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ABSTRACT 

 

Over the past several years, port related charges in Japanese ports have been 

substantially higher than those charged in other major international hub ports. All major 

container ports in Japan feature so-called Dedicated Terminals in which cost-effectiveness is 

justified by huge container volume to be handled. One of the reasons cited for high port 

charges is a relative decrease in handling volume compared to the terminal capacity, 

resulting in inefficient use of the existing capacity. The use of the Multi-User Container 

Terminal (MUT) concept employed in some of the major container hub ports such as Hong 

Kong, Pusan, Hamburg and Rotterdam reduces redundant terminal space and results in 

substantial cost savings in cargo handling costs and therefore is desired for ports in Japan as 

well. One of the key issues in the MUT operation is the berth allocation to calling vessels. In 

a recent study, an allocation problem for the MUT was examined, in which each vessel was 

treated equally. However, as some vessel operators desire high priority services, the goal of 

this paper is to modify the existing formulation of the berth allocation problem in order to 

treat calling vessels at various service priorities by developing a genetic algorithm based 

heuristic for the resulting non-linear problem. 

 

Keywords:  Berth allocation; Terminal management; Container transportation; 

 Cargo handling; Heuristic; Mathematical programming 
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1. INTRODUCTION 

 

In major ports in Japan and the US such as Kobe, Yokohama, Los Angeles and 

Oakland, shipping lines lease the container terminals (referred to as Dedicated Terminal or 

DT) in order for them to be directly involved in the processing and handling of the 

containers as they aim to achieve higher productivity and economies of scale. Whereas this 

may be warranted in the case of a firm that handles a large amount of containers with a 

corresponding number of ship calls, it may not be justified if these quantities are not 

sufficient, as it will have an adverse effect on costs. Over the past several years port related 

charges in Japanese ports have been consistently higher than those in other major ports. One 

of the reasons cited for the increased costs is the over-investment in ports with relatively 

small cargo volume. 

A “Multi-User Container Terminal (MUT)” may be defined as a terminal with a 

long berth, that is able to handle simultaneously a number of vessels which are dynamically 

allocated to the berth and are not always assigned to specific berth locations. Some major 

container ports provide an MUT, while most of them feature DTs. Examples of the MUT are 

Hong Kong International Terminal (HIT) in Hong Kong, Pusan East Container Terminal 

(PECT) in Pusan, and Delta Multi-User Terminal (DMU) in Rotterdam. In addition, most 

container terminals in China are used as MUTs, since the limited terminal space due to a 

smaller construction budget has to be utilized efficiently in order to meet huge container 

traffic. 

An MUT can reduce the required terminal space while handling containers with the 

same rate of productivity as a DT, thus resulting in substantial cost savings in cargo 

handling costs. One of the issues that affect the efficiency of MUT operations is the berth 

allocation to calling vessels. The berth allocation problem (BAP) has already been 

addressed and solved through a subgradient optimization with a Lagrangian relaxation 

technique (Imai et al., 2001), in order to minimize the total service time that comprises the 

handling time and the waiting time for an idle berth. This problem assumed that each vessel 

was treated without any differentiated priority. However, according to a survey for a port 

authority in Japan, it became evident that vessels with a large container handling volume 

preferred to be given a higher priority over small vessels when the berth was congested. In 

general the ship priority depends on the total throughput per shipping line; therefore the ship 

size (actually handling volume of that ship) as an index for the priority must be regarded as 

an intervening variable in that it is often closely correlated to the power of the shipping 

company which deploys it. This is the case, for example, in Tanjong Pager container 
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terminal of Singapore. 

On the other hand, some feeder shipping companies claim that small feeder vessels 

are very often dominated by large vessels, and they argue that they ought to be given the 

same priority treatment as larger vessels and, indeed, even higher priority since their 

handling times are much shorter. In fact, Dalian container terminal of China, which is an 

MUT, provides higher priorities to small feeder vessels when the terminal is busy, resulting 

in less waiting time to the following vessels. This advantage is demonstrated as follows: 

Given the situation that two vessels with different handling volumes have just arrival at the 

same time, the small vessel is forced to wait for long if the big one is served first, while the 

latter waits for a short time if it is served second. 

From the above discussion, it is clear that service priority is important in terminal 

operations including berth allocation, especially for a situation which involves various sizes 

of ships with various cargo handling volumes at a particular port of call.  

Xu and Parnas (2000) provide interesting insights into priority scheduling that 

schedules jobs (or processes) for limited resources (or processors), assuming: (a) the 

scheduling is performed at run time; (b) processes are assigned fixed priorities and 

whenever two processes compete for a processor, the process with higher priority wins. In 

accordance with their paper, the best-known representative of priority scheduling is the Rate 

Monotonic Scheduling (Liu and Layland, 1973). Furthermore, there is another scheduling 

policy named the Priority Ceiling Protocol (Sha et al., 1990). The former assumes that the 

major characteristics of all processes are known before run-time (that is corresponding to 

the pre-known handling time in the berth allocation). Fixed priorities are assigned to the 

processes according to their periods, the shorter the period, the higher the priority. At any 

time the process with the highest priority among all the processes ready to run is assigned to 

the processor. The Priority Ceiling Protocol makes the same assumptions as Rate Monotonic 

Scheduling, except that in addition, processes may have critical sections guarded by 

semaphores, and a protocol is provided for handling them. Each semaphore is assigned a 

priority ceiling, which is equal to the priority of the highest priority process that may use 

this semaphore. The process that has the highest priority among the processes ready to run is 

assigned to the processors, like the Rate Monotonic Scheduling. 

In these scheduling policies the priority is treated explicitly, that is, processes are 

selected for processing in order of priority value, and a scheduling algorithm arbitrarily 

determines a solution with such a priority. In fact, terms such as priority rule, heuristics, or 

scheduling rule are often used synonymously in the scheduling literature. 

The goal of this paper is to define a solution to the objective of minimized total 
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service time, while differentiating priorities to ships by variation of their service times 

(including the waiting time for an idle berth) in the solution. In this study the priority is 

evaluated by the resulting service time for each ship; therefore the priority should not be, in 

a strong sense, defined in the problem formulation like the above scheduling methods. It is 

not necessarily true that the priorities being given to the formulation explicitly differentiates 

the resulting service times for ships, because ships have different (estimated or pre-known) 

handling times which may depend on the berth location they are assigned and they do not 

always arrive at the port at the same time. Consequently, the above-mentioned scheduling 

approaches, with the so-called hard priority are restricted to the BAP. By contrast, this study 

assigns the ships a softly defined-priority, that is, weights related to their handling volumes 

in a BAP mathematical programming formulation. 

The objective of this paper is to modify the existing BAP formulation in order to 

deal with calling vessels with various service priorities. For solving the BAP with priority 

we first examine a subgradient method using a Lagrangian relaxation technique like the one 

used in Imai et al. (2001). However due to its complexity in the solution process, we finally 

propose a genetic algorithm (GA) based heuristic. 

The paper is organized as follows. The next section provides a literature review on 

the berth allocation planning. A mixed integer programming of the BAP without priority 

consideration is discussed in Section 3. The fourth
 
section introduces a new formulation of 

the BAP to take into account the priority concern. Following that, we describe a Lagrangian 

relaxation approach for the solution, then a GA based solution method for that problem. In 

the fifth section a number of computational analyses are carried out, while the final section 

concludes the paper. 

 

 

2. LITERATURE REVIEW ON THE BAP 

 

Most port studies focus their attention to the strategic and tactical issues facing the 

port. As many container terminals are privately operated by specific shipping lines, very few 

studies have been conducted on berth allocation in a multi-user terminal system. 

Lai and Shih (1992) propose a heuristic algorithm for berth allocation which is 

motivated by more efficient terminal (actually berth) usage in the HIT terminal of Hong 

Kong. Their problem considers a first-come-first-served (FCFS) allocation strategy, which is 

not the case in our problem. Brown et al. (1994, 1997) examine ship handling in naval ports. 

They identify the optimal set of ship-to-berth assignments that maximize the sum of benefits 
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for ships while in port. Berth planning in naval ports has important differences from 

planning in commercial ports. In the former, a berth shift occurs when for proper services, a 

newly arriving ship must be assigned to a berth where another ship is already being serviced. 

This treatment is unlikely in commercial ports. Berth shifting as well as other factors less 

relevant to commercial ports are taken into account in their paper, thus making their study 

inappropriate for commercial ports. 

Imai et al. (1997) address berth allocation for commercial ports. Most service 

queues are in general processed on the FCFS basis. They conclude that in order to achieve 

high port productivity, an optimal set of ship-to-berth assignments should be found without 

considering the FCFS rule. However, this service principle may result in certain ships being 

dissatisfied with the order of service. In order to deal with the two criteria to evaluate, i.e., 

berth performance and dissatisfaction with the order of service, they develop a heuristic to 

find a set of non-inferior solutions while maximizing the former and minimizing the latter. 

Their study assumes a static situation where ships to be serviced for a planning horizon have 

all arrived at a port before one plans the berth allocation. Thus, this study can apply only to 

tremendously busy ports. As far as container shipping is concerned, such busy ports are 

neither competitive nor realistic because of the long delay in interchange process at ports. In 

this context, Imai et al. (2001) extend the static version of the BAP to a dynamic treatment 

that is similar to the static treatment, but with the difference that some ships arrive while 

work is in progress. As the first step in this dynamic treatment, only one objective, berth 

performance, is considered. Due to the difficulty in finding an exact solution, they develop a 

heuristic by using a subgradient method with Lagrangian relaxation. Their study assumes 

the same water depth for all the berths, while in practice there are berths with different water 

depths in certain ports. Nishimura et al. (2001) further extend the dynamic version of the 

berth allocation problem for the multi-water depth configuration. They employ genetic 

heuristic algorithms to solve that problem. 

 There is also another class of the BAP, which is the one with a continuous location 

index. While in the above mentioned studies the entire terminal space is partitioned into 

several parts (or berths) and the allocation is planned based on the divided berth space, 

under this approach ships are allowed to be serviced wherever the empty spaces are 

available to physically accommodate the ships via a continuous location system. This class 

of problem resembles more or less the cutting-stock problem where a set of commodities are 

packed into some boxes in an efficient manner. A ship in service at a berth can be shown by 

a rectangle in a time-space representation or gantt chart, therefore efficient berth usage is a 

sort of packing “ship rectangles” into a berth-time availability as a box with some limited 
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packing scheme such that no rotation of ship rectangles is allowed. As for berth allocation 

with continuous location, there are very few examples of studies such as Lim (1998) and Li 

et al. (1998) due to the difficulty in determining a solution.  

 

 

3. FORMULATION OF THE DYNAMIC BERTH ALLOCATION 

 

3.1 Formulation 

 

This study develops a BAP with priority consideration based on the dynamic 

version of the BAP (Imai et al., 2001). This section overviews the formulation of the BAP 

without priority consideration, in order to assess the difficulty in the formulation and 

solution methodology for the BAP with priority consideration (PBAP). 

There are some evaluation criteria to measure berth (or terminal) productivity such 

as the total handling time and the total service time that includes not only the handling time 

but also the waiting time of ship for an idle berth. The former is much more related to the 

port operator than to its users (i.e., calling ships) since no consideration is made for the 

waiting time. Quick turnaround time at a port is a vital issue for sea-borne transportation, 

especially for container ship transportation; therefore the latter is used as an objective for 

the BAP. 

 The BAP assumes only one long wharf at a multi-user terminal. Considering a variety 

of ship sizes, especially ship length, a number of ship location alternatives at the wharf are 

possible. However, for simplicity in the solution procedure, the wharf is virtually divided 

into several blocks as seen in major container ports, and in the BAP we obtain a set of 

assignments of ships to those blocks that are hereafter referred to as berths. 

 We assume that each berth can service one ship at a time regardless of the ship’s size 

and that there are no physical and/or technical restrictions such as the relationship between 

ship draft and water depth. Furthermore, for generalizing the BAP, the ship handling time is 

assumed dependent on the berth where it is assigned. The second assumption is justified by 

the following reasoning: at a private container terminal (or berth), containers to be loaded 

onto a ship are stored in appropriate yard locations in a terminal alongside the berth where 

the ship is serviced. For an MUT, ship-to-berth assignments should be, in general, 

determined in advance of ship arrivals. However, containers for the ships may arrive at the 

terminal for loading after the berthing decision. Therefore, the distance between a ship and 

its container location depends on the berth assignment. Although examination of the 
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terminal handling systems is beyond the scope of this paper, it is obvious that the handling 

time may also be dependent on the geographical relationship between the ship and the 

container location in the yard. 

 In formulating the BAP, we define binary variables ijkx  to specify if ship j  is 

serviced as the k th ship at berth i . Other related studies (i.e., berth assignment in naval 

ports as discussed in the previous section) employ actual unit time for decision variables to 

index assignment sequences. In the berth allocation planning, it is expected that a ship 

spends up to 24 h for cargo loading/unloading. Considering the prospective planning 

horizon of our model (say, at least a few days), we will have an explosively large number of 

decision variables by describing them with actual time. In addition, our model guarantees 

consecutive service for all ships without disruptions such as berth shifting. 

 As the variable ijkx  is restricted to 0-1 values, the BAP may be formulated as a mixed 

integer three-dimensional problem as follows:  

 

[BAP] Minimize ( ){ } ( )∑∑∑∑∑∑
∈ ∈ ∈∈ ∈ ∈

+−+−++−
Bi Wj Uk

ijk

Bi Vj Uk

ijkjiij

i

ykTxASCkT 11  (1) 
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∈ ∈

=
Bi Uk

ijkx 1 Vj∈∀ , (2) 

  ∑
∈

≤
Vj

ijkx 1 UkBi ∈∈∀ , , (3) 

  ( ) 0)( ≥−−++∑∑
∈ ∈

ijkijijk

Vl Pm

ilmilmil xSAyyxC
k

 

   UkWjBi i ∈∈∈∀ ,, , (4) 

  { }1,0∈ijkx  UkVjBi ∈∈∈∀ ,, , (5) 

  0≥ijky  UkVjBi ∈∈∈∀ ,, , (6) 

 

Where BIi ∈= )....,,1(  is the set of berths, VTj ∈= )....,,1(  the set of ships, 

UTk ∈= )....,,1(  the set of service orders, jA  the arrival time of ship j , kP  the subset 

of U  such that { }UkppPk ∈<= , iS  the time when berth location i  becomes idle for 

the planning horizon, iW  the subset of ships with ij SA ≥ , ijC  the handling time spent 

by ship j  at berth i , ijkx  = 1 if ship j  is serviced as the k th ship at berth i  and = 0 

otherwise, ijky  the idle time of berth i  between the departure of the ( 1−k )th ship and the 

arrival of the k th ship when ship j  is serviced as the k th ship. 
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Notice that both sets of ships and service orders have the same number of elements T  

because a feasible solution may assign all the ships to a particular berth even though a 

number of berths are provided in the system. 

 Objective (1) minimizes the sum of waiting and handling times for every ship. 

Constraint set (2) ensures that every ship must be serviced at some berth in any order of 

service. Constraints (3) enforce that every berth services up to one ship at any time. 

Constraints (4) assure that ships are serviced after their arrival.  

 

3.2 Derivation of objective function (1) 

 

The first term of the objective function gives the total service time (including 

handling and waiting times) when ships are all serviced without any idle condition of berths 

as shown in Fig. 1. A service time ijC  of a specific ship serviced at berth i  contributes to 

the waiting time of the subsequent ships to be serviced at that berth. In other words, the 

waiting time of any of those ships is represented by a cumulative service time of its 

predecessors.  

The second term of the objective function represents the waiting time incurred with 

the berth idle time that results from late ship arrival. Fig. 2 shows a berth allocation pattern 

at berth i  with an idle berth. Thin lines represent a ships’ wait, while thick lines imply that 

they are being serviced. Dotted lines portray the berth in idle status. Ship 1 arriving at the 

port before iS  is the first ship to be serviced while ships 2 and 3 arriving after iS  are the 

fourth and fifth ships to be serviced, respectively. Berth i  is already idle for ships 4 and 5; 

therefore they get serviced as the second and third ships as soon as they arrive. In general, 

the handling time ijC  of each ship, as mentioned above, contributes to the waiting times 

for all of its successors. Similarly, the idle time of a berth prior to service for a ship, ijky , 

must be summed up for the time its successors spend waiting for service. If a ship arrives 

before its immediate predecessor’s departure, then by definition ijky =0 for that solution. 

For those ships that arrive before iS , the time they spend waiting before iS , i.e., ji AS − , 

is added. Conversely, if ship j  arrives after iS  (i.e., ji AS −  is negative), regardless of 

if ijky >0 or =0, then waiting times summed by ijC s and ijky s of their predecessors are 

subtracted by the time duration of ij SA − . 

 

---------------------------- 

Figs. 1 & 2 

---------------------------- 
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Notice that the objective function contains ijkykT )1( +− , i.e., ijky  is computed 

for ship j  as the k th ship as well as its successors, although it should not be for itself. As 

stated above, the waiting time of a certain ship given as the sum of ijC  and ijky  for its 

predecessors is subtracted by ij SA −  if ijky >0 for it; therefore its ijky  must be added for 

its own waiting time. 

 

3.3 Derivation of constraint set (4) 

 

Constraint set (4) for ship j  as the k th ship at berth i  yields the following 

inequality by moving the third term of the left-hand side to the right: 

 

 ( ) ijkijijk

Vl Pm

ilmilmil xSAyyxC
k

)( −≥++∑∑
∈ ∈

 

 

The first term in the left-hand side is the time duration between iS  and the time when the 

last of its predecessors leaves the port. Consequently, the left-hand side, i.e., the time 

duration between iS  and the start of the service for ship j  must be no less than ij SA − , 

if ijkx =1. 

 

 

4. FORMULATION WITH PRIORITY CONSIDERATION  

 

4.1 Formulation of the PBAP 

 

The BAP discussed in the previous section treats ships without distinctive priority. 

That is, no service priority in terms of ship size, handling volume, etc. is taken into account 

when determining the berth allocation. However, as previously mentioned there are 

arguments for differentiating the treatment of vessels. For example, Tanjong Pager container 

terminal in Singapore is operated as an MUT, but with a higher priority assigned to ships 

with large handling volume. On the other hand, Dalian container terminal of China, which is 

also an MUT, is more likely to serve small feeder vessels when the terminal is congested, 

resulting in less waiting time to the succeeding vessels.  

 As mentioned before, the waiting time of each calling ship, which is a part of the 

service time is the cumulative handling time of all preceding ships at the same berth. That is, 
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if the service of ship 1 is followed by ships 2 and 3, the handling time of ship 1 is a part of 

the service time for ships 2 and 3. As will be described later, the priority consideration is 

taken into account by the service time of a ship weighted by an incident parameter to that 

ship. Thus, ship 1’s handling time contributes to its successor’s service times by multiplying 

it by each successor’s parameter. The objective function of the dynamic BAP formulation 

can therefore be written as:  

 

[PBAP] Minimize +








+−+∑∑∑ ∑∑
∈ ∈ ∈ ∈ ∈Bi Vj Uk

ijkj
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ilmiljiij xxCASC
k
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ilmijk
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∈ ∈ ∈ ∈ ∈ 








+   (7) 

 subject to ∑∑
∈ ∈

=
Bi Uk

ijkx 1 Vj∈∀ , (2) 

  ∑
∈

≤
Vj

ijkx 1  UkBi ∈∈∀ , , (3) 

  ( ) 0)( ≥−−++∑∑
∈ ∈

ijkijijk

Vl Pm

ilmilmil xSAyyxC
k

 

   UkWjBi i ∈∈∈∀ ,, , (4) 

  { }1,0∈ijkx  UkVjBi ∈∈∈∀ ,, ,  

  0≥ijky  UkVjBi ∈∈∈∀ ,, , (5) 

 

where jα  is a weight for ship j . 

If, for example, we consider priority as a function of the ship’s cargo handling 

volume at a calling port, then a solution may be obtained by using the cargo volume of ship 

j  as a weight jα . On the other hand, when small feeder ships (with small handling 

volume) need to be serviced at a higher priority, we can define jα  as the reciprocal of 

handling volume of ship j , to enhance feeder’s evaluation value in the formulation. After 

all, this formulation has the advantage in that any kind of weight can be attached to 

individual ships. For instance, when a ship must be handled quickly for a certain reason 

such as an emergency, high priority may be realized in the resulting solution by adding a 

high value to it in the formulation. 

 

4.2 Derivation of objective function (7) 

 

As mentioned in Section 4.1, in the BAP formulation the waiting time of a ship for 



 12 

berth availability is an accumulation of handling time of preceding ships serviced at the 

berth. Consequently, focusing on a ship in service, the total service time of a berth in 

objective function (1) is composed by the sum of the ship handling time and the product of 

the handling time and the potential service queue length after the ship as a part of the 

successors’ waiting time. 

 In the PBAP, every ship is allowed to have a specific service priority; therefore a 

weight that represents a priority to a specific ship has to be associated with ∑∑
∈ ∈Bi Uk

ijkx  and 

its cumulative service time gap of two adjacent ships in service up to that ship, ∑∑
∈ ∈Bi Uk

ijky . 

Keeping this in mind, one focuses on a particular ship’s service time which is calculated by 

the sum of the ship’s handling time, ( )
ijkjiij xASC −+ , and the waiting time as the 

cumulative handling time of preceding ships, ijk

Vl Pm

ilmil xxC
k











∑∑
∈ ∈

. The first term of function 

(7) is the total of ship’s service time weighted by priority jα  without consideration of the 

time gap between two adjacent ships in service at a berth. The time gap is taken into account 

by the second term. 

 

 

5. SOLUTION PROCEDURE 

 

This section describes a solution procedure of the PBAP. As the BAP that is 

modified to model the PBAP was solved by the subgradient procedure with a Lagrangian 

relaxation to the BAP formulation in Imai et al. (2001), we first attempt to develop a 

Largrangian relaxation formulation to the PBAP, in order to look into the availability of the 

subgradient procedure. 

 

5.1 Lagrangian relaxation of the PBAP 

 

Like the BAP, we obtain a Lagrangian relaxation formulation by putting constraints (4) into 

objective function (7) with corresponding Lagrangian multipliers. The relaxed problem is as 

follows: 

 

[RBAP1] Minimize +








+−+∑∑∑ ∑∑
∈ ∈ ∈ ∈ ∈Bi Vj Uk
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  −
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 subject to (2), (3), and (5). 

 

The formulation can be rewritten as follows, because ijky s are not included in any 

constraints of [RBAP1] and are redundant. 

 

[RBAP2] Minimize +








+−+∑∑∑ ∑ ∑
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Defining ( ) )(*
ijijkjjiijijk SAASCD −+−+= λα , ilijkijkl CD λ=#  and iljijl CE α= , 

objective function (9) is reformulated as (10). 
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







+
i j k

ilm

l m
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As shown in Imai et al. (2001), this three dimensional mathematical programming 

formulation (10), (2), (3), and (5) becomes a two dimensional problem as follows: 

 

[RBAP3] Minimize ∑ ∑∑+
nj nj qp

jnpqpqjnjnjn xxExD
, , ,

''  (11) 

 subject to ∑ =
n

jnx 1  j∀ , (12) 

  ∑ =
j

jnx 1  n∀ , (13) 

  { }1,0∈jnx  nj,∀ , (14) 
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where j  and p  are ship indices while n  and q  are resource (i.e., the mixture of berth 

and service order like Imai et al., (2001)) indices. 

[RBAP3] is a quadratic assignment problem (QAP) for which it is difficult to find 

an optimal solution because it is an NP-hard problem. Due to the NP-hardness, the QAP has 

been solved not only exactly but also approximately. As there is a huge literature on the 

QAP, we focus on relatively recent works as follows. Some studies such as Resende et al. 

(1996), Pardalos et al. (1997a), Angel and Zissimopoulos (1998), Ishii and Sato(1998), Lim 

et al.(2000), Ahuja et al.(2000), and Arkin et al. (2001), propose heuristic algorithms for the 

QAP, while Clausen and Perregaard (1997), Pardalos et al. (1997b), Hahn et al. (1998), 

Sergeev (1999a,b), Karisch et al. (1999), Anstreicher (2000), Anstreicher and Brixius (2001), 

develop exact algorithms or new and strong lower bounds for existing optimal solution 

methods. Interestingly Ball et al. (1998) attempt to formulate the QAP as an integer linear 

programming in two different forms; however it remains difficult to solve in a sense of 

polynomially- bounded time because of the integer programming. 

 When the subgradient method incorporating the Lagrangian relaxation is utilized, 

the optimal solution to the relaxed problem (i.e., the QAP) must be identified in the first half 

stage at each iteration of the method. Consequently, this forces us to use an exact solution 

method to the QAP. This approach, however, is not attractive because of the heavy 

computational burden resulting from the NP-hardness. As a result, we decided to employ a 

heuristic to entirely solve the PBAP. As seen in the QAP literature, the so-called modern 

heuristic based on artificial intelligence techniques such as neural network and GA are 

widely adapted for a number of NP-hard combinatorial problems. An existing study 

regarding the BAP (Nishimura et al., 2001) attempted the GA and found that for the BAP, 

the GA worked as well as the subgradient method using the Lagrangian relaxation. 

Therefore, we employ the GA to approximately solve the PBAP. 

 

5.2 Solution procedure using the genetic algorithm 

 

5.2.1. Outline of solution procedure 

As shown in Section 4.1, the problem [PBAP] is a non-linear formulation that is 

difficult to solve. To facilitate the solution procedure we employ a GA-based heuristic 

which is widely used in solving difficult problems and has a practical, short computational 

time. We aim to carry out scheduling for a planning horizon that is as long as accurate ship 

arrival information is available. To solve [PBAP], we partition the problem into N 
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sub-problems (SUBs) of the berth allocation in terms of a temporal factor as presented in 

Fig. 3. Given the resulting time for [PBAP] during the previous planning horizon when 

every berth becomes idle with the departure of the last ship assigned, the first SUB is solved 

by a GA. Given the solution of the first SUB that gives the times when the berths become 

idle for the next SUB, the next SUB is solved. This process is iterated until the final SUB 

(i.e., the Nth SUB) is solved while a solution to a particular SUB (intermediate solution) is 

used as the start time of an idle berth for the next SUB. As the GA produces the best 

solution (it is not necessarily the best in a strong sense because the GA identifies 

approximate solutions), the second best, …., Kth best solutions each of which can be handed 

over to the next SUB, the final solution may be affected by the choice of the intermediate 

solutions; in other words, the best intermediate solutions being handed over through a series 

of SUBs does not necessarily lead to the best solution to the entire problem and the second 

and third best intermediate solutions may result in a better overall solution. However, our 

preliminary experiments using worse intermediate solutions showed no significant 

improvement in solution quality of the overall problem. Thus, the best intermediate 

solutions are inherited over a series of SUBs. 

5.2.2. Heuristic using genetic algorithm 

GA is like a heuristic method in that the optimality of the answers cannot be 

determined. It works on the principle of evolving a population of trial solutions, over many 

iterations, to adapt them to the fitness landscape expressed in the objective function. The 

procedure of GA is outlined in Fig. 4. In this figure, the objective function value and 

solution alternatives of the BAP correspond to the fitness value and individuals, respectively. 

The number of individuals in a generation is set to 30 for our heuristic. 

5.2.3. Representation 

In the GA’s application that was developed, we have chosen to work with 

scheduling order rather than directly with berth schedules (and berthing times). Furthermore, 

instead of using the classical binary bit string representation, the chromosomes are 

represented as character strings. Fig. 5 shows a typical chromosome representation for a 

two-berth scheduling problem. The length of the string of digits is the number of ships plus 

the number of berths minus one. It consists of two parts separated with zero, each of which 

represents a service queue for one of the two berths. The example shows a schedule with 

ships 2, 8, 5, and 9 serviced in that order at berth 1, and ships 4, 7, 3, 1, and 6 at berth 2. 

 

---------------------------- 

Figs. 3, 4 & 5 
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---------------------------- 

 

5.2.4. Fitness 

The problem [PBAP] is a minimization problem; thus, the smaller the objective 

function value is, the higher the fitness value must be. For this, the fitness function could be 

defined by the reciprocal of the objective function (Kim and Kim, 1996). However, by this 

definition the best solution likely has an extremely good fitness value among solutions 

obtained where there is no significant difference between them in the objective function 

value. As this chromosome is always selected as a parent, it is difficult to maintain the 

variety of chromosome by crossover. Other alternatives of the fitness function are the 

exponential and sigmoid functions. As a result of some tests we conducted with these 

functions, the sigmoid function as defined in (15) was found to be better where )(xy  

denotes the objective function value: 

 

 f x y x( ) / ( exp( ( ) / )),= +1 1 10000  (15) 

 

Note that f x( )  has a value ranging from 0 to 0.5. 

 

 

6. NUMERICAL EXPERIMENTS 

 

The solution procedure is coded in “C” language on a Sun SPARC-64G 

workstation. Problems used in the experiments were generated randomly, but systematically. 

We developed four basic problems in which 25, 50, 75, and 150 calling ships are served 

with various handling volumes at an MUT with five berths. Two data sets of ship sizes 

(actually container handling volume at the terminal being considered) were prepared for 

each of the four arriving ship sets. In one data set (Ship data A), the ship sizes range from 50 

to 1000 TEUs based on a uniform distribution pattern. The other set (Ship data B) contains 

two groups of ships: one contains small feeder ships with the volume around 100 TEUs and 

the other large mother vessels of around 800 TEUs. The total handling volumes of ships in 

both data sets are given in Table 1. Those ship handling times are given as follows. As 

mentioned in Section 3, the handling time is dependent on the berth; therefore each ship has 

its own minimum handling time at a particular berth and longer times at the others. The 

minimum handling time is calculated by the handling volume multiplied by the average 

handling time per one container observed in the Port of Kobe. The handling times at the 
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other berths are generated by random numbers. The association of the minimum time with 

the berth is also made randomly. Four different ship arrival patterns are generated by an 

exponential distribution with random numbers. After all, 32 cases are calculated for the 

experiments. 

 

---------------------------- 

Table 1 

---------------------------- 

 

The planning horizon that services 25 ships is six days and each of the 

above-mentioned problem samples is computed with various sizes of SUBs with time spans 

of one, two, three and six days. The weight jα  is set to the following five different but 

systematic values: 1 (U), the container volume (CV), squared value of CV (CVS), the 

reciprocal of the container volume (RCV), and the reciprocal of the container volume 

squared (RCVS). CVS and RCVS are expected to give high priorities to bigger and smaller 

ships in solutions, respectively. 

First we roughly show how jα  differentiates the ship priority. The objective 

function of the problem is the total service time weighted by jα . Thus, different service 

times for each ship are expected with different values of jα . As mentioned before, the 

service time comprises the handling and waiting times and represents the priority that is 

implicitly given by the terminal operator. However, though the handling time may differ 

based on the berth in which the ship is serviced, the differential magnitude among berths 

should not be significant. Therefore, in addition to the service time, the waiting time a ship 

spends and how often a ship is overtaken or passed by others (representing a relatively low 

level of treatment in an allocation scheduling) could help evaluate the priority. 

Figs. 6 and 7 illustrate the average value of the service time, waiting time, and the 

number of passings of a ship over problems with four ship arrival patterns. The 

computational result is so huge that Fig. 6 shows the results only for the 50 and 150 ship 

problems using ship data A, whilst Fig. 7 represents those for ship data B. A graph for a 

computation with a specific SUB time span shows average values per ship with various jα  

for two different ship groups (i.e., one for ships of under 500 TEUs and the other for those 

of over 500 TEUs) and for all the ships involved. 

 

---------------------------- 

Figs. 6 & 7 
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---------------------------- 

 

As expected, for both ship data sets A and B ships with bigger volume (hereafter 

referred to as big ships) have shorter service times or are treated with higher priority with 

CVS and CV parameters than with RCV and RCVS. In contrast, small ships have longer 

service times with CVS and CV. However these trends are not significant with short time 

spans. This result occurs because in these cases the berths are not so congested (in other 

words, the ships do not come very often) and every ship is serviced without long delay. This 

insight is confirmed by the considerably small waiting times in these cases. 

As small ships have smaller volume than bigger ships, the average service time is 

expected to be longer for the big ships than for the small ones. However, except for cases of 

one through three SUB time spans in both ship data sets, the big ships have shorter service 

times than the small ships with the parameter CVS. This implies that CVS works well in 

providing very high priorities to the big ships. The fluctuation of the service time by varying 

jα  is typical in the cases of big SUB time span. There is no significant fluctuation of the 

average service time of all the ships over cases with different time spans. 

The trends of the waiting time and the number of passings resemble that of the 

service time. Nevertheless, the fluctuations of the average values of the waiting time and the 

number of passings among all the ships over the computations with different time spans are 

more significant than the service time, and these values increase with larger time spans. It is 

notable that the average service time of all the ships is minimized with jα =1, that is the 

case without any restriction in service priority. This is normal since the results are evaluated 

based on the total service time (actually average service time) but are not weighted. It is also 

interesting that in most cases, the waiting time and the number of passings are also 

minimized with jα =1. 

The computational results of the two ship data sets are not significantly different. 

The service time of the data A is, however, a bit higher that that of data B because the total 

volume of data A is bigger than B. This observation is significant for the cases of six day 

time span. 

As far as the average service time over the four different ship arrival patterns is 

concerned, the priority is closely related to jα . However, this is not always the case. For 

instance, Fig. 8 shows an insignificant relationship between the total service time and jα  

for a computational result of one arrival pattern out of the four using ship data B. Bigger 

problems, i.e., the 75- and 150-ship problems reveal significance in differentiated service 

times, while smaller ones represent less diversity, especially for ships of less than 500 TEUs. 
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This trend is seen in the analysis with the average value in Fig. 7. However, as seen in Fig. 8 

individual computational cases have some irregularity with respect to the weight such as the 

25-ship problem with the span of four days and the 75-ship problem with the three day span. 

 

---------------------------- 

Fig. 8 

---------------------------- 

 

 

7. CONCLUSIONS 

 

In this study, we examined how the service priority can be incorporated into the 

BAP. The existing dynamic berth allocation formulation was extended in order to take the 

service priority into account in the objective function. The resulting formulation became 

non-linear and was difficult to solve. First we discussed how the problem was reduced to a 

Lagrangian relaxation problem in order to look into the availability of the subgradient 

optimization. Although the subgradient method was adaptable to this problem, enormous 

computational effort was expected because the relaxed problem was a quadratic assignment 

problem which was NP-hard. Therefore, we eventually employed a GA based heuristic 

algorithm, which is widely utilized for complicated combinatorial problems. A number of 

numerical experiments were conducted, showing that the service priority varied in 

accordance with different values of weight jα . Finally it became apparent that jα  

performed as an index that can be used to differentiate ship priority of handling in a decision 

making process for the berth allocation. Berth allocation that takes into account priority 

consideration is of high importance to port operators who function in a setting of intense 

competition as it allows them be more flexible in their decision making and it provides them 

with a range of alternatives to consider for servicing their clients. 

 

REFERENCES 

 

Ahuja, R.K., Orlin, J.B., Tiwri, A., 2000. A greedy genetic algorithm for the quadratic  

 assignment problem. Computers and Operations Research 27, 917-934. 

Angel, E., Zissimopoulos, V. 1998. On the quality of local search for the quadratic  

 assignment problem. Discrete Applied Mathematics 82, 15-25. 

Anstreicher, K.M., 2000. Eigenvalue bounds versus semidefinite relaxations for the  



 20 

 quadratic assignment problem. SIAM Journal on Optimization 11, 254-265. 

Anstreicher, K.M., Brixius, N.W., 2001. A new bound for the quadratic assignment problem  

 based on convex quadratic programming. Mathematical Programming, Series A 89, 

 341-357. 

Arkin, E.M., Hassin, R., Sviridenko, M., 2001. Approximating the maximum quadratic  

 assignment problem. Information Processing Letters 77, 13-16. 

Ball, M.O., Kaku, B.K., Vakhutinsky, A., 1998. Network-based formulations of the  

 quadratic assignment problem. European Journal of Operational Research 104,  

 241-249. 

Brown, G.G., Lawphongpanich, S., Thurman, K.P., 1994. Optimizing ship berthing. Naval  

 Research Logistics 41, 1-15. 

Brown, G.G., Cormican, K.J., Lawphongpanich, S., 1997. Optimizing submarine berthing  

 with a persistence incentive. Naval Research Logistics 44, 301-318. 

Clausen, J., Perregaard, M., 1997. Solving large quadratic assignment problems in parallel.  

 Computational Optimization and Applications 8, 111-127. 

Hahn, P., Grant, T., Hall, N. 1998. A branch-and-bound algorithm for the quadratic  

 assignment problem based on the Hungarian method. European Journal of Operational  

 Research 108, 629-640. 

Imai, A., Nagaiwa, K., Chan, W.T., 1997. Efficient planning of berth allocation for container  

 terminals in Asia. Journal of Advanced Transportation 31, 75-94. 

Imai, A., Nishimura E., Papadimitriou, S., 2001. The dynamic berth allocation for a  

 container port. Transportation Research Part B 35, 401-417. 

Ishii, S., Sato, M., 1998. Constrained neural approaches to quadratic assignment problems.  

 Neural Networks 11, 1073-1082. 

Karisch, S.E., Cela, E., Clausen, J., Espersen, T., 1999. A dual framework for lower bounds  

 of the quadratic assignment problem based on linearization. Computing 63, 351-403. 

Kim, J.U., Kim, Y.D., 1996. Simulated annealing and genetic algorithms for scheduling  

 products with multi-level product structure. Computers and Operations Research 23,  

 857-868. 

Lai, K.K., Shih, K., 1992. A study of container berth allocation. Journal of Advanced 

 Transportation 26, 45-60. 

Li, C.-L., Cai, X., Lee, C.-Y., 1998. Scheduling with multiple-job-on-one-processor pattern.  

 IIE Transactions 30, 433-445. 

Liu, C.L., Layland, J.W., 1973. Scheduling algorithms for multiprogramming in a hard–  

 real-time environment. Journal of ACM 20, 46-61. 



 21 

Lim, A., 1998. The berth scheduling problem. Operations Research Letters 22, 105-110. 

Lim, M.H., Yuan, Y., Omatu, S., 2000. Efficient genetic algorithms using simple genes  

 exchange local search policy for the quadratic assignment problem. Computational  

 Optimization and Applications 15, 249-268. 

Nishimura, E., Imai, A., Papadimitriou, S., 2001. Berth allocation planning in the public  

 berth system by genetic algorithms. European Journal of Operational Research 131,  

 282-292. 

Pardalos, P.M., Pitsoulis, L.S., Resende, M.G.C., 1997a. Algorithm 769: Fortran subroutines  

 for approximate solution of sparse quadratic assignment problems using GRASP.  

 ACM Transactions on Mathematical Software 23, 196-208. 

Pardalos, P.M., Ramakrishnan, K.G., Resende, M.G.C., Li, Y., 1997b. Implementation of a  

 variance reduction-based lower bound in a branch-and-bound algorithm for the  

 quadratic assignment problem. SIAM Journal on Optimization 7, 280-294. 

Resende, M.G.C., Pardalos, P.M., Li, Y., 1996. Algorithm 754: Fortran subroutines for  

 approximate solution of dense quadratic assignment problems using GRASP. ACM  

 Transactions on Mathematical Software 22, 104-118. 

Sergeev, S.I., 1999a. The quadratic assignment problem: I. New lower bounds in paired  

 assignment. Automation and Remote Control 60, 1162-1178. 

Sergeev, S.I., 1999b. The quadratic assignment problem: II. Refined Gilmore-Lawler  

 algorithm. Automation and Remote Control 60, 1326-1331. 

Sha, L, Rajkumar, R, Lehoczky, J.P., 1990. Priority inheritance protocol: An approach to  

 real-time synchronization. IEEE Transactions on Computers 39, 1175-1185. 

Xu, J., Parnas, D.L., 2000. Priority scheduling versus pre-run-time scheduling. global  

 Journal of Time-Critical Computing Syste0s 18, 7-23. 



 22 

 Table 1. Total handling volume of ships 

 

 

 # of ships 25 50 75 150 

 Ship data A 12593 27422 42509 83985 

 Ship data B 13101 25225 37588 73521 
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Fig. 1. Berth allocation 
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Fig. 2. Dynamic allocation to berth i 
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Berth B 

Berth C
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Subproblem 1  Subproblem 2 
 

Arrival Ship 1 Ship 2 Ship 3 Ship 4  Ship 5  Ship 6  Ship 7 Ship 8 

 

Berthing Berth 1    Ship 2   Ship 1  Ship 6 

 Berth 2  Ship 3    Ship 7 

 Berth 3      Ship 4   Ship 5      Ship 8 

 

 
 

Fig. 3. Berth Schedule 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. GA procedure 
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Figure 2  GA flowchart
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GENE: SHIP # 1-9, 0(ZERO) 

(CELL #) 1 2 3 4 5 6 7 8 9 10 

CHROMOSOME 2 8 5 9 0 4 7 3 1 6 

BERTH # 1 1 1 1  2 2 2 2 2 

ORDER OF SERVICE 1 2 3 4  1 2 3 4 5 

 

   BOUNDARY OF BERTHS 

 

Fig. 5. Chromosome representation 
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Fig. 6.(i) Results for 50-ship problem with ship data A 
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Fig. 6.(ii) Results for 150-ship problem with ship data A 
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Fig. 7.(i) Results for 50-ship problem with ship data B 
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Figure 7-(ii). Results for 150-ship problem with ship data B 
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Fig. 8. Service time with ship data B 


