignore data to the right of green line

SFBA: Northern & Southern Hayward

SFBA: Northern & Southern

SFBA: From b-values to probabilities

- Calculate b-value for each point
- Calculate a-value for each point
- Choose target magnitude
- Calculate annual probability of occurrence of an earthquake equal to or larger Mtarg:

$$P = 1 - e^{-\frac{10^{-3} - bM_{targ}}{\Delta T}}$$

SFBA: All segments

Annual Probabilities M6+

San Francisco Bay Area

Preliminary asperity map

San Francisco Bay Area

Preliminary asperity map

Model Summary

Three categories of studies:

- **1.** Pure case study: correlation with mainshocks/known asperities
- 2. Consistency test does medium scale seismicity continue to concentrate in low b-value areas?
- **3.** Retro/Prospective test: does microseismicity forecast large events' locations?

Model Summary

Three categories of studies:

- **1.** Pure case study: correlation with mainshocks/known asperities
- 2. Consistency test does medium scale seismicity continue to concentrate in low b-value areas?
- **3.** Retro/Prospective test: does microseismicity forecast large events' locations?

Morgan Hill / Parkfield (1997)
Hayward (2001)
Turkey (2001)
Mexico (2001)
Kanto-Tokai (2002)
Sumatra (2005)
San Francisco Bay Area (2007)

Kanto-Tokai (2005) Calaveras (2007)

San Jacinto (2000) Parkfield (2004)

Model Summary

Three categories of studies:

- **1.** Pure case study: correlation with mainshocks/known asperities
- 2. Consistency test does medium scale seismicity continue to concentrate in low b-value areas?
- **3.** Retro/Prospective test: does microseismicity forecast large events' locations?

Morgan Hill / Parkfield (1997)
Hayward (2001)
Westerhaus (2001)
Mexico (2001)
Kanto-Tokai (2002)
Sumatra (2005)
San Francisco Bay Area (2007)

Kanto-Tokai (2005) Calaveras (2007)

This is where we need more and systematic effort

5

San Jacinto (2000) Parkfield (2004)

ALM

Wiemer & Schorlemmer, SRL, Special Issue on RELM, 2007

Asperity-based Likelihood Model for California

Achievements

- First testable model forecasting future seismicity on the basis of spatially varying b-values
- Submitted for prospective testing within RELM

ALM

Wiemer & Schorlemmer, SRL, Special Issue on RELM, 2007

Asperity-based Likelihood Model for California

Achievements

- First testable model forecasting future seismicity on the basis of spatially varying b-values
- Submitted for prospective testing within RELM

Shortcomings

- No treatment of depth
- Oversimplifying low resolution mapview approach

CALM

Cross-sectional Asperity Likelihood Model for California

- Testable hybrid model: advanced ALM plus fault information
- Pseudo fault based testing grid: fine grid near fault, coarse grid off fault
 to be developed by and for CSEP
- Near fault: real forecasts → EMR completeness, b-value and a-value mapping
- Off fault: background → PMC, a-value mapping and constant b-value
- Proper treatment of depth
- → To be submitted as possible prototype for pseudo-fault-based testing in CSEP

- Problems in interpretation: what do we forecast by asperity mapping?
 - nucleation point
 - slip distribution
 - − maximum rupture extent → magnitude
 - **—** ...

- Problems in interpretation: what do we forecast by asperity mapping?
 - nucleation point
 - slip distribution
 - maximum rupture extent → magnitude
 - **—** ...
- Can a number-per-gridpoint testing approach appropriately account for these physical principles?

- Problems in interpretation: what do we forecast by asperity mapping?
 - nucleation point
 - slip distribution
 - maximum rupture extent → magnitude
 - **—** ...
- Can a number-per-gridpoint testing approach appropriately account for these physical principles?
- How to formulate testable description of mapping information?

- Problems in interpretation: what do we forecast by asperity mapping?
 - nucleation point
 - slip distribution
 - maximum rupture extent → magnitude
 - **—** ...
- Can a number-per-gridpoint testing approach appropriately account for these physical principles?
- How to formulate testable description of mapping information?
- → Start with pseudo-fault based testing as envisioned in CSEP:
 - rate and focal mechanism forecasts on fault based grid