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Abstract 
Displacements or velocities obtained by GPS data processing over repeated surveys can 
provide useful information on tensional states of terrestrial crust, in those areas in which many 
stations well spatially distributed are present. In particular, the strain (or strain rate) can be 
computed over the nodes of a regular grid with suitable size to define a high density 
deformation field.  
A new method was deployed to generate easily and quickly the deformation pattern from GPS 
velocities and to evaluate the significance: values, related to an assigned grid point, can be 
truly considered only if the GPS stations are well distributed around it. The approach validation 
was performed by means of synthetic data derived from the theoretical displacement field 
generated by a Mogi model source. 
A complete analysis on the velocity pattern of the CaGeoNet network (Central Apennine chain, 
Italy) was performed providing strain rates and showing both extensional and compressive 
behaviour at the same values, along the Appennine chain axis.  
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Introduction 
The GPS data are collected and processed in order to provide station coordinates within a few 
millimeters’ accuracy. The networks characterized by a high density point distribution, rarely 
allows the installation of permanent stations for a continuous monitoring on all vertices, but 
can provide a very interesting sub-regional and detailed study of the area by means of repeated 
surveys. In a previous study, Anzidei et al. (2005) estimated for the first time a significant 
compressive strain along the Central Apennine chain, from the CaGeoNet network data. The 
network extends from Tyrrhenian to Adriatic coasts, and the distribution of stations in the 
middle is very dense, with a mean relative distance of a few kilometers.  
In order to provide consistent results, independent from the choice of the reference frame, a 
strain rate estimation was performed through the development of a new software (the 
grid_strain Matlab™ program). It allows the definition of a deformation pattern with a 
chosen spatial distribution in the whole area over a regular grid. Several routines are applied 
during computation to accept or exclude local estimates at nodes around which GPS data 
points can be poorly distributed from the geometrical point of view. In the next paragraphs a 
complete and detailed application is described and results are analyzed to provide detailed 
kinematics of the investigated area.  
 
Theoretical aspect and approach validation 
Within a continuous material it is possible to define mathematical relationships between 
displacement (or velocities) and the acting deformation (or deformation rate). Introducing the 
2D spatial displacement gradient L (Lij ) and free to choose a convenient reference system, 
planimetric movements around a point are given, at the first order as: , where 
U

ijiji UdxLu +=

i are constants and dxj the infinitesimal increment along x and y axes. The gradient tensor 
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( ) can be separated in two parts jiij uL ,= ΩEL +=  ( ijijijL ωε += ), representing the strain and 
rotation effect respectively. The first matrix ( 2/)( jiijij uu +=ε ), symmetric, is the internal 
deformation while the second one ( 2/)( jiijij uu −=ω  ) is a whole-body rigid motion. The 
strain tensor diagonalization led to eigenvectors and eigenvalues which satisfy the relation 

kkk vv λ=E  (k = 1, 2), providing the diagonal matrix Ed , in which kkk λ=Ed , by means of the 
transformation  (Arfken, 1985; Wolfram, 2006): the columns of V are the two 
eigenvectors, that is 

EVVEd 1−=
[ 21 vv=V ]. In the next the eigenvalues will be named emax and emin 

following the usual geophysical notation. In this new reference system no shear deformation is 
present and variations occur along the principal axes only. Taking into account the time 
dependence, using velocity data instead of displacements and the velocity gradient tensor 
instead of the displacement one, the same formula allow to define the strain rate (that is the 
strain for unit time). 
Going from continuous to discrete and from theory to application, using sparse velocity vectors 
estimated at each station of a GPS network, the equations become  injijni UxLu +∆= )()( , where 

( )0)()( jnjnj xxx −=∆ , xj0 is the coordinate of a reference point (for example the centre of mass) 
and n means one of the available N velocity data. Under the hypothesis of uniform strain field 
condition, and solving the redundant equation system with a linear least square inversion, the 
velocity gradient components are estimated together with their errors; the latter, as known, are 
obtained from the residuals between estimated values and observed ones. This method allows 
the determination of only one single value for horizontal deformation tensor in the whole 
investigated area. 
The approach previously described can be applied also over a dense distributed data set to 
attempt to define a continuous deformation pattern. Considering a regular grid, created by 
taking into account the points distribution (to define its dimension and characteristics), the 
estimation for a local strain can be performed over each node but using a suitable weighting 
strategy to automatically lower the contribution of stations distant from the node. All available 
data are involved in computation but errors are rescaled using an appropriate function, which 
increases with distance and is not divergent within a chosen area around the point. Following 
Shen et al. (2000), who used a similar method to fit a model of continuous deformation, we 
adopted the weight function , where d is the node-point distance and d0 is a parameter 
defined for rescaling (see below).  Figure 1 was made to become familiar with the use of this 
smoothing function: it shows a family of curves in a 100 km range, for different d0, and it also 
suggests that a convenient choice for determining a local strain estimation (selecting 
observables near the point) can be to relate d0 with the mean inter-distance between stations.  

d0de /−

 
 

 



Fig.1 - Weight functions family for different 
d0: values go to zero, increasing the distance 
between point and node. In particular, at the 
distance d = 0.7d0 the error is doubled. 
 

Fig.2 - The weight function decreases with 
d/d0 dimensionless distance: in the d0 around 
of each node the scaling factor ranges from 1 
to about 0.4. 

Figure 2 shows the values of weight factors obtained by a few adimensional distances d/d0: in 
particular, defining the grid length as the mean of station baselines and d0 equal to the value of 
grid length, the points included in the circle area, centred on the node, with radius d0 are 
rescaled from 1 to about 0.4 at the distance d=d0. Simply speaking, the choice of how local the 
strain estimation is (and how well the computed values represent local deformation), is 
performed through d0. 
The angular distribution of points around each node is very important to ensure the validity of 
local strain computation; clearly the node has to be included inside a consistent and significant 
data set after error scaling. In fact, the results obtained on a specified node can be effectively 
considered only if they are really significant on the basis of error scaling. The method used in 
this work and implemented in the Matlab™ program is based on a control routine which looks 
for correct angular distribution of points inside a limited area; this routine operates during 
computation to detect areas where results could be not representative of a realistic deformation. 
Both the angular and radial distribution of stations around each node of the grid were used to 
exclude or accept estimates of the strain. The two-dimensional plane was divided into three 
equal sectors of 120 degrees and at least one observable was required within each one of these, 
to satisfy the first acceptance criteria. The radial control checks for node-station distances 
lower than three times the grid length. This control, added to the weighting strategy used for 
error rescaling, improves the significance of the strain rate pattern interpretation. The optimal 
situation is shown in figure 3a, where stations are regularly located around and near the node 
with respect to the d0 characteristic distance. In this case, the obtained result is highly 
significant. Also the situation depicted in figure 3b is acceptable, but the strain evaluated at the 
node does not have the same local nature of the former, due to longer point distances.  
 

 
 
Fig.3 - a) Optimal geometry for test success; b) Good distribution for deformation estimate but at a 
larger scale (not truly local estimation); c) Point exclusion and estimate removal.  
 
This simple choice of spatial subdivision in three sectors is introduced to accept only points 
which are included in a relative small polygon, at least in a triangle. A negative situation that 
leads to the exclusion of the estimation is shown in figure 3c. In this case, the angular 
distribution is unbalanced and points are too distant from the grid node: the computed strain is 
therefore devoid of significance. 
The approach used for continuous strain determination was applied to a synthetic data set, 
belonging to a simple planimetric deformation pattern induced by a sphere located at a given 
depth f, with radius a, stressing with a ∆P hydrostatic pressure (fig.4) (Mogi, 1958). Maruyama 



(1964) provided the analytic solution for the displacement field on the free surface z = 0 and 
we computed its horizontal components as follows in figure 4. 
. 
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Fig.4 – Analytic formulas for displacement field along the x and y Cartesian axes on the free surface 
(z=0) caused by a sphere of radius r, located at the depth  f, which stresses with a pressure ∆P. 
 
The areal distension or shortening over the free surface, due to this kind of model, is computed 
as the trace of the matrix (ux,x + uy,y) and drawn in figure 5 over a 50 km x 50 km horizontal 
plane, showing a clear radial symmetry. 

 

 

( )( ) ( ){ }2/32222/522222 23 −−
++−+++

+
= fyxfyxyxCTrace

µλ

 
Fig.5 - Theoretical areal deformation: the radial symmetry is evidenced. 
 
Synthetic displacements were computed over a dense and regular distribution of points around 
the spherical source projection on the surface: the modulus of vectors decreases with the 
distance from the centre of the plane as shown in figure 6. Respect to the previous figure, the 
coordinate system was translated to define the origin as (x=0 and y=0) ant to deal only with 
positive coordinates of points. The grey lines of figure 7b represent the grid nodes where the 



automatic strain estimation was executed: the grid length and the smoothing parameter d0 were 
kept to 2 km. 

 
 
Fig.6 - Synthetic velocity field: vectors were computed over red points well distributed in the area 
stressed by a Mogi source. 
 
Following the approach above described, the strain tensor was automatically estimated over 
each node and results are shown in figure 7a: the blue arrows represent the extension while the 
red ones indicate compressive behaviour. Figure 7b shows the strain trace which is 
representative of the areal deformation. The red lines represent the theoretical values directly 
obtained by the x and y partial derivatives of analytic formulas. In both cases the radial 
geometry expected by the symmetry of analytical functions is evidenced. 
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The difference between model and results are also pointed out in figure 8: residuals obtained 
by direct comparison over the same points are simply analyzed and the mean and the standard 
deviation of their statistical distribution where computed showing low values. 
 

 

Fig.8 – Residuals between areal deformation computed over the grid nodes and theoretical values. The 
Gaussian function was estimated showing a small and negligible discrepancy with data. 
 
Despite the agreement between analytic values and local strain estimations, which validate the 
practical approach adopted, it is necessary to evidence that the point distribution, used in this 
case, was optimal for computational proposal. The previous example was included in this 
analysis to prove the correctness of such approach to the strain field determination from 
discrete data sets. A further experiment is proposed using synthetic data with normal 
distribution in the same area with high density but irregular geometry. The same Mogi source 
was used and also the grid length and d0 factor were kept on the values previously used. The 
displacements computed on random points are shown in figure 9a while the strain tensor is in 
figure 9b. In this case the estimates were only accepted on nodes with good geometry 
distribution and the significant plot is overlapped on data. 
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Fig.9 - a) Random point distribution and synthetic velocities; b) strain tensor computation and 
exclusion of insignificant nodes. 
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Fig.10 – Residuals distribution analysis: statistic parameters
fitted by the data. 
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Central Apennine analysis and results 
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whole network (measured during the 1999-2003 time span by means of semi-permanent 
surveys). On figure 11a six grey boxes are evidenced and the strain tensor components, 
computed at their centre, are reported. Here the pattern variability is shown: values range from 
the minimum -7.7 10-8 to the maximum 8.9 10-8 (yr-1). The transition zone seems to be located 
along the Apennine chain. The tensors trace which represents areal deformation (fig.11b) 
shows a negative to positive variation exactly perpendicular to the chain: contour lines, in fact, 
are almost aligned to seismogenic source structures. 
 

 
 
Fig.11 – a) Strain tensors computed over nodes of the regular grid as continuous function: six values are 
extracted providing internal network deformations;  b) areal deformation (tensor trace): a clear 
inversion from negative to positive values occurs passing through the chain. 
 
Moreover, in figure 12, the two different patterns are evidenced by the normalized values 

, related to the maximum shear of the area (see Appendix B). Values 
are quite negative in the western part, where tensor elements have different signs. In the other 
part, east of the chain, low positive values are computed and the predominance of extension is 
clearly indicated.  
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Fig.12 – Maximum normalized shear pattern: also in this case a clear difference between the two 
regional zones at west (negative) and at east (positive) of the chain is evidenced. 

 
In a previous study (Anzidei et al., 2005) the mean strain, computed using permanent stations 
only, led to emax and emin values of 1.6 10-8  and -1.4 10-8 respectively.  Other previous geodetic 

studies estimated maximum strain for the Central Apennines at 1.8 x 10
-8 

(D’Agostino et al. 

2001), 5.7 x 10
-8 

(Caporali et al., 2003), from 0.4x10
-8 

to 11.6 x 10
-8 

(Hunstad et al., 2003), 0.4 

x 10
-8 

(Ward, 1994), 3.1x 10
-8 

(Serpelloni et al., 2002), with similar orientations with respect to 
those shown in this paper.  

 
 
Conclusions 
The principal features of a new original scientific software conceived for the strain rate (or 
strain) estimation on a regular grid using velocity (or displacement) data provided by a series 
of GPS stations were presented. The software, grid_strain, provides the intensity and 
direction of principal components of strain tensor in each point of the grid, as well as the 
significance of obtained results on the basis of spatial distribution and accuracy of available 
measurements. The development of this software allowed a detailed analysis of GPS velocity 
data in the central Apennine of Italy, where a dense network was established a few years ago. 
The network grid at 3-5 km, which is optimal with respect to the average seismogenic fault size 
for the central Apennine, allowed the revealing of new features for this region which can be in 
agreement with kinematics produced by a retreating subduction and its deepening in the 
mantle.  While the regional geodetic network of permanent stations (CGPS stations) provides 
deformation trends that are in agreement with results published in previous papers (see above), 
the CAGeoNet GPS stations located in the near field across the faulted area, also show a 
compression at the same level of the extension values along the chain axis. This result can be 
due to the presence of active faults that drive a NW-SE compression. This is in agreement with 
(Bigi et al.,2004) that suggests that the Apennine can be subjected to simultaneous extension 
and compression caused by the still active subduction of the Adria plate beneath the chain. The 
extensional behaviour of the area is also in agreement with the distribution and trend of the 
main seismogenic sources reported in Valensise and Pantosti (2001) that could play a major 
role in the observed deformations and in the kinematics of the Italian peninsula.  
This is the first estimate of a simultaneous active crustal compression and extension across the 
central Apennine that can be due to the elastic accumulating deformation on the faults.  
 
Notes 
The grid_strain software is available (free) to the scientific community by contacting via 
e-mail pesci@bo.ingv.it or giordano.teza@unipd.it, who are interested in developing new 
collaborations. The 3D version of the program will be available in short time. 
 
Acknowledgment 
Authors would like to thank Marco Anzidei who projected and realized the CAGeoNet 
geodetic network allowing the in-depth study of the deformation acting in this complex area. 
A special thanks to Fabiana Loddo for the precious assistance during data processing. 
A great thanks to Lydia Gulick for her help in correcting the translation from Italian. 

mailto:pesci@bo.ingv.it
mailto:Giordano.teza@unipd.it


 References 
 
Anzidei, M., Baldi, P., Pesci, A., Esposito, A., Galvani, A., Loddo, F., Cristofoletti, P., Massucci, A. 

and Del Mese, S. (2005) - Geodetic deformation across the central apennines from gps data in the 
time span 1999-2003 - Annals of Geophysics, vol.48, n.2. 

Anzidei, M., Pesci, A., Baldi, P. (2006) - new insights on the active strain field of the central apennines 
(italy) from gps data in the time span 1999-2003 – Geophysical Journal International – under 
submission. 

Arfken, G. (1985): Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 
217-229. (http://mathworld.wolfram.com/MatrixDiagonalization.html) 

Bigi, S., Costa Pisani, P., Milli S., Moscatelli, M. (2004) - Active thrust front/foredeep depocenter 
migration vs flexure migration: the evolution of Central Apennines. Submitted to the 32nd 
International Geological Congress, Firenze 2004.  

Caporali, A., Martin, S., Massironi, M. (2003) - Average strain rate in the Italian crust inferred from a 
permanent GPS network - II. Strain rate versus seismicity and structural geology.  Geophys. Journal 
International, 155, 254-268. 

D'agostino, N., Giuliani, R., Mattone, M., and Bonci, L. (2001) - Active crustal extension in the central 
Apennines (Italy) inferred from GPS measurements in the interval 1994-1999. Geophys. Res. Lett., 
28,10,2121-2124. 

Hunstad, I., Selvaggi, G., D'agostino, N., England, P., Clarke, P. and Pierozzi M. (2003): Geodetic 
strain in peninsular Italy between 1875 and 2001 Geophysical Research Letters, 30, (4), 1181. 

Koch, K.R. (1988): Parameter estimation and hypothesis testing in linear models, Springer, Berin 
Heidelberg New York. 

Lay, T. And Wallace T.C. (1995): Modern Global Seismology, Academic Press, pp. 34-50. 
Maruyama, T. (1964): Statistical elastic dislocations in an infinite and semi-infinite solid, Bull. Earthq. 

Res. Tokyo Univ., 42, 289-368. 
MATHWORKS (2004):  
web site http://www.mathworks.com/access/helpdesk/help/helpdesk.html (last access: 01.02.06) 
Mogi, K. (1958): Relation between the eruptions of various volcanoes and the deformation of ground 

surfaces around them, Bulletin of the Earthquake Research Institute (University of Tokyo), 36, 99–
134.  

Serpelloni, E., Anzidei, M., Baldi, P., Casula, G., Galvani, A., Pesci, A. and Riguzzi, F.(2002): 
Combination of permanent and non-permanent GPS networks for the evaluation of the strain-rate 
field in the central Mediterranean area. Bollettino di Geofisica Teorica ed Applicata, Vol.43, n.3-4, 
195-219 

Shen, Z.-K., And D. D. Jackson (2000): Optimal estimation of geodetic strain rates from GPS data, 
EOS Trans. AGU, 81, No.19, p.S406. 

Valensise, L. and Pantosti, D. (2001): Database of Potential Sources For Earthquakes Larger Than 
M=5.5 in Italy. Annali di Geofisica, vol.44, suppl.1, with CD-ROM.  

Ward, S.N. (1994): Constraints on the seismotectonics of the Central Mediterranean sea from Very 
Long Baseline Interferometry . Geohys. Jour. International, 117, 441-452. 

WOLFRAM (2006): web site http://mathworld.wolfram.com/MatrixDiagonalization.html (last access: 
01.02.2006) 

http://www.amazon.com/exec/obidos/ASIN/0120598159/ref=nosim/weisstein-20
http://mathworld.wolfram.com/MatrixDiagonalization.html
http://mathworld.wolfram.com/MatrixDiagonalization.html

