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HIGHLIGHTS

e Eight PM1p-bound PAHs were moni-
tored for 1 year in North-Eastern
Italy.

e 21 stations of varying categories were
selected: rural, urban, traffic,
industrial.

e Seasonal trends and space distribu-
tions of PAH were discussed.

e PAHs were examined in relation to
other air pollutants and weather
conditions.

e Peculiar features of PAH pollution in
the Region were characterized.
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The Veneto Region extends for ~18.4-10% km? in the northeastern part of the Po Valley and includes
mountains, hills, plain and coastal environments with very different and discontinuous anthropogenic
pressures. Although many efforts have been made to mitigate air pollution, the European air quality
standards for atmospheric pollutants are frequently breached. This study investigates the levels of eight
PMjp-bound PAHSs collected in 21 stations categorized as rural background, urban and suburban back-
grounds, traffic and industrial hot-spots during one year (2011). Data were statistically processed to
detect the PAH seasonal trends, their relationship with other air pollutants and micro-meteorological
parameters and the space variations at a regional scale. Results show that PAHs levels are relatively
high in the largest part of the region, with 10 sites exceeding the levels of BaP targeted by the European
legislation. Two sites exhibited anomalously high PAHs concentrations and this anomaly became even
more evident when considering the population density as a surrogate for the potential anthropogenic
pressure. The PAHs levels were found directly proportional to other gaseous pollutants (CO, NO, NO;,
SO,) suggesting common polluting sources. The analysis of time trends of PAH concentrations reveals
significant coincidences throughout the region, i.e. simultaneous changes are observed in most sites as a
consequence of similar emission sources and accumulation/removal processes. In this scenario, the
control strategies currently imposed at local level (e.g. traffic limitations) have proven scarcely effective
in mitigating air pollution and a real coordination at regional or even interregional level cannot be
further postponed. Peculiar features of the PAHs pollution in the Veneto were also identified and some
measures for protecting the human health were suggested.
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1. Introduction

The polycyclic aromatic hydrocarbons (PAHs) are mainly formed
during the incomplete combustion and pyrolysis of organic mate-
rial (Finlayson-Pitts and Pitts, 2000). PAHs are ubiquitously
distributed in the troposphere due to natural combustions (e.g.
volcanic activities, wildfires), although their presence in densely
populated areas is largely due to anthropogenic processes including
mobile sources, domestic heating, waste incineration, asphalt
production, agricultural biomass burning, oil refining and many
industrial activities (Bostréom et al., 2002; Marchand et al., 2004;
Ravindra et al., 2008; Zhang and Tao, 2009). Being generally par-
titioned between the gaseous and particulate phases (e.g. Lammel
et al, 2009), the 4-, 5- and 6-ring PAHs are predominantly
particle-bound due to their high molecular weights and low vola-
tilities. Despite their well documented toxic potential on humans
and ecosystems (e.g. WHO, 2000; Billet et al., 2008; Andrysik et al.,
2011; Tarantini et al.,, 2009; IARC, 2010), these compounds have
been regulated only in few countries. In Europe, the Directive 2004/
107/EC included the IARC class 1 human carcinogen benzo(a)pyr-
ene (BaP) as indicator of particulate carcinogenic PAHs, by estab-
lishing an annual target value of 1 ng m~2 in PMyo. In addition, the
Directive also requires that other relevant PAHs shall be monitored
in a limited number of measurement sites.

The European emission inventories (EEA, 2012) indicate that
Italy is one of the EU-27 member States most contributing (>10%)
to the emissions of total PAHs in 2010 along with Belgium, Ger-
many, Poland and Spain and the Italian emission inventories
(ISPRA, 2012) reported that Veneto is among the five Regions most
contributing to the atmospheric PAHs in Italy. This worrying sce-
nario is largely confirmed by experimental data evidencing that the
BaP European air quality target value is breached in many locations
of Veneto (Rampazzo et al., 2008; ARPAV, 2010, 2011, 2012). Since
BaP is reported frequently exceeding the target values in the largest
cities (ARPAV, 2012) with the subsequent increasing risk for living
people, the Veneto Region administration is urged to develop and
implement control and mitigation strategies.

Nevertheless, the so far available data on PMg-bound PAHs at
regional scale remain incomplete and many questions still need to be
addressed. This study was carried out to measure the levels of eight
PMjg-bound PAHs collected in 21 sampling stations distributed all
over the region and categorized as rural, urban and semi-urban
backgrounds, traffic and industrial hot spots. Analyzed PAHs were
chosen to be consistent with the European Directive and include the
higher molecular weights congeners of the US-EPA priority pollutant
list, i.e. those mainly partitioned in the particulate phase. The
comprehensive dataset discussed in this study has been statistically
investigated to detect the PAH seasonal trends, their relationship
with other air pollutants and micro-meteorological parameters and
their space variations at a regional scale. Results are discussed to
identify the critical features of the PAHs pollution in the Veneto and
help outlining some measures to protect the human health.

2. Study area

Veneto (Fig. 1a), one of the 20 administrative Regions of Italy, is
located in its northeastern part and extends over ~18.4-10° km?,
with a maximum extension of ~210 km on the North—South and
~195 km on the West—East axes. From a geomorphological point
of view, it includes very different environments ranging from the
northern Alpine zone (29% of the territory), to the intermediate hill
zone (15%), the southern lower plain (56%) and the eastern coast-
land (Fig. 1b). The northern part is mainly occupied by mountains
and hilly areas largely covered by grasslands and forests, where the
scarce urbanization, population density and industrialization are

mainly concentrated in the valleys. In contrast, to the South, Veneto
extends over the eastern part of the Po Valley, where some large
cities (Venice-Mestre, Padova, Vicenza and Verona) are spaced by a
number of scattered urban settlements, industrial areas and agri-
cultural/rural environments. In this area, the high anthropogenic
pressure combined with peculiar weather conditions favor
pollutant accumulation and nucleation events (e.g. Hamed et al,,
2007; Squizzato et al., 2013), which are mainly responsible for
the highest levels observed for many atmospheric pollutants (EEA,
2013).

In 2011 the Veneto population distributed in 7 Provinces and
581 Municipalities, which are very different in surface extension,
geomorphology, population density and industrialization levels
(Table 1) counted ~4.9 Million inhabitants: ~4 Million with an age
above 20 years, ~879,000 from 1 to 19 years and ~94,000 below 1
year (ISTAT, 2012).

3. Materials and methods
3.1. Sites selection

In 2011 (January—December) a sampling campaign was carried
out by ARPAV (Veneto Agency for Environmental control) in 21 sites
of the Region to collect PMjp on daily filters for PAHs analyses. The
sites were included in the Regional plan for the protection and
renewal of the atmosphere (Veneto Region, 2013). The map of
selected sites is reported in Fig. 1a and b, along with the Province
boundaries and the terrain relief map, respectively. Table 1 sum-
marizes some site characteristics. A total of 4 rural background sites
(RUR) defined by the EU Directive 2008/50/EC have been selected:
BL-RUR is located in an alpine pass at 2020 m a.s.l. and is repre-
sentative of high mountain environments; PD-RUR, VE-RUR and
RO-RUR are located in agricultural areas of the Po Valley not
directly influenced by heavy traffic roads, urban or industrial set-
tlements. Eight urban (URB) and two suburban (SUB) background
sites were placed in high density residential areas. Being broadly
representative of city-wide background levels of air pollutants, URB
and SUB sites are thus very important for assessing the potential
health hazard for living people. Three roadside sites were selected
as automotive traffic hot-spots (TRA), being located near heavy
traffic roads in the three most populated cities of the Region
(Venice-Mestre, Padova, Verona). Finally, four sites in the PD
province were chosen as representative of different industrial areas
(IND): the station PD-IND1 is located in an area near Padova
downwind to the emissions of a steelworks; PD-IND2 and PD-IND3
are placed in an urbanized area of Padova close to a large municipal
solid waste incinerator (MSWI); PD-IND4 is sited in the town of
Monselice near a cement plant.

3.2. Samplings and analytical procedures

Samplings were carried out according to EN 12341:1998
standard on quartz fiber filters (Whatman QMA, GE Healthcare,
USA) and were continuous for 24 h starting at midnight. PMyg
masses were measured automatically, using beta radiation
attenuation monitors (BAMs), or manually, following the stan-
dard gravimetric determination with a micro-balance (sensibility
0.1 pg) at constant temperature (20 + 1 °C) and relative humidity
(50 £ 5%). Careful validations studies were conducted between
the gravimetric and BAMs methods before the sampling
campaign. In addition, several tests were also routinely per-
formed (at least 1 test every week) to constantly check the BAMs.
The validations include pairs of filters measured with both
methods and the results were then verified to be within the
variation margins imposed by the technical regulations in force
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Fig. 1. Map of selected sampling sites showing also the boundaries of the Provinces, (a) the terrain relief (b), the annual (c) and seasonal (d—g) average concentrations measured for

all analyzed congeners and sites.

UNI EN 12341:2001. Generally, good agreement between the two
methods was found. The list of used methods for each site is
available in Supplementary material Table 1. Sampled filters were
stored in clean Petri slides in the dark and at —20 °C until
extraction to avoid PAH degradation and losses.

Eight PMjg-bound PAHs including benz(a)anthracene (BaA),
chrysene (Chry), benzo(b)fluoranthene (BbF), benzo(k)fluo-
ranthene (BKkF), BaP, indeno(1,2,3-c,d)pyrene (IP), dibenzo(a,h)
anthracene (DBahA) and benzo(g,h,i)perylene (BghiP) were iden-
tified and quantified after solvent extraction. A 2695 series Alliance
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Table 1
Characteristics of the selected sampling sites and number of analyzed samples.

N  Province Municipality (location)  Site acronym and Lat.—Long.

Height (m) Site characteristics®

Nr of analyzed

categorization® samples
1 BL Falcade (Passo Valles) BL-RUR 46339 N—11.802 E 2020 Alpine pass distant from direct sources 190
2 BL Belluno BL-URB 46.143 N—12.218 E 401 Public park in the city center (37,000) 190
3 BL Feltre BL-SUB 46.030 N—11.905E 263 Residential area (21,000) 201
4 TV Treviso TV-URB 45.672 N—12.238 E 15 City center (84,000) 127
5 VI Vicenza VI-URB 45.560 N—11.539 E 36 City center (116,000) 175
6 VI Schio VI-URB2 45714 N-11.368 E 190 City center (40,000) 181
7 VR Legnago VR-URB 45183 N—11.311 E 25 City centre (25,000) 161
8 VR Verona (Cason) VR-SUB 45.462 N—10.911 E 91 Agricultural area distant from direct sources (270,000) 169
9 VR Verona VR-TRA 45.444 N—-10.963 E 62 City centre, near a major road (264,000) 109
10 PD S. Giustina in Colle PD-RUR 45.594 N—11.909 E 24 Agricultural area away from direct sources (7000) 178
11 PD Padova (Mandria) PD-URB 45.371 N—11.841 E 13 Residential area (215,000) 160
12 PD Padova (Arcella) PD-TRA 45.433 N—11.890 E 11 Major road in residential/commercial area of Padova 180
(215,000)
13 PD Padova (Granze) PD-IND1 45378 N—11.940 E 8 Residential area of Padova (215,000) near a steel mill 176
14 PD Padova (2) PD-IND2 45415 N—11.907 E 10 Residential area of Padova (215,000) near a MSWI 179
15 PD Padova (1) PD-IND3 45395 N—11.909 E 10 Residential area of Padova (215,000) near a MSWI 152
16 PD Monselice PD-IND4 45.244 N—-11.750 E 14 Residential area (18,000) near a cement plant 132
17 VE Concordia Sagittaria VE-RUR 45.694 N—12.786 E 5 Agricultural area away from direct sources (11,000) 125
18 VE Venice (Mestre Bissuola) VE-URB 45498 N—12.261 E 1 Public park in the city centre of Mestre (271,000) 157
19 VE Venice (Mestre v. VE-TRA 45490 N—12.218 E 4 Mestre residential area (271,000) near expressway 182
Tagliamento) and major roads
20 RO Badia Polesine RO-RUR 45.103 N—11.554 E 8 Agricultural area away from direct sources (11,000) 178
21 RO Rovigo RO-URB 45.039 N—11.790 E 3 City centre (53,000) 175

2 Categorization defined by EEA (1999); RUR = rural background; URB = urban background; SUB = suburban background; TRA = traffic hotspot; IND = industrial.
b The population number is provided within brackets and refers to the entire Municipality. MSWI: municipal solid waste incineration plant.

HPLC (Waters, USA) with quaternary pump, auto-sampler, micro-
degasser, column thermostat and interfaced with a 2475 multi A
fluorescence detector was used. From 1 to 3 filters were ultrason-
ically extracted together for 15 min in 5—15 mL of acetonitrile
(HPLC grade, >99.9%, Sigma—Aldrich, USA) and the extracts were
then filtered on PTFE syringe filters (porosity 0.2 um). HPLC set-up
was the following: reversed phase chromatographic column (LC-
PAH, 15 cm x 3 mm, 5 pm, Supelco, USA) at a temperature of 25 °C,
injection volume 5 pL, mobile phase system consisting in a ramp
mixture of ultrapure H,O and acetonitrile at a flow rate of
0.5 mL min~L. Some additional information about the adopted
analytical methods are provided as Supplementary material
Table 2.

3.3. QA/QC

Five diluted aliquots of a standard containing the EPA’s 16 PAHs
(Ultra Scientific, USA) were used to calibrate the instrumental
response. The analytical method was validated by systematically
measuring the certified reference material ERM CZ100 PAHs (JRC,
Belgium): recovery efficiencies ranged between 75% and 125%. The
limit of detections (LODs) were calculated measuring surrogate
standards with 0.5 ng mL~’. Considering the average air volume
sampled, the calculated LODs were 0.02 ng m~> for all the conge-
ners. Blank filters were prepared and analyzed together with the
samples, verifying that PAHs values were under the LODs.

3.4. Micro-meteorological parameters and automatic measure of
atmospheric pollutants

In a number of sites the micro-meteorological parameters were
systematically recorded with automatic instruments: air tempera-
ture (°C), solar radiation (W m~2), relative humidity (%), atmo-
spheric pressure (mbar), precipitation (mm) and the average
speeds of the prevailing winds (m s~!). The following chemical
parameters were also automatically determined: PM; 5 with BAMs,
CO following the EN 14626 standard method based on non-
dispersive infrared spectroscopy, NO, NO,, NOy according to EN

14211 standard method based on chemiluminescence, SO, with the
fluorescence method EN 14212 and O3 using ultraviolet photometry
described in EN 14625 standard. A comprehensive list of measured
parameters in each site is provided in Supplementary material
Table 1.

3.5. Toxic and mutagenic equivalency factors

BaP was historically considered the most carcinogenic PAH and
is often used as an indicator of human exposure to PAHs. However,
virtually all congeners are recognized having potential carcinogenic
effect and the toxic equivalency factor (TEF) method has been
largely used to assess the carcinogenic potential of PAHs mixtures
(Bostrém et al., 2002). BaP-like toxic equivalents (BaPrgq) are then
calculated as:

BaPrgq = ) (PAH; x TEF;)

where PAH; and TEF; are the concentration and TEF for the i
congener. TEFs from Nisbet and LaGoy (1992) were used as the
most reliable indexes for studies on the toxicity of PAHs in atmo-
spheric particulate matter and to be consistent with similar recent
studies (e.g., Silva et al., 2010; Han et al., 2011; Delgado-Saborit
et al.,, 2011; Masiol et al., 2012a; Cristale et al., 2012; Zhou and
Zhao, 2012). Similarly, just with the replacement of TEF with MEF
(Mutagenic Equivalency Factors) proposed by Durant et al. (1996),
the mutagenicity related to BaP (BaPygq) was also calculated.

4. Results
4.1. Overview on PMjg levels

In 2011, PM1o concentrations in ten sampling stations exceeded
the annual average concentration (AAC) limit fixed by the 2008/50/
EC Directive: 40 ug m~> averaged over a calendar year (Table 2). In
five sites the values were equal to or below this limit, but in all cases
above the target values of 20 pg m~3. In the alpine site BL-RUR the
lowest AACs were found: 7 g m~>. Unfortunately, the PMjp AAC in
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Table 2
Statistics for PMjo and SgPAHs levels on seasonal and annual basis. All values are expressed in ug m~> and ng m~>, respectively.

Site PMyo SgPAHs

Annual Spring Summer Autumn Winter Annual

Mean (no. of Mean Min—Max  Mean Min—Max  Mean Min—Max  Mean Min—Max Mean Min—Max

daily excedances)?
BL-RUR 7 (0) 04 0.1-14 0.1 0.1-0.2 0.2 0.1-1.3 1.2 0.3-3.9 0.5 0.1-3.9
BL-URB 23 (19) 2.6 0.3-8.6 0.2 0.1-0.3 59 0.1-25.6 20 7.8—45.1 7.1 0.1-45.1
BL-SUB 28 (56) 3.9 0.2-14.8 0.2 0.1-0.5 9.5 0.1-33.5 33 12.2-58.8 11.8 0.1-58.8
TV-URB 43 (102) 2.2 0.2—-10.2 0.2 0.1-0.3 9.1 0.2—38.6 27.9 10-78.6 10 0.1-78.6
VI-URB 46 (112) 2.7 0.3—-14.1 0.3 0.2—0.5 5.7 0.4-20.1 18.6 7.9-28.5 6.6 0.2—28.5
VI-URB2 29 (41) 2.2 0.2-8.7 0.2 0.1-0.2 3.9 0.1-13.4 15.8 8.1-34.5 54 0.1-34.5
VR-URB n.m. 13 0.2-7.3 0.1 0.1-0.2 5.2 0.1-22.8 16.4 3.5-35.1 4.9 0.1-35.1
VR-SUB 35 (68) 2.2 0.3-8 0.3 0.2—0.6 4.7 0.2—20.9 13.8 6.6—20.9 5.1 0.2—20.9
VR-TRA 48 (129) 25 0.3-8 0.3 0.2-0.6 4.8 0.3-11.2 119 4.6—-18.5 4.7 0.2—18.5
PD-RUR 43 (99) 3.8 0.3-12.1 0.3 0.1-0.8 12 0.2—66.1 37.8 11.5-70 131 0.1-70
PD-URB 44 (93) 2.1 0.2-74 03 0.2-0.6 8.8 0.6—35.9 254 9.7-46.9 9.7 0.2—46.9
PD-TRA 42 (95) 2.2 0.2-9 0.3 0.2—0.5 7.2 0.4-32.2 239 7.5—-47.2 8.3 0.2—47.2
PD-IND1 45 (102) 2.6 0.2-8.1 0.7 0.2-3.5 8.3 0.4-36.4 24.2 9.8—44.8 8.5 0.2—44.8
PD-IND2 39(93) 2.2 0.1-7 0.2 0.1-0.3 6.6 0.2-279 235 8—-45.5 7.9 0.1-45.5
PD-IND3 46 (100) 3 0.1-9.6 0.3 0.1-14 9 0.3-22.9 239 9.1-42.7 94 0.1-42.7
PD-IND4 n.m. 1.9 0.2-84 0.2 0.1-0.5 4 0.4-18.1 12.7 5.4-27.6 3.8 0.1-27.6
VE-RUR 35(55) 1 0.1-53 0.2 0.1-04 3.4 0.2-11.8 14 2.8-31.2 4.2 0.1-31.2
VE-URB 39 (91) 1.9 0.2—8.8 0.1 0.1-0.2 5.6 0.1-31.5 19.1 5.8—43.5 59 0.1-43.5
VE-TRA 46 (108) 23 0.3-8.2 0.2 0.1-0.3 9.8 0.2—-39.5 28.6 8.2-55.3 103 0.1-55.3
RO-RUR 40 (94) 1.9 0.2—-7 0.1 0.1-0.2 4.2 0.1-18 16.7 4.8—-42.2 5.7 0.1-42.2
RO-URB 41 (90) 1.2 0.1-44 0.1 0.1-0.2 43 0.1-14.6 17.2 3.8-34.6 5.9 0.1-34.6
Veneto 22+28 0.1-14.8 0.2+0.3 0.1-3.5 6.3 £ 8.7 0.1-66.1 20.8 +13.7 0.3-78.6 72+114 0.1-78.6

2 Number of days exceeding the 24-h concentration of 50 pg m—>

VR-URB was not measured, whereas in PD-IND4 it could not be
computed for the whole year due to a failure of the beta attenuation
monitor in winter. The European Directive also states that the 24-
h limit value of 50 pg m~3 must not be exceeded more than 35
times in a calendar year. Experimental results revealed that this
limit was met in only two sites (BL-RUR and BL-URB). The 24-h limit
was frequently exceeded in the remaining sites (Table 2), with the
highest number (>100) of exceeding days in the largest cities
(Venice-Mestre, Padova, Verona, Vicenza and Treviso).

4.2. PAHs levels

A total of 3477 samples were analyzed for PAHs. Table 1 lists
the number of analyzed samples for each site, whereas Table 2
summarizes some statistics on seasonal and annual basis. For
this purpose concentrations below the LODs were substituted by
LOD/2. A comparison of the PM; levels measured in all samples of
2011 with those determined in the samples analyzed also for PAHs
does not show significant differences. This fact allows to extend
the results of the study to the whole year. The map of the annual
average values measured for all congeners in each site is drawn in
Fig. 1c. The annual mean (3477 samples) of the sum of the
analyzed congeners (SgPAHs) was 7.2 ng m~>. The maximum value
of =gPAHs (78.6 ng m~3) was recorded in TV-URB in January.
However a series of samples with high concentrations (up to
70 ng m~>) was found in PD-RUR, which is categorized as a rural
background. Generally the lowest concentrations were found in
the high mountain site of BL-RUR, with values frequently below
the LODs. The mean PAH profiles (percent contribution of each
congener to =gPAHSs) for each site are provided as Supplementary
material Fig. 1. No significant differences in the PAHs profiles were
found and, on average, the most abundant congener was BbF
(18%), followed by BaP (17%), BghiP (15%), Chry (15%), IP (13%), BaA
(12%), BKF (8%) and DBahA (1%).

The annual regional average concentrations of the class
1-carcinogen BaP (average of all 3477 samples) was 1.2 ng m >, i.e.

; .M. = not measurable.

slightly above the target value of 1 ng m~—> imposed by the Euro-
pean Directive. As for IgPAHs, the maximum value of BaP
(13.5 ng m—>) was recorded in TV-URB on January, whereas a series
of days with very high concentrations (>12 ng m~—>) was found in
the rural site of PD-RUR. The lowest concentrations were found in
BL-RUR. The results show that a total of 10 sites exceeded the
EU limits, whereas the limit was equaled, but not exceeded, in 4
sites. Comparing these results with those of similar studies
(Supplementary material Table 3), the annual concentrations of BaP
were among the highest recorded in Europe. In particular, BaP
values were relatively similar to those of many other EU cities in
spring, summer and autumn, whereas they appear to be among the
highest in winter.

5. Discussion

All stations were assigned to different categories on the basis of
their location and data previously obtained. It was expected that in
rural sites PAHs concentrations should be lower than in urban
background, traffic or industrial ones. However experimental re-
sults revealed that this assumption proved to be true in the Prov-
inces of BL, VE and RO, but not in PD, where in the rural site PD-RUR
PAHs concentrations were higher than in PD-URB, PD-TRA and PD-
INDs supposed more anthropized. This result, although unexpected
on the basis of the station classification was in agreement with
previous data recorded in the station (ARPAV, 2011, 2012). The PAH
values in the VI and VR Provinces, for which no rural background
sites were available, indicate that the PAH levels are lower than PD-
RUR, which is the closer rural site, but higher than other rural sites
located in the Po Valley (VE-RUR and RO-RUR). PD-RUR is located in
a rural area, not directly influenced by large agglomerations and
very far from direct anthropogenic sources such as traffic roads or
industrial installations. However, the site is geographically located
in the middle of the most anthropized part of Veneto (in the middle
of four major cities: Mestre-Venice, Treviso, Vicenza and Padova)
and for this reason it should be probably classified differently. In
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any case, an unknown local source of PAH, such as a large use of
wood combustion for domestic heating, may be also present and
should be investigated in further studies.

5.1. Seasonal variations

The regional average concentration of PMyg exhibited a pro-
nounced seasonal trend with higher levels during the cold seasons
and lower in summer in general agreement with all Northern Italy.
In the cold season conditions of atmospheric stability and reduced
mixing of lower layers favor the accumulation of atmospheric
pollutants close to the ground (Pecorari et al., 2013). Moreover, the
increased use of wood for domestic heating in cold seasons and
the bulk burning of biomasses like straw and crop residues in the
harvest season may also be responsible of high PM;g levels in late
autumn and winter. This assumption is largely confirmed by the
increasingly use of wood and softwood (i.e. logs, briquettes, chips
and pellet) in northern Italy (Pastorello et al., 2011), whereas there
is no evidence in the use of charcoal as household fuel. BL-RUR has
an opposite behavior with higher values in the warm season. This
result could be due to the peculiar characteristics of the site, in a
high-mountain remote location, where the effects of anthropo-
genic local emissions are negligible and long-distance transport
may be remarkable. For most of the year the area is completely
covered with snow, whereas during few summer months dust can
be released from both igneous rocks and sandstone by wind
deflation. During the warm period, the site is probably within the
planetary boundary layer (PBL) and therefore it reflects the effect
of PMyg resuspension from the valley ground. In all cases, it is
assumed that the local resuspension of crustal dust may play an
important role.

The maps of the average PAHs concentrations measured for each
congener and site on a seasonal basis are shown in Fig. 1d—g,
whereas the seasonal concentrations of SgPAHs for each site are
reported in Fig. 2a. The PAHs mass ratio (SgPAHs/PMg, in ng ug™")
can be used as an indicator of variability in PAH levels relative to
PM;9 masses and in this study it was computed only for days for
which both PM g and PAHs concentrations above the LODs were
available. The results are shown in Fig. 2b. Significant seasonal
variations have been recorded in all sites, with generally higher
levels of ZgPAHs in winter (regional average concentration of

21 ng m~3), followed by autumn (6.3 ng m~3), spring (2.2 ng m—3)
and summer (0.2 ng m~3). The monthly variations are provided as
Supplementary material Fig. 2 and show that the most significant
changes in =gPAHs occur simultaneously in all the sites between
February and April (strong decrease) and in October and November
(fast increase). These periods coincide with the most significant
changes in the air temperature, but are also consistent with the
periods in which domestic heating is switched off (15 April) and on
(15 October) according to the national legislation.

It is interesting to point out that the seasonal trend of PAHs was
in phase with that of PMo, with higher values in the cold autumn
and winter, but it was somehow “amplified”: the variations of PAH
mass ratios are more pronounced than those of PMy. This fact can
be explained by a combination of several factors. These include the
aforementioned weather conditions driving the pollutant accu-
mulation in atmosphere during the cold season, but also the at-
mospheric photochemistry. PAHs concentrations can be affected by
photo- and chemical oxidations triggered by the solar radiation and
carried out by a number of atmospheric oxidants such as ozone and
radicals (hydroxyl, NO and NO,) (Arey and Atkinson, 2003; Esteve
et al., 2004, 2006; Ringuet et al., 2012), which decompose PAHs
during the warmest seasons. Moreover, wintertime levels can be
also enhanced because of the increasing sorption of the most vol-
atile PAHs on particles because of the decreased air temperature
(Ravindra et al., 2006; Galarneau, 2008).

The relationships of =gPAHs with other air pollutants and micro-
meteorological factors were also investigated in more detail. Before
any statistical analysis, all the variables were tested for normality
by applying the Shapiro—Wilk tests. As the normality assumption at
p < 0.05 was not met, the intra-variable relationships were
computed using the Spearman’s correlation analysis, which is
performed on ranked data and outputs p values. The correlations of
=gPAHs with the micro-meteorological parameters and air pollut-
ants in sites differently categorized and spatially located are re-
ported in Table 3. Significant (p < 0.01) negative correlations were
found with ozone, air temperature, solar radiation and average
speeds of prevalent winds, confirming the important role of the
former parameters in the oxidation processes. However, this also
shows that the local atmospheric circulation in the whole study
area significantly affects the PAHs levels. As evidenced in a recent
study conducted in Venice-Mestre (Masiol et al., 2012b), fast winds
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Fig. 2. Seasonal values of the sum of the analyzed congeners (SsPAHs) and PAHs mass ratio (£gPAHs/PMo) for all sites.
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Table 3
Spearman’s correlations (p) of gPAHs with the micro-meteorological parameters and air pollutants calculated in different sites. Significant correlations at p < 0.01 are marked
in bold font.
Annual Spring
BL-SUB VR-SUB PD-URB PD-TRA PD-IND2 BL-SUB VR-SUB PD-URB PD-TRA
PMio 0.74 0.70 0.87 0.83 0.87 0.63 0.61 0.72 0.72
PM; 5 - 0.77 - - 0.90 — 0.81 - -
PMas 10 - ~0.15 - - 0.23 - ~0.50 - -
Cco 0.96 0.80 0.92 0.97 0.94 0.88 0.39 0.79 0.95
NO 0.91 0.82 0.90 0.96 0.93 0.32 0.64 0.65 0.86
NO, 0.91 0.83 0.81 0.82 0.88 0.95 0.59 0.54 0.85
NOy 0.94 0.88 0.93 0.96 0.94 0.94 0.69 0.59 0.90
SO, —0.09 0.65 0.75 0.23 0.21 -0.38 0.59 0.63 -0.26
03 —0.86 —0.87 —0.61 —0.88 —0.92 —0.66 —0.83 —0.83 —0.90
Air temperature —0.96 —0.93 —0.90 —-0.93 — —0.89 —0.80 —0.89 —0.89
Solar radiation - —0.82 —0.82 -0.73 - - —-0.72 —-0.91 —-0.78
Relative humidity 049 0.38 0.73 0.61 — 032 0.14 0.85 0.66
Atmospheric pressure 0.36 0.46 0.50 - - 0.22 0.57 0.30 -
Average prevailing wind speed —0.55 —048 —0.56 —0.63 -0.31 -0.46 -0.22 0.14 0.12
Rain - -0.13 -0.19 -0.18 — — 0.15 0.52 043
Autumn Winter
BL-SUB VR-SUB PD-URB PD-TRA PD-IND3 BL-SUB VR-SUB PD-URB PD-TRA
PMio 0.68 0.55 0.66 0.73 0.83 0.55 0.50 0.79 0.70
PMy 5 — 0.54 - — 0.88 — 0.48 - —
PMas 10 - ~0.52 - - 0.02 - 0.16 - -
Cco 0.96 0.74 0.84 0.97 0.91 0.89 0.86 0.92 0.89
NO 0.91 0.89 0.88 0.95 0.92 0.79 0.51 0.80 0.88
NO, 0.91 0.56 0.17 0.22 0.80 0.61 0.35 0.51 0.80
NOy 0.95 0.82 0.82 0.89 0.92 0.83 0.50 0.81 0.89
SO, 0.22 0.68 0.69 0.53 0.06 0.37 —0.07 0.51 0.28
03 —0.96 —0.96 -0.52 —-0.94 —0.96 —0.66 -0.33 0.56 -0.01
Air temperature —0.96 —-0.97 —0.91 —0.98 — —0.51 —0.64 —0.48 -0.44
Solar radiation - —0.83 —0.65 - - - -0.19 0.09 -0.03
Relative humidity 0.38 0.59 0.63 0.50 — 0.20 —-0.01 0.01 -0.15
Atmospheric pressure 0.61 0.61 0.70 - - 0.40 0.57 0.26 -
Average prevailing wind speed -0.41 —0.55 -0.42 -0.43 -0.52 -0.41 -0.17 —-0.73 —0.69
Rain — 0.04 -0.33 -0.37 — — -0.11 -0.25 -0.20

may move large air masses and cause lower levels of particle-phase
PAHs, whereas in presence of scarce ventilation, locally emitted
PAHs are trapped and concentrations increase. On the contrary,
significantly positive correlations were found in all the sites with
most of the air pollutants (PMyg, PM 5, CO, NO, NO3, NOy, SO3),
relative humidity and atmospheric pressure. This result shows that

most of the monitored pollutants are strongly linked to one another
and suggests that the same emission sources act for the formation
of these pollutants, while similar atmospheric processes are
responsible for their variations. In particular, the correlations be-
tween PAHs and PMy 5 appear greater than those with PMj, con-
firming that PAHs are mainly absorbed onto finer particles, whereas
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Fig. 3. Scatterplots of S8PAHs versus atmospheric pollutants and micro-meteorological parameters recorded in the Padova urban background site (PD-URB) in spring (circles),
summer (diamonds), autumn (triangles) and winter (crosses). Interpolating functions were also plotted when significant (Determination coefficient > 0.6.
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no correlations were found between =gPAHs and coarse particu-
late matter (PMy.5-19).

Although PAHs are strongly linked to some micro-
meteorological parameters and air pollutants, these relationships
are not necessarily linear. To render more evident the relationships
resulting from the correlation analyses, the scatterplots of gPAHs
versus measured atmospheric pollutants and micro-meteorological
parameters recorded in the urban background site of a major city
(PD-URB) are shown in Fig. 3. The plots suggest that the PAHs levels
are linearly dependant on CO, NO, NO;, NO, SO, and PMjg. On the
contrary, the relationships with the air temperature and the solar
radiation exhibit an exponential behavior. The coefficients of
adjusted determination (Rgdj) describing how well the regression
lines or curves fit the set of data are also provided in Fig. 3 and
demonstrate the goodness of most fits.

Despite the oxidation and volatilization processes can strongly
control the concentrations of PAHs in the atmosphere during
periods with different climatic and weather conditions, the role of
biomass burning for agricultural purposes or for domestic heating
is gaining an increasing attention for being recognized as a main
source of PAHs in various European locations (e.g. Junninen et al.,
2009; Sheesley et al., 2009; Bari et al., 2010; Poulain et al., 2011;
Reche et al., 2012). As for the Northern Italy, van Drooge and
Perez Ballesta (2009) estimated that wood burning can
contribute from 30 to 70% of the PAHs in PMjg in semirural sites of
Po Valley, whereas Belis et al. (2011) estimated that it may
contribute with more than 75% of the BaP in the central Po Valley
and near alpine valleys during winter. The significant role of this
source in PAHs emissions is confirmed by the high PAHs mass
ratios reached in winter mainly in Belluno and Feltre and, gener-
ally, in all the rural background sites (Fig. 2b). In these areas, the
use of wood and softwood as an alternative fuel for home heating
instead of the commonly used methane is higher than in other
urban sites of Veneto and recent studies identified the biomass
burning as the main source of PAHs in the Po Valley (Piazzalunga
et al.,, 2013).

5.2. Spatial variations

Starting from the evidence that particulate phase PAHs have
quite similar annual average values and seasonal trends in the
whole region, an analysis of the inter-site concentration differ-
ences was conducted. Since the strong influence of oxidation and
volatilization mechanisms in the warmest months causes a rapid
drop of PAHs levels in the whole region between April and
October (Supplementary material Fig. 2), the spatial variations
were only calculated for the coldest semester (15 October—15
April). Moreover, the remote alpine site BL-RUR was excluded
from the statistics because of the high number of samples below
the LODs. Because the Shapiro—Wilk test applied to this new
dataset revealed no normal distributions for PM;¢ and =gPAHs at
p < 0.05, the nonparametric Kruskal—Wallis analysis of variance
by ranks was used to test the significance of inter-site variations.
The test is based on the rank of each sample instead of its value
and the null hypothesis assumes that the central values of the
groups (medians) are equal, and is rejected for p < 0.05. Thus, the
post-hoc Dunn’s test for multiple sample comparison with a
Bonferroni correction was performed to point out the sites which
significantly differ in =gPAHs levels. Table 4 shows the Kruskal—
Wallis z-values (Siegel and Castellan, 1988) having p < 0.01, which
highlight the pairs of sites having significant differences in =gPAHs
levels. The results show that most of the sites have similar PAHs
concentrations during the cold period, but five sites present a
larger number of significant z-values, and stand out from the

Table 4

Results of the Kruskal—Wallis analysis of the variance (bottom-left) and Spearman’s rank correlations (upper-right) calculated for the =gPAHs levels amongst sites.

PD-IND2 PD-IND3 PD-IND4 VE-RUR VE-URB VE-TRA RO-RUR RO-URB

BL-URB BL-SUB TV-URB VI-URB VI-URB2 VR-URB VR-SUB VR-TRA PD-RUR PD-URB PD-TRA PD-IND1

0.84
0.83
0.88
0.82
0.87
0.92
0.87

0.78
0.91
0.84
0.83
0.66
0.83
0.87
0.87
0.92
0.86
0.89
0.90
0.90
0.87
0.91
0.92

0.85
0.82
0.94
0.87
0.82
0.92
0.85
0.70

0.87
0.84
0.91
0.81
0.66
0.85
0.74

0.90
0.93
NC

0.79
0.92
0.93
0.88
0.76
0.83
0.84
0.93
0.94
0.92
0.93
0.90
0.93
0.92

0.71
0.88
0.86
0.83
0.69
0.78
0.84
0.86
093
0.95
0.95
0.95
0.96

0.78
0.89
0.87
0.87
0.75
0.83
0.89
0.88
0.97
0.96
0.97
0.96

0.77
0.91
0.90
0.84
0.70
0.89
0.86
0.84
0.95
0.96
0.96

0.79
0.91
0.88

0.72
0.91
0.88
0.87
0.60
0.84
0.82
0.90
0.94

0.76
0.91
0.90
0.85
0.69
0.82
0.90
0.87

0.90
0.93
0.81
0.91
0.95
0.75
0.86

0.79
0.90
0.92

0.79
0.83
0.86
0.83
0.85

0.76
0.86
0.65
0.80

0.83
0.80
0.87

0.87
0.83

0.90

BL-URB
BL-SUB
TV-URB
VI-URB

0.77
0.78
0.90
0.90
0.95
0.88
0.90
0.90
0.94
0.88
0.88
0.96

0.90
0.66
0.83

0.77
0.83
0.83

4.33
5.69
6.28
6.16
7.83

VI-URB2
VR-URB
VR-SUB
VR-TRA

0.89
0.88
0.95
0.98

5.32

4.79

NC

6.99
5.54
4.73
491
4.19

5.46 531

4.84

PD-RUR
PD-URB
PD-TRA

NC

0.94
0.94
0.94

NC

0.95
0.95

NC

PD-IND1
PD-IND2
PD-IND3
PD-IND4
VE-RUR
VE-URB
VE-TRA

NC

NC

5.06

NC

NC

417
4.23

4.63
4.69

5.96
6.05
4.67

4.49
4.55

6.71
6.81
5.47

0.83
0.87
0.88
NC

0.88
0.94

0.79

4.09

NC

476

4.68

5.64

4.05

5.20
4.62

6.06
5.46

RO-RUR
RO-URB

NC = no computable correlation.
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Fig. 4. Relationship between the number of inhabitant of the Municipality and the
measured SgPAHs concentrations in Veneto during the cold season.

others: VR-TRA, PD-IND4 and VE-RUR show significantly lower
concentrations, whereas BL-SUB and PD-RUR significantly higher.

The spatial versus temporal relationships among the =gPAHs
levels measured in the sites were estimated by calculating the
Spearman’s rank correlations amongst sites. The correlations are
also reported in Table 4 and show significant (p < 0.01) positive
relationships for almost all sites. Only VE-URB and VE-TRA appear
to be not significantly correlated with PD-RUR and the industrial
sites of Padova. This analysis show that the PAH concentration
values change simultaneously throughout the study area and
points out that both the emission sources and the accumulation/
removal processes in the atmosphere of the region.

Since large variations in population density in the region can be
responsible of different levels of atmospheric pollution, an attempt
to link the concentration of PAH with the number of inhabitants in
the municipalities of the sampled areas was carried out. Fig. 4
shows the scatterplot of the number of inhabitants in a munici-
pality and the measured concentrations SgPAHs during the cold
season. For sixteen sites a significant exponential relationship
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(R? = 0.72) is evidenced, but this relationship is not observed in five
sites. In the two sites with the highest concentrations in the region
(BL-SUB and PD-RUR) concentrations were about three times
higher than in sites with an equal number of inhabitants per mu-
nicipality. On the contrary, at the two sites of Verona and the site of
urban background concentrations of Venice are about half those of
municipalities with similar population size. Although this calcula-
tion can be directly influenced by the location of the site within the
city environments and its different categorization, this result shows
once again how BL-SUB and PD-RUR present anomalously high
PAHs concentrations compared to the others. On the contrary, these
results show that the concentrations of PAHs in Mestre-Venice and
Verona are generally low in view of the resident population.

5.3. BaP toxic equivalent concentrations

The annual BaP equivalent values calculated in the selected 21
sites are presented in Fig. 5a. The annual regional average BaPrgq
(average of all 3477 samples) was 1.7 ng m > and the congener
most contributing to the total carcinogenic potential of the PAH
mixture was BaP, with values (mean + standard deviation) of
60 + 13%. The second highest contributor was DBahA (14 + 12%),
followed by BbF (9 + 3%), IP (6 & 2%), BaA (5 & 2%), BKF (4 £ 1%),
whereas the other congeners contribution was ~ 1%. Similar con-
tributions of BaP were found in other studies (e.g. Bostrom et al.,
2002; Bari et al., 2010), confirming that BaP is a suitable indicator
of carcinogenic potency of PAHs mixtures in ambient air. A com-
parison with BaPrgq levels reported in other studies is difficult
because of different analytical methods and TEFs used. Moreover,
also the selection of different congeners may result in incomparable
values of the total toxicity. However, being hardly possible to
quantify the uncertainties caused by the different methods used,
we can only compare the data obtained. The values measured in
Veneto appear lower than those reported for the urban Northeast
Region of China (Li et al,, 2011) and North-central part of India
(Masih et al.,, 2010), but higher than those found in Europe: UK
(Delgado-Saborit et al., 2011), Spain (Arruti et al., 2012) and Central
Italy (Tuscany: Martellini et al., 2012). In conclusion, even consid-
ering the limitations in the use of BaPrgq approaches summarized
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Fig. 5. BaP equivalent values calculated in the selected 21 sites.
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in Supplementary material Table 4, the results show particularly
worrying conditions for the whole Region, with 17 sites over the
threshold value of 1 ng m 3.

Similarly, the annual regional average BaPmgq was 2.2 ng m3
(Fig. 5b) and the congener most contributing to the total carcino-
genic potential of the PAH mixture was BaP (46 + 9%), followed by
BbF (17 £ 4%), IP (14 4+ 3%), BghiP (12 + 4%), whereas the other
congeners contribution was <4%.

6. Conclusion

This study is the first one conducted in Veneto on a regional
scale. Originally conceived as a concluding report after a number of
papers focused on limited areas of the region it has produced some
important information for decision makers. Results show that the
air pollution caused by PAHs is relatively high in large part of the
region: 10 sites exceeded the levels of BaP targeted by the European
legislation and 17 breached this target when considering the BaP-
TEQ- The seasonal pattern of PAHs was the same all over the region,
with a marked increase of concentrations between October and
November and a drop between March and April, in phase with the
observed changes in air temperature and sunlight. The concentra-
tions of PAHs were found directly proportional to those of other
gaseous pollutants (CO, NO, NO,, SO;) suggesting a common
polluting source and similar atmospheric processes. On the con-
trary, PAHs levels were inversely correlated to ozone, whose role in
PAH oxidation mechanisms is well known.

A relevant result is that PAHs levels are very well correlated
throughout the territory and most of sampling stations show very
similar concentrations even if placed in differing environments. It
can be concluded that the PAH air pollution in the Veneto is quasi-
uniformly distributed throughout the region and the processes of
emission and removal are similar. Considering that emission in-
ventories for the Veneto show that non-industrial combustions
(e.g., gas and oil boilers, wood and pellets fireplaces, cookers,
woodstoves) account about for about two third of total PAHs
emissions (ISPRA, 2012; Veneto Region, 2013), followed by waste
treatment and disposal (16%), production processes (5%) and road
transport (3%), measurement campaigns should be conducted in
the future to better understand the contributions of those sources.
In particular, some important aspects should be considered in
further studies and in the implementation of future regulations as
well:

1) As this study did not detect significant increases in PAHs in
traffic or industrial sites and showed that higher levels can be
reached far from direct anthropogenic sources, such as rural or
suburban areas, the role of biomass combustions may play a
very important role. The lack of existing regulations at both
national and regional levels in the use and installation of fire-
places using wood or pellets it appears therefore an increas-
ingly serious and underestimated issue for the pollution of the
ambient air. It is advisable that the use of biomass combustion
systems be regulated and the implementation of the best
available technologies in all the regional territory be favored as
well. In agreement with observations recently reported by the
literature, this study also provides evidence of the importance
of residential wood combustion in northern Italy, which has
recently increased in place of more expensive fuels, such as oil
or gas.

2) Possible actions to mitigate air pollution so far imposed at the
local level, such as limiting the number of circulating vehicles
on the basis of even or odd numbers of license plates, are bound
to have poor effects if not extended to the region or the whole
Po Valley. In the same manner actions to mitigate other

relevant PAHs sources shall be extended simultaneously in the
whole region.

3) Probably the whole monitoring system. Le. the number of
stations and their categorization deserve being revised. Finally,
from the analysis of the territorial variations in two sites (PD-
RUR and BL-SUB) anomalously high PAHs concentrations were
recorded. These became even more evident by considering the
population density as a surrogate for the potential anthropo-
genic influence.
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