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Abstract 

In response to rapid decompression, porous magma may fragment explosively. This occurs 

when the melt can no longer withstand forces exerted upon it due to the overpressure in 

included bubbles. This occurs at a critical pressure difference between the bubbles and the 

surrounding magma. In this study we have investigated this pressure threshold necessary 

for the fragmentation of magma. Here we present the first comprehensive, high temperature 

experimental quantification of the fragmentation threshold of volcanic rocks varying widely 

in porosity, permeability, crystallinity, and chemical composition. We exposed samples to 

increasing pressure differentials in a high temperature shock tube apparatus until 

fragmentation was initiated. Experimentally, we define the fragmentation threshold as the 

minimum pressure differential that leads to complete fragmentation of the pressurized 

porous rock sample. Our results show that the fragmentation threshold is strongly 

dependent on porosity; high porosity samples fragment at lower pressure differentials than 

low porosity samples. The fragmentation threshold is inversely proportional to the porosity. 

Of the other factors, permeability likely affects the fragmentation threshold at high porosity 

values, whereas chemical composition, crystallinity and bubble size distribution appear to 

have minor effects. The relationship for fragmentation threshold presented here can be used 

to predict the minimum pressure differential necessary for the initiation or cessation of the 

explosive fragmentation of porous magma. 
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1. Introduction 

Among the processes that may trigger explosive eruptions, rapid decompression of 

pressurized, porous magma is highly unpredictable and potentially dangerous. Explosive 

eruptions are thought to initiate when (1) gas pressure overcomes the tensile strength of the 

rock or melt [1-4], (2) viscous strain rates are higher than the relaxational strain rate of the 

melt, [5, 6], or (3) magma interacts with external water [7-9]. Magma decompression can 

be triggered by sector collapse of a volcanic edifice (e.g. Mt. St. Helens, 1980 [10, 11]), 

plug removal or dome collapse (e.g. Soufrière Hills, Montserrat [12], Merapi [13]). The 

major cause of gas overpressure in magma is thought to be either second boiling by 

microlite growth [14-17] or disequilibrium degassing during rapid magma ascent [18]. The 

maximum gas pressure that spherical bubbles may withstand before failure depends on the 

bubble volume, the bubble wall thickness, and the tensile strength of the bubble walls  

[1-3]. Porosity controls both the volume of gas available for expansion and the thickness of 

the bubble walls. Starting from these simple considerations, a number of theoretical [1-3] 

and experimental [19-26] studies have considered the relationship between overpressure, 

porosity, and fragmentation of magma. Below, we present the first complete set of 

experiments at 850 °C defining the dependence of overpressure-driven fragmentation on 

porosity for a large variety of volcanic products. We use shock tube experiments to 

quantify the gas-overpressure required to overcome the tensile strength of magma [19, 20]. 

The minimum pressure differential that leads to complete fragmentation of the pressurized 

sample in the shock tube is here defined as the fragmentation threshold (∆Pfr). 

We illustrate the discrepancy of the experimental data with previous theoretical 

parameterisations and discuss the parameters that influence the fragmentation behaviour. 

Finally, we discuss the implications of our results to volcanic eruptions. 

2. Methodology 

Fragmentation experiments were performed in the fragmentation bomb (Fig. 1), a shock 

tube apparatus [19-23, 25] consisting of three main units: (1) A cold seal Nimonic™ 

pressure vessel containing cylindrical samples at an experimental temperature of 850 °C 

and at pressures up to 35 MPa; (2) A system of three scored diaphragms that open at a 

reproducible, experimentally calibrated pressure differential, allowing precise 

pressurization of the sample; (3) A large steel tank at ambient pressure (0.1 MPa) where the 

artificially generated pyroclasts collect after fragmentation. 
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Samples are loaded in the pressure vessel that is externally heated at a rate of ≈ 15 °C/min 

to 850 °C. To prevent alteration of the sample due to water or oxygen, Argon 4.8 was used 

for sample pressurization. We find that 1 MPa of Argon pressure during the heating 

procedure prevents thermally induced changes in the physical properties of the sample. 

Microscopic and SEM analysis of samples before heating, after heating, and after 

fragmentation does not show changes in overall porosity or bubble size distribution. Once 

at 850 °C, the sample is pressurized to the desired experimental pressure. This procedure 

furthermore minimises the risk of diaphragm failure. After the diaphragms open, a 

rarefaction wave travels towards the sample at the sound velocity of the pressurized gas, 

giving a decompression rate 1-100 GPa/s depending on the initial pressure differential. If 

the pressure differential is sufficiently high, samples fragment brittlely layer-by-layer [21]. 

If the applied pressure differential is not high enough to entirely fragment the sample, the 

experiment is repeated at a higher pressure differential using a new cylinder drilled from 

the same sample, until complete fragmentation is achieved. The minimum pressure 

differential leading to complete fragmentation is defined as the fragmentation threshold. 

Prior to the experiments we performed thin section analysis and measured the percentage of 

interconnected and isolated pores (open and closed porosity) in the samples (by Helium 

pycnometry with a Accupyc 1330). The results presented here represent the conclusion of 

several years of experimental volcanology on volcanic materials with a wide range of 

porosity (2 to 85 %), crystallinity, and chemical composition that derive from a variety of 

eruption styles: 

St. Helens grey dacite from the 1980 eruption; Merapi basaltic andesite from 1994 and 

1998 pyroclastic flows; Santorini dacite from plinian fallout of the Minoan eruption; Unzen 

dacite from 1990-95 dome and vulcanian eruptions; Etna alkali basalt from ash explosions 

of the 2001 flank eruption; Campi Flegrei trachyte from the 4100 BP Agnano Monte Spina 

and the 1538 Monte Nuovo eruptions; and Montserrat andesite from the 1997 “Boxing day” 

vulcanian explosion (Fig. 2). 

Experiments on the fragmentation behaviour of pyroclasts started with cylindrical samples 

(17 mm in diameter by 50 mm long) from St. Helens, Merapi and Unzen [22, 25]. For these 

first samples, the number of experiments performed is highest (Table 1). Usually, 

experiments were performed at small pressure steps (0.2-0.5 MPa) to tightly constrain ∆Pfr. 

The resulting value was verified by repeated experiments. To reduce the potential influence 

of large phenocrysts (up to 20 mm in the case of Unzen), the set-up was changed to allow 

samples of up to 26 mm diameter and 60 mm length. Further experiments on Unzen 



 4

samples were performed with this sample size. Based on results from experiments with 

samples of St. Helens, Merapi and Unzen, further experiments on samples from Etna, 

Santorini, Campi Flegrei and Montserrat were performed in order to check the potential 

influence of differing chemical compositions and textural features. The number of 

experiments on these samples is lower, as they were performed at pre-selected ∆P values 

expected to be the threshold value for the given porosity. The results confirm this approach. 

3. The fragmentation threshold curve 

The experimental data (Table 1, approx. 400 experiments) show a strong correlation 

between porosity and ∆Pfr (Fig. 2). The value of the fragmentation threshold given in  

Table 1 has to be interpreted as a pressure range of ± 0.5 MPa. The curve described by the 

data can be closely fitted by an inversely proportional relationship between porosity and 

fragmentation threshold. 

3.1. Modelling experimental results 

Literature contains several proposals that a fragmentation criterion can be described in 

terms of a range of porosity, e.g., 75-83,5 vol.% [27], 68-79 vol.% [28-30] and ~ 64 vol.% 

[31]. Our results indicate that a magma fragmentation criterion cannot be solely based on 

values/ranges of porosity without considering pressure (Fig. 2). It is clear from our work 

that magma may fragment at porosity values far below earlier fragmentation criterions 

depending on the amount of decompression. Additionally, the variety of porosity found in 

pyroclasts from natural explosive eruptions confirms this observation. In order to obtain 

more realistic insights into the dynamics and propagation of fragmentation and its 

consequences for explosive eruptions, a more sophisticated parameterisation of magma 

fragmentation is necessary. For this, a brittle failure criterion based on pressurized vesicles 

[1-3] is more appropriate and more consistent with our experimental data. 

In the equations provided by all of these models, the importance of porosity and the tensile 

strength of glass (σ) on the overpressure at bubble wall failure is clearly stated. These 

equations can therefore be rearranged and solved to relate porosity (Φ) with overpressure 

(∆P) at failure, and then model our experimental data set. In particular, we tried to model 

the Φ vs ∆Pfr curve of Fig. 2 using the models of McBirney and Murase [1], Alidibirov [2], 

and Zhang [3]. 

McBirney and Murase [1] use the Griffith [32] equation for critical tensile stress to modify 

the bulk properties of the melt. They then used MacKenzie´s [33] equation for the strength 
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of elastic porous material to define Young’s modulus for bubbly magma with up to 50 % 

porosity (Eb). This gave his equation (6). 

σ = (4E*s/π*c)1/2         (McBirney’s eq. 4) 

Eb = E*(1-1.7*Φ)        (McBirney’s eq. 5) 

∆P = (2*n2/3*s/ Φ) ∗ (4*n*π/3Φ)1/3 + 1/Φ (4E(1-1.7*Φ)s/π*c)1/2  (McBirney’s eq. 6) 

where n=number of bubbles, s= surface tension, E= Young’s modulus for magma,  

c= circumference, σ = tensile strength of glass, Φ= οpen porosity. 

Due to the assumptions above, McBirney and Murase’s equation 6 is most useful for 

porosity below 50%, which concerns the second term in equation 6 [1]. Eq. 4 can then be 

substituted into eq. 6 to give the porosity-threshold relation: 

∆P = σ/Φ  * (1-1.7*Φ )1/2       (eq. 1) 

that we used to model our data. 

More recent models use a different approach, considering the stress distribution around 

pressurized, spherical bubbles. 

Alidibirov [2] considers the tangential stress distribution of a thin-walled sphere, 

considering each bubble individually, radius, with a bubble wall thickness equal to half the 

distance to the neighbouring bubble. As the pressure in the bubble is increased, stress builds 

up; higher stress can break thicker bubble walls. His equations (2) and (3)  

a/l = Φ1/3/(1-Φ1/3)         (Alidibirov’s eq. 2) 

σ = ∆P/2 * a/l         (Alidibirov’s eq. 3) 

can be combined as: 

∆P = σ*2/((Φ1/3)*(1-Φ)1/3)       (eq. 2) 

where a= radius, l= bubble wall thickness. 

Zhang [3] uses an approach similar to Alidibirov but he considers a tangential stress 

distribution throughout the bubble wall where the maximum stress occurs at the inner 

bubble wall: 

1+2Φ/2(1−Φ)∆P>σ        (Zhang’s eq. 4) 

Zhang´s eq. 4 can be rearranged to: 

∆P> σ/(1+2*Φ)/(2-2*Φ)       (eq. 3) 

Following McBirney and Murase [1], fragmentation of a porous media occurs when the 

total force exerted by the entrapped gas exceeds the tensile strength of the liquid matrix 

over the same cross sectional area. Accordingly, we modelled our experimental data using a 

simple relationship, that considers an effective tensile strength (σm) of a compound matrix 

against bubble overpressure. 



 6

∆Pfr = σm/Φ         (eq.4) 

With ∆Pfr being the fragmentation threshold. 

All models approximate the general shape of the experimental data set, each one with 

specific deviations. Possible causes for the deviations are discussed in the next section. 

3.2. Comparison of experimental results with fragmentation theory 

Comparing equations 1-3 with our experimental results helps to understand the control 

parameters for brittle fragmentation upon rapid decompression. Tensile strength is a critical 

parameter in resisting the tangential stress. Our experimentally determined ∆Pfr is the 

pressure differential at failure for different porosities, and since the tensile strength equals 

the maximum tangential stress at the bubble walls, our data can be substituted into the 

theoretical models to use the stress to give an estimate of the tensile strength of the 

samples.  

All models require different values of tensile strength to achieve the best fit to the data  

(Fig. 3, Table 2). McBirney and Murase achieves the best fit using a tensile strength of  

1.5 MPa. The models of pressurized spheres of Zhang and Alidibirov achieve their best fit 

with tensile strength values of 9.4 and 5.9 MPa, respectively (Fig. 3). However eq. 2 and 

our eq. 4 give considerably better fits than the other models. Experiments on a variety of 

glasses have shown that values of tensile strength of glass may vary from several 10s to 

several 100s MPa [34, 35], almost independently of chemical composition [36]. The 

discrepancies between the models and the suitable tensile strength values arise from three 

main factors:  

1) Alidibirov [2] and Zhang [3] use models based on the stress distribution around 

single spherical bubbles. Zhang’s model is the more theoretically accurate of the two 

models as he considers the stress distribution throughout the bubble wall. However, 

Zhang’s model underestimates the fragmentation threshold at low porosities and gives a 

finite value of the threshold even in the zero porosity case. We speculate that our data 

deviate from Zhang’s model because this model predicts the differential pressure required 

for vesicle-scale crack initiation, whereas our experimental results are the pressure 

differential required for the total failure of the sample. The deviation of our results from 

values achieved with Zhang’s model is highest at low porosities; low porosities reflect thick 

bubble walls and therefore require pressure not only to initiate cracks but also to propagate 

cracks in order to cause complete failure of the sample. The fit at high porosities is better, 

probably because the pressure required for crack initiation is similar to the pressure 

required for the total failure of the sample. 
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2) We would like to point out that the theoretical models (eq. 1-3) deal with the 

tensile strength of a glassy matrix whereas our model deals with the tensile strength of a 

compound matrix. Additionally, theoretical models assume spherical bubbles with uniform 

stress distribution. Non spherical bubbles or bubble walls with protruding crystals or 

microlites (Fig. 4) will focus the stress, give a locally higher tangential stress [37], and 

result in a weakening of the matrix. Our experimental results are achieved from 

experiments on natural samples. These samples rarely have spherical bubbles and, as a 

consequence, the tangential stress at the bubble wall is likely to be locally much higher than 

estimated assuming spherical bubbles. Dehydrated glass may show micro-fractures around 

vesicles, which dramatically reduce the effective tensile strength [34]. 

3) Theoretical models assume mono-disperse, homogeneously distributed bubbles in 

a glass matrix. However, complex vesicle and crystal textures in natural samples may have 

large effects. For example, bubbles with restricted bubble size distributions can have 

relatively thin bubble walls for a corresponding porosity and failure will occur at lower 

pressure differentials. Crystals are elastic and have a tensile strength different from glass. 

Therefore, crystallinity affects the bulk tensile strength of the rock. Earlier studies show 

that high microlite content may increase the tensile strength of the sample [23] and thus 

may significantly influence ∆Pfr. However, if a high percentage of crystals are already 

cracked when fragmentation occurs, this will reduce the overall tensile strength of the 

sample and accordingly the resultant ∆Pfr. 

The models also assume closed porosity, whereas our samples are characterized by 

mainly interconnected pores. These pores allow gas flow through the samples and the 

accumulation and release of gas pressure, e.g., degassing of active conduits and domes  

[38-41]. Comparing the experimentally determined speed of the fragmentation front  

(2-300 ms-1) and the speed of the gas expansion (>300 ms-1) [25, 26], it becomes apparent 

that permeable gas flow can significantly reduce the pressure differential in and below the 

fragmenting layer [38]. Generally, gas flow within the sample is too slow to effectively 

reduce the pressure during the experiments. However, the anomalously high permeability 

of the Campi Flegrei samples [38] and their anomalously high ∆Pfr indicate that gas escape 

prior to fragmentation may have a major influence on the fragmentation behaviour.  

An additional consideration is that the melt phase in the samples behaves like a fluid 

because the samples were heated above the glass transition temperature (Tg) during the 

experimental procedure. Surface tension and bubble expansion would become important if 

the samples were behaving like a liquid at the time of decompression and fragmentation  
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[1, 42, 43]. However, thin section and SEM images of our samples show no evidence of 

bubble deformation during the experiments. We conclude that, due to the relatively high 

decompression and cooling rates, viscous relaxation and expansion did not occur in any of 

our samples. This explains why the chemical composition and the associated viscosity 

differences between samples did not significantly affect the fragmentation threshold. 

In order to fully understand the relationship between the fragmentation threshold of 

volcanic rocks and their porosity, general textural trends between dome rocks, scoria and 

pumice need to be quantified. However, the relative insensitivity of the threshold curve to 

the above factors (with the possible exception of permeability) relegates them to a second 

order effect in respect with the first order control exerted by porosity. 

4. Implications for explosive volcanism 

Our results may have important implications for the mechanism of initiation and cessation 

of volcanic eruptions. Our threshold curve allows us to predict how much overpressure is 

required to start explosive fragmentation of magma of known porosity. 

Current techniques for the geophysical and geochemical monitoring of active volcanoes 

provide estimates of the pressurization state of magma at depth [44]. This information 

serves as an input parameter for numerical models that calculate the porosity and pressure 

of the magma [45]. In a scenario of expected dome collapse, sector collapse, or vulcanian 

blasts, once pressure and porosity of the magma in the conduit can be calculated, the 

threshold curve may be used to estimate the amount of decompression required to trigger 

magma fragmentation and start an eruption. 

The cessation of explosive activity is at present poorly understood. Our results indicate that 

static magma will cease to erupt if the pressure differential falls below the fragmentation 

threshold, i.e. the fragmentation front reaches low porosity magma or the pressure 

differential is reduced during eruption. 

The threshold curve provides a new constraint on the overpressure involved in the 

explosive fragmentation of past eruptions. Using our eq. 4, pyroclasts collected from 

eruptions can be used to estimate overpressures during eruptions [46]. This approach, in 

combination with field density measurement of large pyroclasts [47], may help to better 

understand the local fragmentation dynamics of heterogeneous domes and conduit fillings. 

5. Conclusion 

These first comprehensive determinations of the high-T fragmentation threshold for a wide 

range of natural magma samples confirms that the fragmentation threshold is dominantly 
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dependent on porosity and that magma composition has little effect. Brittle deformation 

dominates over viscous deformation during our experiments due to the high decompression 

rates, this is probably also the case during Vulcanian eruptions. In addition, we show how 

the fragmentation threshold of volcanic rocks during static decompression deviates from 

previous mathematical models. We indicate that assumptions made in previous 

fragmentation models concerning i) the criterion for fragmentation (crack initiation vs. 

larger-scale failure), ii) shape of the vesicles and iii) the relationship between porosity and 

bubble wall thickness, crystallinity and permeability may be the reasons for the misfit of 

the data. These textural considerations will undoubtedly require further experimental 

investigation. 

Due to its robust experimental basis, the porosity-fragmentation threshold relationship in 

eq. 4 is applicable to magma with a wide range of chemical and textural composition, and, 

beside potential application to the study of past eruptions, it may be directly incorporated 

into models of explosive eruption hazard. 
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Fig.1: Image of the fragmentation bomb, for details see [25]. 
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Fig. 2: The samples used in the present study were collected at seven different volcanoes or 

volcanic centres and represent a broad range of composition and porosity (2 - 85 vol.%). 

The experimental data (representing approx. 400 experiments, see Table 1) show a strong 

relation between porosity and the fragmentation threshold at 850 °C. (Note that 

porosity/100 is plotted at the x-axis.) 

The grey box shows the range of different earlier fragmentation criteria defined by bubble 

coalescence [27,28] and shear induced foam instability [31]. (Note: The early 

fragmentation criteria depend only on porosity and do not correspond to any pressure value. 

The position of the lines does not correspond to any y-value.) 
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Fig. 3: Plot of 1/porosity vs. the evaluated fragmentation threshold values at 850 °C and 

comparison of our eq. 4 with the best fit of the theoretical models [1, 2, 3]. It is apparent 

that the best fit of these models is achieved using different values of tensile strength. 
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Fig. 4: SEM picture of Merapi basaltic andesite showing microlites deforming the bubble 

walls and thereby strongly influencing the stress distribution. 
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Sample 

origin 

Diameter 
(mm) 

Texperiment 
(°C) 

Porosity (%) 

Open/total 
Threshold 
(MPa) 

Numbers of 

Experiments 

Covered pressure 

range (MPa) 

Unzen (00 A) 26 850 3.80/4.40 22.5 7 20 – 30 

Unzen (01 B) 25 850 5.70/6.00 20 3 20 – 25 

Unzen (ENSP) 17 850 8.00/8.60 18 31 4.8 – 18 

Unzen (00 B) 26 850 11.90/14.50 9 5 7.5 – 20 

Unzen (00 E) 26 850 14.10/16.60 6.5 6 5 – 20 

Unzen 17 850 14.50/16.80 9 28 1.2 – 9 

Unzen (01 C) 25 850 20.45/21.30 5.8 10 3 – 15 

Unzen 17 850 22.00/22.90 5.4 34 2 – 5.3 

Unzen (00 G) 26 850 34.30/35.60 5.5 6 4 – 20 

Unzen (00 F) 26 850 33.60/36.00 3.5 5 3 – 20 

Unzen (BKB) 25 850 53.90/59.90 4.1 3 3 – 10 

Merapi (9618) 17 850 7.00/7.40 19.5 26 10 – 19.5 

Merapi (9615) 17 850 9.40/10.10 12.5 36 2 – 13 

Merapi (9608) 17 850 46.40/46.80 2.9 26 0.6 – 2.9 

Merapi (9612) 17 850 51.00/51.30 2.2 19 0.8 – 2.5 

Merapi (9603) 17 850 61.00/61.30 2.3 37 0.5 – 2.5 

Etna (# 6) 17 850 3.60/4.10 23 2 20 – 23 

Etna (# 7) 17 800 6.20/7.40 20 1 19.5 

Etna (# 5) 17 900 7.60/7.80 20.5 2 8 – 20 

Etna (# 2) 17 850 9.70/9.75 18 6 7.5 - 17.5 

Etna (# 4) 17 830 13.60/13.70 14.5 2 10 – 14 

Etna (# 1) 17 850 17.40/17.50 8 2 4.7 - 7.5 

Etna (# 8) 17 850 18.70/19.30 4 1 3.6 

Campi Flegrei 26 850 82.00/82.50 9 5 0.5 – 10 

Campi Flegrei 26 850 85.00/85.50 6 5 0.5 – 10 

Santorini 26 850 80.00/80.50 1.8 18 0.5 – 1.9 

Santorini 26 850 83.00/83.50 2 16 0.6 – 2 

Montserrat 26 850 3.10/4.10 31 2 30 – 35 

Montserrat 26 850 20.10/21.00 6 1 6 

Montserrat 26 850 44.40/49.20 5 4 4.3 – 15 

Montserrat 26 850 68.80/73.40 3.2 5 2 – 15 

St. Helens 17 850 36.00/41.00 2.7 42 0.5 – 3.3 
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Table 1: Samples investigated for hot (850 °C) fragmentation experiments with average 

porosity value for any rock variety, the number of experiments performed to quantify the 

threshold and the threshold value. The total amount of experiments sums up to approx. 400. 

For petrologic characterization of the used samples, please see the following references: 

Unzen [48], Merapi [49], Etna [50], Campi Flegrei [51, 52], Santorini [53], Montserrat 

[54], Mt. St. Helens [55]. 
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 “Tensile strength” at 
best fit (MPa) 

Fit Standard Error Adj. R² 

Alidibirov 5.875 2,899 0.847 
This Paper 0.995 3,646 0.758 
McBirney & Murase 1.031 4,110 0.757 
Zhang 9.442 4,574 0.620 
 
Tab 2: Fit quality for the best-fit-plots for the three theoretical models and our relationship 
to the experimental data. Keep in mind, that the model of McBirney and Murase can not be 
applied to porosity values above 60 %. The achieved fit quality is therefore not fully 
comparable to the other two models. (The Fit Standard Error is defined as the square root of 
the sum of the squared errors divided by the degree of freedom.) 
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