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Abstract. We consider the solution of bound constrained optimization
problems, where we assume that the evaluation of the objective function
is costly, its derivatives are unavailable and the use of exact derivative-
free algorithms may imply a too large computational burden. There is
plenty of real applications, e.g. several design optimization problems [1,2],
belonging to the latter class, where the objective function must be treated
as a ‘black-box’ and automatic differentiation turns to be unsuitable.
Since the objective function is often obtained as the result of a simulation,
it might be affected also by noise, so that the use of finite differences may
be definitely harmful.

In this paper we consider the use of the evolutionary Particle Swarm
Optimization (PSO) algorithm, where the choice of the parameters is
inspired by [4], in order to avoid diverging trajectories of the particles,
and help the exploration of the feasible set. Moreover, we extend the
ideas in [4] and propose a specific set of initial particles position for the
bound constrained problem.

Keywords: Bound Constrained Optimization, Discrete Dynamic Linear
Systems, Free and Forced Responses, Particles Initial Position.

1 Introduction

Applied sciences offer several challenging applications of bound constrained op-
timization, where the computational cost of the objective function is remarkably
large. In this regard, optimization tools combining the theoretical properties of
exact methods and the fast progress of heuristics represent an active research
area. Furthermore, on large scale real problems, which are typically more difficult
and require correspondingly larger computational resources, both practitioners
and theoreticians claim for robust methods, often endowed also with theoretical
properties. Moreover, in many cases the derivatives are unavailable. In the lat-
ter case, the use of ’black-box’ simulations for computing the objective function
makes the adoption of automatic differentiation impossible, due to the unavail-
ability of the source code. In addition, simulations represent an essential tool,
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but often introduce an unexpected artificial noise, which unavoidably imposes
strong care when adopting finite differences.

This paper considers PSO [6], with a specific choice of the parameters, for the
solution of the bound unconstrained global optimization problem

min
x∈F

f(x), f : IRn → IR, (1)

where F = {x ∈ IRn : l ≤ x ≤ u}, l, u ∈ IRn and without loss of generality
l < u. Obviously, in case li = −∞, i ∈ {1, . . . , n} and ui = +∞, i ∈ {1, . . . , n}
problem (1) reduces to an unconstrained optimization problem. At present f(x)
is assumed to be a nonlinear and non-convex continuous function.

This paper has a twofold purpose. First we propose some novel rules for the
selection of parameters in PSO, using the reformulation of PSO iteration de-
scribed in [4]. Then, we suitably adapt the choice of particles position/velocity
studied in [4] for the unconstrained case, to the feasible set F of (1). The lat-
ter adaptation requires some geometric insight and involves a negligibly small
algebra, even when the scale n is large.

As regards the symbols used in this paper, the subscripts identify the particles
in a PSO scheme, while we use the superscript to indicate the iteration. Ik is the
identity matrix of order k. If σ is a real random unknown and u ∈ IRn, the symbol
σ⊗u indicates an n-real vector, whose j-th and i-th entries are respectively given
by σjuj and σiui, where σj and σi are different occurrences of σ. Finally, ‖A‖F
indicates the Frobenius norm of matrix A, i.e. ‖A‖F = tr(ATA)1/2, where tr(·)
indicates the trace of a matrix.

In Section 2 we propose a reformulation of PSO iteration, which is essential
for our proposal, then Section 3 suggests some basics on the choice of parameters
in PSO, and Section 4 proposes some indications to properly choose the initial
position/velocity of particles for problem (1).

2 A Reformulation of PSO

Consider the trajectory of the j-th PSO iteration (k ≥ 0)

vk+1
j = χk

j

[
wk

j v
k
j + cjrj ⊗ (pkj − xk

j ) + cgrg ⊗ (pkg − xk
j )
]
,

xk+1
j = xk

j + vk+1
j ,

(2)

where j = 1, ..., P indicates the j-th particle and P is a positive integer. The
vectors vkj and xk

j are n-real vectors representing respectively the velocity (i.e.
the search direction) and the position of the j-th particle at step k. Moreover,
the n-real vectors pkj and pkg satisfy

f(pkj ) ≤ f(x�
j), for any � ≤ k, pkj ∈ {x�

j},

f(pkg) ≤ f(x�
j), for any � ≤ k and j = 1, . . . , P, pkg ∈ {x�

j},
(3)
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while χk
j , w

k
j , cj , rj , cg, rg are positive bounded coefficients. As well known, pkj

represents the ‘best position’ in the trajectory of the j-th particle up to step k,
while pkg is the ‘best position’ among all the particles up to step k. The choice of
the coefficients as well as the number of particles P is often problem dependent
(see also [7]), and here we consider the choice [4], which is very general. The
latter choice also includes the case where both the inertia coefficient wk

j and the

constriction coefficient χk
j are used. Finally, as usually, we can assume without

loss of generality that rj and rg are uniformly distributed random parameters,
with rj ∈ [0, 1] and rg ∈ [0, 1].

After some simplifications, for each particle j, assuming for brevity that wk
j =

wj and χk
j = χj , for any k ≥ 0 the iteration (2) is equivalent to the discrete

stationary (time-invariant) system (see also [4])

Xj(k+1) =

⎡

⎣
χjwjIn −χj(cjrj + cgrg)In

χjwjIn [1− χj(cjrj + cgrg)] In

⎤

⎦Xj(k) +

⎡

⎣
χj

(
cjrjp

k
j + cgrgp

k
g

)

χj

(
cjrjp

k
j + cgrgp

k
g

)

⎤

⎦

(4)
where

Xj(k) =

⎛

⎝
vkj

xk
j

⎞

⎠ ∈ IR2n, k ≥ 0. (5)

From a geometric perspective the sequence {Xj(k)} represents the trajectory of
the j-th particle in the state space IR2n. Moreover, using a standard notation for
linear systems, we can split Xj(k) into the free response XjL(k) and the forced
response XjF (k) (see also [8]). Thus, on summary for any k ≥ 0 the 2n-real
vector Xj(k) may be rewritten as

Xj(k) = XjL(k) +XjF (k), (6)

where

XjL(k) = Φj(k)Xj(0), XjF (k) =

k−1∑

τ=0

Hj(k − τ)Uj(τ), (7)

and after some computation we obtain (see also [4])

Φj(k) =

⎛

⎝
χjwjIn −χj(cjrj + cgrg)In

χjwjIn [1− χj(cjrj + cgrg)] In

⎞

⎠

k

∈ IR2n×2n. (8)

(9)

We urge to recall that from the expressions (6)-(7), unlike the vector XjF (k),
the free response XjL(k) only depends on the initial point Xj(0), and not on
the vectors pτj , p

τ
g , with τ ≥ 0. As described in the next section, the latter

observation plays a keynote role, in order to design efficient PSO schemes for
solving (1).
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3 Issues on Parameters Assessment in PSO

Observe from (8) that Φj(k) = Φj(1)
k, for any k ≥ 0, and the 2n eigenvalues of

the unsymmetric matrix Φj(1) are real (see also [4]). Setting for simplicity in (8)

aj = χjwj , ωj = χj(cjrj + cgrg), j = 1, . . . , P, (10)

after some computation we see that the matrix Φj(1) has only the two distinct
eigenvalues λj1 and λj2 given by

λj1 =
1− ωj + aj −

[
(1− ωj + aj)

2 − 4aj
]1/2

2

λj2 =
1− ωj + aj +

[
(1− ωj + aj)

2 − 4aj
]1/2

2
,

(11)

each of them having algebraic multiplicity n. A necessary (but possibly not
sufficient) condition for {Xj(k)} to be non-diverging (which implies that also
{xk

j } and {vkj } in (2) are non-diverging), is

|λj1| < 1, |λj2| < 1, (12)

which affect the choice of PSO parameters as described in the next proposition
(the next conditions are simplified with respect to [4]).

Proposition 1. Consider the position (10) in (2), with χk
j = χj and wk

j = wj,
j = 1, . . . , P . Suppose for k ≥ 0

0 < aj < 1, 0 < ωj < 2(aj + 1), j = 1, . . . , P, (13)

with ωk
j 	= (1 ± a

1/2
j )2. Then, for any k ≥ 0 and j = 1, . . . , P , conditions (12)

are fulfilled. ♦
Observe that conditions (12) imply limk→∞ XjL(k) = 0, j = 1, . . . , P , and most
of the typical settings for PSO parameters proposed in the literature (see e.g.
[7,9]) satisfy (13). Moreover, from relations (7), (8), (10) and considering that
Φj(1) is unsymmetric, we have also that for any j

‖Φj(k)‖F ≤ ‖Φj(1)‖kF = tr
[
Φj(1)

TΦj(1)
] k

2 , (14)

and

tr
[
Φj(1)

TΦj(1)
] 1

2 = tr

⎡

⎣
2a2jIn aj(1− 2ωj)In

aj(1− 2ωj)In [ω2
j + (1− ωj)

2]In

⎤

⎦

1
2

=
[
2a2j + ω2

j + (1 − ωj)
2
] 1

2 .
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Using Fact 9.12.1 in [10] (where B = In and ‖B‖F =
√
n) we have that

1√
n
|tr [Φj(1)]| ≤ ‖Φj(1)‖F (15)

where
tr [Φj(1)] = aj + (1 − ωj).

Now, from (7) and (14)

‖XjL(k)‖F ≤ ‖Φj(1)‖kF · ‖Xj(0)‖F ,

and though limk→∞ XjL(k) = 0, j = 1, . . . , P , we would like ‖XjL(k)‖F not to
be attenuated when the index k is still relatively small. On this purpose, given
the coefficients cj , j = 1, . . . , P and cg, we propose to set χj and wj by solving
for each j = 1, . . . , P one of the following two programs, inspired by Proposition
1 and, respectively, relation (14) and relation (15):

max
χj ,wj

2a2j + ω2
j + (1− ωj)

2

0 < aj < 1,
0 < ωj < 2(aj + 1),

(16)

max
χj ,wj

|aj + (1 − ωj)|
0 < aj < 1,
0 < ωj < 2(aj + 1).

(17)

The programs (16)-(17) attempt to possibly force larger values of ‖XjL(k)‖F for
k small. In Section 4 we give more motivations about the latter issue.

Now, in the light of (7), (12) and the results in Proposition 1, we think that
the following question still deserves special consideration: can we properly choose
the initial points Xj(0), j = 1, . . . , P , for problem (1), so that the trajectories
{xk

j } span as much as possible the feasible set F ? Section 4 addresses the latter
issue, in order to give indications on the choice of the initial point and velocity
of particles.

4 Initial Particles Position and Velocity in PSO,
for Bound Constrained Optimization

In this section we study some proposals of initial particles position and velocity,
for the bound constrained optimization problem (1). To this aim let us consider
the feasible set F in (1); we remind that possibly we allow li = −∞ and/or ui =
+∞ for some indices i ∈ {1, . . . , n}. In the previous section we studied settings
for PSO parameters, such that the free response XjL(k) associated to particle j
is possibly not attenuated too early, i.e. when k is still relatively small. In this
section we show a method to exploit the latter property, in order to possibly
improve the overall performance of PSO on bound constrained optimization. In
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particular, we want to give indications for the choice of the vectors Xj(0), so
that possibly the orthogonality conditions (or similar properties)

XjiL(k)
TXjhL(k) = 0, 1 ≤ i 	= h ≤ m, (18)

among the free responses of the first m particles (with m ≤ n), are satisfied.
Observe that conditions (18) do not impose the trajectories of PSO particles to
be orthogonal; however, they guarantee that part of particles trajectories (i.e.
the free responses in IR2n) are orthogonal, as long as they do not fade. This
explains why in Section 3 we studied conditions on PSO parameters, in order to
prevent a premature extinction of XjL(k) when k increases.

In particular, our first proposal for the choice of Xj(0), j = 1, . . . , P , is the
following:

1. If l < 0 < u then set Xj(0) such that x0
j ∈ F , randomly for j = n+1, . . . , P ,

and v0j ∈ IRn for j = n+ 1, . . . , P . On the other hand, for j = 1, . . . , n set

tj =

[√
n

n

n∑

i=1

−
√
n

2
ej

]

∈ IRn, Xj(0) =

(
αjtj
βjtj

)
∈ IR2n, (19)

where αj is any real value such that αjtj ∈ F , j = 1, . . . , n.
2. Otherwise, set Xj(0) such that x0

j ∈ F , randomly for j = n+ 1, . . . , P , and

v0j ∈ IRn for j = n + 1, . . . , P . Then, for j = 1, . . . , n consider the vertex
û ∈ F which is the closest to the origin; take

Xj(0) =

(
ûj

zj

)
, j = 1, . . . , n, (20)

ûj being the j-th vertex of F adjacent to û (i.e. such that an edge of F
connects û and ûj), and zj ∈ IRn is randomly chosen.

Observe that while (19) satisfies (18) and αj is very easy to compute, the choice
(20) simply ensures that the vectors Xj(0), j = 1, . . . , n, are at least linearly
independent (though in general not orthogonal). Now, in order to force condition
(18) (or similar conditions) in a more general framework, let us consider the
geometry of the feasible set F (shaded area) in Fig.1. Suppose the point c is
the intersection of the diagonals of F , i.e. c = (u + l)/2, and the segment ai is
given by ai = (ui − li)/2, i = 1, . . . , n. We want to compute the equations of
the dashed hyperellipsoids E0, E1 and E2 in Fig.1, E0 being a sphere. It is not
difficult to realize that

E0 : (x− c)TA0(x − c) = 1, A0 = diag1≤i≤n

{(∑n
i=1 a

2
i

)−1
}
,

E1 : (x− c)TA1(x− c) = n, A1 = diag1≤i≤n

{
a−2
i

}
,

E2 : (x− c)TA1(x − c) = 1;

(21)

indeed, it suffices to consider that E0 is a sphere, the extreme points v�, � =
1, . . . , 2n, in the corners of F have coordinates ci±ai, i = 1, . . . , n (which satisfy
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Table 1. We list the results for 6 test functions from the literature (n is the number of
unknowns and tf∗ is the value of f at a global minimum). The results are over 25 PSO
runs, f bst/f wst/f av is the best/worst/average value of f over the 25 runs, while st.
dev. indicates the standard deviation. xrand indicates random initial choice for particles
position, while xorth indicates initial choice for particles position as in (19).

Function xrand xorth

f∗ 0.0000
Griewank f bst 0.5562 0.0057
(n=10) f av 0.8485 0.0332

f wst 1.1650 0.0731
st. dev. 0.0067 0.0004

f∗ 0.0000
Griewank f bst 1.2360 0.0016
(n=20) f av 1.3872 0.0022

f wst 1.7438 0.0653
st. dev. 0.0001 0.0000

f∗ 0.0000
Levy 5n f bst 3.0273 0.0268
loc.min. f av 8.9546 0.0483
(n=30) f wst 13.6678 0.0942

st. dev. 0.0000 0.0000

Function xrand xorth

f∗ 0.0000
Levy 10n f bst 53.8192 1.1428
loc.min. f av 107.3033 3.4678
(n=30) f wst 299.5744 3.9709

st. dev. 0.0001 0.0000

f∗ 0.0000
Levy 15n f bst 14.4646 3.1471
loc.min. f av 31.7934 3.3890
(n=30) f wst 60.5632 3.5046

st. dev. 0.0002 0.0000

f∗ 0.0000
Griewank f bst 1.5631 0.0007
(n=30) f av 2.1459 0.0389

f wst 2.8092 0.0710
st. dev. 0.0000 0.0000

Fig. 1. The feasible set F ⊂ V of (1), V is the region inside E0 or E1, and V ⊃ E2

the first two equations (21)), and the centers of the facets of F have entries in
the sets {ci, li, ui}, i = 1, . . . , n. We would like to show that for problem (1) it
is possible to set Xj(0), j = 1, . . . , n (other than (19)-(20)), so that conditions
(18) at least in some cases are satisfied, with Xj(0) such that x0

j ∈ V , where V
is the region inside either of the hyperellipsoids E0, E1 or E2. The importance
of the latter property relies on the fact that it tries to force orthogonality among
particles trajectories, while particles move within F . Thus, we expect that PSO
will be able to explore the feasible region of interest F , as accurately as possible,
while possibly ignoring the exploration in the set IRn \ V .

In a more general scheme where F is treated in a penalty framework (i.e. PSO
is used for the unconstrained minimization of a penalty function, which is the
sum of f(x) and a term penalizing the constraints violation), then we can set
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Xj(0), j = 1, . . . , P , in a different fashion with respect to 1. and 2. Indeed, we
can consider the choice:

1̂. If l < 0 < u then set Xj(0) such that x0
j ∈ F , randomly for j = n+1, . . . , P ,

and v0j ∈ IRn for j = n+ 1, . . . , P . On the other hand, from (19) set

Xj(0) =

(
αjtj
βjtj

)
∈ IR2n, j = 1, . . . , n,

where now αj is any real value such that αjtj ∈ V , j = 1, . . . , n, and V is
the region inside either of the hyperellipsoids E0, E1 or E2 in Fig.1.

2̂. Otherwise, take the choice 2.

We still have to complete in a separate paper a numerical experience, giving full
evidence of the effectiveness of the proposals above, in a framework where exact
penalty methods are adopted. However, Table 1 summarizes a few preliminary
results on six test problems from the literature (the caption describes the setting
adopted), indicating that our proposal might be effective and efficient.
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