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Abstract

The estimation of the earth transfer functions in MT prospecting method poses the greatest difficulty. As in the
seismic prospecting method, this task requires the development of advanced processing techniques. In order to
assess the performance of each technique, controlled synthetic data and different noise types, which simulate the
observed signals, are required. This paper presents a procedure to generate a wide-band noise-free electromagnetic
field to be used both for magnetotelluric and audio-magnetotelluric studies. Furthermore, an effort was made to
extend the simulation procedures to generally stratified and simple inhomogeneous earth structures. The discrete-
time magnetic field values are generated through the inverse Fourier transform of a continuous amplitude spectrum
and a sampling procedure. The electric field time series are obtained by the convolution of the magnetic field time
series, calculated in the interested frequency band, with a non-causal impedance impulse response. Polarized
fields, which are important when inhomogeneous media are considered, are also generated.

Key words magnetotelluric — electromagnetic field
simulation

1. Introduction

Computer simulation of electromagnetic field
components has frequently been used for testing
estimation techniques of the magnetotelluric
impedance tensor (Goubau et al., 1978; Mc-
Mechan and Barrodale, 1985; Yee et al., 1988;
Larsen et al., 1996) and for assessing pre-
processing methods of extraction of the stationary
and coherent part of signals corrupted by noise
(San Filipo and Hohmann, 1983; Lamarque,
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1999). The testing and assessing tasks are
generally accomplished in the frequency domain
through the power spectra of the measured
signals. Hence, the simulation is carried out in
the frequency domain.

Some authors have pointed out the numerous
problems arising in the frequency-domain
approach and have proposed estimation methods
in the time-domain (Kunetz, 1972; Ernst, 1981;
McMechan and Barrodale, 1985; Yee et al., 1988;
Spagnolini, 1994). Moreover, for some purposes
(e.g., noise identification and removal, filling
missing data, search for outliers) the time-domain
methods are also useful in a frequency-domain
context (Egbert, 1992; Egbert et al., 1992).
Therefore, these considerations justify the
interest in generating synthetic time series for
simulation purposes.

In the above-mentioned papers, the synthetic
data are constructed by means of different
techniques. Larsen et al. (1996) used measured
magnetic time series and an estimated 1D transfer
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function, modified by a distortion function, to
generate the electric time series in a test area.
Simple pseudo-random numbers were used to
represent the noise-free random components of the
time series (Lamarque, 1999) or the real and
imaginary parts of the incident magnetic field
components (Goubau et al., 1978). The latter
authors calculated the electric field spectra using a
bi-dimensional impedance tensor made by simple
complex relationships. San Filipo and Hohmann
(1983) and Yee et al. (1988) assume a function
which tends to zero exponentially with increasing
values of frequency to represent the main spectral
characteristics of the natural magnetic field,
simulating this behaviour through recursive digital
filters. These same authors generated the magnetic
time series by convolving a pseudo-random number
sequence with the filter coefficients.

Yee et al. (1988) computed the noise-free
electric field components by convolving in time the
magnetic time series with the impedance impulse
responses modelled as rational forms.

Uncorrelated noise is simulated by adding
random numbers either to the spectra (Goubau
etal., 1978) or to the time series (Yee et al., 1988;
Larsen et al., 1996). Some authors introduce the
noise by adding sinusoids to the signal. These are
characterized by frequencies and amplitudes which
are typical of industrial and atmospheric noise
(Lamarque, 1999).

In recent years, the English version of a sys-
tematic study on the MT synthetic data genera-
tion, carried out by Russian researchers, was
published (Varentsov and Sokolova, 1995). The
study was conducted within the framework of the
project to compare MT data processing tech-
niques, using synthetic data sets (COMDAT
Project). The discrete values of the spatial
components of the magnetic field spectrum,
considered in the MT frequency band, were
constructed by opportunely multiplying selected
random functions with a simple realistic field
structure (the form w" was used with a < 0). The
electric field spectra were calculated via arbitrary
one-dimensional scalar impedances. Finally, the
time series were obtained by a discrete inverse
Fourier transform of the spectral data approx-
imated by a piecewise constant function. Noise
components were added both in the frequency
and in the time domain.
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The present paper describes an approach
to generate wide-band electromagnetic time
series. The procedure adopted is represented
in a flow chart (fig. 1). The aim was to
simulate real acquisition techniques to be used
both in magnetotelluric and audio-magne-
totelluric studies. In this first work only noise-
free signals have been considered. The results
were then applied to 1D and simple non 1D
structures.

2. EM field simulation

The noise-free horizontal electromagnetic
field components are related by means of the
earth transfer functions in a two-input/two-
output linear system (Cantwell, 1960). In the
time-domain, the relation between the time-
varying input magnetic field A(¢) and the time-
varying output electric field e(¢) can be written
in terms of convolution equations among the
field components

e(t) =z, (0)xh(0) + 2, ()xh (1)
2.1)
e (D) = 2, ()*h,(1) + 2, (1)h (1)

where z_, z , z , z are the elements of the
impedance impulse response tensor. The
input and output channels in the system are
perturbed by added noise (Swift, 1967; Sims
et al., 1971) giving the observed field com-
ponents

e’ =e(t)+ n, (1)

e (n=e(n)+n, (1)
‘ ' (2.2)
h() = h (1) +n, (1)

h(1) = h(1) + 1, (0).

For application purposes, the continuous-time
convolutions of eq. (2.1) must be replaced by
discrete forms. This task can be accomplished
by applying the well-known classical
sampling theorem (Freeman, 1965) to low-
pass (anti-alias) filtered continuous signals.
In the following, the procedure adopted to
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Construction of a
continuous function
representing the magnetic
field spectrum H(w) in the
104-10* Hz frequency
range (eq. (2.5) and Fig. 2)

Construction of the
analytical expression for
the frequency domain
earth impedance Z (o) for
a stratified model (eq. (2.9))

A

Inverse Fourier
Transform of H(w)

Y

Inverse Fourier
Transform of Z(w )

Input the sub-
band to use in
simulation and

(eq. (2.7)) the resulting (eq. (2.12)
sampling rate
A \
Sarr_1pled Magnetie Sampled Impedance
Field Impulse
Response (eg. (2.8) |mpg|je Response
and Fig. 3a) (eq. (2.13) and Fig. 5)

Sampled Electric
Field Impulse
Response (Fig. 6)

Input a sequence
of Random
Numbers

Noise-Free Magnetic
Field Time Series

Noise-Free Electric
Field Time Series

Fig. 1. Flow chart outlining the procedure for generating the electromagnetic field time series.
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generate the noise-free electromagnetic field
components and the impedance impulse
response is illustrated.

2.1. H-field generation

The natural EM field is due to a variety of
causes. At frequencies above 6 Hz, roughly, it
is primarily due to spherics, which are EM
transients generated by lightning strokes. Below
6 Hz, the field is of geomagnetic and ionospheric
origin. The general features of the natural field
in different frequency bands have been illustrated
by many authors (Campbell, 1967; Filloux, 1973;
Serson, 1973; Mcnae et al., 1984; Labson et al.,
1985; Malergue et al., 1986).

The horizontal components of the field
present average amplitudes, generally increasing
with longer periods and reaching a value of about
10 nT at 10107 Hz. Moreover, two distinct
minima in the 1 Hz to 6 Hz and 1 kHz to 2 kHz
frequency ranges are observed. These minima
represent the separation between ionospheric
pulsations and spherics and between low-
frequency and high-frequency spherics, respec-
tively.

A smoothed, mean spectrum of the magnetic
field is shown in fig. 2. To obtain a relationship
which describes the field, the plotted behaviour
can be modelled through a linear time invariant
system.

Depending on the goal of the study (geo-
magnetic,magnetotelluric, audiomagnetotellurics
prospecting), the wide-band field is used in a
limited frequency range. This operating
characteristic influences the procedure for the
generation of the magnetic field time series. In
fact, in accordance with some authors (San Filipo
and Hohmann, 1983; Yee ef al., 1988), the
approximation of the frequency characteristics
of the field could be performed directly in the
discrete domain by writing the transfer function
of the system in terms of poles and zeros in the z
domain. An alternative is to transform the transfer
function from the continuous to the discrete
domain through a bilinear transformation
(Oppenheim and Schafer, 1975). In the present
study, these methods cannot be adopted for the
following reasons:
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Fig. 2. Smoothed, mean amplitude of the horizontal
electromagnetic field component variations simulated
through a linear time invariant system.

1) For each sub-band, the power of the H
field at frequencies greater than the Nyquist
one is not negligible, thus resulting in the
aliasing problem when the normal z transform
is used.

2) With regards to the bilinear z, this
method maps the complex continuous s plane
into the complex sampled z plane without
aliasing, but with a frequency distortion
(warping) (Oppenheim and Schafer, 1975).
This distortion, resulting from the non-linear
character of the transformation, is com-
pensated when the frequency-magnitude
curve of the system can be approximated by
a piecewise constant function in which only
two or three characteristic frequencies need
to be transformed without distortion (pre-
warping procedure) (Golden and Kaiser,
1964). This requirement is not fulfilled in the
simulation of a physical field which is
characterized by a complex morphology spec-
trum.

Considering the previous arguments against
the use of a discrete-time relationship, a
continuous function for the H field was
constructed. The sampled impulse response was
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obtained by a windowed integral Fourier
transform, computed with the time interval
dictated by the Nyquist frequency of the
studied band.

In particular, by using the poles and zeros
form in the continuous (Laplace) domain, a
system function can be expressed (Seshu and
Balabanian, 1959) as

(5= 50)(5=503) (5= 50,0)
(s_snl)(s_sﬂ)”'(

where, s = 0 + iw is the Laplace complex
variable with ¢ the damping factor of the
system and o the frequency. The complex
numbers s, are the m zeros while the s, are
the n poles of the function, respectively; K is
a scale factor.

The analytic properties of the function are
determined by its poles and zeros. In order for
the system to be stable, the poles must be in the
left half of the complex s-plane and any pole on
the imaginary i axis must be simple. Moreover,
since the network function must be real for a
real variable s, it follows that the poles and zeros
must either be real or in complex conjugate
pairs.

The simple zeros and poles and the complex
conjugate pairs in the numerator and denom-
inator of (2.3) can be factored in the following
form (Gatti et al., 1966)

H(s) (2.3)

§—S

pn

H(s) =
s 1 52 s |
[Hi(—l) H1(2+2§l+1
Soi ] ‘SOZ‘ ‘SOI‘
:Kl _:
s 52 s
H/_(—l) Hk(2+2xk+1
Sni . ‘s Pk ‘ ‘s Pk ‘
(2.4)

where the indexes i, j, [, k indicate the generic
simple zero, simple pole, complex conjugate
zero and complex conjugate pole, respectively.
The scale factor K, and the correction factors
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and y, are defined by the following equations:

[H,-Sm] [H:‘Soz‘z]
K =K 2
[T, [TL s |

gl == EK(SOI)
‘Soz‘
m(spk)
X =" :
‘Spk‘

If s = iw is inserted into eq. (2.4), the magnetic
field relationship in the frequency domain can be
obtained. The frequency and characteristics of the
poles and zeros are selected by considering that
simple poles and zeros introduce a 20 dB/decade
slope change in the function curve on a cartesian
decibel versus the log () representation (Bode’s
plot), while the complex conjugate pairs double
these changes. Moreover, the § and y, quantities
act as damping factors at each critical frequency.

Considering the magnetic field spectrum
shown in fig. 2, the downward change of the slope
(energy decrease) can be modelled by poles, while
the upward changes (energy increase) by zeros.
In particular, four poles and four zeros, with values
as shown in table I, were sufficient to represent
the changes in the spectrum. The simple poles and
zeros were chosen to be real, while for the
complex conjugate pairs, correction factors § = 1
and y, = 1 were adopted. These conditions are
equivalent in considering real double poles and
double zeros. For the sake of system stability, all
the poles have negative values. Finally, the scale
factor K, was purposely selected in order to obtain
a low frequency asymptote of 10 nT for the field
spectrum.

With the above conditions eq. (2.4) becomes

H(o) =

. 2 . 2

LS| [ T ] L A T

Z z Z, | 23 z 2,

1
2 2 ; 2
i -2 1| 2 -2 2
P D 123 123 Ds Py Py
(2.5)
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Table I. Characteristics of the poles and zeros of the system function used in the generation of the magnetic field
variations. All poles and zeros are real and shown as absolute values.

Critical frequencies Frequency value (Hz) Multiplicity
D, 0.002 Double
2, 0.006 Simple
2, 0.8 Double
D, 7.0 Double
Z 10.0 Simple
P, 100.0 Simple
zZ, 1500.0 Double
P, 20000.0 Double

The continuous-time impulse response of the EM
field can be obtained from the inverse Fourier
transform of eq. (2.5)

oo

: J H (o) e do.

2.6
o (2.6)

—oo

If @ and @, are the low-frequency and high-
frequency cut-off of the band, and H (w) and
H(w) the real and imaginary parts of the
complex field H(w), respectively, then eq. (2.6)
becomes

h(r)

= ;ﬂ_z’ [H,(CO) + iHi(a))] [cos (ot)+i sin (a)t)] do +
LT
2r

@

[H,(0)+iH ()] [cos (wr)+i sin (or)] do.
2.7

If At is the sampling period and 7 the maximum
acquisition time, being H (@) and H(w) even
and odd functions, respectively, the sampled
impulse response can be written as

h(nAt) =
= ;ji [H,(a))cos(nwAt) - Hi(a))sin(na)At)] do.

2.8)
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Both for the numerical testing of the procedure,
discussed at the end of Section 2.3, and for the
generation of polarized fields in Section 3, the
magnetic field in the frequency range 0.0005-5 Hz
has been computed. The latter range is adequate
for investigating the earth models considered. The
resulting sampling period and maximum period
were 0.1 s and 2000 s, respectively.

The sampled magnetic field impulse response,
calculated from eq. (2.8), is shown in fig. 3a. The
Discrete Fourier Transform (DFT) of the impulse
response (fig. 3b) is in perfect agreement with the
continuous magnetic field amplitude spectrum,
within the frequency range of interest.

In order to generate a magnetic field time series,
the impulse response of fig. 3a was convolved with
a sequence of pseudo-random numbers with a zero
mean and unity-variance. The DFT of the resulting
time series is shown in fig. 4.

The generation of the electric field could be
performed in the frequency domain as the product
of H(w) and Z(w). However, if eq. (2.5) for H(®)
and, for example, eq. (2.9) for Z(w) are considered,
their product is a very complex function; thus, its
inverse Fourier transform is performed with
difficulty. Hence, it was decided to inverse transform
the two functions separately, thereby obtaining the
electric field by a convolution procedure in the time
domain.

The determination of the discrete-time impe-
dance impulse response which produces the same
outputs as the continuous-time counterpart
remains a problem which is thoroughly and
elegantly discussed by Egbert (1992). As the
continuous-time impedance impulse response is
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Fig. 3a,b. a) Impulse response of the electromagnetic field in the frequency range 0.0005-5 Hz, sampled every
100 ms; b) theoretical amplitude spectrum of the magnetic field in the frequency range considered (continuous

line) and DFT of the impulse response in a) (dashed line).

102

MAGNETIC FIELD (nT)

10°

10°

107!

10 102

FREQUENCY (Hz)

Fig. 4. Amplitude spectrum of the magnetic time se-
ries generated by the convolution of the impulse
response of fig. 3a with a sequence of pseudo-random
numbers.
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unbounded, the non-causality of the
corresponding discrete form generally follows.
Hence, the discrete-time impulse response can be
estimated from the frequency-domain impedance by
band limiting and sampling it, as well as, by taking
into consideration the negative time values. This
procedure, applied to a stratified model, is presented
in the following paragraph.

2.2. Impedance impulse response

The analytical expression of the frequency
domain MT impedance, relating magnetic and
electric field components, can be written for a
stratified earth as (Kunetz, 1972)

Cip

Z(w) = —iw\/

1+ 22q e—Zam\/—4n[{x)
m

m=1

4w
(2.9)

L owp = o
=e 4 / ! 1 + ZEqme—Zumv—Muw
| 4

m=1
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where the first term on the right hand side
represents the impedance over a half space of
constant resistivity p,, the second one results
from the reflections of the g, images on the
boundaries between the layers and a = #,/,/10p,,
h, being the thickness of the first layer (see
Kunetz, 1972, for the determination of the
images from the reflection coefficients).

The corresponding continuous time impulse
response can be written as

L
=— iotdwm, 2.10
Z(t) 2”£Z(a))e dw (2.10)

If the low-frequency and high-frequency
limits of the band are indicated, as previously,
with w, and w, , respectively, then eq. (2.10)
becomes

Z(t) =

~wp -
—-i— | _ A .
e 4\“‘ 4 1 ]+2§:qme 2am~ -4mio ezwtdw+
| 4T

m=1

op

o .
| 1+ 226] e—2am\‘ ~4mio edo.
\ dn "

m=1
(2.11)
By integrating by parts, eq. (2.11) yields

W

\//)132 ff\/w cos Z

——owt|do +
2()

z(t) =

@p

o on

.
— b4
+2 E quw“(ue 2am 210 cos[—4 -

m=1 ),

— ot = 2am\ 27w ]dw

(2.12)

By placing w, = 2n/T and w, = n/At, with At
and T the sampling period and the longest
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period, respectively, the solution of the integrals
on the right side of (2.12) leads to the following
algorithm for the discrete-time impedance
impulse response for a stratified earth:

T

NI A
z(nAt) = = Vocos| — - nwAt|ldw +
. 2(n) i 4
T
.

e T
+ 22 q, f\s’we’z‘“"“”‘” 003{4 - nwAt -

2
T

m=1

—2am~2nw |dw.

(2.13)

The above expression can be easily calculated
numerically for a given sequence of resistivities
and thicknesses. Figure 5 shows an example of
the impulse response for an H-type three-layer

40 Earth Model

16 Q°m

1 225
20 —

16

20 —|

IMPEDANCE IMPULSE RESPONSE (mV/km/nT)

40
I I I
4 0 4

TIME LAG (s)

Fig. 5. Non-causal discrete-time impedance impulse
response for a three-layer earth model (shown in the
upper part of the figure).
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earth (the model is shown in the same figure).
The impulse response shows a structure which
is mainly localized around the origin, with
oscillating decreasing values. Moreover, a
different behaviour between positive and negative
time lags is observed.

The procedure previously adopted for layered
earth models could be extended and applied to
more complex situations, the analytical solutions
of which are available, e.g., vertical discontinuity
(d’Erceville and Kunetz, 1962), vertical dyke
(Rankin, 1962), anisotropic stratified sequence
(Douglas et al., 1967).

2.3. E-field generation

The electric field time series is calculated by
convolving in time the magnetic field time series
with the earth impulse response (eq. (2.13)). The
procedure adopted for the convolution operation
requires further discussion.

If M values for h(Af) and N values for z(At)
are considered, with N < M, the e(Ar) resulting
from the convolution will contain M + N — 1
values. However, there are (N — 1) values both at
the beginning and at the end of the convolved
series which are not fully constrained by the
data. A solution to this problem is to strip off
these edge regions from the data, thus obtaining
M — N + 1 e(At) values. Moreover, in order to
generate magnetic and electric field time series
of the same length as well as a causal electric
field, the (N — 1)/2 values at the beginning and at
the end of h(Ar) must be discarded. Thus, the
value e(N) will be generated by A[(N + 1)/2].

Figures 6 and 7 show the impulse response
and the spectral amplitudes of the noise-free
electric field for the 1D structure of fig. 5. For
the generation of the electric field impulse
response 20000 samples of the magnetic field
impulse response, together with 4001 samples
of the impedance impulse response were used.

For the purpose of numerically testing the
procedure, the impedance transfer function
Z(Aw), obtained as E(Aw)/H(Aw) for a single
time series, has been computed. The computed
discrete impedance transfer function (fig. 8) fits
the theoretical curve well in all but low frequency
values, due to the number of samples used.
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Fig. 6. Electric field impulse response resulting from
the convolution in time of the magnetic field impulse
response (fig. 3a) with the non-causal impedance
impulse response of fig. 5.
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Fig. 7. Amplitude spectrum of the electric field gen-
erated by the magnetic field time series.
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earth (the model is shown in the same figure).
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oscillating decreasing values. Moreover, a
different behaviour between positive and negative
time lags is observed.

The procedure previously adopted for layered
earth models could be extended and applied to
more complex situations, the analytical solutions
of which are available, e.g., vertical discontinuity
(d’Erceville and Kunetz, 1962), vertical dyke
(Rankin, 1962), anisotropic stratified sequence
(Douglas et al., 1967).

2.3. E-field generation

The electric field time series is calculated by
convolving in time the magnetic field time series
with the earth impulse response (eq. (2.13)). The
procedure adopted for the convolution operation
requires further discussion.

If M values for h(Af) and N values for z(At)
are considered, with N < M, the e(Ar) resulting
from the convolution will contain M + N — 1
values. However, there are (N — 1) values both at
the beginning and at the end of the convolved
series which are not fully constrained by the
data. A solution to this problem is to strip off
these edge regions from the data, thus obtaining
M — N + 1 e(At) values. Moreover, in order to
generate magnetic and electric field time series
of the same length as well as a causal electric
field, the (N — 1)/2 values at the beginning and at
the end of h(Ar) must be discarded. Thus, the
value e(N) will be generated by A[(N + 1)/2].

Figures 6 and 7 show the impulse response
and the spectral amplitudes of the noise-free
electric field for the 1D structure of fig. 5. For
the generation of the electric field impulse
response 20000 samples of the magnetic field
impulse response, together with 4001 samples
of the impedance impulse response were used.

For the purpose of numerically testing the
procedure, the impedance transfer function
Z(Aw), obtained as E(Aw)/H(Aw) for a single
time series, has been computed. The computed
discrete impedance transfer function (fig. 8) fits
the theoretical curve well in all but low frequency
values, due to the number of samples used.
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Fig. 6. Electric field impulse response resulting from
the convolution in time of the magnetic field impulse
response (fig. 3a) with the non-causal impedance
impulse response of fig. 5.
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Fig. 7. Amplitude spectrum of the electric field gene-
rated by the magnetic field time series.
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Fig. 8. Fit of the impedance transfer function gen-
erated by synthetic data (solid line) to the theoretical
curve (dashed line) for the three-layer model in fig. 5.

3. Field polarization

The fields simulated through the previously
described procedure were generated by
considering a horizontally stratified isotropic
half-space. In this case, it is well-known that the
polarization of the waves is not important
(Porstendorfer, 1975). On the contrary, in an earth
having a complicated electrical structure, the
measured electric and magnetic fields depend
strongly on the orientation of the primary electric
and magnetic fields. The effect of an electrical

inhomogeneity varies as the orientation of the
primary field varies. Thus, the total field
polarization is a function of the current sources
in the ionosphere. Since, in general, the location
of the sources changes with time, or several
sources may contribute simultaneously to the
field, the total electromagnetic field observed
along arbitrary directions often changes with time
at a given frequency.

The representation of the impedance as a
tensor instead of as a scalar quantity was de-
veloped to take into account the orientation of
the primary field and the structural complexities.

In considering the most general polarization
of the magnetic field, that is the elliptical one,
an electric field, itself elliptically polarized
(Porstendorfer, 1975), results.

A 2D structure is now considered and
measuring axes which coincide with the principal
axes of the anisotropy tensor, are assumed.
Remembering that any elliptically polarized
magnetic wave can be synthesized from two
linearly polarized waves, the field may be divided
into two parts, parallel and perpendicular to
the strike of the structure, respectively. In this
particular case, each of the electric field com-
ponents relates to the perpendicular magnetic
field component alone. Thus, the magnetotelluric
egs. (2.1) become

e () =2z, (O*h (0

e (t) =z, (O)*h (1)

where z, and z,, are the impedance impulse
responses of two different 1D models.

Table II. Two 1D layered earth sections representing a weakly anisotropic stratified structure, used to generate
the impedance impulse response along the anisotropy directions.

z

Xy

Resistivity (2 -m) Thickness (km)

Resistivity (2 -m) Thickness (km)

16 1
1 0.75
16

19.36 1
1.21 0.75
19.36
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Fig. 9. Horizontal components of the time series filtered at 5 s and total field polarization of short sections. The
ellipses are centered at each of the sections and are in the same scale as the corresponding field.
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In summary, to preserve the real field
behaviour it must be reminded that it presents
(Grillot, 1975):

1) An impulsive nature, occurring in short
bursts.

2) A distinct, randomly variable, polarization
in each burst.

3) More generally, an elliptic polarization.

Together with the previous characteristics
of the fields, the field components must be
correlated to each other.

In order to satisfy the previous requirements,
the magnetic time series have been modulated
with a pseudo-random sequence, uniformly
distributed in the interval (- 1,1). This modified
time series was assumed to represent one
component of the field. The other component was
obtained by modulating the same initial field with
a sequence of numbers, complementary to the
pseudo-random ones.

As earth model, a stratified anisotropic
structure, characterized by the two 1D models
shown in table II has been selected. The electric
field components were generated by the pro-
cedure discussed in the previous sections.

In accordance with Grillot (1975), the
occurrence of the field characteristics was tested
through a band-pass filtering of the time series.
Figure 9 shows a 1600 s specimen of the hori-
zontal components of the field time series filtered
with a band-pass centered at 5 s and a bandwidth-
centre frequency ratio of 0.3. In the figure the
polarization ellipses of the total horizontal field
vectors for short sections of the data have also
been plotted.

The figure shows ellipses well defined over
2-3 cycles with polarizations changing from
section to section. As expected, the magnetic and
electric ellipses are perpendicular.

Considering independent sets of field
components at a given frequency, which occurs
when the sections have different polarizations,
is the basis for any statistical estimation of the
earth impedances.

4. Conclusions

A procedure to generate synthetic wide-band
electromagnetic time series has been developed
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and described in detail. It attempts to take into
account and to reproduce the main characteristics
of the actual electromagnetic field. The main
intent was to carry out a simple yet accurate MT
experiment simulation, consisting in the inter-
action of a synthetically generated magnetic field
with assigned resistivity models of the under-
ground. These models were complex with regards
to their analytical representation. The electric
field time series were calculated in the time-
domain through a non-causal impedance impulse
response. The procedure was extended to simple
inhomogeneous structures considering the field
polarizations.

Further studies will include:

1) More complex earth structures.

2) The effects of different noise types.

3) The relative performances of different
statistical approaches for a reliable impedance
estimation.

REFERENCES

CAMPBELL, W.H. (1967): Geomagnetic pulsations, in Physics
of Geomagnetic Phenomena, edited by S. MATSUSHITA
and W.H. CAMPBELL (Academic Press, New York),
vol. 2, 821-909.

CANTWELL, T. (1960): Detection and analysis of low
frequency magnetotelluric signals, Ph.D. Thesis, MIT,
Boston.

D’ERCEVILLE, I. and G. KUNETZ (1962): The effect of a fault
on the earth’s natural electromagnetic field, Geophysics,
27, 651-665.

DOUGLAS, P., D.P. O’BRIEN and H.F. MORRISON (1967):
Electromagnetic fields in an n-layer anisotropic half-
space, Geophysics, 32, 668-677.

EGBERT, G.D. (1992): Noncausality of the discrete-time
magnetotelluric impulse response, Geophysics, 57, 1354-
1358.

EGBERT, G.D., J.R. BOOKER and A. SCHULTZ (1992): Very
long period magnetotellurics at Tucson Observatory:
Estimation of impedances, J. Geophys. Res., 97 (B11),
15,113-15,128.

ERNST, T. (1981): A comparison of two methods of the
transfer function calculation using the least-square
criterion in time and frequency domain, in Publ. Inst.
Geophys. Pol. Acad. Sci., 143, 13-24.

FIiLLOUX, J.H. (1973): Techniques and instrumentation for
study of natural electromagnetic induction at sea, Phys.
Earth Planet. Inter., 7, 323-338.

FREEMAN, H. (1965): Discrete-Time Systems (John Wiley &
Sons, New York) pp. 241.

GATTIL E., PF. MANFREDI and A. RIMINI (1966): Elementi di
Teoria delle Reti Lineari (Casa Editrice Ambrosiana,
Milano), pp. 351.



Generation of synthetic wide-band electromagnetic time series

GOLDEN, R.M. and J.F. KAISER (1964): Design of wideband
sampled-data filters, Bell. Syst. Tech. J., 43, 1533-1546.

GOUBAU, W.M., T.D. GAMBLE and J. CLARKE (1978):
Magnetotelluric data analysis: removal of bias, Geophysics,
43, 1157-1166.

GRILLOT, L.R. (1975): Calculation of the magnetotelluric tensor
impedance: analysis of band-limited MT signal pairs,
Geophysics, 40, 790-797.

KUNETZ, G. (1972): Processing and interpretation of
magnetotelluric soundings, Geophysics, 37, 1005-1021.

LABSON, VE, A. BECKER, H.E. MORRISON and U. CONTI (1985):
Geophysical exploration with audiofrequency natural
magnetic fields, Geophysics, 50, 656-664.

LAMARQUE, G. (1999): Improvement of M T data processing using
stationary and coherence tests, Geophys. Prospect., 47,
819-840.

LARSEN, J.C., R L. MACKIE, A. MANZELLA, A. FIORDALISI and
S. RIEVEN (1996): Robust smooth magnetotelluric transfer
function, Geophys. J. Int., 124, 801-819.

MACNAE, J.C., Y. LAMONTAGNE and G.F. WEST (1984): Noise
processing techniques for time-domain EM systems,
Geophysics, 49, 934-948.

MALERGUE, G., J. AIsSA, C. HERISSON and J. RAINAUD (1986):
Recent developments in the magnetotelluric prospecting
method, First Break, 4, 23-28.

MCMECHAN, G.A. and I. BARRODALE (1985): Processing
electromagnetic data in the time domain, Geophys. J. R.
Astron. Soc., 81, 277-293.

OPPENHEIM, A.V. and R.W. SCHAFER (1975): Digital

301

Signal Processing (Prentice-Hall International, London),
pp- 585.

PORSTENDORFER, G. (1975): Principle of Magneto-Telluric
Prospecting (Gebruder Borntraeger, Berlin-West, Stuttgart),
pp. 118.

RANKIN, D. (1962): The magnetotelluric effect on a dike,
Geophysics, 27, 666-676.

SAN FILIPO, W.A. and G.W. HOHMANN (1983): Computer
simulation of low-frequency electromagnetic data
acquisition, Geophysics, 48, 1219-1232.

SERSON, P.H. (1973): Instrumentation for induction studies on
land, Phys. Earth Planet. Inter., 7, 312-322.

SESHU, S. and N. BALABANIAN (1959): Linear Network Analysis
(John Wiley and Sons, New York).

Sims, W.E., EX. BOsTICK Jr. and H.W. SMITH (1971): The
estimation of magnetotelluric impedance tensor elements
from measured data, Geophysics, 36 (5), 938-942.

SWIFT, C.M. Jr (1967): A magnetotelluric investigation of an
electrical conductivity anomaly in the southwestern United
States, Ph.D. Thesis, MIT, Boston.

SPAGNOLINI, U. (1994): Time-domain estimation of MT
impedance tensor, Geophysics, 59 (5), 712-721.

VARENTSOV, .M. and E.YU. SOKOLOVA (1995): Generation of
synthetic magnetotelluric data, Izvestiya, Phys. Solid Earth,
30, 554-562.

YEE, E., PR. KOSTENIUK and K.V. PAULSON (1988): The
reconstruction of the magnetotelluric impedance tensor:
an adaptive parametric time-domain approach, Geophysics,
53, 1080-1087.



