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Abstract In the last 15 years, several research efforts have been directed towards the

representation and the analysis of metabolic pathways by using Petri nets. The goal of this

paper is twofold. First, we discuss how the knowledge about metabolic pathways can be

represented with Petri nets. We point out the main problems that arise in the construction

of a Petri net model of a metabolic pathway and we outline some solutions proposed in the

literature. Second, we present a comprehensive review of recent research on this topic, in

order to assess the maturity of the field and the availability of a methodology for modelling

a metabolic pathway by a corresponding Petri net.

Keywords Petri nets � Metabolic pathways � Qualitative and quantitative

analysis � Tools

1 Introduction

Molecular biology suffers of the gap between a huge amount of data stored in large

databases, worldwide collected through observations and experiments, and the lack of

satisfying explanations and theories able to give them a sound biological meaning. To fill

the gap, Computational Systems Biology (Kitano 2002a, b) advocates the integration of
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experimental results with both computational techniques and modelling formalisms in

order to get a deeper understanding of biological systems.

Various formalisms have been proposed for modelling and analysing bio-systems:

ordinary differential equations (ODEs), process calculi, boolean networks, Bayesian net-

works, bipartite graphs, stochastic equations (see, e.g., de Jong 2002; Deville et al. 2003;

Mandel et al. 2004; Wiekert 2002 for some surveys). It is not trivial to choose among

discrete or continuous, deterministic or probabilistic modelling techniques. A difficulty

resides in the need of having, at the same time, abstraction and ease of use, detailed and

complete descriptions. Some additional problems are intrinsic to bio-modelling: hetero-

geneous representation of information, incomplete knowledge, noise and imprecision in the

data. Data availability strongly influences the choice of the model: ODE-models are often

the first choice when all kinetic data are known, but also stochastic models can be used. In

the absence of kinetic data, the choice is obviously restricted to qualitative models. Still it

is worth remarking that, in any case, qualitative models, and the analysis methods they are

equipped with, can provide valuable information which complements or facilitates a

quantitative analysis.

A model always needs to be validated. After that, the model can be used for studying the

behaviour of the biosystem and for experimenting with it. The analysis techniques avail-

able for the adopted formalism may be fundamental both in the validation phase and when

studying the properties of the modelled biosystem.

In this paper we focus on metabolic pathways, which are complex networks of bio-

chemical reactions describing flows of substances. Deterministic continuous models based

on ODEs have been largely used for representing and analysing the kinetics of such

networks. On the other hand, stochastic discrete models have been mainly used for sim-

ulation (Wilkinson 2006). They assume that the timing of reactions is determined by a

random variable (either continuous or discrete) and that compound concentrations change

either by discrete numbers of molecules (discrete state space models) or by continuous

values (fluid models), corresponding to single reaction events. ODEs model a metabolic

pathway at a macroscopic scale, while a stochastic system models it at a finer level of

granularity. As a consequence, a stochastic model, although generally hard to analyse, can

reveal interesting individual behaviours neglected by ODEs, which instead capture, in a

sense, the average case.

In some seminal papers Reddy et al. (1993, 1994, 1996) and Hofestädt (1994) propose

Petri nets (PNs) for representing and analysing metabolic pathways. Since then a wide

range of literature has grown on the topic. PNs are a well known formalism introduced in

computer science for modelling concurrent systems. They have an intuitive graphical

representation which may help the understanding of the modelled system, a sound theory

and many applications both in computer science and in real life systems (see Esparza and

Nielsen 1994; Murata 1989; Peterson 1981; Reisig 1985 for surveys on PNs and their

properties). A PN model can be decomposed in order to master the overall complexity and

it enables a large number of different analyses. Just to mention a few, one can determine

conflicting evolutions, reachable states, cycles, states of equilibrium, bottlenecks or

accumulation points. Additionally, once a qualitative PN model has been devised, quan-

titative information can be added incrementally.

Although PNs have been employed also for signalling and regulatory networks (see,

e.g., Chaouiya et al. 2008; Goss and Peccoud 1998; Grunwald et al. 2008; Heiner et al.

2004; Matsuno et al. 2003b; Peleg et al. 2002; Sackmann et al. 2006), here we focus on

metabolic pathways only, since modelling problems are different for different kinds of

networks. PNs seem to be particularly natural for representing metabolic pathways, as
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there are many similarities between concepts in biochemical networks and in PNs. They

both consist of collections of reactions which consume and produce resources and their

graphical representations are similar. Such similarities allow for a fruitful integration

between analysis techniques developed for biochemistry and for PNs. Abstraction and

compositionality issues, as studied in PN theory, may help in mastering the complexity of

metabolic networks, furthermore many tools are available for visualisation, analysis and

simulation of PNs.

The goal of this work is twofold. Firstly, we illustrate how information about metabolic

pathways can be modelled and analysed using PNs; we point out some relevant representation

problems along with some solutions proposed in the literature. Secondly, we present a

comprehensive review of recent research on modelling and analysing metabolic pathways

with PNs in order to assess the maturity of the field. We consider in particular some aspects:

the type of PNs, the case studies considered, the analyses performed, the tools adopted, the use

of the main biological databases, the level of automated support for translating pathways

information into corresponding PN models and for analysing such models.

Other reviews on modelling metabolic pathways through PNs are presented in Chaouiya

(2007), Hardy and Robillard (2004), Koch and Heiner (2008), Matsuno et al. (2006) and

Peleg et al. (2005). In particular, in Hardy and Robillard (2004) the modelling and analysis

capabilities of basic PNs and of their extensions are discussed, illustrating how the gly-
colysis pathway can be modelled with stochastic, coloured and hybrid PNs. In Peleg et al.

(2005) PNs and some of their extensions are presented together with a classification of the

analyses they enable and of the biological processes they can model. Three case studies are

considered which highlight some typical features of biological systems. These are mod-

elled with five PN tools, which are then compared with respect to their analysis capabil-

ities. The paper (Matsuno et al. 2006) presents a survey on qualitative and quantitative

modelling and analysis of biological pathways through various types of PNs. Some

practical examples of modelling by means of Hybrid PN and their extensions are discussed,

showing how they can be used to produce biological hypotheses by means of simulations.

We also recall (Chaouiya 2007), which surveys the basics of PN theory and some possible

applications to metabolic, genetic and regulatory networks. An interesting overview on PN

and on the main analysis techniques for validating a PN model and experimenting with it,

is presented in Koch and Heiner (2008) and it is illustrated by examples. A special

emphasis is given to the qualitative analysis of the model.

The paper is organised as follows. In Sect. 2 we shortly illustrate metabolic pathways and

the main databases collecting related information. In Sect. 3 we present an overview of the

basics of PNs. In Sect. 4 we discuss the representation of metabolic pathways through PNs.

We describe the main problems concerning qualitative and quantitative modelling and we

illustrate some solutions proposed in the literature. In Sect. 5 we present the main PN based

approaches for modelling and analysing metabolic pathways in the literature and discuss the

indications resulting from this survey. Brief concluding remarks follow in Sect. 6.

2 Metabolic pathways

The life of an organism depends on its metabolism, the chemical system which generates

the essential components—amino acids, sugars, lipids and nucleic acids—and the energy

necessary to synthesise and use them. The flow of mass and energy is the essential purpose

of the system and homeostasis its central property, since the organism has to maintain a

steady level for the important metabolites while facing external and internal stimuli.
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Subsystems dealing with some specific function are called metabolic pathways. Hence a

metabolic pathway is a set of interacting chemical reactions which modify a principal

chemical. Each chemical reaction transforms some molecules (reactants or substrates) into

others (products), and it is catalysed by one or more enzymes. Enzymes are not consumed

in a reaction, even if they are necessary and used while the reaction takes place. The

product of a reaction can be the substrate of subsequent ones.

Regulation is important in metabolic pathways. Usually it is obtained by a feedback

inhibition or by a cycle where one of the products starts the reaction again. Anabolic

(constructive) or catabolic (destructive) pathways can be separated by compartments or by

using different enzymes. A metabolic pathway contains many steps, one is usually irre-

versible, the other steps need not to be irreversible and in many cases the pathway can go in

the opposite direction depending on the needs of the organism. Glycolysis is a good

example of this behaviour: it is a fundamental pathway which converts glucose into

pyruvate and releases energy. As glucose enters a cell, it is phosphorylated by ATP to

glucose 6-phosphate in a first irreversible step, thus glucose will not leave the cell. When

there is an excess of energy, the reverse process, the gluconeogenesis, converts pyruvate

into glucose: glucose 6-phosphate is produced and stored as glycogen or starch. Most steps

in gluconeogenesis are the reverse of those found in glycolysis, but the three reactions of

glycolysis producing most energy are replaced with more kinetically favorable reactions.

This system allows glycolysis and gluconeogenesis to inhibit each other. This prevents the

formation of a futile cycle, i.e., when two metabolic pathways running simultaneously in

opposite directions have no overall effect except for dissipating energy.

A metabolic pathway is usually represented graphically as a network of chemical

reactions. In such a concise representation enzymes are often omitted. In order to com-

pletely characterise a metabolic pathway, it is necessary to identify its components (namely

the reactions, enzymes, reactants and products) and their relations. The quantitative rela-

tions between reactants and products in a balanced chemical reaction are represented

through its stoichiometry. For example the well-known reaction in which water is formed

from hydrogen and oxygen gas is described by the equation 2H2 þ O2 ! 2H2O; where the

coefficients show the relative amounts of each substance. Each amount can represent either

the relative number of molecules, or the relative number of moles.1 Each reaction is

characterised also by an associated rate, represented by a rate equation, which depends on

the concentrations of the reactants. The rate equation depends also on a reaction rate
coefficient (or rate constant) which includes all the other parameters (except for concen-

trations) affecting the rate of the reaction.

For a pathway with n reactions and m molecular species, stoichiometries may be rep-

resented in a more compact although less informative form by a stoichiometric matrix with

n columns and m rows. An element of the matrix, a stoichiometric coefficient nij, represents

the degree to which the i-th species participates in the j-th reaction or, more precisely, the

variation of the amount of the i-th substance due to the j-th reaction. By convention,

reactants have negative values and products positive ones. In elementary reactions such

values are integers (whole molecules), while in composite reactions some values may be

fractions. The coefficients of the enzymes are equal to zero, since they are taken and

released in the reaction. For an introduction to metabolism and to chemical networks we

refer to general texts such as (Atkin and dePaula 2006; Voet and Voet 2004).

1 By definition, a mole of any substance contains the same number of elementary particles as there are
atoms in exactly 12 g of the 12C isotope of carbon.
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The study of a metabolic pathway requires to combine information from many sources:

biochemistry, genomics, life process descriptions, network analysis and simulation. A

challenge of computational Systems Biology is to represent metabolic pathways with

formal models supporting analysis and simulation. Such models are meant to give a better

understanding of the processes in a pathway by studying the interactions among the

pathway components and how these interactions contribute to the function and behaviour

of the whole system. Systems Biology advocates a method consisting of various steps:

– translate experimental and theoretical knowledge into a model;

– validate the model;

– derive from the validated model testable hypotheses about the system;

– experimentally verify them;

– use the newly acquired information to refine the model or the theory.

The first two steps are very complex, they require to build a model of a metabolic pathway

from available knowledge and to validate it. Such knowledge is continuously increasing

and rapidly changing, and often stored in databases.

2.1 Databases for metabolic pathways

In this section we briefly consider the main databases collecting knowledge on metabolic

pathways.

The KEGG PATHWAY database (KEGG stands for Kyoto Encyclopedia of Genes and
Genomes) contains the main known metabolic, regulatory and genetic pathways for dif-

ferent species. It integrates genomic, chemical and systemic functional information

(Kanehisa et al. 2008). At present it contains around 96,000 pathways, generated from 339

reference pathways which are manually drawn, curated and continuously updated from

published materials. Pathways are represented by maps with additional information con-

nected to such maps. Such information cover reactions, proteins and genes, and may be

stored also in other databases. KEGG can be queried through a language based on XML,

called KGML (KEGG Markup Language).

Another important repository is the BioModels Database related to the SBML.org site.

It allows biologists to store, search and retrieve published mathematical models of bio-

logical interest. These are annotated and linked to relevant data resources, such as pub-

lications, databases of compounds and pathways, controlled vocabularies. At present it

contains 231 curated and 198 non-curated models, 32,014 species, 39,293 reactions and

around 16,492 cross-references. The models are coded in SBML (Systems Biology Markup

Language), a language based on XML.

There are also other free access databases containing information on metabolic

pathways:

– MetaCyc (Caspi et al. 2008), which is part of BioCyc Database Collection. It describes

more than 1,400 metabolic pathways from more than 1,800 different organisms and it

is maintained by exploiting the scientific experimental literature.

– Reactome which is an expert-authored, peer-reviewed knowledge base of core

pathways and reactions in human biology, with inferred orthologous events in 22 non-

human species.

– TRANSPATH, which is part of BIOBASE. It provides information on signalling

molecules, metabolic enzymes, second messengers, endogenous metabolites, miRNAs

and the reactions they are involved in.
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– BioCarta hosts a set of dynamic graphical models which integrate emerging proteomic

information from the scientific community. It contains around 80 metabolic pathways.

Relevant information can be found also in other databases, not specifically dedicated to

metabolic pathways, such as BRENDA (Chang et al. 2009) (BRaunschweig ENzyme

DAtabase), which is the largest publicly available enzyme information system worldwide;

ENZYME, which is another repository of information relative to enzymes; DIP (Salwinski

et al. 2004), MINT (Chatraryamontri et al. 2007) and BIND (Biomolecular Interaction

Network Database) which are catalogues of experimentally determined interactions

between proteins.

2.2 General problems in representing metabolic information

In spite of all the available information, it is very difficult to collect the relevant knowledge

and to translate it into a model of a metabolic pathway. The data concerning the chemical

reactions are generally not precise, coherent and complete, and this is especially true for

kinetic information. Published data come from different microorganisms or different

strains and they are produced over several years. Besides the kinetic laws of reactions are

seldom published, since major substrates, cofactors and effectors are usually studied

separately. The kinetics of many processes is almost completely unknown and modelling

assumptions are highly speculative. Hence simplified approaches are used (Atkin and de

Paula 2006; Wiekert 2002).

An example is the following Michaelis–Menten scheme

V ¼ d½P�
dt
¼ Vmax � ½S�
½S� þ Km

which is commonly used to describe an enzymatic reaction

E þ S�ES! E þ P

where E is the enzyme, S the substrate, P the product. In the scheme [S] and [P] denote the

substrate and product concentrations, Vmax is the maximum reaction rate and Km the

Michaelis constant. The parameters Vmax and Km characterise the interactions of

the enzyme with its substrate. This kinetic model is valid when the concentration of the

enzyme is much smaller than the concentration of the substrate and it is based on the

assumption that enzyme and substrate are in fast equilibrium with their complex, that is

the concentrations of intermediate complexes do not change (steady state approximation).

When kinetic data are available, a more accurate description could be obtained by

decomposing the enzymatic reaction and by using the law of mass-action for single-step

reactions. An interesting discussion on the use of these two models and on their

assumptions can be found in Breitling et al. (2008). A uniform distribution of the amount

of metabolites in the system is generally assumed, but in some situations this is not true.

For example, when there are diffusion mechanisms or membranes which alter the trans-

portation of metabolites. In such cases more appropriate kinetic models must be used

(Atkin and de Paula 2006).

A further problem to solve in modelling regards the partitioning of a large metabolic

network into pathways. On the one hand partitioning is necessary to master the complexity

of the network, on the other hand it is a quite difficult task since biologists and biochemists

base their definitions of pathways on intuitive biological criteria. As a consequence, in the

databases we may find models of the same pathway which can significantly differ, not only
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in numerical parameters, but also in their structure. To overcome this problem, consensus

pathways may be defined and they are represented in some databases such as in KEGG.

In the latest years there have been many attempts to attack the problems concerning data

availability and network partitioning by computational means. Data mining and infor-
mation retrieval have been used to extract available metabolic information from the lit-

erature in the Internet and to integrate them with the information from major public

databases, by using genome sequence data, annotations, organism similarities and statis-

tical techniques (see, e.g., Borger et al. 2006, 2007; Liebermeister et al. 2007). Genetic
algorithms have been used for predicting both the network topology and the parameters of

biochemical equations. They have been used also in the reverse engineering problem of

inferring the topology and the parameters of a network from time series data on the

concentration of the different reacting components (see, e.g., Crampin et al. 2004; Koza

2003). Optimisation techniques have been used for the computation of steady-states,

dynamic optimal growth behaviour and network modularisation (see, e.g., Beasley and

Planes 2007; Moles et al. 2003).

Analysis techniques are essential for model validation and various methods have been

developed for metabolic pathways. We can distinguish methods based on system theory,

such as metabolic control analysis and flux balance analysis (see, e.g., Edwards et al.

2002; Fell 1992; Heinrich and Rapoport 1974; Varma and Palsson 1994), and structural
methods which do not use information on metabolite concentrations or fluxes, by assuming

that fluxes and pool sizes are constant. The analysis of extreme fluxes and the analysis of

elementary flux modes belong to this second class and are used to determine the possible

behaviours of the pathway (see, e.g., Schilling et al. 2000; Schuster and Hilgetag 1994).

They are based on the stoichiometric relations which restrict the space of all possible flux

patterns in a network to a rather small linear subspace. Such a subspace can be analysed in

order to capture also the functional subunits of the network (see, e.g., Schuster et al. 2002).

A good survey on metabolic pathways analysis techniques can be found in Schilling et al.

(1999). Based on stoichiometric data and reaction descriptions, they have been used to

identify and validate metabolic pathways (Schuster et al. 1999, 2000) without requiring

kinetic information.

3 Petri nets

In this section we give an overview of Petri nets (PNs) (see, e.g., Murata 1989; Peterson

1981; Reisig 1985), describing the basic model and some extensions used for the repre-

sentation of metabolic pathways.

3.1 Basic Petri nets

A (finite marked) Petri net (PN) is a tuple N = (P, T, W, M0) where:

– P is the set of places, P = {p1,…, pn};

– T is the set of transitions, T = {t1,…, tm};

– W :
�
ðP� TÞ [ ðT � PÞ

�
! N is the weight function;2

when W(x, y) = k, with k [ 0, the net includes an arc from x to y with weight k;

2 We denote by N the set of natural numbers, N ¼ f0; 1; 2; . . .g:
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– M0 is an n-dimensional vector of non-negative integers which represents the initial
marking of the net.

PNs admit a simple graphical representation, where places are drawn as circles, transitions

as rectangles, the presence of an arc (p, t) or (t, p) between a transition t and a place p, is

represented by a directed arc, labelled with the corresponding weight W(p, t) or W(t, p),

respectively. When the weight is 1 the label is usually omitted. A marking (or state) is an

n-dimensional vector of non-negative integers M = (m1,…, mn) which represents the

amount of tokens in the places of the net N. A marking M is graphically represented by

inserting in each place pi a corresponding number mi of black circles representing tokens.

We write M B M0 when mi B mi
0 for i [ {1,…, n}. A simple example of PN is given in

Fig. 1.

The input bag or precondition of the transition t is the n-dimensional vector of non-

negative integers t- = (i1,…, in), where ij = W(pj, t) for any j [ {1,…, n}. Dually, the

output bag or post-condition of the transition t is an n-dimensional vector of non-negative

integers t? = (o1,…, on), where oj = W(t, pj) for any j [ {1,…, n}. Intuitively, t- indi-

cates, for every place of the net, the number of tokens needed to enable transition t. The

firing of t removes such tokens and generates new ones, as indicated by t?. We call input

(output) places of a transition t those places, which correspond to the non-zero elements of

t- (t?). For instance, in Fig. 1, we have t1
- = (1, 0, 0, 0, 0), while t1

? = (0, 1, 1, 0, 0).

Similarly, t5
- = (0, 0, 0, 2, 1) and t5

? = (1, 0, 0, 0, 0).

A self-loop of a transition t over a place p exists when W(p, t) [ 0 and W(t, p) [ 0, i.e.,

the transition deletes and produces tokens from the same place. A Petri net is called pure if

it does not contain self-loops.

A transition t with input bag t- is enabled by the marking M = (m1,…, mn), if t- B M.

In this case t can fire and, as a consequence, the net marking changes from M to a new

marking M0 defined as follows:

M0 ¼ M � t� þ tþ;

and we write M!t M0:
Note that a marking can enable more than one transition. In this situation one of the

enabled transitions is non-deterministically chosen and fired. It can also happen that some

of the enabled transitions compete for a token; in this case they are in conflict and the

t 1 t 2

t 3 t 4

t 5

p 1

p 4

p 2 p 3

2

p 5

Fig. 1 A simple Petri net
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execution of one of them can prevent the other ones from firing. For instance, consider the

PN in Fig. 1. Its marking M = (1, 0, 0, 0, 0) enables transitions t1 and t2, which are in

conflict. After firing, e.g., transition t1, the new marking is M0 = (0, 1, 1, 0, 0) and t2 is no

longer enabled.

The incidence matrix of a PN N, denoted by AN ; is the n 9 m matrix which has a row

for each place and a column for each transition. The column associated with transition t is

the vector (t? - t-)T, which represents the marking change due to the firing of t. In the PN

literature the incidence matrix is sometimes defined as the transpose of the one considered

here (see for example Murata 1989).

The reachability set (or state space) of the net N is the set of all the markings of the net

which are reachable by a firing sequence from the initial marking M0, and it is denoted by

R(N, M0).

3.2 Behavioural properties of Petri nets

Representing a system as a PN allows for a formal analysis of its properties. We discuss

now some fundamental properties which are of interest when PNs model biological sys-

tems. First we focus on those properties which depend on the evolutions of the net from an

initial marking. According to Murata (1989), these are referred to as behavioural or

marking dependent properties of a PN. Structural or marking independent properties will

be discussed in the next section. For the rest of this section N indicates a fixed PN, with m
transitions, n places and an initial marking M0.

A first fundamental property of a system is reachability: given a marking M, determine

whether M [ R(N, M0), i.e., check whether M is reachable via a firing sequence from the

initial marking (reachability problem). Understanding whether the system will be able to

reach some desired or undesired state is clearly of vital importance in most modelling

application. A related problem is coverability: given a marking M, determine if there exists

a reachable marking M0 [ R(N, M0) such that M0 covers M, i.e., M B M0. The problem of

deciding whether a state is part of the reachability set of a net is known to be decidable

(Mayr 1981), but of intractable complexity (it is easily proven to be NP-hard (Esparza and

Nielsen 1994) and it is actually EXPSPACE-hard (Lipton 1976)). As a consequence of the

intractability of the reachability problem, naive approaches to reachability analysis nor-

mally fail to be effective, a fact that motivates the interest and the huge literature on

analysis methods for Petri nets.

Next fundamental property is boundedness. A net N is bounded if, during the evolution

of the net, in each place the number of tokens will never exceed a fixed number k. More

formally, N is called k-bounded, for some k 2 N; if for all M = (m1,…, mn) [ R(N, M0)

and i [ {1,…, n}, mi B k. We say that N is bounded if it is k-bounded for some k 2 N:
When considering a PN model of a metabolic pathway, the validity of the conservation law

should ensure that the net is bounded. However, often this property does not hold due to the

presence of external metabolites for the considered pathway, which are usually assumed to

be available in unbounded quantity. A more detailed discussion on the modelling of

external metabolites can be found in Sect. 4.2.

The third fundamental property is liveness. A net N is live if, starting from any reachable

marking, any transition in the net can be fired, possibly after some further firings. Formally,

for all M [ R(N, M0) and t [ T, there exists M0 [ R(N, M) such that t is enabled at M0. A

net N has a deadlock (or dead state) if it is possible to reach a marking in which no

transition is enabled. The fact that a PN model of a metabolic pathway is live indicates that

any reaction, at any moment may happen infinitely often, i.e., that the biological process
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will never restrict to a subprocess. A deadlock corresponds to the possibility for a meta-

bolic process to become blocked, thus reaching a false equilibrium.

The reachability graph of a net N with initial marking M0, is a graph whose vertices are

the elements of the reachability set R(N, M0) and whose arcs represent transitions, namely

there is an arc from M to M0 when M!t M0: The reachability graph is infinite when the

number of reachable markings is infinite. In this case it can be useful to consider the

coverability graph, which is a graph where nodes are labelled by markings, with the

property that for each reachable marking M [ R(N, M0) there is a marking M0 in the graph

that covers M. In order to keep the graph finite even for infinite-state Petri nets, the symbol

x is used to represent an unbounded number of tokens in a place. Conversely, for any

marking M0 in the coverability graph, there is a reachable marking M [ R(M0, N) such that

mi = m0i, if m0i = x, and mi [ k, for arbitrary k, if m0i = x. Edges in the graph still

represent the firing of transitions. The coverability graph is thus an abstraction of the

reachability graph, where some information is lost. Hence its analysis normally provides

bounds, rather than exact results.

Decision procedures for properties based on the reachability graph may be affected by

the so-called state space explosion problem: a structurally small PN can have a huge

reachability set due to the arbitrary interleaving of concurrent transitions. Indeed, for

these nets the state space can grow faster than any primitive recursive function (Valk and

Vidal-Naquet 1981). As a consequence, even if the reachability graph is finite, the analyses

can become computationally unfeasible.

In order to tackle the state space explosion problem and to ease the analyses, many

techniques have been proposed. Just to mention a few, reduction rules may be used to

simplify a net while preserving its interesting properties (see, e.g., Murata 1989). Binary

decision diagrams, or generalisations of them, can be fruitfully combined with static

analysis (e.g, Pastor et al. 1999) to simplify the reachability analysis. Abstract interpre-

tation may be used to reduce the size of the net (see, e.g., Ganty et al. 2007) and partial

order semantics to check reachability, coverability and absence of deadlocks and to model

check behavioural logics for PNs (Esparza and Heljanko 2008).

3.3 Structural properties of Petri nets

The term structural analysis of a net refers to the analysis of those properties, called

structural properties, which only depend on the net topology. Structural properties are

independent of the initial marking and they can be often characterised in terms of the

incidence matrix.

A common kind of structural analysis based on the incidence matrix aims to determine

the so-called invariants of the net.

Let N be a PN, with m transitions and n places. A T-invariant (transition invariant) of N
is an m-dimensional vector in which each component represents the number of times that a

transition should fire to take the net from a state M back to M itself. It can be obtained as a

solution of the following equation:

AN � X ¼ 0; where X ¼ ðx1; . . .; xmÞT and xi 2 N; for i 2 f1; . . .;mg:

A T-invariant X = 0 indicates that the system can cycle on a state M enabling the cycle.

The presence of T-invariants in a PN model of a metabolic network is biologically of great

interest as it can reveal to the analyst the presence of steady states, in which concentrations

of substances have reached a possibly dynamic equilibrium. As discussed in Gilbert and
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Heiner (2006) and Koch and Heiner (2008), T-invariants admit two possible biological

interpretations. On the one hand, the components of a T-invariant represent a multiset of

transitions whose partially ordered execution reproduces a given initial marking. On the

other hand, the components of a T-invariant may be interpreted as the relative firing rates

of transitions which occur permanently and concurrently, thus characterising a steady state.

The support of a T-invariant X = (x1,…, xm)T is the set of transitions corresponding to

non-zero coefficients suppðXÞ ¼ fti j xi [ 0g: The support of a T-invariant is minimal if

there is no other T-invariant X0 whose support is strictly included in that of X, i.e., such that

supp(X0) , supp(X). For any minimal support there exists a unique T-invariant X with that

support and such that for any other T-invariant X0, X0 B X implies X = X0. Such

T-invariants are called minimal support T-invariants or simply minimal T-invariants. They

form a basis for the set of T-invariants of the net, i.e., any T-invariant can be obtained as a

linear combination of minimal T-invariants. In a PN model of a metabolic pathway,

minimal T-invariants represent minimal sets of enzymes necessary for the network to

function at steady state. They are particularly important in model validation techniques

(see, e.g., Heiner and Koch 2004; Koch and Heiner 2008) which will be discussed in Sect.

4.1.

A P-invariant (place invariant) or S-invariant (from ‘Stelle’, the German word for

place) is a n-dimensional vector which can be obtained as a solution of the following

equation:

AT
N � Y ¼ 0; where Y ¼ ðy1; . . .; ynÞT ; with yi 2 N; for i 2 f1; . . .; ng:

When a PN admits a P-invariant with all positive components, then the net is called

conservative since the weighted sum of the tokens remains constant during the evolution of

the net, i.e., for each marking of its reachability set. In a PN model of a metabolic network

P-invariants correspond to the conservation law in chemistry. Minimal (support)
P-invariants are defined similarly to minimal T-invariants. As discussed later, also mini-

mal P-invariants are used as validators of a metabolic net model (see, e.g., Heiner and

Koch 2004; Koch and Heiner 2008).

A relevant role in the structural analysis of a PN is played also by traps and siphons.

A trap S is a subset of places, S � P; such that transitions consuming tokens in S are a

subset of those producing tokens in S, i.e., for any t [ T, p [ S, if W(p, t) [ 0 then there

exists p0 [ S such that W(t, p0) [ 0. As a consequence if a trap is initially marked, then it

will never become empty.

Dually, a siphon S is a subset of places S � P such that transitions producing tokens in S
are a subset of those consuming tokens in S, i.e., for any t [ T, p [ S, if W(t, p) [ 0 then

there exists p0 [ S such that W(p0, t) [ 0. If a siphon is token free in some marking, then it

will remain token free in all subsequent markings. In a biological model, traps may reveal

the storage of substances which can occur, e.g., during the growth of an organism. Dually,

siphons can characterise situations in which this storage, previously created, is consumed.

Structural properties can be useful also for the behavioural analysis of a net. For

instance, a necessary condition for a marking M to be reachable is that the equation

AN � X þM0 ¼ M ð1Þ

admits a non-negative integer solution.

Boundedness is obviously implied by structural boundedness, i.e., boundedness with

respect to any possible initial marking. The latter can be characterised in terms of the
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existence of a strictly positive sub-P-invariant, namely an n-vector of strictly positive

integers such that AT
N � Y � 0:

For some subclasses of PNs, behavioural properties can be characterised in purely

structural terms. For instance, condition (1) becomes also sufficient for reachability when

dealing with acyclic nets, while for the so called free-choice PNs (Desel and Esparza

2005), liveness can be characterised in terms of traps and siphons.

A large number of tools have been developed for analysing many properties of PNs. A

quite comprehensive list can be found at the Petri net World site.

3.4 Petri net extensions

The simplicity of the PN formalism, which is one of the reasons of its success, can also

represent a limitation in the modelling of real systems. On the one hand, basic PNs, i.e.,

those described in the previous section, are not Turing powerful, on the other hand, they

are not suited to model quantitative aspects of the behaviour of a system.

In order to overcome these limitations, several generalisations of the basic PN for-

malism have been proposed in the literature. Some extensions concern the qualitative

aspects of the models, such as the addition of new kinds of arcs or coloured tokens, and

they aim at increasing the expressive power or the modelling capabilities of the formalism.

Other extensions introduce quantitative concepts, such as time and probability, allowing

for the representation of temporal and stochastic aspects of biological systems,

respectively.

In the following we review some extensions of PNs which have been used for the

modelling of metabolic pathways.

– PNs with test and inhibitor arcs.

Test or read arcs allow a transition to verify the presence of a token in the source place

without consuming it. Inhibitor arcs, instead, permit to model the fact that the presence

of some tokens in a place inhibits the firing of a transition (Agerwala 1974). PNs with

inhibitor arcs reach the expressive power of Turing Machines, and the reachability,

liveness and boundedness problems become, in the general case, equivalent to the

halting problem of the Turing Machine (Kant 1992) and hence undecidable. The

notions of P-invariant and T-invariant can be defined in the same way as for basic PNs.

Under some restrictions, it is also possible to derive the coverability graph for this class

of models (Busi 2002).

In metabolic networks, test arcs may be used to model the role of the enzymes in

reactions (see, e.g., Matsuno et al. 2003b; Miyano and Matsuno 2004), since enzymes

are needed for a reaction to take place, but not consumed. Inhibitor arcs may directly

model the inhibitor function. This issue is further discussed in Sect. 4.1.

– Self-modifying or Functional Petri nets (FPNs).

FPNs (see, e.g., Valk 1978) give the possibility to define arc weights symbolically, as

functions of the number of tokens in places. This allows arc weights to evolve

dynamically. When modelling metabolic networks, this feature can represent how

variations in the concentration of substances may influence the kinetic rate of reactions

(Hofestädt and Thelen 1998).

– Coloured Petri nets (CPNs).

CPNs (Jensen 1997) are a generalisation of basic PNs where the tokens are assigned a

colour and the arcs can be labelled by conditions regarding these colours. Due to the

possibility of making a distinction between tokens in the same place, CPNs can
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represent some system behaviours in a more compact and understandable way than

basic PNs. In particular, the use of colours allows one to superpose different execution

flows in the same net. As a consequence, a CPN can be structurally much smaller than a

corresponding basic PN modelling the same process. For example, in Heiner et al.

(2001) and Voss et al. (2003), CPNs are used to model a metabolic pathway where

molecules of the same species are differentiated according to their origin and

destination reactions.

– Time Petri nets (TPNs).

In TPNs (Merlin and Farber 1976) a time interval [at, bt] is associated with each

transition t. When t becomes enabled, it cannot fire before at time units have elapsed

and it has to fire not later than bt time units, unless t gets disabled by the firing of

another transition. The firing of a transition t takes no time. TPNs are used to model or

analyse time-related quantitative aspects of biological models, as in Genrich et al.

(2000), Heiner et al. (2000) and Popova-Zeugmann et al. (2005).

– Stochastic Petri nets (SPNs).

SPNs (Molloy 1981) model time in a different way. Each transition is associated with a

random variable which represents its firing delay. The expected value of the delay

determines the execution rate of the transition, i.e., the number of firings per time unit

when the transition is continuously enabled. If all the random variables are

exponentially distributed (or more generally, if they take values in (0, ??)), then

the reachability graph of the stochastic model is isomorphic to that of the untimed

model. This makes some analysis tasks easier because standard techniques for basic

PNs can still be used. Moreover, the reachability graph can be seen as a continuous

time Markov chain whose states are the same as those of the reachability graph, and the

transition from m0 to m00 has a rate equal to the sum of the rates of the transitions that

are enabled in m0 and whose firings take the model to m00 (Ajmone Marsan et al. 1995;

Balbo 2007).

When a SPN models a metabolic pathway, the firing rate of a transition t may be a function

of both the environment conditions (e.g., temperature, pressure, pH) and the concentra-

tions of the reactants. SPNs are used for modelling biological systems, e.g., in Gilbert

et al. (2007), Goss and Peccoud (1998), Heiner et al. (2008) and Marwan et al. (2005).

– Continuous Petri nets (KPNs) and Hybrid Petri nets (HPNs).

KPNs are characterised by the fact that the state is no longer discrete. The integer

numbers of tokens in places are replaced by non-negative real numbers, called marks.

When modelling metabolic pathways, marks may represent the concentration of the

molecular species. Continuous transitions have an associated firing rate, which

expresses the ‘‘speed’’ of the transformation from input to output places. HPNs can

represent both discrete and continuous quantities in the same model (see, e.g., David

and Alla 2005) since they have both discrete and continuous places and transitions.

Techniques for deriving a quantitative model of a biochemical network based on KPNs

are proposed, e.g., in Breitling et al. (2008), Gilbert and Heiner (2006), Heiner et al.

(2008) and Koch and Heiner (2008).

Hybrid Functional Petri nets (HFPNs), defined in Matsuno et al. (2003b) and Miyano

and Matsuno (2004), combine the features of HPNs and FPNs. Additionally, inhibitor

and test arcs are used in order to ease the modelling of some biological functions.

Summing up, some PN extensions allow one to define models of biochemical reactions

which capture also quantitative aspects. Some other extensions just lead to more compact

and readable models than those which could be obtained with basic PNs. However, there is
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a price to pay. As a general rule, an increased modelling power makes the analysis tasks

more difficult and, indeed, for extended formalisms there are fewer algorithmic analysis

methods with an acceptable complexity or decent heuristics. For instance, when using

CPNs, the discovery of T-invariants becomes more difficult. In Heiner et al. (2001) and

Voss et al. (2003) it is shown how, in some situations, this problem can be faced by first

decomposing the original net into sub-nets on the basis of the assigned colours, and then

using standard algebraic techniques. When the number of colours is finite, CPNs can be

unfolded into finite basic PNs. Hence several properties, like reachability, remain decid-

able. Nevertheless the unfolded model can be so large that the analysis is practically

unfeasible.

Network simulation is generally necessary both for refining the model and for experi-

menting with it. KPNs, HPNs and SPNs can be used for simulation purposes. When

modelling a metabolic network at a microscopic level, where a small number of molecules

is involved and their individuality is important, SPNs are appropriate. As mentioned

before, a SPN with an exponential time distribution induces a Markov chain and thus well-

known analysis techniques are available. However, for complex systems these techniques

can become practically unfeasible and simulation can be an interesting alternative. SPNs

can be simulated by computing the delay for each enabled transition and by executing the

transition with the smallest delay. This simulation corresponds to the Gillespie algorithm

(Gillespie 1977; Wilkinson 2006), which is generally used in stochastic simulation of

chemical reactions. The algorithm is simple but computationally expensive when the

number of reactions/molecules increases. For this reason several modifications and

adaptations have been proposed (see, e.g., Gibson and Bruck 2000).

When modelling at a macroscopic level, the enormous number of molecules involved is

better represented in a continuous way as a concentration, and KPNs or HPNs are generally

more appropriate. In this case, the rate functions associated with transitions may follow

known kinetic equations, which have been studied, under simplifying assumptions, for

chemical reaction networks, such as the Michaelis–Menten or the mass action equation.

4 From metabolic pathways to Petri nets

In this section we discuss how to pass from a metabolic pathway description to a corre-

sponding PN representation. We point out some modelling problems and outline some

solutions proposed in the literature. We also discuss the relations with existing analysis

techniques for metabolic pathways in Systems Biology.

4.1 Correspondence between pathways and Petri nets

In order to give a PN representation of a metabolic pathway, the first step consists in

providing a structural description. This process is guided by the natural correspondence

between PNs and biochemical networks and it is well illustrated in Koch and Heiner (2008).

Firstly, places are associated with molecular species, such as metabolites, proteins or

enzymes. Transitions correspond to chemical reactions: places in the precondition represent

substrates or reactants; places in the postcondition represent reaction products. The inci-

dence matrix of the PN coincides with the stoichiometric matrix of the system of chemical

reactions and arc weights in the PN can be derived by the stoichiometric coefficients. As a

classical example, which dates back to Murata (1989), reaction 2Hþ O! H2O will lead to

a PN with three places, corresponding to the substances H, O and H2O, and one transition,
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which consumes two tokens from place H and one from place O and produces one token in

place H2O. The number of tokens in each place indicates the amount of substance associated

with that place. It may represent either the number of molecules expressed in moles or the

level of concentration, suitably discretised by introducing a concept of concentration level

(Gilbert et al. 2007).

Once we have a qualitative model, quantitative data can be added to refine the repre-

sentation of the behaviour of the pathway. In particular, extended PNs may have an

associated transition rate which depends on the kinetic law of the corresponding reaction.

The following table shows the correspondence between metabolic pathway elements

and Petri net elements.

Pathway elements Petri net elements

Metabolites, enzymes, compounds Places

Reactions, interactions Transitions

Substrates, reagents Input places

Reaction products Output places

Stoichiometric coefficients Arc weights

Metabolites, enzymes, compounds quantities Number of tokens on places

Kinetic laws of reactions Transition rates

4.1.1 Qualitative aspects

As an example of qualitative modelling, consider the two reactions in Fig. 2, which appear

in the Glycolysis Pathway, as given in KEGG database.

By clicking on enzyme 3.1.3.11 in the KEGG map, it is possible to see the reaction

associated with the enzyme, namely:

D-fructose 1,6-bisphosphateþ H2O ¼ D-fructose 6-phosphateþ phosphate

where the substrates are D-fructose 1,6-bisphosphate and water, and the products are

D-fructose 6-phosphate and phosphate. Note that KEGG always uses the equal sign in

reaction formulae even though the reaction is irreversible. The direction of a reaction is

indicated by an arrow in the KEGG diagram.

The other reaction in the same figure, catalysed by the enzyme 2.7.1.11, is:

ATPþ D-fructose 6-phosphate ¼ ADPþ D-fructose 1; 6-bisphosphate

where the substrates are ATP and D-fructose 6-phosphate, and the products are ADP and

D-fructose 1,6-bisphosphate. Also this reaction is irreversible.

Fig. 2 Two biochemical
reactions in the KEGG Glycolysis
Pathway
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If we represent each component of the substrate, each enzyme and each product of the

reaction as a place of a Petri net, and chemical reactions by transitions, we obtain the PN of

Fig. 3a.

Note that when enzymes are represented as normal substrates, the resulting PN is non-

pure, i.e., it contains self-loops, since the enzyme is taken and released by the corre-

sponding reaction. This is represented graphically in Fig. 3a by connecting the enzyme

place to the transition corresponding to the associated reaction with a double arrow. Having

a non-pure net may cause difficulties in the analysis since self-loops are not represented in

the incidence matrix of the net. In order to simplify the model and to avoid the introduction

of self-loops, a typical modelling choice consists of omitting the explicit representation of

enzymes. This is appropriate as long as their concentrations do not change as it happens,

e.g., in signalling cascades. Alternatively enzymes can be treated as parameters, as

suggested in Zevedei-Oancea and Schuster (2003).

Note that in the KEGG map of Fig. 2, substances such as H2O, phosphate, ADP and

ATP are not shown. They are ubiquitous molecules and their concentrations, which are

assumed to be constant, are taken into account in the constants of the reaction rates.

By omitting places corresponding to enzymes and ubiquitous substances the net of

Fig. 3a can be simplified, thus resulting in the PN of Fig. 3b. In general, large and complex

networks can be greatly simplified by avoiding an explicit representation of enzymes and

by assuming that ubiquitous substances are in a constant amount. On the other hand, as an

obvious drawback, processes involving these substances, such as the energy balance, are

not modelled. For example a dephosphorylation, such as the decomposition of adenosine

triphosphate (ATP) into adenosine diphosphate (ADP) and a free phosphate ion, releases

energy, which is generally used by enzymes to drive other chemical reactions. This process

cannot be observed in the simplified PN shown in Fig. 3b.

The inhibitor function of some substances on a reaction can be directly modelled by

using inhibitor arcs. However, inhibitor arcs generally make the properties of a PN much

more difficult to check and the modeller might desire to avoid their use. If the net is

bounded, one can get rid of inhibitor arcs by using a classical complementation technique

(Reisig 1985). Intuitively, a so-called complement place is introduced such that a token in

such place represents the absence of an inhibitor biochemical substance. Inhibition of a

process can also be modelled by using transitions which remove tokens needed by the

process to take place, as discussed in Grunwald et al. (2008). Other inhibition patterns

(negative feedback) in signalling networks and the corresponding PN encodings can be

D-fructose-1,6-
bisphosphate

H2O

D-fructose 6-phosphate

phosphate

fructose-bisphosphatase
Enzyme 3.1.3.11

6-phosphofructokinase
Enzyme 2.7.1.11

ATP ADP

D-fructose-
1,6-bisphosphate

D-fructose
6-phosphate

(a) (b)

Fig. 3 PN associated with the biochemical reactions of Fig. 2
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found, e.g., in Breitling et al. (2008). Another approach consists in representing inhibition

by quantitative information using the reaction rate. An example of this technique, applied

to the modelling of negative feedback control, is illustrated later in this section, when

discussing quantitative aspects.

4.1.2 Stoichiometry and invariants

In Systems Biology, many techniques for stoichiometric modelling, dynamic simulation

and ODE-modelling of metabolic pathways have been developed. Petri nets allow for

accommodating many of them into a single framework, while providing a natural graphical

representation. Some clear correspondences exist between fundamental concepts used in

modelling and analysing biochemical systems and their counterparts in PNs. In Schuster

et al. (2002) they are discussed and summarised in a table which is partially reported

below.

Biochemical systems Petri nets

Conservation relations P-invariants

Semi-positive (non-negative) conservation relations Semi-positive P-invariants

Steady-state flux distributions T-invariants

Elementary flux modes Minimal T-invariants

The analysis of invariants in a Petri net model of a metabolic pathway has a funda-

mental role in checking its biological plausibility. Such validation techniques are well

illustrated in Heiner and Koch (2004) and Koch and Heiner (2008). Moreover invariants

may provide insights on the network behaviour.

A fundamental property to be verified is CTI, which requires that the PN model is

covered by minimal T-invariants, i.e., that each transition belongs to the support of a

minimal T-invariant. The fact that CTI holds means that every chemical reaction repre-

sented in the net occurs in some subprocess. The CTI property is a necessary condition for

a bounded PN to be live. Besides each minimal T-invariant should be biologically

meaningful and each biological behaviour should correspond to a T-invariant.

Similar validation criteria exist for minimal P-invariants. A net is said to satisfy CPI if it

is covered by P-invariants, namely when every place is in the support of a minimal

P-invariant. CPI can be expected to hold only for completely specified, closed systems. It

will be violated whenever the system includes places corresponding to ubiquitous mole-

cules and to external metabolites, as the components corresponding to these places will be

null in any P-invariant. In fact, whenever a component yp, corresponding to place p, is null,

the P-invariant does not constrain the number of tokens in p (the representation of external

metabolites is further discussed in Sect. 4.2). Nevertheless, each minimal P-invariant must

have a biological interpretation and each compound conservation must correspond to a

P-invariant.

The number of minimal T-invariants is generally high for large nets. As a consequence

their biological interpretations becomes difficult to be grasped by inspection. Recently

several techniques have been proposed for concisely representing the set of minimal

T-invariants of a net and their relations. This may be quite helpful in easing the analyses.

Maximal Common Transition sets (MCT-sets) have been introduced in Sackmann et al.
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(2006). They define a partition of the set of transitions T, where equivalence classes are

formed by the transitions that participate in the same minimal T-invariants. More formally,

two transitions ti and tj are in the same MCT-set if and only if, for every minimal

T-invariant X, ti [ supp(X) if and only if tj [ supp(X). MCT-sets can be interpreted as the

smallest biologically meaningful functional units of the net. Alternatively, minimal

T-invariants can be classified by using standard clustering techniques. In this case a dis-

tance between T-invariants is defined by considering the similarity between their supports,

computed, e.g., by comparing the number of common transitions with the total number of

transitions of their supports. In Grafahrend-Belau et al. (2008) both MCT-sets and a

well-known hierarchical clustering method (UPGMA) have been used for exploring

T-invariants in model validation and in order to modularise the network.

A graphical representation of the minimal T-invariants in terms of a binary tree, the

Mauritius map, has been proposed for the knockout analysis of a network. This is aimed at

determining the most important transitions, namely those transitions whose knockout

would destroy the largest number of functionalities (corresponding to minimal T-invari-

ants) in the network. In a Mauritius map, starting from the root to the leaves of the tree the

importance of transitions decreases. A detailed description of this technique can be found

in Grunwald et al. (2008).

4.1.3 Quantitative aspects

As observed in Hofer and Heinrich (1993), kinetics is pivotal in a metabolic pathway and it

should be represented in the corresponding PN model. Extended PNs can serve for this

purpose. For instance in KPNs and HPNs the rates of chemical reactions can be very

naturally modelled by associating marking dependent rates to continuous transitions. The

underlying semantics can be expressed in terms of ODEs and well-know numerical

techniques for their solution can be applied. Alternatively, stochastic discrete PNs can be

used to obtain a finer grain model. In this case the exact analysis may become unfeasible

for systems with very large state spaces and simulation becomes necessary. On the other

hand, a SPN may point out biological behaviours that ODEs-based models are not able to

catch.

Quantitative parameters can also be used to model control mechanisms in metabolic

processes, such as positive or negative feedbacks. For instance, suppose that in a

pathway the final product is an inhibitor of the enzyme that catalyses the first reaction

(negative feedback control). We can define a state dependent rate for the PN transition

corresponding to the first reaction of the pathway, such that its rate slows down when

tokens accumulate in the place representing the final product. However, in general,

defining appropriate transition rates is not easy, mainly because some relevant parame-

ters, such as rate constants or kinetic laws, are not known or difficult to determine. This

problem is not specific to PNs, but it rather applies to any formalism aiming at repre-

senting biological knowledge.

4.2 Problems in the PN representation of metabolic pathways

Although the correspondence between metabolic pathways and PN elements is rather

straightforward, some problems arise in the construction of a PN representation of meta-

bolic pathways. Below we review some of these problems and we present corresponding

solutions in the literature.
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P1: Modelling of spatial properties. In some cases, it is necessary to distinguish between

compounds according to their location in the cell. For instance, in a cell, the ATP pools

inside and outside the mitochondrion are different and their relative concentrations are

determined through a selective transport process. This situation is modelled in Reddy et al.

(1993, 1994, 1996) for the adenine nucleotide transport system by using two different

places for ATP.

As discussed in Chaouiya (2007) and Goss and Peccoud (1998), spatial properties, such

as positions, distances and compartments, are not naturally modelled with PNs. A system

with various compartments can be modelled by distinct interacting subsystems, where

transitions represent the displacement of diffusing substances as proposed in Doi et al.

(2006), Grunwald et al. (2008), and Kielbassa et al. (2008). As a drawback, the resulting

model can become very large as it contains replicated information for the different com-

partments. Another solution, adopted in Heiner et al. (2001) and Voss et al. (2003), is to

use colours to associate spatial information to substances.

P2: Modelling of external metabolites. In a metabolic pathway one can distinguish

between internal and external metabolites. The former are entirely produced and consumed

in the network, while the latter represent sources or sinks, that is, connection points with

other pathways producing or consuming them. In a sense, external metabolites correspond

to the network interface with the environment. The amount of external metabolites is

usually assumed to be constant, thus implicitly assuming their unconditioned availability.

They can be represented in several different ways.

A first possibility consists in simply not including the places corresponding to the

external metabolites in the PN model. This can be fine for simulation purposes, while it can

have a negative impact on the possibility of analysing the model, as, e.g., conservation

laws can fail to hold.

When, instead, the model explicitly includes places associated with external metabo-

lites, then they are characterised by the fact that all transitions in the net may either

consume or produce tokens in such places. In the first case we talk of input metabolites and

in the second case of output metabolites. They can be identified by those rows of the

incidence matrix whose non-null coefficients have the same sign. In order to guarantee a

correct behaviour for such places, various solutions have been proposed (Heiner and Koch

2004; Heiner et al. 2001; Koch and Heiner 2008; Koch et al. 2005; Voss et al. 2003;

Zevedei-Oancea and Schuster 2003), as illustrated below.

A first solution (Heiner and Koch 2004; Koch et al. 2005; Koch and Heiner 2008),

consists in including, for any place in the net corresponding to an input metabolite a

transition with empty precondition, generating tokens in such place. As transitions with

empty preconditions can always fire, this corresponds to assume that input metabolites are

always available. Similarly, outgoing transitions with empty postconditions can be added

for output metabolites. Note that in this way no explicit assumption is made on the

quantitative relations of input/output metabolites. Additionally, the obtained PN is

unbounded, so it is not covered by P-invariants.

A different proposal, illustrated in Zevedei-Oancea and Schuster (2003), is to fill all the

places corresponding to input metabolites with an infinite number of tokens, and to allow

the places corresponding to output metabolites to accumulate an arbitrary number of

tokens. In this way, situations of equilibrium which involve external metabolites will not

be captured by T-invariants. Additionally, the net turns out to be unbounded and thus it is

not covered by P- invariants.
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Another possibility (Zevedei-Oancea and Schuster 2003) consists in connecting places

corresponding to output metabolites to those corresponding to input metabolites by

additional transitions, in order to enable a circular flow. However, there is some arbi-

trariness in the choice of how places have to be connected.

A refined variant of the previous proposal, described in Heiner and Koch (2004), Heiner

et al. (2001), Koch and Heiner (2008) and Voss et al. (2003), is to close the net by adding

two auxiliary transitions, generate and remove, connected by means of a place, cycle, as

depicted in Fig. 4, which is taken from Heiner and Koch (2004). Transition generate
produces tokens in the places modelling input metabolites, while transition remove con-

sumes tokens from the places modelling output metabolites. The arc weights represent the

stoichiometric relations of the sum equation of the whole network thus making explicit

assumptions about the quantitative relations of input/output metabolites. The resulting net

will be bounded and covered by P-invariants, when also the problem of adequate conflict

resolution is addressed, as discussed in Heiner et al. (2001), Koch and Heiner (2008) and

Voss et al. (2003). Note that, if quantitative aspects are included in the model, special

attention must be devoted to the definition of the auxiliary transition rates, since they could

impose unrealistic assumptions.

A further possibility, proposed in Zevedei-Oancea and Schuster (2003), is to create self-

loops going from each output metabolite to the transition producing it, and from the

transition related to each input metabolite back to the corresponding place. The resulting

PN is no longer pure.

P3: Modelling of reversible reactions. A reversible reaction can occur in two directions,

from the reactants to the products (forward reaction) or vice versa (backward reaction). The

direction depends on the kind of reaction, on the concentration of the metabolites and on

conditions such as temperature and pressure. The most important factor is the activation
energy of the reaction, namely the minimal energy which is necessary for the reactants in

order to start the reaction. Once started, the reaction proceeds. If the products have less

energy than the reactants, the reaction produces energy which can activate other reactions.

By the repeated activation of the forward reaction, the concentrations of reactants decrease

and the concentrations of products increase. Correspondingly, the reaction rate decreases,

since it is generally proportional to the concentrations of reactants, until eventually the

backward reaction is activated. If the forward and backward reactions reach the same rate,

then the reaction is in chemical (dynamic) equilibrium. Most of the reactions in a pathway

are reversible. Each of them is normally viewed as a pair of distinct reactions, a forward

one and a backward one, which corresponds to a pair of transitions in the PN. If kinetic

remove generate

E C

B

AD
d

e

a

b

c

input
compounds

output
compounds

cycle

network sum equation: aA + bB + cC  ->  dD + eE

Fig. 4 Modelling external metabolites by adding the auxiliary transitions remove and generate and the
auxiliary place cycle
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factors are not represented, the presence of the forward and backward transitions leads to a

cyclic behaviour producing and destroying the same molecules, which might not be of

biological interest. Still, this does not preclude the general suitability of qualitative anal-

yses. In the T-invariant analysis, for example, minimal T-invariants corresponding to such

cycles are usually considered as trivial T-invariants and ignored.

A solution for this problem, proposed in Heiner et al. (2001) and Voss et al. (2003),

consists in adding specific biological knowledge to the PN by means of colours as dis-

cussed later in this section.

A more precise model is obtained if the kinetic factors can be represented. For example,

if the forward reaction happens much faster than the backward one, the effect of the

backward reaction may be unimportant. In Doi et al. (2004), Hofestädt and Thelen (1998)

and Miyano and Matsuno (2004) the authors face the problem by means of HPNs and

HFPNs. Such models allow arc weights to be functions of the state of the network and thus

the net behaviour can change depending on the reactant concentrations. As an example, in

Hofestädt and Thelen (1998) a reaction is considered where for each element of the

substrate we obtain two elements of the product; the reaction is catalysed by an enzyme

and the concentration of the enzyme influences the reaction speed (see Fig. 5).

We conclude this section by remarking that, as shown by problem P3, when quantitative

aspects of a PN can be considered, the resulting model is more accurate and sensible.

However, often quantitative information are not available and, additionally, the simulation

of a PN with quantitative information and the interpretation of the simulation results can be

difficult tasks. For these reasons, the representation and the analysis is often restricted to

qualitative aspects of the PN model and one may choose to add biological knowledge to the

PN by using colours, as proposed in Heiner et al. (2001) and Voss et al. (2003).

As an example, suppose that the PN of Fig. 6a represents a fragment of a metabolic

pathway and that the biological knowledge on such pathway ensures that either path

A! B! C or path D! B! E will be followed each time. A SPN would represent this

situation by using different rates for the transitions. If the active path is fixed, then the rates

can be statically assigned. Otherwise, in the steady state assumption, marking dependent

firing rates can be used to model the flow of tokens along the different paths. In the

example, the rates of the transitions feeding C and E should be a monotone function of the

number of tokens in A and D, respectively. A basic PN cannot represent this situation, since

in place B it is not possible to discriminate whether tokens come either from A or from D
and whether tokens proceed to C or to E.

Enzyme

Substance Product
1 * Enzyme 2 * Enzyme

1 * Enzyme 1 * Enzyme

Fig. 5 FPN associated with a catalysed biochemical reaction, taken from Hofestädt and Thelen (1998). In
this model Substance, Product and Enzyme are variables which represent the number of tokens in the
corresponding place. Arcs are labelled with functions of the variable Enzyme
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By using CPNs the colours x and y can be used to discriminate the two different paths,

as shown in Fig. 6b.

The colour assignment technique proposed in Heiner et al. (2001) and Voss et al.

(2003) is based on the notion of conflict place, that is a place p with outgoing transitions

which are in conflict. When a conflict place is identified in the basic PN, different colours

are assigned to tokens belonging to different paths. Then, in order to separate different

paths of the compound pathway and to distinguish among molecules in the same place

according to their origin and destination, conditions are associated with reactions in a way

that they will operate with tokens of some colours and ignore the presence of tokens of

other colours. In Heiner et al. (2001) and Voss et al. (2003) the authors apply this tech-

nique to study the glycolysis pathway and show that the results of their analysis are more

accurate than those obtained in Reddy et al. (1996) by using basic PNs.

5 Main approaches in the literature

In this section we present the main approaches in the literature to the modelling and

analysis of metabolic pathways with PNs. The different proposals are grouped and dis-

cussed on the basis of the type of modelling and analysis performed, namely qualitative or

quantitative. We conclude the section by pointing out the most relevant observations

emerging from this literature review.

5.1 Qualitative modelling and analysis

The first approaches employing PNs for the modelling of biological networks have been

presented in Hofestädt (1994) and Reddy et al. (1996, 1993).

In Reddy et al. (1993) the authors consider the fructose metabolism in liver and present

the corresponding basic PN. Petri net properties such as liveness, reachability, P- and

T-invariants, are discussed along with their biological interpretation. In Reddy et al. (1996)

the combined metabolism of the glycolytic and the pentose phosphate pathways in eryth-
rocytes is considered. After presenting the corresponding basic PN, the authors provide a

A

B

C

D

E

A

B

C

D

E

x

x

x

x

y

y

y

y

(a) (b)

Fig. 6 Basic (a) and coloured
(b) PNs representing a fragment
of a metabolic pathway with the
paths A! B! C and
D! B! E
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qualitative analysis in terms of P- and T-invariants, boundedness and liveness. Addition-

ally, some reduction techniques are used for making the PN model smaller. This is done by

ignoring details which are considered not essential for the analysis and by eliminating

certain places and transitions without changing the overall behaviour of the model.

The focus of Hofestädt (1994) is on the representation of metabolic processes with basic

PNs, while the possibility of performing a qualitative analysis in terms of liveness,

deadlocks and bottlenecks of the net is just mentioned. The paper considers the Isoleucin
pathway of E. coli as a case study.

Basic PNs are also used in Zevedei-Oancea and Schuster (2003) for modelling the

Trypanosoma brucei glycolysis. The authors illustrate the biological meaning of PN

properties, such as siphons, traps, deadlocks and liveness and discuss the modelling

problems P2 and P3 as presented in Sect. 4.2.

The use of CPNs for the design and qualitative analysis of metabolic pathways is

proposed in Heiner et al. (2001) and Voss et al. (2003). In particular, the authors consider

the steady state analysis in the combined glycolysis and pentose phosphate pathways in
erythrocytes, previously studied in Reddy et al. (1996), and discuss the role of T- and P-

invariants. The analysis results turn out to be more accurate than those in Reddy et al.

(1996) because, as discussed in Sect. 4.2, the use of colours allow the addition of specific

biological knowledge to the PN model. In particular, a solution, already discussed in Sect.

4.2, is devised for the modelling problems P1, P2 and P3. Some PN tools, such as Design/

CPN and the prototype tool SY (not publicly available), are used for the analysis.

In Oliveira et al. (2003) an algorithmic methodology is proposed to study complex

networks of chemical reactions without using the stoichiometry and the reaction rates. The

methodology represents the network as a composition of CPNs, corresponding to molec-

ular reactions and complex formations. Then the network is transformed into a digraph

and, by further simplifications, into the list of all its minimal circuits. This operation allows

for the identification of elementary biochemical sub-networks and the study of the

molecular flow; additionally it suggests new experiments which may be of interest. To

demonstrate the suitability of the approach, the Krebs cycle is modelled and analysed.

An automatic translation of SBML models into PNs expressed in PNML (Petri Net

Markup Language) is proposed in Shaw et al. (2004). The translation is supported by a

prototype tool (not publicly available). The proposed methodology is illustrated on the

Saccharomyces cerevisiae glycolysis pathway taken from the BioModels database. Using

the Integrated Net Analyser (INA) (Starke and Roch 1999), a qualitative analysis based on

P- and T-invariants is performed on the resulting PN. The use of SBML models allows for

the specification of both qualitative and quantitative aspects of biological systems, but the

proposed translation does not include the quantitative ones, since, at present, PNML does

not support extended PNs..

Three related papers are Heiner and Koch (2004), Koch and Heiner (2008) and Koch

et al. (2005). In particular Heiner and Koch (2004), which exploits the techniques intro-

duced in Heiner et al. (2001) and Voss et al. (2003), presents PN models for the sucrose
breakdown pathway in the potato tuber and the combined glycolysis and pentose phosphate
pathways in erythrocytes, and validate them by means of P- and T-invariants. The latter

case study is modelled by CPNs. The paper discusses also problem P2, as presented in

Sect. 4.2. The PN model of the sucrose breakdown pathway in the potato tuber is presented

in more detail in Koch et al. (2005) and validated by means of P- and T-invariants. The

considered case study is of great research interest since it is not yet completely understood.

In Koch and Heiner (2008) the authors present the main qualitative PN analysis techniques

and illustrate them on the combined glycolysis and pentose phosphate pathways in
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erythrocytes. The pathway is modelled using two PNs that differ for the modelling of the

external metabolites (see problem P2 in Sect. 4.2). The authors mainly focus on the

analysis of qualitative properties, but also sketch the derivation of a KPN. They use public

domain tools, namely Snoopy and INA (Starke and Roch 1999) for simulation and

qualitative analysis, and IDD-CTL (Tovchigrechko 2006) and the Model Checking Kit

(Schroter et al. 2003) for model checking properties expressed in CTL.

A systematic approach for the modelling of regulated metabolic pathways with PNs is

proposed in Simão et al. (2005). The approach is illustrated on the qualitative modelling of

the biosynthesis of tryptopham in E. coli, taking into account two types of regulatory

feedbacks. The idea is to separately build the basic PN models of the metabolic and

regulatory pathways, which are then integrated into a unique structure. In particular, for the

regulatory pathways, the authors propose to start with a specification in terms of a generic

regulatory graph, followed by its parametrisation. Next the obtained model is mapped into

a PN, called Multi-level Regulatory PNs. The complete methodology for regulatory

pathways is illustrated in Chaouiya et al. (2008).

In Sackmann et al. (2007) the authors consider a complex metabolic network describing

the main part of the human body iron homeostasis, present the corresponding basic PN

model and illustrate the results of an invariant analysis performed by using both MCT sets

and cluster analysis. The case study concerns a biological process which is not yet fully

understood. The analysis is helpful both for the validation of the model and for the

formulation of some biological hypotheses to be further studied.

5.2 Quantitative modelling and analysis

Various proposals of using extended PN models for the quantitative modelling and analysis

of metabolic pathways can be found in the literature.

FPNs are used in Hofestädt and Thelen (1998) to represent some quantitative aspects of

biological systems and to solve problem P3 of reversible reactions, described in Sect. 4.2.

The authors discuss the computational properties of the considered family of extended PNs

and consider glycolysis as an example.

In Heiner et al. (2000) the authors employ TPNs to model and analyse a particular flux

mode of the combined glycolytic and pentose phosphate pathways in erythrocytes. A

reversible reaction is modelled by assigning suitable time intervals to the two corre-

sponding transitions, so that the preferred direction fires more often than the other one. The

authors apply the token game animation for a first validation of the model and then analyse

P- and T-invariants and other structural and behavioural properties. The employed tools are

PED (now superseded by Snoopy) and INA (Starke and Roch 1999).

In Genrich et al. (2000) the authors propose a methodology for modelling metabolic

pathways as TPNs for simulation purposes. They infer the metabolic network topology

together with its kinetic parameters by querying the BRENDA database of chemical

reactions, looking for all the sequences of reactions involving the initial (source) and final

(sink) substances of interest. For the glycolysis case study such a query produces a very

large set of networks. By applying some heuristic filtering rules, it is possible to obtain a

single metabolic network, which is then translated into a TPN. The rate of each reaction is

calculated with a kinetic function based on the Michaelis-Menten law and by using the

kinetic parameters extracted from BRENDA. The resulting model, after a suitable

reduction phase, can be used for simulation, performed with the tool Design/CPN.

HPNs are proposed in Chen and Hofestädt (2003) for quantitatively modelling and

simulating gene regulated metabolic networks. Gene regulation and metabolic reactions
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can be naturally represented by using both discrete and continuous places and transitions,

while inhibitor arcs are used to represent inhibitors and to explore how enzymes are

regulated. As a case study, the urea cycle and its regulation is considered, extracting the

corresponding metabolic information from KEGG and BRENDA. A tool, Visual Object
Net?? (VON??) is employed for modelling and simulation of the HPNs. Other papers

(Chen 2002; Chen et al. 2002) propose a framework for the integration of information

extracted from different biology databases, aimed at easing the development and the

execution of modelling and simulation tools. More specifically, the authors propose an

environment to extract data from the main biology databases and automatically translate

them into Petri net models. An extension of PNML called BioPNML (Biologic PNML) is

introduced in Chen et al. (2002) for expressing biological data.

In Doi et al. (2004), Matsuno et al. (2003a, b) and Miyano and Matsuno (2004), the

authors introduce HFPNs which extend basic PNs with features particularly suited for

modelling biological pathways. HFPNs allow for a natural representation of kinetic

information since rate equations can be directly represented. Additionally, place values can

be integers, reals, booleans, strings or vectors thus allowing for a natural representation of

complex data. The authors apply HFPNs to genetic and signalling networks, exploiting the

discrete elements to model control and regulation, and the continuous elements to model

metabolic reaction rates. In particular, the glycolytic pathway in E. Coli controlled by the
lac operon gene regulatory mechanism is modelled through HFPNs. Besides the authors

propose a software tool, called Genomic Object Net (GON), for representing and simu-

lating biopathways modelled as HFPNs. The successor of GON, presented in Nagasaki

et al. (2005), is called Cell Illustrator (CI). It is based on HFPNs and on a language

specifically defined for the description of biological pathways, called CSML (Cell System

Markup Language).

A methodology for deriving a quantitative model of a metabolic pathway in terms of

TPNs is proposed in Popova-Zeugmann et al. (2005). The authors introduce a technique to

derive some kinetic parameters by assuming that the net is in a steady state and that the

reaction rates are constant. Under these hypotheses and with the knowledge of the stoi-

chiometric relations, one can fix the rate of an arbitrary chosen reaction and then derive the

reaction rates of the whole PN by exploiting the T-invariants. Additionally, a technique is

proposed to decide time dependent realisability of a transition sequence. However, these

methods can lead to numerical problems; in this case approximated solutions must be

adopted. The considered case study is the sucrose breakdown pathway in the potato tuber,

taken from Koch et al. (2005).

Other approaches in the literature focus mainly on the modelling of signalling or reg-

ulatory networks and are out of the scope of this literature review. However, some

interesting proposals are worth to be mentioned for their innovative contribution in the

research area of modelling biological pathways with PNs. In order to cope with the lack of

information on concentrations and kinetic parameters, Shaw et al. (2006) presents a sto-

chastic PN simulation tool called NASTY (not publicly available), equipped with a genetic

algorithm for estimating unknown kinetic parameters. In Breitling et al. (2008) and Gilbert

and Heiner (2006) the authors propose an approach which exploits both ODEs and PNs

(basic and continuous). The papers (Gilbert et al. 2007; Heiner et al. 2008) propose a

unifying framework for modelling and analysing biochemical networks with basic, sto-

chastic and continuous PNs. In Hardy and Robillard (2008) the authors illustrate how to

use invariant analysis in order to analyse data obtained by simulation with KPNs. A

classification of T-invariants based on clustering techniques is introduced in Grafahrend-

Belau et al. (2008) to cope with network complexity. The T-clusters thus obtained are used
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for modularising the network into biologically relevant functional units. The authors

employ also the MCT-sets introduced in Sackmann et al. (2006). The papers (Grunwald

et al. 2008; Kielbassa et al. 2008; Marwan et al. 2005) use different kinds of PNs for

modelling purposes and different analysis techniques. However, they have a similar

starting point and goal: by using literature and experimental data, they study biological

pathways which are not yet fully understood. First, the available knowledge is modelled

and the model is validated. Then the model is taken as a basis for a better understanding of

the process under study and the analysis results are interpreted for giving new insights on

system behaviour and for planning further experiments. In particular, in Grunwald et al.

(2008) the authors model gene regulation of the Duchenne muscular dystrophy by using

mainly their own experimental data, both for model development and for the design of

new experiments. This is the paper in which Mauritius Maps, described in Sect. 4.1, are

proposed and used for knockout analysis.

5.3 Summary and discussion

In this section we provide a synthesis of the approaches presented in Sects. 5.1 and 5.2.

Table 1 summarises their main characteristics. The table includes only the approaches for

modelling metabolic pathways, while proposals concerning signalling or regulatory

pathways mentioned at the end of Sect. 5.2 are omitted. The approaches appear in the table

in the same order as they are discussed in Sect. 5.1 (upper part of the table) and 5.2 (lower

part of the table). Each row refers to a specific approach and the columns specify the

following information:

1. References to the considered papers.

2. The types of Petri net adopted.

3. Pathways used as case studies. We highlight with a boldface font the pathways not yet

fully understood or whose analysis required specific experimental knowledge.

4. The main source of information, that is, specific literature or databases such as KEGG

or BRENDA.

5. Qualitative PN analysis planned or performed.

6. Quantitative PN analysis planned or performed.

7. Techniques for deducing or computing quantitative information, when needed.

8. Availability of automatic translations from metabolic pathways to PNs: do the

approaches propose a semi-automatic translation? Is it supported by a tool? This

column is strictly related to the fourth column, since automatising the translation

requires the availability of a database as a source of information for metabolic

pathways.

9. Tools adopted for qualitative or quantitative analysis, if explicitly mentioned.3

On the basis of the considered approaches and looking at Table 1 we can make the

following observations.

– There is no clear preference on the type of Petri net. The choice of the model is clearly

constrained by the data available for the pathway of interest. Qualitative models must

be used when none or very few kinetic data are available. In this case, the precision of

3 Some papers do not mention explicitly the use of any specific tool, even if the complexity of the
considered case studies clearly suggests that calculations have not been performed manually. Still, in this
case the tool entry will be empty.
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the analysis can be improved by conveying as much information as possible into the net

structure. For example, the use of colours in CPNs makes it possible to get more

precise results by representing additional biological knowledge without moving to a

quantitative model (see, e.g., Heiner et al. 2001; Voss et al. 2003). Quantitative

models, like HPNs, HFPNs, KPNs or SPNs, may be appropriate when information

about the kinetics is available.

Then the properties of a pathway that one wish to analyse play a fundamental role in

determining the choice. For instance, a transient analysis aimed at predicting the

concentration of a substance clearly requires a quantitative model. Besides, it is worth

noting that even if we are interested in a quantitative analysis and kinetic data are

available, qualitative models can provide valuable preliminary or complementary

information.

– The considered case studies are mostly well known pathways, such as the glycolysis. This

might depend on the fact that most of the papers are aimed at introducing new PN based

methodologies for modelling and studying metabolic pathways. Well known pathways

are more suited for this purpose: on the one hand, the reader is likely to be familiar with

the pathway and can focus on the peculiarities of the methodology proposed, on the other

hand the availability of complete information on the pathway eases the validation phase.

The recurrence of glycolysis and few other pathways may be due to the incompleteness

of information, mainly on quantitative data, about other pathways.

There are some recent papers, like Heiner and Koch (2004), Koch et al. (2005), Popova-

Zeugmann et al. (2005) and Sackmann et al. (2007) for metabolic pathways (in boldface

in the table) and Grunwald et al. (2008), Kielbassa et al. (2008) and Marwan et al.

(2005) for other kinds of pathways, which try to apply these techniques to original case

studies, i.e., pathways which are not yet fully understood, and infer new biological

insights from the PN analysis results.

– Few approaches make use of databases as main references for metabolic pathways
(Chen and Hofestädt 2003; Genrich et al. 2000; Shaw et al. 2004), while most
approaches refer to specific literature. The reason might be that databases contain

partial information and some unreliable data. In the databases only a few well studied

pathways are provided with all the necessary kinetic information. On the contrary

papers describing specific experiments are generally more precise and complete.

– Most of the approaches consider just one or a few specific case studies which serve as
running examples. Only the approaches (Genrich et al. 2000; Shaw et al. 2004) propose

a general translation methodology from metabolic pathways into PN models and Shaw

et al. (2004) develops also a prototype tool, which is, however, not publicly available.

This is related to the previous item: only the approaches which rely on biology databases

can propose a translation methodology and some tool for its automation. Note that, in

order to devise a semi-automatic translation from metabolic pathways to corresponding

Petri nets, querying the databases is normally not sufficient and techniques for inferring

missing information must be integrated into the framework.

– The various approaches focus either on qualitative or on quantitative analysis, but not
on both. Qualitative analysis is usually preferred, since it is simpler and it does not

require kinetic data. However, the integration of basic PNs and KPNs is sketched in

Koch and Heiner (2008) and investigated more deeply in Breitling et al. (2008) and

Gilbert and Heiner (2006). Moreover, recent papers, like Gilbert et al. (2007) and

Heiner et al. (2008) describe a complete modelling and analysis framework taking

advantage from the various techniques provided by different types of PNs (basic,

stochastic and continuous).
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– The qualitative analysis, in most cases, is based on net invariants. Invariant analysis

has become a standard way to validate the PN model of a metabolic pathway. It can

also help in identifying paths worth to be tested in experiments and it can provide new

biological insights, as in Grunwald et al. (2008), Kielbassa et al. (2008), Marwan et al.

(2005) and Sackmann et al. (2007). This is not surprising since the (minimal)

T-invariant analysis in PNs corresponds to the (elementary) flux modes analysis which

was already employed to validate metabolic pathways. A few approaches take into

consideration other analysis techniques based on siphons, traps and liveness.

– Quantitative analysis is often synonymous of simulation. This might be caused by the

complexity of PN models of metabolic pathways and the lack of kinetic information.

The last issue can be faced by developing techniques for inferring the missing

information. For example Popova-Zeugmann et al. (2005) derives quantitative

information from the PN structure by assuming that the system is in a steady state.

We may further observe that when modelling complex metabolic processes, in general,

it becomes necessary to represent also regulatory and genetic phenomena (see, e.g., Simão

et al. 2005). When quantitative modelling is considered, this requires the integrated rep-

resentation of both discrete steps and continuous behaviours. In these cases hybrid models,

like HPNs or HFPNs might be an appropriate choice (see, e.g., Chen and Hofestädt 2003;

Doi et al. 2004; Matsuno et al. 2003a, b, 2006; Miyano and Matsuno 2004).

6 Conclusions

In this paper we have surveyed the literature on modelling and analysing metabolic

pathways with PNs. This research area has been explored in search of a comprehensive

methodology able to retrieve information on pathways from the main databases, to auto-

matically translate them into corresponding PN models, and to employ PN tools for the

qualitative and quantitative analysis of the nets thus obtained. First, we have described the

natural correspondence between pathways and PNs, discussing some problems concerning

the modelling and analysis of metabolic pathways with PNs, along with some solutions

proposed in the literature. Then we have reviewed the literature on this research field,

trying to evaluate the existing approaches with respect to a complete methodology in the

sense described above. From this analysis, it emerged that a semi-automatic translation

may be feasible when modelling only the structure of a metabolic pathway. In fact such

data are generally available, their representation in PN form is rather natural and quali-

tative analysis techniques for model validation are well-established. On the contrary

modelling quantitative information of a metabolic pathway poses serious problems. Data

are largely incomplete and they have to be obtained from different sources or inferred with

appropriate techniques. Even when such data are available, it is not easy to choose a PN

extension able to represent those data and supported by suitable tools. In our opinion, a

reasonable solution would be to define a modelling framework able to adapt to different

input sources and to different analysis requirements, as proposed in Chen (2002) and Chen

et al. (2002). Such framework should be able to integrate various existing approaches and

tools and it would require a translation between the various input formats. In the future,

format standardisation and a greater availability of quantitative data will improve the

reliability of databases. We believe that this could make a semi-automatic translation from

pathways to PNs really feasible.
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Altogether, the natural representation of metabolic information as PN models, where

qualitative and quantitative information can be integrated, the well known analysis tech-

niques inherited by this formalism, the similarities between some biological and PN

analysis methods, definitively suggest the appropriateness of PNs as a formalism for

representing, validating and analysing metabolic pathways. Admittedly, while being quite

promising, this seems to be still at a preliminary stage with respect to a comprehensive and

automated methodology. The poor knowledge of the kinetic parameters plays an important

role in this context. However such difficulties are inherent to biological systems and they

affect any formalism and tool aiming at modelling bio-knowledge.
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