
219

ANNALS  OF  GEOPHYSICS, VOL.  49, N.  1, February  2006

Key  words decomposition rates – hyper-spectral
image – NDVI – co-kriging

1. Introduction

Environmental assessment at landscape and
regional level claims new and efficient technolo-
gies and procedures in order to take full account
of both structural and functional properties of en-
vironmental systems on a broad spatial extent.

Nowadays, remote sensing is an essential tool for
ecosystem and landscape status monitoring.
Multi- and hyper-spectral remotely-sensed data
are more and more frequently used for ecological
data analysis, landscape unit mapping and spatial
analysis of  ecosystem structural organization. In
the past few years, spatial data analysis has been
frequently applied to remotely sensed imageries.
Only recently has attention been given to the spa-
tial analysis of processes at landscape level
(Dugan et al., 1994; Curran, 2001). Yet coupling
structures which are remotely detected with
functioning still remains one major task of the
environmental monitoring activities. Litter de-
composition is a key process in terrestrial eco-
system functioning because it controls nutrient
availability in the soil, thus regulating primary
production, improves soil structure and reduces
soil erosion. Decomposition is a complex process
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that occurs through different phases and depends
on many environmental factors. The rate of litter
decomposition is regulated by abiotic and biotic
factors, such as climate, litter quality and decom-
poser activity (Swift et al., 1979; Gallardo and
Merino, 1993; Aerts, 1997; Perez-Harguindeguy
et al., 2000). A variety of litter quality indices
based on the initial chemical composition (Aber
and Melillo, 1980; Aber et al., 1990) and leaf
structure parameters (Gallardo and Merino,
1993) have been used as decay predictors; more-
over, works on the use of Near Infrared Re-
flectance Spectroscopy (NIRS) have shown that
it is a powerful and rapid method for predicting
the biochemical composition of forest foliage
(Card et al., 1988; Martin and Aber, 1994) and
also litter decomposability (Gillon et al., 1999).
According to Saunders (1976), decomposition
rate is a function of both the substrate and de-
composer concentrations as bimolecular second-
order reaction. In forested habitats, the substrate
concentration strictly depends on litter input
from canopies which can be remotely sensed and
estimated through the Normalized Difference
Vegetation Index (NDVI, Rouse et al., 1974).

In this study we present results from multi-
variate geostatistical analyses used to couple in
situ measures of decomposition rates with hy-
per-spectral and multi-spectral remotely sensed
data in terrestrial ecosystems. Relationships be-
tween decomposition rates, estimated for four
CORINE habitats, and NDVI values estimated
at various scales from multi-spectral Landsat
ETM+ and hyper-spectral MIVIS data, were in-
vestigated. Variogram and co-kriging analyses
were carried out to evaluate the spatial proper-
ties of each ecosystem variable, their common
interaction and for mapping them from remote-
sensed spatially explicit data.

2. Materials and methods

Study area – The study was carried out in the
catchment-basin of Lake Vico, a volcanic area
located in Central Italy about 50 km north of
Rome (42°19lN, 12°10lE). Since 1982 this area
(about 3200 ha) has been part of a Regional Re-
serve, which includes the lake (510 m a.s.l.) and
Mount Venere (851 m a.s.l.). Plant communities

follow a typical altitudinal gradient from reed
thickets (Phragmites australis) located along the
lake shores and hazelnut cultivated areas to
mixed forests. In this study we have considered
four plant communities referring to four
CORINE habitats (CooRdination de l’INforma-
tion sur l’Environnament; European Union/Di-
rectorate General XI, 1991): hazelnut areas
(dominated by Corylus avellana, CORINE code
83.1), chestnut forests (dominated by Castanea
sativa, CORINE code 41.9), turkey oak forests
(dominated by Quercus cerris, CORINE code
41.74) and beech forests (dominated by Fagus
sylvatica, CORINE code 41.181).

Decomposition studies – Plant litter break-
down was studied using the litterbag technique
in 20 sampling sites (5 sampling sites for each
CORINE habitat). Sampling sites were georefer-
enced through a GPS system. Fifty litterbags
(mesh-bags of 0.5 cm mesh size containing 3
dry-g of the dominant species leaves) were ran-
domly placed at each sampling site to simulate
the natural heaps of detritus. Ten litterbags were
retrieved monthly from each site from December
to October. Samples were carefully and separate-
ly placed in polythene boxes and then brought to
laboratory, where their ash-free dry masses were
measured after leaf cleaning, oven-drying (at
60°C for 72 h) and ignition (at 800°C for 3 h).

Remote sensing data – The remote sensed
imageries came from Landsat ETM+ and MIVIS
(Daedalus AA5000 Multispectral Infrared &
Visible Imaging Spectrometer, Italian National
Research Council – LARA Project) and they
were acquired by the end of the vegetative peri-
od, before leaves falling, in order to evaluate the
detritus input. MIVIS scanner is a hyper-spectral
airborne imaging system with 102 spectral bands
covering visible and near infrared (0.43-0.83
nm, 1st sensor), middle infrared (1.15-1.55 nm,
2nd sensor; 1.98-2.50 nm, 3rd sensor) and ther-
mal infrared (8.21-12.70 nm, 4th sensor) regions
of the electromagnetic spectrum. MIVIS images
had different spatial resolutions (4, 8, 10 m) cor-
responding to different fly heights (2000, 4000
and 5000 m a.s.l.). The resolution interval con-
sidered in this study thus ranged from 4 to 30 m
(from Landsat images). MIVIS data were ac-
quired on 22 September 2000, at 12.00 am local
time. All MIVIS images were geocoded by the
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Delaunay triangulation procedure using a com-
mon set of ground referenced points and or-
tophotos of the area (Richards, 1994). Maximum
root mean square error (RMS) was 0.3. Landsat
data were acquired on 16 August 2000, which
was the only available scene with no cloud cov-
er, and it was geocoded by an affine transforma-
tion of first order with an RMS error of 0.2.
Landsat data radiometric calibration and conver-
sion to radiance were performed by applying
stored parameters derived by the calibration pa-
rameter file supplied with the original data and
using Chander and Markham formulas (USGS,
2004). MIVIS data were acquired as radiance
values by the provider. Basic atmospheric cor-
rections were applied to all images: Landsat da-
ta were corrected using a Dark Object Subtrac-
tion (DOS) approach (Chavez, 1988) with Lake
Vico as a target; MIVIS data were corrected by
an «empirical line calibration» procedures based
on in situ collected spectra for the vegetation
cover of the four CORINE habitats and bare soil
(Kruse et al., 1990). 

Data analyses  – Leaf mass losses were fit-
ted to the simple exponential model of decom-
position, Mt=M0e−Kt where M0 is the initial leaf
AFDM (Ash Free Dry Mass), Mt is remaining
leaf AFDM at time t (in days) and K is a break-
down coefficient expressed in days−1 (Olson,
1963). The half-life, i.e. the time necessary to
reduce detritus mass to 50% of its initial
AFDM, was expressed as ln(2)/K. 

NDVI values were calculated using band
number 3 (0.63-0.69 nm) and 13 (0.67-0.69
nm) as red channels and band number 4 (0.75-
0.90 nm) and 19 (0.79-0.81 nm) as infrared
channels from Landsat and MIVIS data, respec-
tively. In plots of 60×60 m2, centered on each
sampling site, we determined the mean NDVI
values at each spatial resolution. Plot dimen-
sions were based on the position accuracy of
Landsat data, which was at least of 30 m, i.e.
one pixel, if the geocoding process was per-
formed with RMS error lower than 1. Mean plot
NDVI values were calculated for each pixel of
each image of the study area.

The relation between the litter half-life time
and NDVI was investigated applying both clas-
sical and spatial statistics: classical linear re-
gression analysis and ANCOVA were per-

formed to evaluate the scale information decay
while a geostatistical approach based on vari-
ogram evaluation was carried out to model spa-
tial dependency within scales.

Spatial continuity among observations of a
given set of variables may be characterised by a
variogram or a co-variogram, which reveals the
random and the structured aspects of the spatial
dispersion. The variogram and the co-variogram
have been widely used to describe the spatial
structure of ecological variables (Legendre and
Fortin, 1989; Rossi et al., 1992). The traditional
estimator of the co-variogram is defined as
(Isaaks and Srivastava, 1989)

where Z(xi), Z(xi+h) and T(xi), T(xi+h) are
measurements of two variables at locations xi

and xi+h separated by the vector of directional
distance h, and N(h) is the number of pairs of
samples considered in the given distance class.
This calculation is repeated for different values
of h and provides the empirical co-variogram,
which is a plot of the values of c(h) as a func-
tion of discrete distance h describing the joint
spatial cross-covariance of two variables. When
only one variable is analysed (i.e. Z and T are
the same) c(h) is called empirical variogram.

To provide a smooth, continuous description
of the covariance and cross-covariance spatial
structure of the parameters, variogram models
were derived by applying admissible functions
(Wackernagel, 1995) to empirical estimates cal-
culated from the data sets. Basic variogram
models were added together in a nested struc-
ture and fitted to experimental estimates by an
ordinary least square procedure (Pebesma and
Wesseling, 1998). Modeled variograms and co-
variograms were used in ordinary block kriging
and cokriging techniques for spatial interpola-
tion to produce decomposition maps (Isaaks and
Srivastava, 1989; Rossi et al., 1992). Kriging 
is a weighted, moving-average interpolation
method where the set of weights to estimate val-
ues at unmeasured points is computed as a func-
tion of the variogram model and locations of the
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Fig. 1. NDVI values for MIVIS and Landsat images
at different spatial resolutions (lines) and leaf half-time
life (bars) in the four vegetation types. Data are mean
values from five sampling sites per vegetation type.
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samples. Kriging is a BLUE estimator (Best
Linear Unbiased Estimator, Isaaks and Srivasta-
va, 1989) attempting to minimize the estimation
variance of predicted values. Estimation can be
done for single points or blocks (i.e. block krig-
ing) and exploiting the spatial properties of just
one variable or the joint variation of two (i.e. co-
kriging). For a detailed description of the proce-
dure refer to Isaaks and Srivastava (1989) or
Wackernagel (1995).

3. Results

Litter mass loss showed a significant fit with
the negative exponential model (Olson, 1963) in
all study sites and for each plant litter type.
Senescing leaves of hazelnut (Corylus avellana)
had shorter average half-life (199±22 days)
showing faster decomposability than, in order,
chestnut (Castanea sativa, 356±28 days), oak
(Quercus cerris, 237±17 days) and beech (Fagus
sylvatica, 461±37 days; table I; fig. 1); differ-
ences in the litter decomposition rate among veg-
etation types were significant (nested ANCOVA,
table II(a)). We also observed significant differ-
ences of the decomposition rate among study
sites within each vegetation type (nested ANCO-
VA, table II(a)). NDVI value differed both
among vegetation types and among spatial
scales; hazelnut area had lower average NDVI
value at each considered spatial scale, showing
lower vegetation cover, than chestnut, oak and
beech areas (table I; fig. 1). On an average NDVI
was lower from Landsat than from MIVIS im-
ages, but the differences observed among plant
types were scale-invariant (two-way ANOVA,

table II(b)). In the studied area litter decomposi-
tion rate (half-life) and vegetation cover (NDVI)
were positively related to all considered spatial
resolutions (table III). Slopes of this observed re-
lationships did not differ from each other (AN-
COVA, variable: litter half-life time, covariable:
NDVI); on the contrary, intercepts of the linear
relationships differed significantly between
Landsat and MIVIS (table IV), the former being
lower than the latter (903 versus 1178±85).

Significant spatial autocorrelations of the
half-life and NDVI value were found within the
study area (table V). A significant amount of the
observed variation in half-life and NDVI was
spatially structured; semivariograms showed that

Table I. Litter half-life time and NDVI for MIVIS (three flight heights) and Landsat images in the four vege-
tation types. Mean values from 5 sampling points and standard errors (in brackets) are reported.

Type Half-life (d) MIVIS NDVI Landsat NDVI
5000 m 4000 m 2000 m

Corylus avellana 199 (22) 0.567 (0.013) 0.593 (0.021) 0.615 (0.015) 0.479 (0.062)
Castanea sativa 356 (28) 0.683 (0.042) 0.697 (0.049) 0.707 (0.051) 0.619 (0.093)
Quercus cerris 237 (17) 0.673 (0.012) 0.701 (0.013) 0.725 (0.009) 0.586 (0.013)
Fagus sylvatica 461 (37) 0.711 (0.014) 0.730 (0.014) 0.754 (0.011) 0.594 (0.030)
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Table II. (a) Nested ANCOVA analysis of remaining litter mass as variable and time as covariable (sampling
sites nested in vegetation type as main factor); (b) two-way ANOVA analysis of NDVI as variate (factor A=spa-
tial resolution, factor B=vegetation type) followed by Tukey HSD test (main factor: vegetation type on the left
and spatial resolution on the right).

Source DF MS effect F p-level

(a) Nested ANCOVA: litter mass
(covariate: time)

Between vegetation types 3 0.34 8.699 1.22∗10−5

Within vegetation types 16 0.076 1.943 0.015

(b) Two-way ANOVA: NDVI
Spatial resolution (A) 3 0.066 22.28 5.4∗10−10

Vegetation type (B) 3 0.073 24.37 1.2∗10−10

Interaction A×B 9 0.001 0.3 0.97

Tukey HSD test
Corylus avellana Quercus cerris Fagus sylvatica Landsat 2000 m 4000 m

Quercus cerris 1.5∗10−4 2000 m 1.5∗10−4

Fagus sylvatica 1.5∗10−4 0.44 4000 m 1.5∗10−4 0.64
Castanea sativa 1.5∗10−4 0.99 0.63 5000 m 1.7∗10−4 1.5∗10−4 0.59

Table III. Regression and cross-variogram statistics of half-life time (y) and NDVI (x) from Landsat ETM+
and MIVIS images.

Regression Cross-variogram
Function r p Model r p

Landsat y=903x−180 0.53 <0.05 Linear 0.98 <0.001

5000 m y=1256x−492 0.72 <0.001 Linear 0.95 <0.001
MIVIS 4000 m y=1087x−407 0.65 <0.01 - - -

2000 m y=1190x−500 0.71 <0.001 - - -

Table IV. Summary statistics for estimated marginal means (a) and p-values for pairwise comparisons follow-
ing Tukey HSD test (b) from ANCOVA analysis of half-life time as variate and NDVI as covariate after test for
parallelism.

(a) Spatial scale Mean (1) Standard error 95% Confidence interval
Lower bound Upper bound

Landsat 397.93 26.87 344.34 451.51
2000 m 270.11 24.39 221.47 318.75
4000 m 289.86 23.48 243.04 336.68
5000 m 311.09 23.02 265.18 357.01

(b) Landsat 2000 m 4000 m

2000 m 0.002
4000 m 0.005 0.548
5000 m 0.018 0.222 0.519

(1) Adjusted means for NDVI equal to 0.646.



Fig. 2a,b. Spatial variation of half-life time in 60×60 m-support block size. a) Ordinary block kriging map. b)
Ordinary block co-kriging map based on NDVI from MIVIS data (5000 m). Open circles locate the sampling
sites (Corylus avellana, no; Quercus cerris, ce; Castanea sativa, ca; Fagus sylvatica, fa). 

224

Letizia Sabetta et al.

the proportion of sample variance (C0+C) ac-
counted for by spatially structured variance (C)
was on average 81±12%. 

The semivariance of NDVI increased regu-
larly with the separation distance, up to 1541 m

for Landsat data and 2364 m for MIVIS data,
following spherical model, and showed negligi-
ble nugget variance (table V). The decomposi-
tion rate had an increase of semivariance up to
1627 m and a high nugget variance.

Table V. Variogram model parameters of NDVI from the Landsat ETM+ and MIVIS (5000 m) images and the
litter half-life time.

Variable Model Semivariogram parameters Proportion r 2 RSS
Nugget (C0) Sill (C0+C) Range (m) C/(C0+C)

Landsat NDVI Spherical 0.006 0.02 1541 0.700 0.993 9.2∗10−7

MIVIS NDVI Spherical 0.002 0.01 2364 0.800 0.986 1.3∗10−6

Half-life time Linear with sill 1230 17870 1627 0.931 0.895 2.05∗10+7

a b



225

Mapping litter decomposition by remote-detected indicators

Litter half-life and NDVI were also spatial-
ly co-structured; the cross-variogram analysis
showed inter-relationships among the two auto-
correlated variates with positive co-regionaliza-
tion (table III). The half-life increased north-
wards (fig. 2) from the hazelnut area to the
beech forests. Cokriging maps from Landsat
and MIVIS data did not differ. 

4. Discussion and conclusions

Some major points can be drawn from the
results:

– Decomposition rate is both plant
species-dependent and spatially dependent. In
fact it varies with the vegetation type and with-
in each forest type; it is significantly heteroge-
neous because of the heterogeneous decompos-
er (microorganisms and detritivores) distribu-
tion. NDVI, a remote-sensed index reflecting
structural (i.e. cover and density of the leaf lay-
er) and functional (i.e. physiological status of
the leaf layer) properties of vegetation, is pecu-
liar to the four CORINE habitats under study
and satisfactorily relates with the decomposi-
tion rates, measured in situ.

– The information content of NDVI varies
at each resolution scale. Differences between
MIVIS and Landsat data are related mainly to
spatial and spectral resolution of the sensors,
even if a residual atmospheric interference not
accounted for DOS approach has to be suggest-
ed. Further investigation is needed to evaluate
their relative importance. However, the infor-
mation decay from MIVIS to Landsat images
does not modify the relationship existing with
the litter decomposition rate.

– Using NDVI as co-variable, the co-krig-
ing map of litter decomposition is better shaped
than the kriging map. Co-kriging offers addi-
tional advantages over kriging as it involves co-
variate that is cross-correlated with the variable
of interest and that can be more easily sampled
(Isaaks and Srivastava, 1989). NDVI, as spatial-
ly explicit co-variable, can thus sustains the
mapping algorithm where decomposition infor-
mation is scarce or missing.

In conclusion, the results show that remote
sensing techniques can provide outstanding help

in developing the cartography of ecosystem
functions, also when availability of the ground-
truth data is low. Landsat data are as useful as
MIVIS data for the remote sensing analysis and
multiple scales mapping of decomposition. This
is a clear advantage since the Landsat data can be
more cheaply and regularly acquired than the
MIVIS data.
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