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Abstract 

We investigated the area struck by the November, 12, 1999, Mw 7.1 earthquake that 

ruptured the Düzce segment of the North Anatolian Fault Zone (NAFZ) three months after 

the August, 17, 1999, Mw 7.4 Izmit earthquake. On the basis of 1:25.000 scale field survey 

and aerial photo interpretation we identified a simple 1999 coseismic fault trace (CFT) and 

an older complex fault system (PQFS), involving a wider zone of deformation. 

Overall, we recognized two different sections of the Düzce segment: a western 

section, where the coseismic fault trace has a staircase trajectory and reactivated part of 

the older fault system; an eastern section, where the coseismic fault trace shows a straight 

trajectory and cross-cuts the older and complex fault system. The Düzce fault sections 

may represent different stages of the segment evolution. In fact, the collected data suggest 

the tendency of the fault to simplify its trace with time and to evolve from a complex 

towards a simpler mature trace, as a mechanically more favorable setting. 

The western section of the Düzce fault segment splays out from a restraining bend of 

the Izmit (Karadere) fault segment of the NAFZ, and forms a releasing fault wedge. By 

comparing the coseismic surface deformation field with the observed long-term 

morphology it is clear that the present landforms and setting are the result of 1999-type 

coseismic deformation repeating through several seismic cycles. Because of the 

mechanical interaction of the faults in the release junction, the western section of the 

Düzce fault undergoes a lower normal stress that may justify its complexities and earlier 

stage of evolution at the surface. 

The boundary at the surface between the two portions of the Duzce fault is not only a 

surface characteristic but it separates at depth a portion of fault plane characterized by a 



big single asperity, to the east, from a portion of plane with lower slip, to the west. Thus the 

peculiar arrangement of the Izmit (Karadere) and Düzce fault segments may permanently 

control the difference in behavior of the two portions of Duzce fault and furthermore control 

rupture propagation and fault loading. Under this light, the Izmit/Düzce release fault 

junction (1) may produce an unfavorable setting for the build up of asperities in the 

western part of the Düzce segment also in the future and (2) could have delayed the 

propagation of the 1999 August Izmit rupture on the Düzce segment that ruptured on 

November 1999 along the asperity of its eastern section. 

These results highlight that the surface geological data contain the potential for 

integrating and completing the information for imaging structures also at a seismogenic 

depth. 



 

1. Introduction 

In regions of high active strain, the long-term effects of active faulting on landscape 

and geological structures are outstanding. The occurrence of repeated coseismic 

deformation, that accumulates during time, controls the growth and development of both 

geological and morphological structures. Thus, the landscape and structural setting of 

active regions contain the long-term record of the active faults behavior. The study of the 

features representing these long-term records can be compared with the coseismic 

evidence (as derived from geological -e.g. surface ruptures- or seismological data) in order 

to unequivocally determine the present-day active fault setting and consequently get 

information on complexities and evolution of the fault during time. This type of information 

is critical in the study of seismogenic faults, in particular for the recognition of the 

persistency of fault surface boundaries or fault internal complexity. The importance of 

defining a persistent fault boundary at the surface derives from the fact that such 

discontinuities might match and illuminate discontinuities of the seismogenic source that 

control its rupture behaviour at depth and that may have a strong impact on the rupture 

propagation (i.e., earthquake size) [1-6 and reference therein]. 

Along the active transform margin of North Anatolia, the prominent geomorphic 

signature of the strike slip faulting is one of the main direct consequences of the 

longlasting (Late Miocene-Early Pliocene to present [7, 8]) and relevant present strain (20-

30 mm/yr by means of GPS data [9-14]; from 5 to 18 mm/yr by means of geological data; 

[7, 15-18]). Several repeated surface-rupturing earthquakes along the North Anatolian 

Fault are known to contribute to the build up of this long-term geomorphic signature [3, 19-

21]. One of these earthquakes, that occurred on November 12, 1999 along the Düzce fault 

segment, produced surface ruptures that are still well-preserved along a 40 km-long 

mountain front, that also shows good evidence of its long-term tectonic history. This makes 



the Düzce fault a natural laboratory where coseismic deformation, long-term landforms 

and geological structures can be studied and integrated in order to image the fault and its 

evolution. 

Recent studies on the Düzce fault were mainly focused on the coseismic ruptures 

and slip distribution (eg. [22, 23]). In this work we developed an integrated study of the 

coseismic features and long-term evidence of fault activity as recorded in the geology and 

landscape in a broad area around the fault. We also used elastic dislocation modeling in 

order to better understand if the present landform is the result of accumulation of 1999-

type deformation repeated through several seismic cycles. Finally, to investigate the 

consistency of the surficial long-term fault expression with the deep coseismic fault 

behavior, we compared the shallow fault complexities obtained from surface mapping with 

the slip distribution at depth modeled by Delouis et al. [24]. 

 

 

2. The 1999 earthquake on the Düzce fault segment of the North Anatolian 

Fault Zone (NAFZ)  

The NAFZ is an active right-lateral system, about 1500 km long, which bounds to the 

north the westward-extruding Anatolian block [7, 8; 25-28] (see inset of figure 1). GPS 

networks measured present-day strain-rates of 20-30 mm/yr [9-14] in the northern part of 

the Anatolian block, with vectors oriented WNW in the easternmost region, E-W in the 

centre, and SW in the Aegean. West of the town of Bolu, the North Anatolian Fault splays 

into two main strands, the Düzce fault to the north and the Mudurnu fault to the south (fig. 

1). According to Ayhan et al. [29, 30], the Düzce fault accommodates up to 33% to 50% of 

the present-day GPS strain across  the NAFZ (ca. 10 mm/yr). 

The present-day high strain rate of the NAFZ is seismically accommodated by a large 

number of earthquakes [19-21, 31-33; Harvard; USGS]. Following two large events that 



ruptured two segments of the southern strand of the NAFZ along the Mudurnu valley in 

1957 (Ms 7.0, [25]) and 1967 (Ms 7.1, [34, 35]), two highly damaging earthquakes 

occurred in 1999 along the northern strand (fig. 1). The first of these events (Mw 7.4, 

USGS) occurred on August 17 and struck the Izmit region, east of the Marmara Sea. It 

nucleated at a depth of 13 km and produced more than 150 km of surface ruptures 

organized in five major fault sections (fig. 1; Hersek, Karamursel-Golcuk, Izmit-Sapanca, 

Sapanca-Akyazi and Karadere sections; [36-38]), with dextral offsets exceeding 5 m. The 

second large event occurred three months later on November 12, 1999, and struck the 

Düzce area (Mw 7.1, USGS, KOERI). This was likely triggered by the previous event [39, 

40]. The focal mechanism solution shows a ca. E-W nodal plane dipping 54° to 73° to the 

north, (Harvard CMT; USGS) (fig. 1). This earthquake nucleated at a depth of 10-15 km 

(CSEM, European-Mediterranean Seismological Centre; Tubitak, Marmara Research 

Centre) and produced ca. 40 km of surface ruptures, showing maximum dextral offset of 5 

m (fig. 1) [22, 41]. Interestingly, the westernmost part of the Düzce fault segment slipped 

also during the August earthquake, but with only up to 25 cm horizontal and 10 cm vertical 

surface offset (fig. 1) [42, 43]. 

Modeled slip distribution at depth, obtained by different joint inversions (mostly 

teleseismic, strong motion, GPS and InSAR data, in some cases constrained by surface 

offsets) show consistently that the right-lateral Düzce rupture was simple and concentrated 

in space, with a single, round-shaped, 10-25 km-wide, 6-8 meters maximum slip asperity, 

located in the eastern part of the fault [24, 40, 44, 45]. 

 

 

3. The Düzce fault segment 

The Düzce fault separates the Paleozoic-Eocene formations of the Almacik block 

from the Quaternary continental deposits of the Düzce basin (figs. 1 and 2), that was 



interpreted by Aydin and Kalafat [46] as a composite pull-apart basin filled mainly with 

Pliocene deposits. 

The eastern termination of the Düzce fault may join the eastern single trace of the 

NAFZ via a right-releasing step-over, formed by the WNW-ESE trending Bakacak and 

Elmalik faults (fig. 1). Conversely, the western part of the E-W trending Düzce fault splays 

out from the WSW-ENE trending Karadere section, that represents a restraining bend of 

the Izmit Fault. According to Lettis et al. [23], this western boundary of the Düzce fault 

segment forms a complex right releasing step-over with the Karadere section that 

presumably represented a barrier to the August rupture propagation. As a result, this 

releasing zone controls the present-day Düzce Basin depocentre, that coincides with Lake 

Efteni (fig. 2).  

On the basis of its geometry, Akyuz et al. [22] subdivided the 1999 Düzce rupture into 

four sections. Each of them shows a symmetric slip tapering off at both ends and are 

separated by about 1-km wide releasing and restraining step-overs that, as would be 

expected for such small-scale features [3-6, 47, 48], did not represent in 1999 a barrier to 

the rupture propagation. 

 

3.1. The1999 coseismic fault trace (CFT) 

In order to analyze the relationships of Quaternary geological faulting with the 1999 

earthquake ruptures collected new data and mapped in detail: a) structural patterns of 

fractures and faults; b) geomorphic modifications induced by the earthquake; c) coseismic 

offset of piercing points such as roads, fences, tree lines, channels, streams, buildings, 

etc. (fig. 2 and fig. 3). 

The morphological expression of the 40 km-long CFT is predominantly mole-track 

type. In general, the mole-track structure is simple and narrow and forms a deformation 

zone 0.5 to 5 m-wide but occasionally becomes complex and its width increases up to 50 



m. The deformation pattern of the CFT is typical of a complex dextral fault zone, consisting 

of associated, én-échelon rupture systems: a) left-stepping transtensional Riedel shears or 

T-shears; b) right-stepping transpressional P-shears; c) Y-shears, paralleling the mean 

strike of the rupture. This pattern is organized in over-stepping en-échelon systems, that 

can be recognized at different scales. 

Even though the kinematics of the Düzce fault is dominantly strike-slip, field 

observations show the presence of widespread vertical motion also highlighted by InSAR 

data [44, 45]. The slip distribution curve (fig. 3), built by integrating the data collected by 

Akyuz et al. [22, 41] with more than 350 new measures, exhibit a large along strike 

variability, with 5.0 m maximum and 2.4 m average dextral offsets, and 2.5 m maximum 

vertical offset. Because the coseismic strike-slip is directly related to the movement a long 

the seismogenic fault, the lower measured values, that cause such a great variability of the 

slip distribution, can be seen as a mechanical problem (i.e., bad connection between the 

rupture of the fault and the surface ruptures). If this is correct, the interpolation of the 

maximum values (fig. 3) describes the seismic moment at the surface. The coseismic dip-

slip distribution is more complex, since many gravity effects and local transtensional or 

transpressional components can be involved. 

The main characteristics of the slip distribution are: (1) the dextral coseismic offset of 

the CFT has a bow-shape, with slip tapering off at both ends (west of Efteni Lake and east 

of Kaynasli) whereas the central part has a constant and larger mean value of 2.7 m; (2) 

the vertical component of the western section of the CFT is higher than that of the eastern 

section; (3) the overall westernmost section produced uplift of the range front to the south, 

with respect to the plain to the north; (4), frequent change of dip-slip direction in the central 

part of the CFT; (5) the eastern part of the CFT produced relative subsidence of the 

northern block west of the Kaynasli basin and of the southern block east of it (fig. 2 and fig. 

3). 



The CFT does not continuously run at the mountain-piedmont junction, but crosses 

the mountain front and affects both basin infill deposits and bedrock. As a whole, the CFT 

can be divided into two main sections, joining close to the village of Cakirhaciibrahim (fig. 

2). With respect to the mean E-W trend of the Düzce fault, the western section presents 

sharp changes in the strike direction, producing a saw-toothed trajectory, consisting of NE-

SW and WNW-ESE trending elements. Moving to the Cakirhaciibrahim area, the saw-

toothed setting leaves space to a simpler, E-W trending trace. Conversely, the eastern 

CFT shows a mainly rectilinear E-W trending trajectory, and contains two small, 1km-wide, 

left-steps, near Beykoy and west of Kaynasli (fig. 2). 

The CFT is associated with a consistent pattern of landforms, indicating that the 

Düzce fault ruptured during repeated seismic cycles with similar location, geometry and 

kinematics (fig. 2). In fact, the CFT overprinted the long-term tectonic morphologies, such 

as pressure ridges, linear valleys, escarpments and flat irons that have been shaped on 

both Pleistocene-Holocene continenta l deposits and bedrock. However, there is a marked 

difference between the eastern E-W trending CFT, that exhibits more prominent 

landforms, and the few E-W trending portions of the western CFT, presenting weak long-

term tectonic morphologies. 

 

3.2. The Plio-Quaternary fault system (PQFS) 

The analysis of the long-term geologic and geomorphic setting of the Düzce fault was 

performed extending the observation on a broader area around the CFT. We collected 

structural data and recognized morphotectonic elements that describe a long-term 

kilometric structural pattern, mainly consisting of én-échelon, left-stepping, WNW-ESE 

striking, Riedel shears and of right-stepping, SW-NE striking, P-shears (fig. 2). 

The Riedel shears have a clear-cut geomorphologic expression and are confirmed by 

alignments of right-hand deflections of streams and suspended terraces at the stream 



outlets. They can be, mostly, traced at the base of indented and roughly well preserved, up 

to 250 m high, facets (e.g., south of Efteni Lake, spot 1 in fig. 2), that eloquently depict 

their transtensive kinematics, or along well-aligned linear ridges, saddles and valleys (e.g., 

south of Beykoy, spot 2 in fig. 2). Three hot springs along two of the Riedel shears suggest 

that these are similarly rooted at depth. 

The P-shears are characterized by SW-NE straight features (fig. 2), with an abrupt 

slope gradient change, evidence of important vertical movements, and strong stream 

incision. They do not have any litho-structural control and bedrock outcrops confirm the 

presence of similarly oriented fault planes. We could not identify clear kinematic indicators 

on these faults: we inferred their transpressive character on the basis of their orientation 

with respect to the Düzce fault stress field (see inset in fig. 2). 

The activity of PQFS during the Plio-Quaternary deformational history of the Düzce 

fault is clearly expressed by its control on the sediment deposition (fig.2). Although with a 

different impact on the landforms, the combination of the NE-SW and WNW-ESE long-

term fault systems of the PQFS developed the outstanding morphological features of the 

Düzce fault. Along the western section of the fault, the PQFS bounds the triangular 

embayments of the range front, that host bajadas filled by Middle-Late Pleistocene alluvial 

fan and Holocene fluvial deposits (spots a, b, and c in fig. 2), or also by Late Pliocene-

Early Pleistocene conglomerate-sandstone units (spot d in fig. 2), shed from the southern 

highlands [49]. Another clear evidence of the control of the PQFS on the present 

geomorphology is provided by the Kaynasli lozenge-shaped basin located in the eastern 

part of the fault. Pull-apart opening and Late Pliocene-Holocene deposition in this basin 

has been controlled by two WNW-ESE main left-stepping Riedel shears that are part of the 

PQFS (fig. 2). 

 

3.3. CFT versus PQFS 



Given their characteristics and organization at the surface, both the PQFS and CFT 

may correspond to the complex surface expression of a “tulip” or “palm-tree” structure due 

pure strike-slip basement movement on a master fault at depth (i.e. Düzce seismogenic 

fault). Interestingly, this geometry has been also illuminated by trapped waves, in fact, 

analysis of anomalous features from the Düzce area seismograms shows a low-velocity 

layer interpreted as a kilometric-broad damage-zone, 3-4 km deep [52, 53]. 

The comparison of the CFT and the PQFS highlights that the Düzce Fault is 

composed of two parts with different settings: in the western part the CFT is strongly 

controlled by the PQFS setting, whereas, in the eastern part the CFT cuts across the 

PQFS features and assumes a quite linear independent trajectory. The western part of the 

CFT has a saw-tooth arrangement with changes of trajectory and en échelon left-stepping 

transtensive and right-stepping transpressive subsections with kinematics similar to the 

PQFS. This part contains also a few E-W trending elements (locations e, f and g in fig. 2), 

associated to subtle and youthful long-term landforms suggesting they have hosted a 

smaller cumulative deformation than the PQFS and may represent an incipient stage of 

evolution of the fault system from saw-tooth geometry to linear. Along this western part a 

small number of 1999 coseismic ruptures occurred along the traces of PQFS and suggest 

that part of the present-day slip is still accommodated by the PQFS (fig. 2). 

Conversely, in the eastern part the CFT has completely overcome the PQFS and 

presents a more regular, E-W trajectory parallel to the mean trend of the seismogenic 

Düzce fault. The whole CFT eastern section is associated with a strong morphological 

imprint that indicates its persistent long-term activity. There is a marked difference 

between the eastern E-W trending CFT, that exhibits well developed landforms, and the 

few E-W trending portions of the western CFT, which have a weak long-term geomorphic 

expression and thus, are expected to have a younger age. 



The comparison between CFT and PQFS is suggestive of a tendency of the fault to 

simplify a major geometric complexity (Riedel shear arrangement) towards a straighter and 

mature trace that is presumably a mechanically more favorable setting for the fault to 

rupture. This evolution is in agreement with the results of analog deformation experiments, 

designed to evaluate the structural patterns that develop in sedimentary strata above a 

deep-seated strike-slip fault [54-57] (fig. 4). The structures developing as a result of 

increasing cumulative displacement are: 1) over-stepping, en échelon array of left-stepping 

synthetic Riedel shears; 2) some R-shears are rotated and few new R-shears appear at 

lower inclinations (α, fig. 4); 3) a second array of right-stepping synthetic shears (P-shears 

or Thrust-shears), that locally join or end up to the R-shears; 4) P-shears growth and 

linkage to R-shears, that form elongated shear lenses; 5) Y-shears, in a typical 

anastomosing pattern of a through-going wrench fault, parallel and superimposed on the 

deep-seated strike-slip faults [55]. 

Thus, we can conclude that: a) the PQFS and CFT are the superficial expression of 

the Düzce fault at depth; b) the PQFS and the CFT did not develop simultaneously but 

they represent different stages of evolution (i.e., early and mature stages, respectively); c) 

on the basis of the relationships between CFT and PQFS, the Düzce fault can be 

subdivided into two main sections the eastern and western ones approximately separated 

by the Cakirhaciibrahim village; d) the western section of the CFT is predominantly 

controlled by the PQFS arrangement and is related to persistent transtensional kinematics, 

and contains still immature E-W strands (incipient Y-shears, stage 4 in fig. 4); e) the 

eastern section is presently controlled by clear and mature E-W strands (Y-shears, stage 5 

in fig. 4), accommodating most of the Düzce fault slip at the surface with the PQFS 

completely overcome. 

 

3.4. The overall long-term morphological expression 



Although with internal differences, the overall long-term morphological expression 

depicts the Düzce fault as a single and continue structural element, from the Karadere 

section to east of Kaynasli. 

Because of the geometrical setting of the Düzce with respect to the Karadere fault 

section, that may be suggestive of a strict interaction between them, we widened the area 

of investigation to the west. We collected observations on the relationships among the 

Karadere restraining bend, the Düzce fault and the Düzce Basin. The Karadere section 

and the Düzce fault are two diverging strike-slip strands that are linked by a fault junction 

(sensu [50]). This geometrical array configures a releasing fault-wedge whose long-term 

morphological expression is represented by the wedge-shaped basin of the Golyaka area 

(fig. 2 and 5). Here, the vertical component of the movement strongly controls the drainage 

system. In fact, in the Düzce Basin, the streams arrangement has a centripetal pattern, 

converging to the present basin depocentre, the Efteni Lake (fig. 2). This has been 

migrating from the central part of the basin southwestward, shifting 12 km in ca. 2.5 My, 

with a velocity of about 4.8 mm/y [51] (fig. 2). The only stream that drains the Efteni Lake, 

flows northward and crosses orthogonally the Karadere restraining bend. This is 

responsible for the north-eastward transpressional motion and growth of a pressure ridge 

that comes into and deforms the Düzce Basin deposits, damming and pushing the north-

flowing stream as testified by paleo-valleys and wind-gaps (spot 3 in fig. 2). For these 

reasons, only the westernmost part of the Düzce Basin in the Golyaka area, is the present-

day fault-related floodplain. The northern part of the basin is no more active.  

 

 

4. The interaction between the Düzce and Karadere fault sections 

The right-lateral coseismic slip distribution at the surface and the overall long-term 

morphology suggest that the Düzce fault is a continuous fault segment that splays out from 



the releasing junction with the Karadere section (fig. 2 and fig. 5). Although it exhibits such 

a continuity, we have defined a clear difference in the setting, structural evolution and fault 

related landscape of its eastern and western parts. The question is now to understand 

what can be the cause of this difference. The junction between the Karadere and Düzce 

faults represents a clear singularity in the geometrical arrangement in this part of the 

NAFZ. Under this light, we tested if the basin setting and landscape of the westernmost 

part of the Düzce Basin derive from the accumulation of repeated 1999-type earthquakes. 

For this purpose we compared the observed basin setting and topography with the 

coseismic deformation field.  

We modeled the expected coseismic deformation field by using a standard 

dislocation code developed by Ward and Valensise [58]. To get a complete image of the 

fault related landscape, we introduced in the model not only the Düzce and Karadere 1999 

fault segments but also Mudurnu 1967 and Mudurnu 1957 earthquake segments which 

may have  also a role in shaping the study area (fig. 1). We assumed planar, rectangular 

faults, embedded in an elastic half-space with uniform slip. Slip during the most recent 

earthquakes on these faults (i.e. 1999, 1967, 1957) is considered characteristic [59]. The 

modeled fault parameters (fig. 5b and 5c), were derived from available coseismic 

seismological, geodetic and geological observations and are summarized in table 1. 

From the resulting dislocation model we reconstructed two maps for the vertical and 

N-S component of surface deformation, respectively (fig. 5b and 5c). Obviously, modelling 

faults as boxes and assuming characteristic and uniform slip, without any tapering off at 

fault tip lines, are oversimplifications. Nevertheless, with exception for some minor 

mismatches (e.g. subsiding portion of the Karadere section hanging-wall) and 

discrepancies that may depend on inheritance from the previous compressional phases 

[27], the maps show how the repetition of earthquakes on the four modeled faults 

contributed in building up the present long-term landforms of the study area. 



In particular figure 5 shows: 1) the uplift of the Almacik block; 2) the subsidence of 

the Akyazi basin; 3) the uplift of the northern part of the Düzce Basin with maxima located 

at the north-eastern tip of the Karadere fault; 4) subsidence of the Golyaka fault-wedge 

basin, in coincidence with the present active floodplain, with maxima at the western tip of 

the Düzce fault; 5) maximum N-S extensional component of the deformation across the 

western section of the Düzce fault. 

Another outcome of this modeling is that the Düzce basin is not entirely fault-related 

and, as whole, it can not be considered an active pull-apart basin. The Golyaka fault-

wedge area is experiencing a present-day important subsidence, whereas the north-

western part of the Düzce basin is shrinking because of the transpressional deformation 

due to the Karadere restraining bend (fig. 5a and 5b). 

Finally, a further indication derived from the test of the mechanical interaction 

between Karadere and Düzce faults shows that this interaction produces a zone across 

the western part of the Düzce fault with high extension normal to the fault. This translates 

to reduced normal stress in this part of the fault that can be seen as the cause for the 

difference between the two Düzce sections discussed in the previous chapter. 

 

 

5. Comparing data from surface and depth 

To understand if our observations at the surface contain some insights on the 

structure at depth, we compare the surface data discussed above with the Delouis et al. 

model of the 1999 coseismic slip distribution at depth (fig. 6; [24] but see also similar 

modelling from [40, 44, 45, 60, 61]). Interestingly, this comparison shows that the 

projection at depth of the boundary between the western and the eastern Düzce fault 

sections, we highlighted at the surface, coincides with an abrupt decrease of the slip 

distribution at depth. In fact, this boundary separates a portion of fault plane containing a 



single asperity with two main patches of ca.8 m maximum slip to the east, and a portion 

with low slip generally not exceeding 2 m, to the west. However, the slip boundary (i.e. 

discontinuity) at depth does not coincide at the surface with a relevant change of strike-slip 

distribution but only with a different dip-slip distribution and a change in the arrangement of 

the structural pattern. In fact, the observed slip of the western Düzce fault section present 

maxima of 4.5 m at the surface, whereas, it does not exceed 2 m at depth. This 

inconsistency may be related to dynamical properties of the rupture. 

A possible explanation for the difference between the two Düzce fault sections both 

at depth and surface can be found in the interaction Karadere-Düzce faults that, as 

discussed in the previous chapter, appears to result in a lower normal stress across the 

Düzce fault. This, on one side could be responsible for the premature stage of evolution of 

the western Düzce section at the surface (saw-tooth style, stage 4 in fig. 4) and, on the 

other, it could be responsible for the lack of asperities at depth. 

Because the regional tectonic loading at the scale of the fault should be considered 

constant, the missing coseismic slip in the western section should be accommodated in a 

different way. Possibilities are: 1) microseismicity; 2) aseismic behaviour, with minor stress 

storage during the interseismic phase; 3) strain transfer to the eastern asperity as velocity-

strengthening frictional afterslip [62] during the postseismic phase; 4) partitioning of the 

slip between the Karadere and western part of the Düzce fault; 5) concurrence of the 

above hypotheses. 

 

 

6. Conclusions 

On the basis of new results from aerial photo interpretation and field survey 

performed in the Düzce area, we have identified a Düzce 1999 coseismic fault trace (CFT) 

and Düzce Plio-Quaternary fault system (PQFS) (fig. 2). The first has a overall trajectory 



ca. sub-parallel to the mean fault trend, whereas the second is composed of a Riedel 

system that is more complex than the CFT and involves a wider zone of deformation. 

The comparison of the PQFS with the CFT provides the insights to understand how 

the fault arrangement has been evolving through time. The relatively simple, E-W trace of 

the CFT, represents the latest stage of the evolution of the fault (Y-shears, fig. 4) 

overcoming the geometrical complexities of the PQFS. The superimposition of the CFT on 

the PQFS is suggestive of a tendency of the fault to simplify its trace with time and to 

evolve from a complex structure towards a simple mature trace that appears to be a 

mechanically more favorable setting. 

On the basis of the relations between the PQFS and CFT the Düzce fault can be 

subdivided into two sections (fig. 2): (a) the western section where the CFT follows mainly 

the saw-tooth trajectory of the PQFS and (b) the eastern section where the CFT cross-cuts 

the en-échelon pattern of the PQFS and is formed by mature E-W trending Y-shears. The 

eastern and western fault sections represent different stages of the evolution of the PQFS 

toward the CFT. The complex PQFS stage is already overcome in all the fault, but we can 

still see the fault in activity at the other three stages with increasing maturity: (1) the saw-

tooth setting in the western CFT section (stage 4 in fig. 4) (2) the incipient Y-shears in the 

eastern part of the western section (spots e, f and g in fig 2) and (3) the Y-shears in the 

eastern section, parallel to the Düzce master fault that violated completely the organization 

of the PQFS (stage 5 in fig. 4). 

The difference between the two Düzce sections appears to originate from the 

releasing junction the Düzce and Karadere faults. In fact, the mechanical interaction of 

these faults produces a zone of low normal stress across the western part of the Duzce 

fault (fig. 5) that may have delayed the evolution of the fault zone. 

Interestingly, because (1) the difference between the two Duzce fault sections is not 

only at the surface but coincides with an important change in the 1999 slip distribution at 



depth (fig. 6) and (2) the analysis of fault pattern, long-term landscape, and dislocation 

modeling, suggest that this difference is a permanent feature at the surface, we could 

hypothesize that also the difference of slip distribution at depth is a permanent feature. In 

this hypothesis, the low normal stress across the western Düzce fault becomes a 

permanent characteristic of that part of the fault and results in an unfavorable setting for 

hosting important asperities in this part of the fault also in the future. 

The low normal stress in the western part of the Düzce fault originating from the 

Karadere-Düzce mechanical interaction may play a role also in the rupture propagation. 

According to studies on dynamics of the rupture, the dominant factor affecting rupture 

propagation beyond fault discontinuities (i.e. step-over, bend, double bend, fault junction) 

is normal stress rather than shear stress [6 and references therein]. When fluid pressure 

differentials are not able to act as barrier [2], a lower normal stress along the discontinuity 

favors the rupture propagation, but lowers its velocity and delays its triggering on the 

contiguous fault segment [47, 48]. Under this light, the Karadere-Düzce release fault 

junction could also have driven the delayed propagation of the August 17, 1999 Izmit 

rupture on the Düzce fault, which nucleated on the asperity of its eastern section three 

months later, on November 12, 1999. 

One of the main outcome of this work is to highlight the potential of the geological 

and geomorphological analysis for imaging seismogenic sources also at depth and in 

shading light on their intermediate/long term behavior. This makes clear also the critical 

contribution that can derive from segmentation models for the prediction of future 

earthquake ruptures styles. 
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Captions 

Table 1. Parameters of the fault models utilized for the elastic dislocation calculations: (1) 

on the basis of aftershocks distribution [34, 63, 64] and maximum depth for coseismic slip 

from GPS inversion [10] and GPS, InSAR and Spot data [24, 45, 65, 66]; (2) USGS; (3) on 

the basis of aftershocks distribution [52, 67] and surface geology [43]; (4) on the basis of 

static stress analysis [68] and surface geology [43]; (5) on the basis of focal mechanisms 

[25, 69] and surface geology [34, 70]; (6) on the basis of rupture models from geodetic [44, 

45] seismological [60] and joint inversion analysis [24]; (7) on the basis of rupture models 

from geodetic analysis [10, 65, 66]; (8) from seismic moment estimations [35, 39, 71]. 

 

Figure 1. The 1999 Izmit and Düzce earthquakes. Epicentre location (stars) and focal 

mechanism solutions from Harvard CMT, surface ruptures traces from Akyuz et al. [41]. 

Inset: Simplified tectonic setting of the eastern Mediterranean and westward extrusion of 

the Anato lian plate. 

 

Figure 2. Sketch of the relationships between 1999 ruptures (CFT) and long-term 

fault system (PQFS). Shaded relief based on digital elevation model (DEM, interpolated 

from 10 m contours and auxiliary 5 m contours of 1:25.000 scale topographic maps). 

Contour interval 100 m. Late Pliocene-Holocene continental deposits (compilation by 

1:25.000 scale field survey and by Herece and Akay [72]) and main drainage features of 

the Düzce basin are reported. (see fig. 1 for location). Inset shows the strain ellipse related 

to the shear couple of the Düzce master fault (grey arrows), trend of structures related to 

its extensional and compressional components (black arrows) are reported. 

 



Figure 3. Horizontal and vertical slip distribution along the CFT in the study area. 

Uncertainties have been evaluated by measuring minimum and maximum of the 

displacement and their range depends on the type of piercing point used. 

 

Figure 4. Sequence of structures in the Riedel experiment. Grey dashed lines mark 

the cumulative offset. α indicates the inclination of shear in degrees with respect to general 

direction of movement. Histograms show cumulative amount of displacements on shears 

at each stage of the deformation [modified from 55]. 

 

Figure 5. a) Schematic structural map of the North Anatolian Fault studied by means 

of elastic dislocation model. The SW-NE striking Karadere section represents a restraining 

bend of the Izmit segment, that bifurcates and links to the westernmost part of the Düzce 

segment by a fault junction. The inset shows a simplified sketch of the fault junction 

between Karadere section and Düzce faults [modified from 50]. b) Vertical component of 

elastic dislocation modeled for the North Anatolian Fault array of the study area. The 

boxes correspond to the projection at the surface of the Düzce, Karadere and 1967 and 

1957 Mudurnu fault planes (see text for details). Contour interval 0.1 m. c) N-S horizontal 

component of elastic dislocation (same fault array than -b- see text for details). Contour 

interval 0.2 m. 

 

Figure 6. Block diagram showing the coseismic strike-slip distribution at depth of the 

Düzce rupture (at scale) for a comparison with the structures, morphology and coseismic 

strike and dip-slip distribution at the surface. Dashed white line indicates the boundary 

between the two Düzce fault sections. Hypocentre and epicentre of the mainshock are 

reported. [modified from 24]. 
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Table 1.  

 

 Strike Dip Rake slip Lenght Depth extent (1)

Düzce Fault 268° (2) 73° (2) 177° (2) 3.0 m (6) 40 km (2) 0-17 km 

Karadere section 243° (3) 70° (3) 5° (4) 2.5 m (7) 45 km (3) 0-17 km 

1967 Mudurnu segment 278° (5) 85° (5) 5° (5) 2.5 m (8) 80 km (5) 0-17 km 

1957 Mudurnu segment 254° (5) 78° (5) 180° (5) 2.0 m (8) 40 km (5) 0-17 km 
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