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1 Introduction

In recent years, interest has increased in the ability of business cycle models to forecast

economic growth rates and turning points or structural breaks in economic activity. The

early contributions in this stream of literature consider nonlinear models such as the Markov-

switching (MS) models (see for example Goldfeld and Quandt [1973] and Hamilton [1989])

and the threshold autoregressive models (see Tong [1983] and Potter [1995]), both of which

are able to capture the asymmetry and the turning points in business cycle dynamics. In this

paper we focus on the class of MS models. We take the model of Hamilton [1989] as point

of departure. For more recent data one needs an adequate business cycle model with more

than two regimes (see also Clements and Krolzig [1998]) and a time-varying error variance.

For example, Kim and Murray [2002] and Kim and Piger [2000] propose a three-regime

(recession, high-growth, and normal-growth) MS model while Krolzig [2000] suggests the

use of a model with regime-dependent volatility for the US GDP. In our paper we consider

data on US and Euro industrial production, for a period of time including the 2009 recession

and find that four regimes (high-recession, contraction, normal-growth, and high-growth)

are necessary to capture some important features of the US and EU cycle in the strong-

recession phases. As most of the forecast errors are due to shifts in the deterministic factors

(see Krolzig [2000]), we consider a model with shifts in the intercept and in the volatility.

The first contribution of this paper is to exploit the time-varying forecast ability of

linear and nonlinear models to produce potentially better forecasts. More specifically, in

some empirical investigations and simulation studies, there is evidence that MS models

are superior in in-sample fit, but not always in forecasting and that the relative forecast

performance of the MS models depends on the regime present at the time the forecast is

made (see for example Clements and Krolzig [1998]). It seems thus possible to obtain better

forecasts by dynamically combining in a suitable way various model forecasts.

The second main contribution of this paper is to study the relationship between forecast

combination and turning point extraction when many forecasts are available from different

models for the same variable of interest. When many models are used for forecasting turning

points, one can then alternatively combine the forecasts from the models and detect the

turning points on the combined forecasts, or detect the turning points on the model forecasts

and then combine the turning point indicators. We tackle this problem and show that the

turning point forecasts are not invariant with respect to the order of the forecast combination

and turning point extraction, and that the best combination should be evaluated in the

specific case at hand. Our paper is related to Stock and Watson [2010], who consider the

issue of dating the turning point for a reference cycle when many series are available. In
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this context, it is possible to detect clusters of turning points that are cycle-specific, and

the problem of their aggregation becomes crucial to determine a reference cycle.

Another relevant contribution of the paper is a new model selection scheme which relies

upon non-parametric measures, i.e. concordance statistics, of the proportion of time during

which the predicted and the reference turning point series, are in the same state. The

proposed scheme extends the literature on Bayesian model averaging (BMA) procedure

(see Grunwald et al. [1993] for a review) for turning point forecasts. In the proposed

approach to turning point forecast, we follow a Bayesian inference approach and account

thus for both model and parameter uncertainty. The use of a Bayesian approach to forecast

combination in business cycle analysis has been discussed in Min and Zellner [1993]. They

consider both autoregressive (AR) models and AR models with time-varying parameters

for predicting international output growth rates. Canova and Ciccarelli [2004] propose a

Bayesian inference approach to the estimation of a multi-country panel model with time-

varying parameters, lagged interdependencies and country specific effects. They follow

Zellner et al. [1991] and predict turning points by using the predictive densities from their

model. In this paper, we extend the previous literature and propose AR models with

discontinuous (Markov-switching) dynamics in the parameters. The Bayesian approach

proposed in this paper is based on a numerical approximation algorithm (Gibbs sampler)

which is general enough to account not only for parameter uncertainty, but also for possible

non-normality of the prediction error, as well as for nonlinearities of the data generating

process. Another advantage of the Gibbs sampling procedures is that they naturally provide

approximation of predictive density and forecast intervals for the variable of interest.

Finally, we study different strategies to specify combination weights. More specifically,

we compare in terms of forecast performances weighting schemes driven by the prediction

errors in predicting alternatively the level or the turning points of the variable of interest.

The paper is structured as follows. Section 2 introduces the Markov-switching model

used in the analysis of the business cycle. Sections 3 and 4 present a Bayesian approach to

inference and to forecast combination respectively. Section 5 provides a comparison between

the forecasting methods for the Euro area and the US business cycles. Section 6 concludes

the paper.

2 Predicting with Markov-switching Models

Let yt, with t = 1, . . . , T , be a set of observations for a variable of interest. We consider

two alternative autoregressive models for yt. First, we assume that yt follows the Gaussian
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AR process of order p, denoted with AR(p),

yt = ν + φ1yt−1 + . . .+ φpyt−p + ut, ut
i.i.d.
∼ N (0, σ2) (1)

t = 1, . . . , T , where ν is the intercept; φl, l = 1, . . . , p, are the autoregressive coefficients

and σ the volatility. In the following we will assume that the initial values, (y−p+1, . . . , y0),

of the process are known. More generally, it is possible to include both the number of lag

p and the initial values in the inference process following, for example, the approach given

in Vermaak et al. [2004] for the Gaussian AR processes.

Secondly, we consider a Gaussian AR process with parameters driven by a Markov-

switching process and denote it with MS-AR. In an empirical study Clements and Krolzig

[1998] present evidence that most part of forecast errors is due to time changes in some

parameters of the prediction models. They suggested to consider, for example, MS models

with regime-dependent volatility. In the present analysis, we follow Krolzig [2000] and Anas

et al. [2008] and assume that both the intercept and the volatility are driven by a regime-

switching variable. The resulting Markov-switching intercept and heteroschedasticity

(MSIH) model, denoted with MSIH(m)-AR(p), is

yt = νst + φ1yt−1 + . . .+ φpyt−p + ut, ut
i.i.d.
∼ N (0, σ2

st) (2)

t = 1, . . . , T , where νst is the MS-intercept; φl, with l = 1, . . . , p, are the autoregressive

coefficients; σst is the MS-volatility; and {st}t is the regime-switching process, that is a

m-states ergodic and aperiodic Markov-chain process. This process is unobservable (latent)

and st represents the current phase, at time t, of the business cycle (e.g. contraction or

expansion). The latent process takes integer values, say st ∈ {1, . . . ,m}, and has transition

probabilities P(st = j|st−1 = i) = pij, with i, j ∈ {1, . . . ,m}. The transition matrix P of

the chain is

P =









p11 . . . p1m
...

...

pm1 . . . pmm









and has, as a special case, the one-forever-shift model that is widely used in structural-break

analysis (e.g., see Jochmann et al. [2010] and references therein). As for the AR case, in

our applications we assume that the initial values, (y−p+1, . . . , y0), and s0, of the processes

{yt}t and {st}t respectively, are known. A suitable modification of the procedure in Vermaak

et al. [2004] can be applied for estimating the initial values of both the observable and the

latent variables.
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3 Bayesian Inference

3.1 Data Augmentation

In this paper we follow a Bayesian inference approach. One of the reasons of this choice, is

that inference for latent variable models calls for simulation based methods, which can be

naturally included in a Bayesian framework. Moreover, model selection and averaging can

be easily performed in an elegant and efficient way within a Bayesian framework, overcoming

difficulties of the frequentist approach in dealing with model selection for non-nested models.

In this paper we propose a Bayesian inference framework that relies on data

augmentation (see Tanner and Wong [1987]) and on a Monte Carlo approximation of

the posterior distributions. Following this approach, we introduce the allocation variable

ξt = (ξ1t, . . . , ξmt), where ξkt = I{k}(st) indicates the regime to which the current

observation yt belongs to, and IA(x) is the indicator function that takes value 1 if x ∈ A

and 0 otherwise. The allocation variables cluster the observations in different groups. Each

group corresponds to a regime and is characterized by regime-specific parameters in the

regression equation. In the following, a configuration of the allocation variables such that

at least one group has not a minimum number of observations is referred to as troublesome

grouping. Secondly, we write the random-coefficient dynamic regression model in equation

(2) as follows

yt =

m
∑

k=1

ξktνk + φ1yt−1 + . . . + φpyt−p + ut, ut
i.i.d.
∼ N

(

0,

m
∑

k=1

ξktσ
2
k

)

(3)

For reason of expository convenience, we follow Frühwirth-Schnatter [2006] and define

the vector of regressors, x0t = (yt−1, . . . , yt−p)
′, with regime invariant coefficients, φ =

(φ1, . . . , φp)
′, and the two vectors, ν = (ν1, . . . , νm)′ and σ = (σ2

1 , . . . , σ
2
m)′, of regime-

specific parameters. In this notation the regression model in equation (3) writes as

yt = ξ′tν + x′
0tφ+ ut, ut

i.i.d.
∼ N (0, γt)

where γt = ξ′tσ is the MS heteroschedasticity (or stochastic volatility) process.

The data-augmentation procedure, described above, yields the completed likelihood

function

L(y1:T , ξ1:T |θ) =
T
∏

t=1

m
∏

k=1

m
∏

j=1

p
ξjt−1ξkt
jk

(

2πσ2
k

)

−ξkt
2 exp

{

−
ξkt
2σ2

k

(yt − νk − x′
0tφ)

2

}

(4)
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where θ = (ν ′,φ′,σ′,p)′ is the parameter vector, with p = (p1·, . . . ,pm·)
′, pk· =

(pk1, . . . , pkm) the k-th row of the transition matrix, and zs:t = (zs, . . . , zt)
′, 1 ≤ s ≤ t ≤ T ,

denotes a subsequence of a given sequence of variables, zt, t = 1, . . . , T .

3.2 Prior Elicitation

In a Bayesian framework we need to complete the description of the model by specifying

the prior distributions of the parameters. Proper priors may be undesiderable because they

require subjective input. Thus, we assume objective priors (see Robert [2001], Ch. 3, for

an introduction to prior elicitation), which are priors that do not use subjective input (see

Kass and Wasserman [1996]) and yield posteriors with good frequentist properties, such as

the second-order correct coverage for the intervals (see Wasserman [2000]). Unfortunately,

the use of improper priors as objective priors in a context of (dynamic) mixture models

may yield improper posterior distributions. This may happen with a positive probability

when data provide no information about the parameters of one of the components (regime)

of the (dynamic) mixture.

We overcome the impropriety problem by considering the data-dependent prior approach

suggested by Diebolt and Robert [1994]. It has been shown (see Wasserman [2000], Th. 6)

that a posterior distribution based on a data-dependent prior is identical with the posterior

based on a Jeffreys prior, if the likelihood function is replaced with a pseudo-likelihood

function. The choice of the data-dependent prior and of the pseudo-likelihood is such that

the posterior is well defined. Given that we can reject simulated allocation variable draws

in that part of the likelihood corresponding corresponding to troublesome grouping of the

data, it follows that the posterior is proper. We shall see, in the next section, that the

pseudo-likelihood can be easily computed during the posterior simulation, by imposing

some constraints on the simulation of the allocation variables.

Since the results of Wasserman [2000] also apply to the improper priors other than

the Jeffreys prior, we follow Diebolt and Robert [1994] and consider a conjugate partially

improper prior. Conjugate improper priors are numerically close to the Jeffreys prior,

provide similar inferences and yield easier posterior simulations. We assume uniform

prior distributions for all the autoregressive coefficients, the intercept and the precision

parameters

(φ1, . . . , φp) ∝ IRp(φ1, . . . , φp)

νk ∝ IR(νk), k = 1, . . . ,m

σ2
k ∝

1

σ2
k

IR+
(σ2

k), k = 1, . . . ,m
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and do not impose stationarity constraints for the autoregressive coefficients. Sufficient

conditions for the second order stationarity of MS-ARMA models are given in Francq and

Zakoian [2001]. In particular, the literature has devoted great attention to the elicitation of

suitable noninformative priors for the autoregressive coefficients (see De Pooter et al. [2008]

for a review) and the use of Jeffreys prior is controversial in this setting (see Robert [2001],

Note 4.7.2). Sims [1988] and Sims and Uhlig [1991] advocate the use of flat priors, while

Phillips [1991] finds that flat priors bias the inference towards stationarity and suggests

instead the use of Jeffreys priors. Moreover, prediction is often much more sensitive than

parameter inference to the choice of the priors. Koop et al. [1995] show that imposing

stationarity constraints on autoregressive coefficients of an AR(1) model needs not lead

to stabilization of the predictive variance as the forecast horizon increases. Finally, we

note that our model could be extended up to include regime-dependent autoregressive

coefficients, with stationary coefficients in at least one of the regimes. Ang and Bekaert

[2002] and Holst et al. [1994] prove that such processes retain covariance stationarity as

long as the unconditional autocorrelation is strictly less than one. This is guaranteed

by appropriate mixing of the regimes. With constant transition probabilities, a sufficient

condition is that the ergodic probability associated with the stationary regime is non-zero.

These models capture possible variations in the stationarity of the variable of interest and

has been found useful in applied economic time series analysis, for instance for modelling

GDP (McCulloch and Tsay [1994]) and interest rates (Ang and Bekaert [2002]).

We assume standard conjugate prior distributions for the transition probabilities. These

distributions are independent and identical Dirichlet distributions, one for each row of the

transition matrix

(pk1, . . . , pkm)′ ∼ D(δ1, . . . , δm)

with k = 1, . . . ,m.

When estimating a MS model, which is a dynamic mixture model, one needs to deal

with the identification issue arising from the invariance of the likelihood function and of the

posterior distribution (which follows from the assumption of symmetric prior distributions)

to permutations of the allocation variables. Many different ways to solve this problem are

discussed, for example, in Frühwirth-Schnatter [2006]. We identify the regimes by imposing

some constraints on the parameters, as it is standard in business cycle analysis. We consider

the following identification constraints on the intercept: ν1 < 0 and ν1 < ν2 < . . . < νm,

which allow us to interpret the first regime as the one associated with the recession

phase. As an alternative, one could introduce the constraints on the volatility or on the

transition probabilities. From a practical point of view, we find in our empirical applications
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that volatility ordering works as well as the intercept ordering constraint for the regime

identification. The ordering on the transition probabilities is not strong enough for the

data to identify the regimes.

3.3 Posterior Simulation

Samples from the joint posterior distribution of the parameters and the allocation variables

are obtained by iterating a Gibbs sampling algorithm. The full conditional distributions of

the Gibbs sampler are given in the following together with the sampling procedure for the

posterior of the allocation variables (see also Krolzig [1997]).

Let us introduce the auxiliary variables y0t = yt − ξ′tν and define: ν−k =

(ν1, . . . , νk−1, νk+1, . . . , νm)′ and σ−k = (σ1, . . . , σk−1, σk+1, . . . , σm)′. The full conditional

distribution of the regime-independent parameter φ is normal with density function

f(φ|y1:T , ξ1:T ,ν,σ,p) ∝ exp

{

−
1

2

T
∑

t=1

(y0t − x′
0tφ)

2γ−1
t

}

(5)

∝ exp

{

−
1

2
φ′

(

T
∑

t=1

x0tγ
−1
t x′

0t

)

φ+ φ′

(

T
∑

t=1

x0tγ
−1
t y0t

)}

∝ Np(µφ,Υφ)

where µφ = Υφ(
∑T

t=1 x0tγ
−1
t y0t) and Υφ =

(

∑T
t=1 x0tγ

−1
t x′

0t

)−1
. The improper prior for φ

yields a proper posterior for all possible values of the allocation variables ξt. Thus, inference

on this part of the parameter vector does not suffer the impropriety problem.

The full conditional distributions of the intercept parameters νk, k = 1, . . . ,m, are

normal with density function

f(νk|y1:T , ξ1:T ,φ,ν−k,σ,p) ∝ exp







−
1

2

∑

t∈Tk

u2t γ
−1
t







(6)

∝ exp







−
1

2
ν2k





∑

t∈Tk

γ−1
t



+ νk





∑

t∈Tk

γ−1
t y1t











∝ N (µk, ω
2
k)

with µk = ω2
k(
∑

t∈Tk
y1tγ

−1
t ) = T−1

k

∑

t∈Tk
y1t and ω2

k =
(

∑

t∈Tk
γ−1
t

)−1
= σ2

kT
−1
k , where

we defined Tk = {t ∈ {1, . . . , T}|ξkt = 1}, Tk =
∑

t∈Tk
ξkt, and y1t = yt − x′

0tφ. For

the intercept parameters, since we assume improper priors, the posteriors are not always

proper distributions. The posterior is not proper if ω−2
k ≤ 0 or, equivalently, if there are
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no observations allocated to the k-th regimes (i.e., Tk is empty). It is possible to avoid

this offensive grouping of the data by rejecting, at each iteration of the Gibbs sampler, the

draws of the sequence of allocation variables, ξt, t = 1, . . . , T , that do not belong to the set

Sν = {ξ1:T |
∑T

t=1 ξjt ≥ 1,∀j = 1, . . . ,m}. We will show how to deal with this issue when

presenting the simulation procedure for the allocation variables.

The full conditional distributions of the precision parameters, σ−2
k , k = 1, . . . ,m, are

gamma with density

f(σ−2
k |y1:T , ξ1:T ,φ,ν,σ−k,p) ∝ σ−2

k

∏

t∈Tk

(σ2
k)

− 1

2 exp







−
1

2

∑

t∈Tk

u2tγ
−1
t







(7)

∝ (σ2
k)

−
(

Tk
2
+1

)

exp







−
1

2σ2
k





∑

t∈Tk

u2kt











∝ Ga(αk/2, βk/2)

where ukt = yt − x′
0tφ − νk, αk = Tk and βk =

∑

t∈Tk
u2kt. The posterior is well defined

if αk > 0, that holds true if there are at least 2 observations allocated to the regime k, or

equivalently, if Tk > 1. To have proper posterior distributions we merely omit the values

of the latent vectors, ξt, t = 1, . . . , T , that create impropriety. That comes to restrict

sampling of ξ1:T to the set Sσ = {ξ1:T |
∑T

t=1 ξjt ≥ 2,∀j = 1, . . . ,m}. We shall account for

this constraint when discussing generation of the allocation variables.

The full conditional distribution of the k-th row, k = 1, . . . ,m, of the transition matrix

is

f(pk·|y1:T , ξ1:T ,φ,ν,σ,p−k) ∝
m
∏

j=1

p
δj
kj

T
∏

t=1

m
∏

j=1

p
ξjtξkt
kj (8)

∝ D(δ1 +Nk1, . . . , δm +Nkm)

where p−k = (p1·, . . . ,pk−1·,pk+1·, . . . ,pm·)
′ and

Nkj =
T
∑

t=1

I{j}(st)I{k}(st−1)

counts the number of transitions of the chain from the state k to the state j.

In Krolzig [1997] the multi-move Gibbs sampler (see Carter and Kohn [1994] and

Shephard [1994]) is presented for Markov-switching vector autoregressive models as an

alternative to the single-move Gibbs sampler given, for example, in Albert and Chib [1993].
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The multi-move procedure, also known as forward-filtering backward sampling (FFBS)

algorithm, is particularly useful in our context because the Gibbs sampler makes use of

two relevant quantities, the filtering and the smoothing probabilities, that can be used for

turning point analysis.

The filtering probability at time t, t = 1, . . . , T , is determined by iterating the prediction

step

p(ξt = ιj|y1:t−1) =

m
∑

i=1

p(ξt = ιj|ξt−1 = ιi)p(ξt−1 = ιi|y1:t−1) (9)

and the updating step

p(ξt|y1:t) ∝ p(ξt|y1:t−1)p(yt|yt−1−p:t−1, ξt) (10)

where p(ξt = ιj|ξt−1 = ιi) = pij, with ιm the m-th column of the identity matrix and

p(yt|yt−p−1:t−1, ξt) the conditional distribution of the variable yt from a MSIH(m)-AR(p).

We shall notice that the prediction step can be used at time t to find the predictive

density of ξt+1

p(ξt+1|y1:t) ∝ P ′ p(ξt|y1:t) (11)

and the one of yt+1

p(yt+1|y1:t) =

m
∑

i=1

p(ξt+1 = ιi|y1:t)p(yt+1|yt+1−p:t, ξt+1) (12)

which, for a Gaussian MS-AR process, is a discrete mixture of normal distributions.

The smoothing probabilities given by

p(ξt = ιj |y1:T ) ∝
m
∑

i=1

p(ξt = ιj|ξt+1 = ιi,y1:t)p(ξt+1 = ιi|y1:T ) (13)

are evaluated recursively and backward in time for t = T, T − 1, . . . , 1. These quantities

are the posterior probabilities of the observation yt to be in one of the m regimes at time t,

given all the information available from the full sample of data. The conditional distribution

p(ξt|ξt+1,y1:t), that is the building block of the smoothing probability formula, is used in

the FFBS algorithm to sample the allocation variables from their joint posterior distribution

sequentially and backward in time for t = T, T − 1, . . . , 1. See Frühwirth-Schnatter [2006],

ch. 11-13, for further details.

As discussed in previous sections, when using data-dependent priors the generation of

the allocation variables should omit draws that yield to impropriety of the posterior. In
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our prior settings, the set of non-troublesome grouping is S = Sν ∩ Sσ = Sσ. Thus, each

time the set of allocation variables ξ1:T , does not assign at least two observations to each

component of the dynamic mixture, the entire set ξ1:T , is rejected and a new set is drawn

until a proper set is obtained.

The smoothing probabilities are usually employed also to detect the turning points. In

this paper, we will not consider the cycle generated by the smoothing probabilities and

instead applied a non-parametric approach (see the next section) to extract the turning

points from the forecasting values of yt+h.

4 Combining Linear and Non-linear Models

In this section we describe the rules used for combining the forecasts from linear (the AR)

and non-linear (MS-AR) models and for predicting the turning points of the business cycle.

We propose combining the models through use of two alternative schemes. The first one

is a Bayesian Model Averaging (BMA) procedure based on the forecasting performance for

the variable of interest. The second one is based on the performance of the models in terms

of turning point forecasts.

The BMA procedure gives a combined predictive density p(ỹt+1|y1:t) for the value yt+1

using the information available up to time t, t = 1, . . . , T , from a set of models Mj ,

j = 1, ...,M :

p(ỹt+1|y1:t) =

M
∑

j=1

wj,t+1p(ỹt+1|y1:t,Mj) (14)

where wj,t+1 is the (0, 1)-valued weight given to model Mj computed at time t and

p(ỹt+1|y1:t,Mj) is the predictive density of ỹt+1 conditional on model Mj , with j = AR,

MS-AR, and on the information available up to time t. It should be noticed that the point

forecast, ỹt+1, from the combined predictive density is a linear combination of the individual

point forecasts ỹj,t+1, computed as the median of the densities p(ỹj,t+1|y1:t,Mj), j = AR,

MS-AR.

To assess the forecast accuracy of each model, we follow recent studies in using the

predictive likelihood of the model. Sources such as Geweke [1999] and Geweke and

Whiteman [2006] emphasize the close relationship between the predictive likelihood and

marginal likelihood, previously used in BMA and, more generally, as Bayesian evaluation

criterion. As stated in Geweke (1999, p.15), “... the marginal likelihood summarizes the

out-of-sample prediction record... as expressed in ... predictive likelihoods.” See Bjørnland

et al. [2009] and Hoogerheide et al. [2010] for similar recent applications and Terui and van

Dijk [2002] for an alternative approach to forecast combination of linear and nonlinear time
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series models.

The cumulative predictive-likelihood at time t+1 associated to the j-th model is defined

as

ηPL
j,t+1 =

t+1
∏

s=1

p(ys|y1:s−1,Mj) (15)

where p(ys|y1:s−1,Mj) is the (simulated) predictive density obtained from the model j and

evaluated at ys. We build the weights for the j-th model, as

wPL
j,t+1 =

ηPL
j,t

∑K
k=1 η

PL
j,t

(16)

with j = AR, MS-AR.

We also suggest combining the forecasts by applying some performance measures that

are usually employed in the analysis of the turning points1. These statistics evaluate the

ability of the AR and MS-AR to predict turning points with position and frequency similar

to those of the turning points in a reference cycle. In this paper, we consider one of the most

used measures, that is the concordance statistic for regular periodic behavior in the business

cycles proposed by Harding and Pagan [2002]. This statistics is a non-parametric measure

of the proportion of time during which two series, in our case the business cycle regimes, are

in the same state. If the series take value of 1 in a expansion phase and 0 in a contraction

phase, then the concordance measure ranges between 0 and 1, with 0 representing perfectly

counter-cyclical switches, and 1 perfectly synchronous shifts. Obviously, for two regimes

described by random walks, the measure will be 0.5 in the limit. Our combination approach

could be extended up to include other statistics, such as the cumulative movements, the

actual cumulative movements and the excess cumulated movements, suggested by Harding

and Pagan [2002], to capture different characteristics of the cycle estimated with different

models.

The turning point forecasts for the variable of interest, xt, has been generated by the

Bry and Boschan [1971] (BB) rule, that identifies a downward turn (or peak) at time t if

xt−K < xt, . . . , xt−1 < xt and xt > xt+1, . . . , xt > xt+K and a upward turn (or trough)

at time t if xt−K > xt, . . . , xt−1 > xt and xt < xt, . . . , xt < xt+K . Similarly, we define a

non-downward turn at time t if xt−K < xt, . . . , xt−1 < xt and xt < xt+1, . . . , xt < xt+K

and a non-upward turn at time t if xt−K > xt, . . . , xt−1 > xt and xt > xt+1, . . . , xt > xt+K .

The parameter K reduces the number of false signals. These definitions are standard in

business cycle analysis (see for example Chauvet and Piger [2008]) and are also used (with

1See Clements and Harvey [2011] for a more general analysis on combinations of probability forecasts
that are not restricted to be 0 or 1.
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some adjustments) by the NBER institute for building the reference cycle for the US.

In the following we apply an approximation of the BB rule and use only downward,

Dt(K), and upward, Ut(K), turn signals, that are

Dt(K) =

K
∏

k=1

I[xt−k,+∞)(xt)I[xt+k,+∞)(xt) (17)

Ut(K) =
K
∏

k=1

I(−∞,xt−k](xt)I(−∞,xt+k))(xt) (18)

respectively. Our analysis can be extended to include modifications of the BB rule (see

for example Mönch and Uhlig [2005]), which account for asymmetries and time-varying

duration across business cycle phases.

We set xs = ys, s = t − K, . . . , t +K, that is the actual industrial production growth

rates, and get an indicator variable

zR,t = zR,t−1(1−Dt(K)) + (1− zR,t−1)Ut(K)

that is equal to 1 in the expansion phases and 0 in the recession phases. In our applications

we consider a signal, zR,t, t = 1, . . . , T , generated with K = 5 and assume zR,0 is given.

In the turning point prediction exercise we follow Canova and Ciccarelli [2004] and use

the full predictive densities. More specifically we set K = 1 as in Canova and Ciccarelli

[2004] and calculate the expected value of Dt(K). We use the MCMC approximation of the

predictive densities p(yt+1|y1:t,Mj), j = AR, MS-AR, to evaluate the following downward

turn probabilities

P
(D)
j,t =

∫ ∞

−∞
Dt(1)p(ỹt+1|y1:t,Mj)dỹt+1

=

∫ ∞

−∞
I[yt−1,+∞)(yt)I[ỹt+1,+∞)(yt)p(ỹt+1|y1:t,Mj)dỹt+1 (19)

The combined predictive density in Eq. (14) is used to find a downward turn probability,

that is denoted with PBMA,t. The upward turn probabilities P
(U)
j,t , j = AR, MS-AR, BMA,

are defined similarly. Under the assumption of symmetric loss function, minimization of

the expected loss leads to predict a peak at time t if PD
j,t > 0.5 and a trough if PU

j,t > 0.5.

The resulting cycle is:

zj,t = zj,t−1I[0,0.5](P
D
j,t) + (1− zj,t−1)I(0.5,1](P

U
j,t)
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We stress that, in the proposed method, the prediction of a turning point at time t needs

the predictive density for the variable of interest yt+k, k = 1, . . . ,K, from each model. As a

consequence, our turning point detection strategy, for the MS-AR model, does not consider

the results implied by the smoothed posterior probabilities as proposed in the literature

(see for example Krolzig [2004]), but uses the predictive density of the observable variable

integrated with respect to the latent Markov-switching variable. The advantage in using the

marginal predictive, instead of the hidden state smoothed probabilities, is that the forecast

will include all the information that is contained in both the observable variable and the

latent states predictive densities.

We evaluate turning point forecasting ability of the different models by the concordance

statistics given by

ηCS
j,t+1 =

t+1
∑

s=1

((zj,szR,s)− (1− zj,s)(1− zR,s)) (20)

Although the concordance statistics could be used to compute BMA weights similarly to

Eq. (16) and to combine the predictive densities, we follow an alternative route and use it

to combine the phase indicator from the different models. The phase indicator variable that

results from the combination must be a binary variable. Therefore, we propose combining

the phased indicators by using weights that take value 0 or 1. In fact, for the concordance

statistics, we adopt a model selection approach, which can be viewed as a very special case

of model averaging. The model with the highest concordance with the reference cycle has

a weight of 1, and the other models have null weights. In formula we have

wCS
j,t+1 = I{k∗t }

(j) (21)

where k∗t = argmax{ηCS
j,t , j = AR,MS-AR}.

5 Empirical Results

5.1 Data and Reference Cycle

In our study we consider the Industrial Production Index (IPI) from OECD at a monthly

frequency for the United States (US), from February 1949 to January 2011, and for the Euro

Area (EU), from January 1971 to January 2011. Data for both US and EU economies are

seasonally and working day adjusted. We employ revised data from the April 2011 vintage,

see Hamilton [2010] and Nalewaik [2011] for business cycle analysis using real-time data.

In order to obtain the IPI at the Euro zone level a back-recalculation has been performed

(see Anas et al. [2007a,b] and Caporin and Sartore [2006] for details). Since Phillips-Perron
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and Dickey-Fuller stationarity tests point out the non-stationarity of the IPI, we considered

in our analysis the log-changes of the IPI index. The resulting series (see Fig. 1) are then

used to detect and forecast the turning points.

Fig. 1 shows the reference cycle used in our analysis. The cycle is obtained by applying

a BB rule to the US and EU IPI series. For comparative purposes, we show for the US

economy the NBER official turning points, which are obtained by applying the BB rule with

some adjustments on the whole series. The application of our rule allows for detection of

the following contraction phases (from peak to trough) for the US economy since 1980M01:

• 1980 recession (1982M04-1982M12) which is within the NBER references dates;

• 1990 recession (1989M08-1991M01) which is not within the NBER references dates;

• internet bubble burst and 9/11 dates (2000M09-2002M02) which is within the NBER

reference dates;

• short contraction (2002M11-2002M12) which is not within the NBER dates;

• sluggish recovery of the US economy and EU industrial recession. This made

Greenspan and FED to keep rates very low (2003M03-2003M08);

• the 2007-2009 recession (2007M09-2009M08) which is within the NBER reference

dates.

Following the results of the BB algorithm, the Euro area has experienced the follow

contraction phases since January 1980M01:

• the second oil shock and US double dip recession (1980M09-1984M07);

• the 1986-87 recession (1986M06-1987M04);

• the 1992-94 recession (1992M05-1994M04);

• the Asian-crises related recession (1998M12-1999M07);

• the 2001 and 2003 industrial recessions (2001M09-2006M05);

• the 2007-09 recession (2008M09-2009M07).
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Figure 1: First and third chart: log-changes in the Industrial Production Index (IPI) for US
and EU at monthly frequency for the period: January 1980 to January 2010. Second and
fourth chart: the reference cycles (BB) for US and EU. Second chart: the NBER reference
cycle (black).
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Country US EU
Sample Period 1949M1-2011M1 1971M1-2011M1

θ θ̂T q0.05 q0.95 θ̂T q0.05 q0.95

ν 0.111 0.042 0.181 0.074 -0.039 0.189

φ1 1.162 1.083 1.242 0.651 0.560 0.743
φ2 -0.105 -0.222 0.012 0.339 0.237 0.441
φ3 -0.692 -0.807 0.576 -0.415 -0.517 -0.313
φ4 0.795 0.670 0.920 0.187 0.096 0.278
φ5 -0.281 -0.405 0.156
φ6 -0.326 -0.441 0.211
φ7 0.459 0.343 0.575
φ8 -0.165 -0.240 0.089

|φ| 0.848 0.808 0.889 0.763 0.702 0.825

σ 3.891 1.124 6.634 2.357 1.379 6.011

Table 1: Estimated parameters of the AR(p) model for the log-change of the US (with
p = 8) and EU (with p = 4) Industrial Production Indexes. For each country: parameter
estimates (first column) and the 0.05 and 0.95 quantiles (second and third columns).

5.2 Estimation and Forecasting

In the following we show the results of the sequential estimation and forecast of the AR and

MS-AR models. The estimation results are based on 10,000 Gibbs iterations. The number

of iterations has been chosen on the basis of both a graphical inspection of the Markov

Chain Monte Carlo averages and on the application of the convergence diagnostic (CD)

statistics proposed in Geweke [1992]. An initial set of 5,000 samples has been discarded to

loose the dependence on the initial conditions of the sampler and the remaining samples

were thinned down by a factor of 10 to have reasonably less-dependent posterior samples.

Table 1 shows the estimation results for the AR(p) based on the full sample. We use

the Bayesian information criteria for selecting the order of the autoregressive processes and

find that for the US IPI log-changes an AR(8) should be used while an AR(4) should be

considered for modelling the Euro area business cycle. For both of the cycles the AR(p)

has a positive intercept value that is statistically close to 0.1, which underestimates the

mean value of the IPI log-changes during an expansion phase and overestimate it during

a recession phases. The HPD region of the posterior distribution of the sum, in absolute

value, of the autoregressive coefficients (|φ| in Tab. 1) is the stationary region of the model

The HPD region for the volatility is (1.124, 6.634) for the US and (1.379, 6.011) for the EU

which are quite high and tend to overestimate volatility during the normal growth and the

expansion periods.
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Country US EU
Sample Period 1949M1-2011M1 1971M1-2011M1

θ θ̂T q0.05 q0.95 θ̂T q0.05 q0.95

ν1 -2.436 -5.868 -0.539 -1.981 -4.225 -0.423
ν2 -0.524 -1.542 0.156 -0.152 -1.145 0.335
ν3 0.132 -0.290 0.511 0.482 -0.040 1.433
ν4 1.180 0.121 3.410 2.015 0.435 4.771

σ1 2.783 7.743 1.350 4.051 9.395 1.999
σ2 1.567 4.085 0.725 1.337 5.735 0.800
σ3 0.552 2.496 0.358 1.450 6.356 0.794
σ4 0.947 4.493 0.424 3.354 7.116 1.524

φ1 0.935 0.650 1.204 0.555 0.330 0.774
φ2 0.050 -0.311 0.404 0.331 0.099 0.562
φ3 -0.473 -0.815 -0.135 -0.374 -0.610 -0.140
φ4 0.271 0.033 0.516 0.185 -0.021 0.398

|φ| 0.784 0.608 0.961 0.696 0.486 0.899

p11 0.641 0.429 0.832 0.709 0.519 0.870
p12 0.186 0.039 0.389 0.130 0.025 0.286
p13 0.082 0.004 0.240 0.079 0.004 0.223
p14 0.089 0.005 0.248 0.080 0.005 0.217

p21 0.041 0.002 0.136 0.032 0.001 0.130
p22 0.675 0.468 0.862 0.841 0.544 0.981
p23 0.165 0.031 0.359 0.090 0.005 0.281
p24 0.116 0.004 0.301 0.034 0.000 0.156

p31 0.014 0.000 0.048 0.051 0.000 0.207
p32 0.053 0.008 0.202 0.135 0.008 0.400
p33 0.886 0.596 0.976 0.775 0.414 0.980
p34 0.046 0.000 0.212 0.037 0.000 0.159

p41 0.033 0.000 0.139 0.096 0.005 0.272
p42 0.060 0.001 0.214 0.111 0.007 0.293
p43 0.128 0.005 0.319 0.115 0.008 0.288
p44 0.777 0.515 0.977 0.676 0.441 0.868

Table 2: Estimated parameters of the MSIH(4)-AR(4) model for the log-change of the
US and EU Industrial Production Indexes. For each country: parameter estimates (first
column) and the 0.05 and 0.95 quantiles (second and third columns).
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Figure 2: Hidden state estimates st|T and smoothing probabilities P (st|y1:T ), for t =
1, . . . , T , for US (upper panel) and EU (lower panel) data.
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We compare the AR(p) model with the MSIH(m)-AR(p) and as we expected the

MSIH(m)-AR(p) are able to give a better description of the features of the cycles and to

capture different phases in the IPI growth level and volatility. Tab. 2 shows the estimation

results for the MSIH(m)-AR(p) based on the whole sample period. We consider here a

flexible model by considering p = 4 lags as in Hamilton [1989] and Krolzig [2000] for the

US gross domestic product and m = 4 regimes, extending the three-regimes model used in

Krolzig [2000].

We find in our comparisons that the four-regimes model is necessary in order to capture

the last recession. The interpretation of two of the four regimes will be similar to the

one given in Krolzig [2000], i.e. normal growth and high growth, and two regimes are

used to describe the recession phases. Thus in our model the fourth regime characterizes

high-growth episodes, the third regime normal-growth phases, the second regime a normal

slowdown in economic activity. The first regime may indicate strong-recession periods. We

find evidence of the four regimes in both the US and the EU economies (see the first graph

in both the US and the EU panels of Fig. 2). The graphs in the rows from two to four

of Fig. 2 US and EU panels show the smoothing probabilities of the MSIH(m)-AR(p)

model estimated on the full sample. The smoothing probabilities for the first regime,

P (st = 1|y1:T ), show that some strong recession periods are present in the sample with

a high probability. In particular, in the 1976 and 2009 crises for both the EU and US cycles

there are some periods where the smoothing probabilities of the first regime are greater

than the probabilities of the other regimes.

From Fig. 2 one can see that the regimes have different degrees of persistence. The

analysis of the transition probabilities brings us to the following conclusions. The first

regime is moderately persistent with transition probabilities p̂11 = 0.641 for the US and

p̂11 = 0.709 for the EU (see Tab. 2). It is less persistent than the third regime (normal

growth), which has estimated transition probabilities (see Tab. 2) p̂33 = 0.886 for US and

p̂33 = 0.775 for EU. The second regime (normal recession) is less persistent than the other

regimes, for US, with probability p̂22 = 0.675 to stay in the regime, and more persistent,

for EU, with transition p̂22 = 0.841. The fourth regime is more persistent than the first

regime, for the US, with probability p̂44 = 0.777 to stay in the regime, while the opposite

is the case for the EU, which has the probability of staying in a strong recession regime of

p̂44 = 0.676.

The four regimes have substantially different values for the intercept and scale

parameters (see Tab. 2). The differences between the constant terms in the first and

in the fourth regime are similar for the US and the EU, i.e. (ν̂4 − ν̂1) = 3.616 for the US

and (ν̂4 − ν̂1) = 3.996 for the EU. The volatility gap between the first and fourth regimes
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is instead different in the two cycles: σ̂2
4 − σ̂2

1 = −1.836 for US and σ̂2
4 − σ̂2

1 = −0.967 for

the EU. More generally the volatility of the EU cycle associated with regimes of strong

recession and high growth is larger than the volatility of the US cycle. For both cycles the

MS model results show that volatility significantly changes across the four regimes. For this

reason, the use in this context of a AR model with constant volatility may be inappropriate.

Accordingly, one could expect that the MS-AR models have superior forecasting ability than

the AR models.

Fig. 3 shows the combination weights obtained from the sequential evaluation of the

forecasting abilities of the different models for the US and the EU IPI log-changes. From

the first and third chart in Fig. 3 it can be seen that the combination weights, wPL
MS−AR,US

and wPL
MS−AR,EU , increase in the last part of the sample, starting at September 2008. This

corresponds to an increase in the forecasting ability, in terms of predictive likelihood, of

the MS-AR with respect to the AR models. From our experiments we find that the good

performance of the MS-AR models in the last part of the sample cannot be obtained with

three regimes and that four-regime models are necessary to have an adequate description,

in terms of expected growth-rate and volatility, of both the US and EU cycles during a

strong recession phase.

The results for the performance abilities change if we consider the concordance with

a reference cycle as a performance measure (see the combination weights wCS
MS−AR,US and

wCS
MS−AR,EU in the second and fourth graph of Fig. 3). More specifically, for the US cycle

(second chart in Fig. 3) the MS-AR model is superior to the AR model starting at the

beginning of 1985. Conversely, the turning point forecast abilities of the MS-AR are worse

than those of the AR model for the EU cycle, starting at the beginning of 1985. These

results are all in line with the results in Clements and Krolzig [1998] about the time-varying

performance of the MS models. MS models behave in a different way depending on the

value of the regime present when the forecast performances are evaluated.

5.3 Sequential Turning Points Detection

Turning point prediction with different models (AR and MS-AR) and model combinations

(using predictive likelihood and concordance statistics) are given in Fig. 4. Fig. 4 (charts

3 and 4) shows that the two combination strategies for the US cycle give two sequences of

turning point forecasts that exhibit substantial differences. Charts seven and eight of the

same figures show that the two strategies give similar turning points for the EU cycle.

In order to evaluate, at the end of the sample period T , the forecast abilities of the two
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Figure 3: Combination weights for the AR(p) and MSIH(m)-AR(p) forecasts by using
predictive-likelihood (PL) and concordance statistics (CS) for US and EU data.
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Figure 4: Turning point forecasts for US and EU IPI obtained from different models (AR(p)
and MSIH(m)-AR(p)) and their combinations based on the predictive likelihood (PL) and
the concordance statistics (CS).
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combination strategies we consider the Mean Square Prediction Error (MSPE)

MSPE =
1

T

T
∑

t=1

(yt − ỹt+1)
2 (22)

and the Logarithmic Score (LS)

LS = −
1

T

T
∑

t=1

ln p(ỹt+1|y1:t) (23)

Tab. 3 shows that one of the two models performs better for both the US and EU, in

terms of MSPE, than the two combination strategies. When considering the LS, then the

forecast based on the concordance statistics that corresponds to the combination of the

turning point indicators is the best strategy to use for the US cycle. For the EU cycle the

forecast based on predictive likelihood performs better than the one based on concordance

statistics. This leads to the conclusion that, for the EU it is better to combine first the

growth-rate forecasts and then apply the BB rule for the detection of the turning points.

Our findings are similar to Min and Zellner [1993]. They considered either the annual real

GDP and real GNP of eighteen countries, 1974-87, and found that it is not always optimal

to combine forecast when predicting the output growth rate.

AR MS-AR PL CS

US

MSPE 0.489 0.556 0.519 0.523
LS -1.200 -1.144 -1.209 -1.121

EU

MSPE 1.323 1.299 1.299 1.331
LS -1.683 -1.541 -1.552 -1.697

Table 3: Mean square prediction error (MSPE), Log-score (LS) for the AR(p), MSIH(m)-
AR(p) models and for the model combinations based on predictive likelihood (PL) and on
the concordance statistics (CS).

6 Conclusion

We focus on the analysis the turning points of the business cycle and follow a Bayesian model

averaging approach to combine their forecasts obtained from different prediction models.

The new combination scheme relies upon non-parametric measures, i.e. concordance
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statistics, of the proportion of time during which the predicted and the reference

chronologies, are in the same phase. We compare empirically our combination approach with

a combination strategy based on the predictive likelihood, that detects the ability to predict

the level of the cycle. In the comparison exercise we consider linear (AR) and nonlinear

(MS-AR) models and follow a full Bayesian approach for inference and for both model

estimation and combination, which accounts for both parameter and model uncertainty.

In our finding, the predictive likelihood and the concordance statistics show that forecast

abilities of the models change across different phases of the cycle. In our specific case, the

two measures rank differently the predictive models. As a consequence, the performances

of the different combination strategies are different. We also found that the results are

cycle-specific and this suggest that both of them should be considered in the applications

and the best combination evaluated for the problem at hand.

Finally, our analysis could be extended to include some generalisations of the model of

Hamilton [1989] such as MS latent factor models (Kim and Nelson [1999]), MS models with

time-varying transition probability (Sichel [1991], Watson [1994], Diebold and Rudebusch

[1996], Durland and McCurdy [1994], and Filardo [1994]), stochastic duration models (Billio

and Casarin [2010], Billio and Casarin [2011] and Chib and Dueker [2004]), and finally

multivariate MS models (Diebold and Rudebusch [1996] and Krolzig [1997, 2004]). The

degrees of freedom in the specification of the model set and of the concordance statistics

makes the proposed methodology very appealing and suggests the application of our BMA

approach to all the empirical analysis where forecasting of the turning points is a crucial

issue.
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