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Abstract

The main goal of this paper is to model the effects of wholesale price control on manufacturer’s profit, taking explicitly into account
the retailer’s sales motivation and performance. We consider a stylized distribution channel where a manufacturer sells a single kind of
good to a single retailer. Wholesale price discounts are assumed to increase the retailer’s motivation thus improving sales. We study the
manufacturer’s profit maximization problem as an optimal control model where the manufacturer’s control is the discount on wholesale
price and retailer’s motivation is one of the state variables. In particular in the paper we prove that an increasing discount policy is opti-
mal for the manufacturer when the retailer is not efficient while efficient retailers may require to decrease the trade discounts at the end of
the selling period. Computational experiments point out how the discount on wholesale price passed by the retailer to the market (pass-
through) influences the optimal profit of the manufacturer.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Manufacturers have various ways to encourage increased sales acting on retailers with wholesale price reductions, slot-
ting fees, buydowns, and so on. The effects of these marketing tools on sales are filtered by the retailer’s sales attitude and
aptitude. Retailer motivation level, sales ability and his role perception are the main mediating variables between manu-
facturers incentives and retailer’s sales performance (Walker et al., 1977; Churchill et al., 1985): roughly speaking the
expected outcomes of manufacturer’s actions depend both on the nature of the retailer (his skill, role perception, aptitude)
and on retailer’s sale motivation, his engagement and zeal.

The main goal of this paper is to model the effects of the main push strategy, wholesale price control (Walters, 1989), on
retailer’s motivation and on manufacturer’s profit, bearing in mind that such effects will depend on retailer’s personal fea-
tures and skill. Wholesale price promotions that may favorably drive retailer’s motivation, are considered as a dynamic
process spread over a finite selling period. We propose an optimal control model in which trade discounts flow along a
stylized vertical distribution channel where a single manufacturer serves a single market, through a single retailer, with
the aim to maximize her profit.

The optimal control model we propose recalls similar dynamic models proposed in the quantitative marketing literature.
The role of advertising and, more in general, of communication in marketing has been largely explored by means of
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dynamic and optimal control models, often considering advertising goodwill as a mean to store the effects of advertising
efforts (see e.g. Seierstad and Syds�ter, 1987; Feichtinger et al., 1994; Sethi and Thompson, 2000; Jørgensen and Zaccour,
2004). In a seminal paper, Nerlove and Arrow (see Nerlove and Arrow, 1962) take into account the role of the goodwill of a
product explicitly: in a rather similar way we consider explicitly motivation as a mean to accumulate the effects of wholesale
promotion activity of the manufacturer.

A general definition of motivation was given in Mitchell (1982) as ‘‘the degree to which an individual wants and chooses
to engage in certain specified behaviors”, it turns out that motivation cannot be assimilated with behavior and outcome
performance (see also Miao et al., 2007; Grant et al., 2001). Two main types of motivation are usually distinguished: extrin-
sic and intrinsic motivation. Retailer’s motivation is extrinsic if he can satisfy his needs indirectly, for instance with mon-
etary compensation (Osterloh and Frey, 2000), like trade discounts.

On the other hand, motivation is intrinsic if the retailer can satisfy his needs directly, that is when he acts for an imme-
diate need of satisfaction (Osterloh and Frey, 2000). Intrinsically motivated individuals do something for the satisfaction
derived from the activity itself, they perform behaviors not for money but for their own sake.

The retailer’s behavior is influenced by his sales motivation, intrinsic and extrinsic (Walker et al., 1977; Churchill et al.,
1985; Miao et al., 2007): for instance, if the retailer is motivated he can decide to place the manufacturer’s products in a
strategic location around the store, he can help to achieve the manufacturer’s market goals, he can provide after sale sup-
port and so on.

The goal of the manufacturer is above all to maximize her profit, for this reason she has to encourage any retailer’s
behavior that helps to achieve this goal, trying to enhance his job performance, and performances are ‘‘partially determined
by motivation to work hard and, therefore, increases in motivation should result in greater effort and higher performance”

(Mitchell, 1982). Trade discounts can be offered to retailers expecting that they will lead to an increased sales motivation
level, obtaining this way an improvement of their sales performance as an indirect effect of trade promotions on sales. But
manufacturers expect also that a part of the discount is passed-through along the channel so as to offer a reduced shelf price
to the consumers. In particular we consider a retailer who sells at a final price computed using a fixed pass-through
percentage.

The price reduction accorded to the final consumer affects sales, of course: this way we have a direct effect of trade dis-
count on sales.1

The manufacturer’s profit maximization problem is formulated in Section 2 as an optimal control problem where the
manufacturer’s control is the trade discount. In Section 3 we provide the solution of the profit maximization problem
and some numerical examples. Sensitivity analysis with respect to the retailer’s skill and to pass-through is provided in Sec-
tion 4. A final discussion, in Section 5, provides some comments on the main results obtained, on the shortcomings of the
model and some suggestions for future research. The proofs involve a lot of technicalities and are reported in the
Appendices.

2. Formulation of the model

We consider a stylized distribution channel with a manufacturer who sells a single kind of good during a limited time
period ½t1; t2�, e.g. it is a seasonal product, and assume that the manufacturer’s aim is to maximize her total profit in the
given time period. The manufacturer supplies a single downstream firm, the retailer.

Transportation, ordering and repricing are considered as done instantaneously, moreover stocks do not exist and infor-
mation is perfect and with no delays. This assumption may be seen as overly simplistic since the effects of delays and imper-
fect information have been proved to be appreciable, leading to rigidity and asymmetry in pricing (Ray et al., 2006),
bullwhip effects (Ouyang and Daganzo, 2006) and so on. Nevertheless these simplifications are useful to obtain some qual-
itative insights into the incentive process which may be not easy to be obtained with more sophisticated models.

We assume that the manufacturer can drive the channel behavior offering trade discounts. His goal is to increase this
way sales motivation of the retailer, i.e. to stimulate retailer’s behavior oriented toward raising the customer’s demand.
In fact, although sales depend on the retailer’s skill, even the best retailer must be motivated to sell the product. For exam-
ple if he is satisfied with price discounts he will help in selling the product. Moreover the retailer could, and we assume he
does, transfer a part of the discount to the consumer (pass-through) selling at a reduced price and this increases sales too. A
price discount thus, affects both consumers’ demand and retailer’s sales motivation.

Trade price discounts reduce the unit profit of the manufacturer so it becomes crucial to pay attention in determining the
correct amount of discount and to change it depending on the dynamic behavior of sales. To do this we have to take into
account the relationship among retailer’s motivation, sales and trade discount. As mentioned before, a trade discount, at
1 Push strategies, like wholesale price reductions are not always optimal, in particular for small manufacturers. When a manufacturer faces a giant
retailer wholesale price reductions may be pocketed by retailers who are the leaders of the channel (Gerstner and Hess, 1995) or may lead to cross-brand
pass-through (Besanko et al., 2005). But here we assume that the manufacturer is the leader of the channel, the retailer is small.
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least if sufficiently high, improves the motivation to sell, while we assume that low trade discounts decrease sales motiva-
tion. We also expect that motivation to sell depends on profit which, in turn, depends on cumulative sales.

Let us now go into some more detail and consider an optimal control model in which the cumulative sales and the retai-
ler’s motivation are the state variables while the manufacturer controls the wholesale price.

In the following, xðtÞ denotes the cumulative sales in the time period from t1 until t. The derivative of the cumulative
sales, _xðtÞ, represents the sales intensity at time t. If we denote with wðtÞ the wholesale price at time t then the profit of
the manufacturer during the sale period is given by:
Z t2

t1

ðwðtÞ � c0Þ _xðtÞdt;
where c0 is the unit production cost, assumed to be constant. To highlight trade discount we write the wholesale price wðtÞ
as wðtÞ ¼ pð1� aðtÞÞ, where p is the wholesale list price and aðtÞ is the discount on that price granted by the manufacturer
at time t. Since sales begin at t1, i.e. xðt1Þ ¼ 0, the profit reads:
ðp � c0Þxðt2Þ � p
Z t2

t1

_xðtÞaðtÞdt:
We assume that the trade discount will never be so high as to let the manufacturer’s profit become negative: as it will be
discussed in detail in Section 3, this leads to a box constraint on the control variable aðtÞ 2 ½a1; a2�# ½0; 1�.

The second state variable, MðtÞ, sums up the retailer’s motivation at time t.
We assume that the retailer’s motivation is proportional to his outcome (present and past), measured by the cumulative

sales, and to the satisfaction of his expectation of a fair reward (see Walters, 1989; Mitchell, 1982).
More precisely we assume that a high level of trade discount, say higher than a fixed level a, pushes upwards sales moti-

vation of the retailer, but a discount that is underrewarding, say it is lower than a, decreases motivation. The threshold a
represents the trade discount expected by the retailer (we assume a1 < a < a2, i.e. the minimum expected trade discount
guarantees a positive profit to the manufacturer).

Summarizing the above assumptions, we consider the dynamics of the state variable MðtÞ to be described by the follow-
ing equation:
_MðtÞ ¼ c _xðtÞ þ �ðaðtÞ � aÞ;
where c and � are strictly positive constants related to the character or ‘‘psychology” of the retailer. The parameter c
represents the sensitivity of the retailer to sales, while � represents his sensitivity to the amplitude of wholesale price
discounts.

Observe that we model motivation as depending explicitly from the total sales, which are proportional to retailer’s rev-
enue, and from the total discount perceived during the sales interval, which is proportional to his revenue too. As one can
expect, thus, we implicitly consider motivation as related to retailer’s profit.

Let us turn to the dynamics of the cumulative sales xðtÞ. Sales are influenced by the retailer’s performance. In particular
motivation can be considered as a predictor of salesperson’s performance (Churchill et al., 1985). Therefore, as established
by the firm-level ability-motivation paradigm (Boulding and Staelin, 1993) we consider performance as a function of both
retailer’s motivation and ability, i.e. retailer’s skill, aptitude level, understanding of the task, and so on (see also Campbell
and Pritchard, 1976). Following Vroom (1964) and Campbell and Pritchard (1976), we assume that performance is pro-
portional to the product of the motivation MðtÞ and a parameter d which summarizes intrinsic, neither rapidly nor easily
modifiable, qualities of the retailer, like skill and aptitude. Selling skill in particular, is considered as a pure and direct sur-
rogate of salesperson’s abilities (Rentz et al., 2002).

Of course, sales depend on shelf price. To highlight the effect of trade discounts on final price, we observe that shelf
prices can be written as a list price minus shelf price discounts, which we assume to be a fixed quota b (pass-through)
of the trade discount aðtÞ. This way we will describe changes in sales as depending on the product baðtÞ.

In the model we also consider that, depending on the dimension of the target market, a damping saturation effect arises.
We come this way to describe the dynamics of the cumulative sales as:
_xðtÞ ¼ �hxðtÞ þ dMðtÞ þ ~gbaðtÞ;
where d represents the retailer’s selling skill ðd > 0Þ; ~g is the market sensitivity to shelf price discounts ð~g > 0Þ; b is the con-
stant pass-through (with b 2 ð0; 1Þ) and h > 0 is a saturation aversion parameter (see e.g. Vidale and Wolfe, 1957): the sales
rate decreases as the sales increase, modeling the market saturation effect, and high values of h correspond to small markets
with a fast saturation effect, while low values of h represent wide markets.
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This way the following optimal control problem can be formulated:
2 Th
3 Du

greater
its valu
P : maximize ðp � c0Þxðt2Þ � p
Z t2

t1

_xðtÞaðtÞdt

subject to _xðtÞ ¼ �hxðtÞ þ dMðtÞ þ gaðtÞ;
_MðtÞ ¼ c _xðtÞ þ �ðaðtÞ � aÞ;

xðt1Þ ¼ 0; Mðt1Þ ¼ M ;

aðtÞ 2 ½a1; a2�# ½0; 1�;

where M > 0 is the initial motivation of the retailer and g ¼ ~gb is used to simplify notation.

Substituting _xðtÞ in the profit function and in the second motion equation the problem can be rewritten in normal form
and turns out to be linear with respect to the state variables and quadratic with respect to control.

As maximum allowable discount we consider the value a2 such that the unit profit vanishes p � c0 � pa2 ¼ 0, i.e.
a2 ¼ ðp � c0Þ=p: ð1Þ

We also assume that if the wholesale price is constant during the sale period, i.e. aðtÞ is constant 8t 2 ½t1; t2�, then the cumu-
lative sales function, xðtÞ, is concave. In other words we assume that the market is mature, and a clear saturation effect can be
observed. This requires, as one can expect, that the market is not ‘‘too” large or, in other words, that the saturation param-
eter is ‘‘sufficiently” high. More precisely (for detailed computations see Appendix A), throughout the paper we will assume
h P
�ða2 � aÞ
dM þ ga2

þ c

� �
d; ð2Þ
which is the necessary and sufficient condition that ensures concavity of the cumulative sales function xðtÞ in case of con-
stant wholesale price.

3. Optimal trade discount policy

The optimal wholesale price reduction that should be allowed to the retailer can be obtained solving problem P by
means of optimal control techniques, we do this in detail in Appendix B.

The structure of the optimal trade discount strategy over time turns out to have two essentially different forms depending on
the retailer’s efficiency, his selling skill, which is described by the model parameter d. More precisely ifd is less than a certain thresh-
old, the retailer is rather inexpert or unskilled, and the optimal policy is to progressively increase the discount during the selling
period. If the retailer is capable and expert instead, i.e.d lies above the threshold, then the best policy is first to increase the discount
and, in case, to decrease it at the end of the selling period. This means that a skilful retailer, if properly motivated at the beginning
of the sales period, may provide an appropriate sales level even when discounts become lower. With unskilled retailers it is always
necessary to increase the discount to obtain a higher profit reached through a price policy since ‘‘service” is not good enough.
Formally, the optimal policy is given in the following Proposition, the proof of which is reported in Appendix B.

Proposition 3.1. Let be d0 ¼ hg=ðgcþ �Þ.

Case 1: The inefficient retailer.

If the retailer’s efficiency is low, i.e. d 6 d0, then the optimal trade discount policy is a continuous increasing function given by
a�ðtÞ ¼ a1 t 2 ½t1; s1Þ;
D1 ekt þ D2 e�kt þ ðaþ a2Þ=2 t 2 ½s1; t2�;

�
ð3Þ
where s1 2 ½t1; t2�;D1 P 0 and D2 < 0 are constants and k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh� cdÞd�=g

p
.

Case 2: The efficient retailer.

If the retailer’s efficiency is high, i.e. d > d0, then the optimal trade discount policy is a continuous quasi-concave function
a�ðtÞ ¼
a1 t 2 ½t1; s1Þ;
D1 ekt þ D2 e�kt þ ðaþ a2Þ=2 t 2 ½s1; s2�;
a1 t 2 ðs2; t2�;

8<
: ð4Þ
where t1 6 s1 6 s2 6 t2;D1 < 0 and D2 < 0 are constants.2 If s1 ¼ t1 then a�ðs1Þ 6 a�ðs2Þ.3
e way to compute D1;D2; s1 and s2 is rather technical and explained in Appendix B.4 (in particular see the Proof of Lemma B.3).
e to the quasi-concavity of the optimal trade discount, inequality a�ðs1Þ 6 a�ðs2Þ means that even if the optimal discount starts at a level a�ðs1Þ
than a1 (this can only happen when s1 ¼ t1Þ then it must any first increase and then, at the end of the selling period, it can decrease but, in any case,
e a�ðs2Þ cannot reach values lower than the initial one.
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Optimal sales level x�ðtÞ and optimal retailer motivation M�ðtÞ can be calculated by substituting a�ðtÞ in the motion equa-
tions of Problem P.

The rationale behind the above Proposition is the following. As soon as the selling skill becomes too low the positive
effect of the retailer’s motivation on sales is lowered. To keep an adequate profit level, it becomes necessary to provide an
always increasing wholesale price discount. This action will compensate the unsatisfactory behavior of the retailer, who is
unable to contrast the saturation effect of the market. On the other hand, if the retailer is rather efficient, it is sufficient to
push the product via trade discounts at the beginning of the selling period, since this turns out to increase the motivation
and the performance of the retailer. This way the good performance of the retailer may allow to decrease the wholesale
price discount at the end of the selling period.

We provide now two examples which exhibit the two possible optimal trade discount policies described in the above
Proposition. In the first example an inefficient retailer ðd 6 d0Þ requires an increasing trade discount while in the second
one an efficient retailer ðd > d0Þ allows the manufacturer to offer a lower trade discount at the end of the selling period.

Example 1. Let us consider problem P in the time period starting at t1 ¼ 0 and ending at t2 ¼ 2, with the following values
of the parameters: p ¼ 2:9; c0 ¼ 0:8; b ¼ 0:1215; c ¼ 0:7ð1� bÞ � 0:615; � ¼ 0:6ð1� bÞ � 0:527; a ¼ 0:25; a1 ¼0:2; a2 ¼
ðp � c0Þ=p � 0:7241; d ¼ 0:8; ~g ¼ 0:8; h ¼ 10;M ¼ 5.

We have an inefficient retailer (or a relatively small market), i.e. Case 1 of Proposition 3.1. The optimal wholesale price
discount must be positive and strictly increasing in ½s1; t2� to guarantee the maximum profit of the manufacturer. In fact, at
the beginning of the sale period the optimal policy is to keep the trade discount at its lowest level a1 (Fig. 1a). During the
same period cumulative sales and motivation increase steeply (Figs. 1b and c), then saturation effect becomes relevant and
the growth of motivation stops for a while. To reach a higher market share it is necessary (from time s1 � 0:50977) to
increase the wholesale price discount. This has a positive effect on motivation, which starts to grow again, and also on sales:
the cumulative sales increase, but slower due to the strong saturation effect.

Example 2. Let us consider problem P with the same values of the parameters as in Example 1 except for:
t2 ¼ 4; b ¼ 0:15; c ¼ 0:7ð1� bÞ � 0:595; � ¼ 0:6ð1� bÞ � 0:510; h ¼ 1; and M ¼ 0:5.

With respect to Example 1 the main change concerns parameter h and the initial motivation M , some slight variations
of other parameters are only useful to receive nice pictures. Now we have essentially the same retailer as before (d is the
same) but he sells in a very large market (h is now one tenth as in Example 1) so it is much easier for the retailer to sell.
The retailer is considered efficient with respect to this market, we have Case 2 of Proposition 3.1. The optimal choice is
to allow increasing wholesale price discounts starting at s1 � 0:777 and to reduce them at the end of the sale period,
reaching the wholesale list price at time s2 � 3:783 (Fig. 2a). At the beginning of the selling period cumulative sales
increase rapidly (Fig. 2b) but the retailer’s motivation needs to be supported by trade discounts since its growth is
decreasing before s1 (Fig. 2c). The width of the market allows to reduce wholesale price discounts in the second part of
the selling period, since the saturation effect is rather weak and at the same time motivation has raised sufficiently high
levels.

Observe that the switching times s1 and s2 may coincide with t1 or t2. In that case the optimal policies can be thought,
qualitatively, as ‘‘a part” of those described in the above instances. For example suppose that, with an efficient retailer, one
obtains s1 > t1 and s2 ¼ t2 then, qualitatively, the graph of the optimal discount policy would be similar to that of the first
two tracts of Fig. 2a, first a constant discount a1 then a strictly concave discount till t2.

We can also observe that, as a by-product of the above Proposition we also have that the maximum discount policy, i.e.
discount equal to a2 on the whole time window, cannot be optimal.
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Fig. 1. Optimal discount policy (a), optimal sales path (b) and optimal motivation path (c) for Example 1.
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Fig. 2. Optimal discount policy (a), optimal sales path (b) and optimal motivation path (c) for Example 2.
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It is interesting to reread the above proposition in terms of market width, even if it is not the point of view we want to
take into consideration here. Observe that inequality d 6 hg=ðgcþ �Þ, which characterizes the inefficient retailer, can be
rewritten as h P dðcþ �=gÞ. This means that with small markets (h high) it is convenient to act as with inefficient retailers,
an aggressive increase of the discount during the selling period is the best choice. Similarly, large markets allow to ‘‘relax”
at the end of the period. In other words the retailer can be considered good or not with respect to the width of the market,
e.g. he is inefficient if d=h 6 g=ðgcþ �Þ.

4. Profit sensitivity to retailer’s skill and pass-through

Let us consider now in more detail the case of a (relatively) inefficient retailer, which is the critical case for the manu-
facturer. We will shortly analyze how the optimal profit value of problem P can be changed acting on the parameters of the
model which are more closely related to the retailer’s features and choices. More precisely the parameters which will be
considered are the retailer’s efficiency d and the pass-through b. In our model these parameters are considered exogenously
fixed. Nevertheless we observe that changes in the retailer’s efficiency can be obtained by vocational training aimed at
improving his professional competence, his knowledge on the product and so on. Likewise, also pass-through can be nego-
tiated, but to allow a higher pass-through a retailer will probably require some, may be non-monetary, compensation. In
any case, improving the efficiency of the retailer or to increase the pass-through will usually be expensive and compelling
for the manufacturer. Therefore it becomes rather interesting to analyze the effects of changes in d or b on her profit, we do
this by means of some numerical experiments.

The first computation we present concerns the evaluation of the profit in 2500 instances of the optimal control problem
P obtained by varying the retailer’s efficiency d and the pass-through b decided by the retailer. To restrict the analysis to the
inefficient retailer case we consider d 2 ½1:00; 1:15� and b 2 ½0:70; 0:90�. The other parameters of the model, which are
related to the market features, are as follows: t1 ¼ 0; t2 ¼ 2; p ¼ 2; c0 ¼ 1; h ¼ 0:3; ~g ¼ 4; c ¼ 0:3ð1� bÞ; � ¼
1� b; a ¼ 0:4; a1 ¼ 0:1; a2 ¼ ðp � c0Þ=p ¼ 0:5;M ¼ 2.

Computations show that:

� For high values of efficiency d manufacturer’s profit decreases as the pass-through b increases.
� For low values of d manufacturer’s profit increases with respect to b (see Fig. 3).

The result is not surprising. In fact, a low pass-through will increase a good vendor’s motivation and his ability to sell is
sufficient to overcome the sales reduction effect due to the lower discount transmitted to the consumers. If the efficiency of
the retailer is very low, instead, the manufacturer profit takes higher advantage from the sales increase obtained selling at a
reduced price due to a higher pass-through. The retailer in fact, even if properly motivated, will not provide a high growth
of sales.

It is interesting to remark that

� for intermediate values of efficiency d, the manufacturer profit is non monotone.

In this case the maximum profit with respect to pass-through b is obtained in an internal point of the domain
[0.70,0.90] (see Fig. 4). In that point the vendor’s motivation and ability balance the low pass-through effect on final
price. Our numerical simulations suggest in any case that this kind of behavior of the profit function seems to be rel-
atively ‘‘rare”.



Fig. 3. Maximum profit for d 2 ½1:00; 1:15� and b 2 ½0:70; 0:90�.

Fig. 4. Maximum profit for d 2 ½1:100; 1:101� and b 2 ½0:70; 0:90�.
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5. Conclusion

The primary purpose of this research was to enhance our understanding on the manufacturer–retailer relationship by
means of a model in which the role of sale motivation and skill of the retailer are explicitly considered. We propose a
dynamic optimization model where the retailer is motivated in his selling activity, according to manufacturer’s benefits.

The qualitative properties of the solutions of the model are obtained by means of standard optimal control tools and
have several notable marketing implications.

First, we show that the optimal discount policy of the manufacturer in a vertical channel depends on the efficiency of the
retailer. In particular an increasing discount policy is convenient for inefficient retailers while efficient retailers may allow
the manufacturer to decrease trade discounts at the end of the selling period. We observed that efficiency of the retailer
strongly depends on the dimension of the market. In particular in a rather large market it is much easier for a retailer
to be considered efficient. The interesting relationship between retailer’s efficiency and market dimension will be further
investigated in future research.

A second result is obtained through numerical experiments. We show that pass-through strongly influences the value of
the optimal profit: in particular a higher pass-through produces higher profit if the retailer is very inefficient but lower
profit if the retailer is not overly inefficient, his skill and motivation compensate in this case the negative effect on sales
of a high final price.

Both these results imply that from the manufacturer’s point of view it is necessary to develop a monitoring program to
distinguish between the retailer’s intrinsic capabilities, his skill and qualification, and his sale motivation, his zeal and
engagement.

Managerially, the monotonicity or quasi-concavity properties of the optimal discount also suggests that piecewise con-
stant trade discounts (to be used in practice) maintaining the same type of monotonicity could be a good approximation of
the optimal behavior. Moreover it is also essential for manufacturers’ profit maximization to consider different ways of
improving retailers’ performances in order to deal exclusively with efficient retailers. For example, Basuroy et al. (2001)
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study the impact of category management on retailer performance, a management initiative that aims to improve retailer
performances through more coordinate buying, merchandizing and pricing.

A possible way to consider conflict and coordination is via a game theoretic approach (see e.g. Jørgensen and Zaccour,
2004). For example it is possible to consider the Stackelberg problem in which the retailer chooses the pass-through to max-
imize his profit or by analyzing the case of channel coordination between manufacturer and retailer in a differential game
framework.

Another possible generalization of the model, which could also be the subject of future research, is to consider a multi-
segment market (see e.g. Buratto et al., 2006) with several retailers and with constraint on final motivations and sales levels.

Besanko et al. (2005) show that pass-through varies substantially across products and categories, that own-brand pass-
through rates are, on average, quite large and that cross-brand pass-through is positively or negatively significant. These
results suggest another useful extension of our model: from a single good to a multiple goods model.
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Appendix A. Concavity of the cumulative sales function

Let us prove that (2) is a necessary and sufficient condition to have a concave cumulative sales function xðtÞ for every
constant wholesale price discount. In the following we will set
a ¼ h� cd; b ¼ ag� d� ¼ ðh� cdÞg� d�: ð5Þ

Observe that if a ¼ 0 it is not possible to obtain concavity of xðtÞ for every constant trade discount aðtÞ since if, for example,
aðtÞ ¼ a2 then €xðtÞ > 0.

Consider the case a–0. Setting aðtÞ ¼ â in the system of differential equations of problem P one has
xðtÞ ¼ CðâÞ½1� eaðt1�tÞ� þ d�ðâ� aÞ ðt � t1Þ=a; ð6Þ

where CðâÞ ¼ ðadM þ bâþ d�aÞ=a2 ¼ ðaðdM þ gâÞ þ d�ða� âÞÞ=a2: So the cumulative sales function is concave for every
â 2 ½a1; a2� if and only if CðâÞP 0 8â 2 ½a1; a2�, i.e. if and only if
adM þ bâþ d�a P 0 8â 2 ½a1; a2�; ð7Þ

i.e.
h P ðð�ðâ� aÞÞ=ðdM þ ga2Þ þ cÞd 8â 2 ½a1; a2�; ð8Þ

which is true if and only if (2) holds. Remark that assumption (2) implies a ¼ h� cd > 0.

Appendix B. Solution of problem P

B.1. An equivalent problem

Let us first rewrite problem P in an equivalent problem which can be solved easier.
Let us consider the new control variable uðtÞ ¼ aðtÞ � a2, the new state variable yðtÞ ¼ �hxðtÞ þ dMðtÞ þ a2g and denote
u1 ¼ a1 � a2 < 0; �u ¼ a� a2 < 0; y1 ¼ dM þ a2g: ð9Þ

Now we can write our model in the following equivalent form:
Q : maximize � p
Z t2

t1

½yðtÞ þ guðtÞ�uðtÞdt;

subject to _xðtÞ ¼ yðtÞ þ guðtÞ;
_yðtÞ ¼ �ayðtÞ � buðtÞ � c;

xðt1Þ ¼ 0; yðt1Þ ¼ y1;

uðtÞ 2 ½u1; 0�;
where a ¼ h� dc > 0; b ¼ ag� d� and c ¼ d��u < 0.
Remark that uðtÞ 6 0 8 t and, since a1 6 a and a1 < a2,



546 I. Bykadorov et al. / European Journal of Operational Research 194 (2009) 538–550
2u1 < �u: ð10Þ

Moreover, assumption (2) can be rewritten as
ay1 þ c P 0: ð11Þ

Problem Q allows to write _xðtÞ ¼ ðy1 þ c

aÞeaðt1�tÞ � be�at
R t

t1
uðsÞeas ds� c

aþ guðtÞ:
Since we require, obviously, non negative sales intensity this could require, for negative values of b, a ‘‘sufficiently short”

sales period ½t1; t2�.

B.2. Hamiltonian and maximum principle

Given problem Q consider its Hamiltonian function
H ¼ �p½yðtÞ þ guðtÞ�uðtÞ þ z0ðtÞ½yðtÞ þ guðtÞ� þ zðtÞ½�ayðtÞ � buðtÞ � c�

and the Lagrangian function
L ¼ H þ l1ðtÞ½uðtÞ � u1� � l2ðtÞuðtÞ: ð12Þ

Due to the Pontryagin Maximum Principle (in particular, see (Sethi and Thompson, 2000, p. 61)) one has that if u�ðtÞ is the
optimal control and x�ðtÞ; y�ðtÞ are the optimal state variables, then continuous and piecewise continuously differentiable
functions (adjoint functions) z0ðtÞ and zðtÞ and piecewise continuous functions (Lagrange multipliers) l1ðtÞ and l2ðtÞ must
exist such that
_z0ðtÞ ¼ �
oL�

ox
_zðtÞ ¼ � oL�

oy
z0ðt2Þ ¼ 0 zðt2Þ ¼ 0

oL�

ou
¼ 0; ð13Þ

l1ðtÞP 0; l1ðtÞ½u�ðtÞ � u1� ¼ 0; l2ðtÞP 0; l2ðtÞu�ðtÞ ¼ 0; ð14Þ

where L� ¼ Lðy�; x�; u�; z; z0; l1; l2Þ.

With the aim to find the structure of the optimal control of problem P we first state some preliminary propositions.

Proposition B.1. Functions l1ðtÞ and l2ðtÞ are continuous.

Proof. Since in our case oL�=ox � 0 then z0ðtÞ � 0 and
_zðtÞ ¼ � oL�

oy
¼ azðtÞ þ pu�ðtÞ: ð15Þ
Moreover (see (12)) from oL�=ou ¼ 0 one has
l1ðtÞ � l2ðtÞ ¼ py�ðtÞ þ bzðtÞ þ 2pgu�ðtÞ: ð16Þ

Function u�ðtÞ is continuous since the Hamiltonian function H is strictly concave with respect to u (see e.g. (Seierstad and
Syds�ter, 1987, p. 86, Note 2(b))), so also l1ðtÞ � l2ðtÞ is continuous. From the complementary conditions (14) we have
l1ðtÞu�ðtÞ � l1ðtÞu1 � l2ðtÞu�ðtÞ ¼ 0 therefore l1ðtÞu1 ¼ ðl1ðtÞ � l2ðtÞÞu�ðtÞ it follows that both l1 and l2 are
continuous. h

Proposition B.2. (a) l2ðtÞ ¼ 0 8t 2 ½t1; t2�; (b) if l1ðq1Þ ¼ l1ðq2Þ ¼ 0 then l1ðtÞ ¼ 0 8t 2 ½q1; q2�.

Proof. (a) Suppose that l2ð̂tÞ > 0 for some t̂ 2 ðt1; t2Þ then, due to the continuity of l2, some interval exists in which l2

keeps strictly positive: let I ¼ ðq1; q2Þ � ½t1; t2� be the interval of maximum length such that l2ðtÞ > 0 8t 2 I . By comple-
mentary conditions (14) this implies u�ðtÞ ¼ l1ðtÞ ¼ 0 8t 2 ðq1; q2Þ. Hence in ðq1; q2Þ (16) becomes
l2ðtÞ ¼ �py�ðtÞ � bzðtÞ; ð17Þ

where y�ðtÞ and zðtÞ satisfy the differential equations _yðtÞ ¼ �ayðtÞ � c_zðtÞ ¼ azðtÞ (see definition of problem Q and (15)),
i.e.
y�ðtÞ ¼ Cy e�at � c=a zðtÞ ¼ Cz eat ð18Þ

and Cy and Cz are given by
Cy ¼ ½y�ðq1Þ þ c=a�eaq1 ; Cz ¼ zðq2Þe�aq2 : ð19Þ

Moreover, €l2ðtÞ ¼ a2ð�pCye�at � bCz eatÞ ¼ a2½l2ðtÞ � pc=a�: So €l2ðtÞ > 0 since l2ðtÞ > 0 and c < 0: Hence l2ðtÞ is convex
in ½q1; q2�.

Consider now the cases (i) q1 ¼ t1; q2 ¼ t2, (ii) q1 ¼ t1; q2 < t2, (iii) q1 > t1; q2 ¼ t2, (iv) q1 > t1; q2 < t2.
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(i) Using the boundary conditions yðt1Þ ¼ y1; zðt2Þ ¼ 0 one has l2ðtÞ ¼ pf�y1 eaðt1�tÞ þ c½1� eaðt1�tÞ�=ag 8t 2 ½t1; t2�.
Therefore, since c < 0, one has l2ðtÞ < 0 in the whole interval, which contradicts complementary conditions.

(ii) Using the initial condition yðt1Þ ¼ y1; one has y�ðtÞ ¼ Cy e�at � c=a P 0 therefore, in order to keep l2ðtÞ > 0, we need
�bzðtÞ > 0. This way, recalling that ay1 þ c P 0, we have _l2ðtÞ ¼ �p _y� � b_z ¼ pðay1 þ cÞeaðt1�tÞ � bazðtÞ >
0 8t 2 ½t1; q2�: again we have a contradiction since l2ðt1Þ > 0 and l2ðq2Þ ¼ 0.

(iii) Using the final condition zðt2Þ ¼ 0, one has l2ðtÞ ¼ �py�ðtÞ; therefore l2ðtÞ > 0 if and only if y�ðtÞ < 0. But
y�ðtÞ ¼ Cye

�at � c=a < 0 requires Cy < 0, therefore _l2ðtÞ ¼ �p _y� ¼ apCy e�at < 0. We have a contradiction since
l2ðq1Þ ¼ 0 and l2ðt2Þ > 0.

(iv) In this case l2ðq1Þ ¼ l2ðq2Þ ¼ 0 thus, by convexity of l2; l2ðtÞ ¼ 0 on the whole interval ðq1; q2Þ, again a
contradiction.

Therefore l2 can never be strictly positive.
(b) The proof is quite similar to the proof of case (iv). Indeed, using (10) it is possible to show that function l1 is convex

in ðq1; q2Þ. h
B.3. The proof of Proposition 3.1

We split the proof by means of some lemmas.

Lemma B.1. If l1ðtÞ ¼ 0; 8t 2 ½q1; q2�# ½t1; t2� then in ½q1; q2� optimal control u�ðtÞ; optimal state variable y�ðtÞ and adjoint

function zðtÞ are
u�ðtÞ ¼ D1 ekt þ D2 e�kt þ �u=2; ð20Þ

y�ðtÞ ¼ ab2

gðaþ kÞ2
C1 ekt þ gðaþ kÞ2

a
C2 e�kt � b�uþ 2c

2a
; ð21Þ

zðtÞ ¼ p½C1ekt þ C2e�kt � �u=ð2aÞ�; ð22Þ
where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðad�Þ=g

p
;C1;C2 are some constants and
D1 ¼ ðk� aÞC1; D2 ¼ �ðkþ aÞC2: ð23Þ
Proof. Due to (16), Proposition B.2 and the hypothesis, one has
u�ðtÞ ¼ �½pyðtÞ þ bzðtÞ�=ð2pgÞ; t 2 ½q1; q2�: ð24Þ

Substituting this expression into the motion equation of yðtÞ and the adjoint motion equation of zðtÞ (see definition of prob-
lem Q and (15)) and solving the system
_yðtÞ ¼ �ayðtÞ � buðtÞ � c

_zðtÞ ¼ azðtÞ þ puðtÞ

�

we obtain its general solution which can be written as (21), (22). Expression (20) can be obtained now from (24). h

Lemma B.2. Optimal control u�ðtÞ, optimal state variable y�ðtÞ and adjoint function zðtÞ of problem Q are:
u�ðtÞ ¼
u1; t 2 ½t1; s1Þ;
D1 ekt þ D2 e�kt þ �u=2; t 2 ½s1; s2�;
u1; t 2 ðs2; t2�;

8><
>: ð25Þ

y�ðtÞ ¼

y1 þ bu1þc
a

� �
eaðt1�tÞ � bu1þc

a ; t 2 ½t1; s1Þ;
ab2

gðaþkÞ2 C1 ekt þ gðaþkÞ2
a C2 e�kt � b�uþ2c

2a ; t 2 ½s1; s2�;

Cy e�at � bu1þc
a ; t 2 ðs2; t2�;

8>>><
>>>:

ð26Þ

zðtÞ ¼
Cz eat � pu1=a; t 2 ½t1; s1Þ;
p½C1 ekt þ C2 e�kt � �u=ð2aÞ�; t 2 ½s1; s2�;
pu1½eaðt�t2Þ � 1�=a; t 2 ðs2; t2�;

8><
>: ð27Þ
where t1 6 s1 6 s2 6 t2;C1;C2;Cy ;Cz are some constants, D1;D2 are given by (23).
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Proof. Let us first prove that it is not possible to find q1; q2 2 ½t1; t2� such that q1 < q2 and u�ðtÞ ¼ 0 8t 2 ½q1; q2�. Indeed,
suppose by contradiction that u�ðtÞ ¼ 0 8t 2 ½q1; q2�; then by complementary conditions (14) it must be
l1ðtÞ ¼ 0 8t 2 ½q1; q2�. Therefore, using Lemma B.1, the optimal control u�ðtÞ is given by (20) in the whole interval
½q1; q2�. This implies that u�ðtÞ ¼ 0 8t 2 ½q1; q2� if and only if D1 ¼ D2 ¼ 0 and �u ¼ 0, which is impossible since �u < 0
(see (9)). Therefore u�ðtÞ cannot be identically equal to zero in the whole interval ½q1; q2�. This means that u�ðtÞ can either
be given by (20) or be equal to u1. Due to Proposition B.2 the only possible optimal control form is therefore given by (25).

Let us remark that the general solution of the system
_yðtÞ ¼ �ayðtÞ � bu1 � c; _zðtÞ ¼ azðtÞ þ pu1
is yðtÞ ¼ Cy e�at � ðbu1 þ cÞ=a; zðtÞ ¼ Cz eat � pu1=a; where Cy and Cz are some arbitrary constant. Using (25), Lemma B.1
(see (21) and (22)), boundary conditions yðt1Þ ¼ y1 and zðt2Þ ¼ 0, and continuity of u�ðtÞ; y�ðtÞ and zðtÞ, we obtain (26) and
(27). h

Lemma B.3
D2 < 0; signD1 ¼ signb: ð28Þ
Proof. Using (25)–(27) and the continuity of u�ðtÞ; y�ðtÞ; zðtÞ one has
ab2

gðaþ kÞ2
C1 eks1 þ gðaþ kÞ2

a
C2 e�ks1 � b�uþ 2c

2a
¼ y�ðs1Þ; ð29Þ

½D1 eks1 þ D2 e�ks1 þ �u=2�ðs1 � t1Þ ¼ u1ðs1 � t1Þ; ð30Þ
p½C1 eks2 þ C2 e�ks2 � �u=ð2aÞ� ¼ zðs2Þ; ð31Þ
½D1 eks2 þ D2 e�ks2 þ �u=2�ðs2 � t2Þ ¼ u1ðs2 � t2Þ: ð32Þ
Let us look now how to express coefficients D1 and D2 depending on the values of s1 and s2. Using (30) and (32) we get
s1–t1 s2–t2 ) D1 ¼
u1 � �u=2

eks1 þ eks2
D2 ¼ D1 ekðs1þs2Þ: ð33Þ
By means of (29) and (30) we obtain
s1–t1 )
D1 ¼ 1

2gk ½ðay1 þ bu1 þ cÞeaðt1�s1Þ þ ðgkþ d�Þðu1 � �u
2
Þ�e�ks1 ;

D2 ¼ 1
2gk ½�ðay1 þ bu1 þ cÞeaðt1�s1Þ þ ðgk� d�Þðu1 � �u

2
Þ�eks1 ;

_u�ðs1 þ 0Þ ¼ 1
g ½ðay1 þ bu1 þ cÞeaðt1�s1Þ þ d�ðu1 � �u

2
Þ� > 0;

8>><
>>:

ð34Þ
where _u�ðs1 þ 0Þ denotes the right derivative of _u�ðtÞ at s1.
From (31), (32), (9) and (10) one has
s2–t2 )
D1 ¼ 1

2gk ½�bu1 eaðs2�t2Þ þ ðgk� d�Þðu1 � �u
2
Þ�e�ks2 ;

D2 ¼ 1
2gk ½bu1 eaðs2�t2Þ þ ðgkþ d�Þðu1 � �u

2
Þ�eks2 ;

_u�ðs2 � 0Þ ¼ � 1
g ½bu1 eaðs2�t2Þ þ d�ðu1 � �u

2
Þ� < 0) b < 0;

8>><
>>:

ð35Þ
where _u�ðs2 � 0Þ denotes the left derivative of _u�ðtÞ at s2.
Finally by (29) and (31) one has
s1 ¼ t1 s2 ¼ t2 ) D1 ¼ D1ðk� aÞ=D; D2 ¼ D2ðkþ aÞ=D; ð36Þ

where
D ¼ 2a 	 k
2ðd�� agÞ2 ekðt1�t2Þ � ðkþ aÞ2ðd�þ kgÞ2ekðt2�t1Þ

kðaþ kÞðd�þ kgÞ < 0;

D1 ¼ ½2ay1 þ b�uþ 2c�e�kt2 � ½ðaþ kÞðd�þ kgÞ�u�e�kt1=k;

D2 ¼ ½2ay1 þ b�uþ 2c�ekt2 � kb2�u
ðaþ kÞðd�þ kgÞ ekt1 :
Remark that
2ay1 þ b�uþ 2c > 0: ð37Þ
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Indeed, if b < 0 then (37) holds due to (11) and (9), if b P 0 then, using (9) one obtains 2ay1 þ b�uþ 2c P
2aðy1 þ g�uÞ ¼ 2aðdM þ gaÞ > 0, i.e. (37) holds again.

To prove (28) we consider explicitly four cases:

(1) if s1–t1 and s2–t2 then D1 and D2 are negative due to (33) and (10); moreover also b < 0 due to (35), therefore (28)
holds;

(2) if s1 ¼ t1 and s2–t2 then due to (35) we have b < 0 and, using the sign of _u�ðs2 � 0Þ, also D1 < 0; moreover since
b < 0 from (23) we obtain C1 < 0. Using (29) and (37) and boundary condition yðt1Þ ¼ y1 we have C2 > 0, i.e.
D2 < 0 (see (23)); this way (28) holds;

(3) if s1–t1 and s2 ¼ t2 then using (10) from (34) we have that D2 < 0, i.e. C2 > 0 (see (23)); using (31) and the boundary
condition zðt2Þ ¼ 0 we get C1 < 0 and also in this case the sign of b is the same as the sign of C2 since
signb ¼ sign ða� kÞ; ð38Þ

(4) if s1 ¼ t1 and s2 ¼ t2 then we can use (36); by (37) and (38) we obtain again (28). h

Proof of Proposition 3.1. Due to (5) we have that condition d 6 hg=ðgcþ �Þ, the inefficient retailer, can be rewritten as
b P 0. If b P 0 then s2 must coincide with t2 (see (35)). In this case, from Lemma B.2 we have
u�ðtÞ ¼
u1; t 2 ½t1; s1Þ;
D1 ekt þ D2 e�kt þ �u=2; t 2 ½s1; t2�;

�
ð39Þ
where D1 P 0 and D2 < 0 due to Lemma B.3; this means that a�ðtÞ satisfies (3). So function u�ðtÞ is strictly increasing on
½s1; t2� and the same holds for a�ðtÞ.

If instead d > hg=ðgcþ �Þ, the efficient retailer case, we have b < 0. In that case, by Lemma B.2,
u�ðtÞ ¼
u1; t 2 ½t1; s1Þ;
D1 ekt þ D2 e�kt þ �u=2; t 2 ½s1; s2�;
u1; t 2 ðs2; t2�;

8><
>: ð40Þ
with D1 < 0 and D2 < 0 (see Lemma B.3); therefore (4) holds. Function u�ðtÞ is strictly concave on ½s1; s2� and a�ðtÞ has the
same property, therefore they are both quasi-concave on ½t1; t2�.

Let us show now that if b < 0 then a�ðs1Þ 6 a�ðs2Þ, i.e.
u�ðs1Þ 6 u�ðs2Þ: ð41Þ

Indeed, if s1 > t1 then, of course, (41) holds, due to the structure of the optimal control u�ðtÞ given by (40). When s1 ¼ t1

then, using (29), (31) we obtain, by straightforward calculations,
u�ðs2Þ � u�ðs1Þ ¼ u�ðs2Þ � u�ðt1Þ ¼
ðaþ kÞ½1þ ekðt1�s2Þ� ekðs2�t1Þ � 1þ 2k

aþk

h i
A

g½ðaþ kÞ2ekðs2�t1Þ � ða� kÞ2 ekðt1�s2Þ�

where we have put A ¼ ay1 þ cþ bu1ð1� eaðs2�t2ÞÞ. Due to (11) we have A P 0, and, since signðu�ðs2Þ � u�ðs1ÞÞ ¼ sign A,
(41) holds.
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