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Detecting geomagnetic field nonlinearities
by bispectral analysis and a phase coupling

nonlinear technique

Roberta Tozzi and Angelo De Santis
Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy

Abstract
The Earth’s magnetic field varies over a wide range of characteristic times, say, from years to centuries, and more.
In order to detect some nonlinear features of the geomagnetic field evolution we first apply a nonlinear spectral
technique, i.e. bispectral analysis, to the secular variation of Hartland Geomagnetic Observatory (U.K.). Then,
due to difficulties of bispectral analysis inherent in the shortness of data, we introduce a simpler, but more efficient,
technique called Spectral Phase Analysis for Quadratic Coupling Estimation (SPAQCE). Both nonlinear spectral
methods here applied are based on the presence of a phase (sum and difference) coupling in case of quadratic
interactions between two constituent components of the physical system underlying the generation of the
geomagnetic field. The application of SPAQCE to annual means of a U.K. combined geomagnetic time series
allows us to discriminate nonlinear interactions between couples of characteristic times (specifically 5-6, 5-8 and
2-26 years) of the field generated in the outer core.

1.  Introduction

It is well known that to study a Gaussian
process and to completely describe its statisti-
cal properties, it is sufficient to use simple
mathematical tools such as the autocorrelation
function or the power spectrum. However, these
methods are phase blind so, a general random
additive process (for instance a coloured noise)
cannot be completely discriminated from a
random multiplicative process (such as non-

linear cascade process) or a deterministic non-
linear process (e.g., a chaotic phenomenon)
throughout second order statistics or con-
ventional Fourier power spectrum. In the past,
this lack of appropriate analytical tools has led
scientists to treat non-Gaussian pro-cesses (i.e.
the greatest number of natural processes), as if
they were Gaussian.

Nevertheless, in recent decades, some
powerful techniques have been developed to
study nonlinear and non-Gaussian phenomena.
Among them, an important role is played by
the Higher Order Spectral Analysis (HOSA) or,
equivalently, Higher Order Statistics (HOS)
(e.g., Mendel, 1991). HOSA is an extension of
second order spectral analysis (i.e. conventional
Fourier analysis) to higher orders and is a
technique to estimate higher order power
spectra, the so-called polyspectra (Subba Rao
and Gabr, 1984). Polyspectra discriminate
nonlinear processes (i.e. processes characterised
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by a nonlinear relation between any perturbing
input and the corresponding output of the
system) because of their aptitude to reveal not
only amplitude information, but also phase
information. For instance, two random processes
such as a Gaussian and a non-Gaussian process
can be distinguished only by evaluating their
third order spectrum (i.e. the bispectrum). In
practice, considering that the bispectrum of a
signal can be viewed in terms of a decomposition
of the third statistical moment over frequency,
it is easy to understand that the bispectrum of a
Gaussian process is identically zero (e.g., fig. 1b).
On the contrary, that related to a non-Gaussian
process contains very interesting information
such as the presence of some quadratic coupling.
In this paper we introduce the basic concepts of
bispectral analysis which, evidently, is the
simpler case of HOSA together with its attractive
application to a situation of geophysical interest,
namely that of the geomagnetic field Secular
Variation (SV). Due to the shortness of available
geomagnetic data, the results from the ap-
plication of the HOSA are not always reliable.
In order to give more robustness to our results
we will introduce a simpler, but more efficient
technique that allows a sharper and even more
consistent discrimination of any quadratic
coupling.

In the light of these considerations, the
intention of this work is to open a new way to
verify and even to give a quantitative description
of the geomagnetic field SV nonlinear prop-
erties. The main interest in this kind of analysis
lies in the importance it would have for a better
comprehension of the underlying dynamo
processes that generate and sustain the field. Of
course, nothing excludes the possibility to apply
the new technique to other kinds of geophysical
data, since typically most of them are very short
time series.

The next sections of this paper are arranged
in the following way. The second section defines
bispectral analysis and describes the main
aspects of the theory. The third section illustrates
the application of this methodology to synthetic
as well as to experimental geomagnetic data,
namely the SV data deduced as annual means
first differences; then it shows a simpler
alternative to bispectral analysis in the case of

short time series, as is the case of SV data.
Finally, in the last section we discuss the results
provided by this technique.

2.  Bispectral analysis

Bispectral analysis is a powerful math-
ematical tool to reveal the presence of quadratic
couplings between two harmonics (different or
not) each associated with a given frequency.
From introductory considerations it follows that
the bispectrum provides interesting information
only if the third moment (or skewness) of a
time series is non-zero. Recal-ling that
skewness is connected to the asymmetry of the
probability density function, we deduce that the
bispectrum is a helpful tool to analyse only
systems with asymmetric nonlinearities. If this
condition is not satisfied, it is necessary to
verify successive higher order spectra (i.e. the
trispectrum); but higher order spectra are not
here considered as the error of spectral
estimation increases with the order of spectral
analysis.

Auto-bispectrum B(fi, fj) of a stationary time
series (e.g., Nayfeh and Balachandran, 1995)
defined in time interval T corresponds to a sort
of two dimensional Fourier spectrum and it is
used to check out interactions between pairs
of harmonics within a single time series; it is
expressed as follows

(2.1)

where X(f) represents the Fourier amplitude
spectrum of the time series x(t) at frequency f
and X*(f) is the complex conjugate; the < >
brackets stand for an ensemble averaging over
many statistically similar realisations of the
process under scrutiny; in general, the
bispectrum (from this point onwards we will
omit the preceding term «auto») defined in
eq. (2.1) is a complex quantity. Evidently,

B f fi j ,( ) =

T
X f f X f X f

T
i j i j

* *= < +( ) ( ) ( ) >lim  
1
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evaluation of X( f ) makes use of the Finite
Fourier Transform algorithm, which takes
into account the narrowness of the analysed
series; in fact, when working with data
coming from experimental measurements, we
usually know x(t) only for a finite time T. In
practical applications, it is customary to work
only with the magnitude of the bispectrum
that gives the strength of quadratic inter-
action, so graphic representation of the
bispectrum is essentially a two-dimensional
function in terms of an fi-fj diagram. It is quite
evident that the corresponding contours
contain a high degree of symmetry owing to
symmetrical properties of the bispectrum
defined in (2.1). It is possible to demonstrate
(Chandran and Elgar, 1994) that the
knowledge of the bispectrum in the principal
domain (or non-redundant area), cor-
responding to the triangular region {fi, fj > 0},
is enough for its complete description. One
of the methods to evaluate B(fi, fj) is the so-
called direct method based on a segment
averaging approach. Some studies (Dalle
Molle and Hinich, 1989) have shown that to
calculate the nth order spectrum, the length
of each segment should be about the (n-1)th
root of the time series size.

Collis et al. (1998) showed that the variance
associated with the bispectrum is strictly
related to the power spectrum properties of the
signal; for this reason instead of the bispectrum
of eq. (2.1), another spectral function is used
to detect more punctually quadratic inter-
actions, the so-called auto-bicoherence or
simply bicoherence. This function, analogous
to the bispectrum from which it derives, is rated
(normalised) to the power at each contributing
frequency; thus, the bicoherence varies
between zero and one, just like the square of
the correlation coefficient in linear analysis.
The main difference is that bicoherence is
useful to detect Quadratic Phase Coupling
(QPC); the latter phenomenon occurs when
two distinct harmonic components in a signal
are nonlinearly related so that there is a phase
correlation between components at frequencies
fi and fj (MacDonald, 1989).

Let us define the auto-bicoherence b2(fi, fj)
as the function that measures the fraction of

power at frequency values of f = fi ± fj that is

(2.2)

From eq. (2.2), it is quite evident that, as already
mentioned, bicoherence is a sort of normalised
bispectrum and, in practice, it expresses fre-
quency dependence of correlation. If b2( fi, fj ) = 1,
there is a complete quadratic coupling between
frequency components at fi and fj; if b

2( fi, fj ) = 0
there is no coupling at all while intermediate
values of bicoherence correspond to partial
quadratic coupling.

2.1.  Nonlinear coupling in synthetic data

In order to verify the potentiality of bispectral
analysis, we estimated the bicoherence for some
synthetic data, properly generated with known
linear and/or nonlinear quadratic couplings.
Consequently, we studied the time series
representing white noise, nonlinear and chaotic
sequences (i.e. Lorentz, Henon and logistic maps)
and, of course, also periodic signals. These tests
(here not completely presented) disclosed that
this technique is really a good method not only
to discriminate linear from nonlinear processes
but also to estimate the periods of possible
quadratically interacting modes. Bicoherences
obtained from white noise (fig. 1a) are practically
flat (fig. 1b). One of these experiments involved
a very simple function of time t in terms of a
linear combination of two sine functions

      I(t) = a1sin(2 f1t) + a2sin(2 f2t) (2.3)

where a1 and a2 are two constant coefficients and
f1 and f2 are two different given frequencies (we
chose 0.64 and 1.11 Hz respectively). The
function defined in (2.3) can be viewed as an
input to a given system. If this system operates
nonlinearly, its output contains nonlinear terms;

b f fi j,( ) =2

B f f

X f f X f X f

i j

i j i j

,
=

( )
< +( ) >< ( ) ( ) >     

2

2 2



282

Roberta Tozzi and Angelo De Santis

-0.4 -0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

WHITE NOISE

f
1
 (Hz)

f 2
 (

H
z)

 0.1750  --  0.2000
 0.1500  --  0.1750
 0.1250  --  0.1500
 0.1000  --  0.1250
 0.0750  --  0.1000
 0.0500  --  0.0750
0.02500  -- 0.0500

 0  --  0.02500

0 25 50 75 100 125 150 175 200

-3

-2

-1

0

1

2

3

W
hi

te
 n

oi
se

t (s)

Fig.  1a,b. a) White noise (arbitrary amplitudes); b) the bicoherence of a white noise is a practically flat two-
dimensional function.
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Fig.  2a,b.  a) A period of the function I(t)2; b) bicoherence of the function I(t)2 obtained from I(t) defined in
eq. (2.3) with a1 = a2 = 1, f1 = 0.64 Hz and f2 = 1.11 Hz. This is the case of a short data set (128 values); it shows
that bicoherence gives a good estimation of the actual coupling frequencies although it is characterised by a
large variance.
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for example if the system squares the input, then
the output, O(t) = I 2(t), includes three quadratic
terms. A conventional (i.e. second order) power
spectrum of the function I 2(t) shows four peaks
(corresponding to the two interacting frequencies
f1, f2 together with their sum and difference
frequencies f1± f2), while the plot of bicoherence
displays clearly the quadratic coupling between
the two modes with frequencies f1 and f2

appearing in eq. (2.3); this result is illustrated
in figs. 2b and 3 for the cases of two data sets
of 128 and 1024 values, respectively. The com-
parison of the results from the two analyses
shows that bicoherence indeed reveals nonlinear
couplings but that the length of the time series
is a very critical point. In fact, in the former case
the relative error is around 20%, while using more
data it decreases to about 2%. This is the reason

why in the next paragraph we will propose a
method that is particularly suitable for scanty
series. Of course, this is only a simple example
to demonstrate that through the observation of
bicoherence, quadratic phase couplings can be
discriminated. The application of the method to
synthetic data of different origin has shown
that the bicoherence of signals associated with
linear processes is always flat, whereas signals
characterising nonlinear processes may produce
both flat and non-flat bicoherence depending
only on the presence of quadratic couplings. This
means that a flat bicoherence may come from
the signal analysis of both linear and nonlinear
processes, but if bicoherence is not flat then this
is necessarily due to the presence of quadratic
phase couplings in the signal, typical of a non-
linear process.
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Fig.  3.  Bicoherence of the function I(t)2 obtained from I(t) defined in eq. (2.3) with a1= a2= 1, f1= 0.64 Hz and
f2= 1.11 Hz. This is the case of a longer data set (1024 values); it shows that in this situation bicoherence gives a
better estimation of the quadratic frequency coupling with a smaller variance than the case of fig. 2b.
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2.2.  Spectral phase analysis for quadratic
coupling estimation

Synthetic tests showed that bispectral analysis
might become inaccurate when analysing short
time series, therefore to gain in faithfulness we
developed a different spectral method. In the
following, we will call it Spectral Phase Analysis
for Quadratic Coupling Estimation or briefly
SPAQCE, and use it essentially to verify
information provided by HOSA. This is a
nonlinear technique in the common sense that it
is a technique suitable to detect nonlinear
properties of time series. SPAQCE is a very direct
and, in some ways, crude method that mainly
applies the basic concept underlying QPC. We
know that a QPC occurs when two characteristic
processes are coupled by a nonlinear interaction
producing a new signal characterised by a phase
that is simply the sum and the difference of the
phases of the original signals. In practice, we

implemented a Fortran algorithm able to
compare, for each pair of frequencies, the sum
and the difference of their phases with the phases
corresponding to the sum and difference of  these
two starting frequencies, this algorithm can
also keep note of the corresponding spectral
amplitudes. An example of a quadratic coupling
in a short synthetic time series (composed of 128
data) produced by multiplying two sines with
slightly different periods (5.5 and 8.5 years) is
illustrated in fig. 4. Our software returns two
series of data: one for the sum of the phases
(white circles) and one for the difference (black
squares). Only points common to both groups of
data correspond to a quadratic coupling. An
appropriate choice of a threshold in the spectral
amplitudes discloses only the most significant
phase coincidences. Practically this threshold is
an appropriate percentage of all spectral
amplitudes as appears in figs. 4 and 7. As fig. 4
shows, this method gives good results even for
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Fig.  4.  The method of SPAQCE applied to a short synthetic signal composed of 128 data and consisting of a
product of two sines with periods of 5.5 and 8.5 years respectively. This figure evidences the quadratic phase
coupling in terms of overlapping between black squares (representing couplings in the differences of couples of
frequencies) and white circles (representing couplings in the sums of couples of frequencies). This diagram is
based on the largest 10% spectral amplitudes.
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short time series and the relative error associated
with this kind of procedure decreases to around
8% against 20% of HOSA.

3.  The case of geomagnetic field

From magnetohydrodynamic equations, it
follows that the geomagnetic field enjoys
deterministic and nonlinear properties. As a
matter of fact, some recent studies (e.g.,
Barraclough and De Santis, 1997; Hongre et al.,
1999) have shown some evidence that
geomagnetic data contain clear nonlinearities. In
the preceding section, we observed that HOSA
is a very robust method to detect nonlinearities
but it needs many data, which is not the case of
annual mean datasets. Nevertheless, we can apply
the technique of SPAQCE; with this kind of
analysis we are, in principle, able to observe
nonlinear couplings between the different
harmonics components into which a signal could
be split.

Therefore, we have estimated the bicoherence
and applied the SPAQCE technique as a
confirmation to HOSA results to geomagnetic
data. Analysed data consists of annual means of
the Y component of the secular variation of the
geomagnetic field measured in the U.K.; they
were formed by a combination of Greenwich,
Abinger and Hartland annual means obtained by
comparing the annual means from three suc-
cessive relocations of a British observatory (the
most recent at around 51°N, 355°E), properly
connected to coincide at their short overlapping
running periods. Hereafter we will refer to this
combination of time series simply as Hartland
observatory data, i.e. with the name of the most
recent observatory. Hartland observatory is
characterised by a long first-rate tradition in
monitoring the geomagnetic field. Therefore, the
selection of this observatory was made on the
basis of the quality of data; in particular we have
taken into account of the apparent low degree of
noise (statistically determined) and of the
significant length of time series if compared with
most observatories. Figure 5 shows the first-
differences of Y component annual means, it is
quite evident the potential presence of larger
experimental errors for years preceding 1870; this

is the reason why we have analysed only the last
128 years (1871.5 to 1999.5) of the combined
time series.

Considering that the aim of this work is to
study eventual nonlinear properties of the Earth’s
magnetic field of internal origin in terms of its
secular variation, we have given particular relief
to the Y component alone because, among the
three geomagnetic components, it is the least
dependent on the variations of the field of
external origin. This fact can be explained
expressing the Y component in terms of Spherical
Harmonics (SH). It is a matter of fact that the
magnetic effect of the solar activity perturbation
can be represented as a combination of zonal
harmonics and they are not contained in the SH
expression of Y.

Before starting with the bicoherence
estimation, we checked the value of time series
skewness verifying that is effectively non-zero.
Equation (2.2) contains averaging over many
statistical realisations of the same process. Since
we have only one record of data, we replaced
this average by the average on shorter segments
of the time series (i.e. using the direct method).
Therefore, after preliminary operations to obtain
reliable data to be analysed with bispectral
analysis we performed bicoherence for SV time
series. Bicoherences of Y component shows very
interesting results; a sharp peak corresponding
to high values of bicoherence are clearly

1825 1850 1875 1900 1925 1950 1975 2000

-4

-3

-2

-1

0

1

2 Hartland SV

Y
 [

n
T

/y
ea

r]

year
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observed in fig. 6. According to the interpretation
of bispectral analysis, this peak corresponds to a
quadratic coupling between two periodic signals
with periods of about 5 and 7 years. Results very
similar to HOSA are obtained considering
SPAQCE technique that returns some quadratic
couplings (fig. 7), one of which is between two
components with periods of 5.5 and 8.5 years.
We consider the latter results more reliable on
the basis of the estimated relative errors.

4.  Conclusions

The importance of this work lies in the
consideration that bispectral analysis is a formal
method that discloses out the presence of
nonlinearities in a time series. It is frequently
applied in physics with successful results (e.g.,
Hidalgo et al., 1995), but it has rarely been used
to study geophysical phenomena (e.g., Clark and
Bergin, 1997), especially those related to the
geomagnetic field. The most important fact we
deduce from our work is that bispectral analysis
is a powerful method to detect nonlinearities in
a sufficiently long time series. However, it may
suffer, like other nonlinear techniques, from the
shortness of time series such as the geomagnetic
datasets. To overcome this problem we proposed
a simple but more efficient nonlinear technique
such as SPAQCE that gives results with a lower
relative error. In fact, from the application of the
method to synthetic data, quadratic couplings
were always detected, thus confirming the
nonlinearity of the investigated SV time series.
In particular, the application of SPAQCE to
annual means of a U.K. combined geomagnetic
time series shows quadratic interactions between
pairs of characteristic times, specifically 5-6,
5-8 and 2-26 years, providing important clues
for the physical mechanisms generating the mag-
netic field in the outer core.

Certainly to reach more accurate results, more
data and analyses are needed, and this will be the
next step of this work, together with the search
for the physical origin of the quadratic coupling
in Y found here. At the moment, we can only make
a suggestive hypothesis: for example it may be
related to the variation of the length of the day,
whose decadal variation is in turn probably

correlated to electromagnetic and mechanic
couplings between core and mantle. Another
interesting hypothesis that would require more
investigation is that of possible effects due to the
differential rotation of the inner core.
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