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Dynamical scaling law in the development of drift wave turbulence

Takeshi Watanabe and Hirokazu Fujisaka
Department of Physics, Kyushu University 33, Fukuoka 812-81, Japan

Takahiro Iwayama
Department of Control Engineering and Science, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology,

Iizuka 820, Japan
~Received 8 August 1996!

The Charney-Hasegawa-Mima equation, with random forcing at the narrow band wave-number region,
which is set to be slightly larger than the characteristic wave numberl, evaluating the inverse ion Larmor
radius in plasma, is numerically studied. It is shown that the Fourier spectrum of the potential
vorticity fluctuation in the development of turbulence with an initial condition of quiescent state obeys
a dynamic scaling law fork!l. The dimensional analysis with the assumption that the energy transfer rate
e in the inverse cascade is constant with time leads to the scaling formS(k,t)
5l1/2e5/4t7/4F„k/ k̄(t)…@ k̄(t);l3/4e21/8t23/8# with a scaling functionF(x), which turns out to be in good
agreement with numerical experiments.@S1063-651X~97!08205-6#

PACS number~s!: 47.27.Eq, 52.35.Ra

I. INTRODUCTION

The large scale dynamics of the atmosphere and oceans
on the earth or the magnetofluid under the uniform, strong
magnetic field are described approximately by the two-
dimensional fluid dynamics. The two-dimensional~2D! tur-
bulence has been extensively studied theoretically and nu-
merically since 1960s, and the special properties different
from the three-dimensional~3D! turbulence have been clari-
fied. In particular, it is shown that in comparison with the
energy cascade theory of the 3D isotropic homogeneous tur-
bulence by Kolmogorov@1#, the 2D turbulence generally has
two quadratic invariants~the energy and the enstrophy!,
which makes the existence of the dual cascades possible, i.e,
the energy is transported to the small wave-number side~in-
verse cascade! and the enstrophy is transported to the large
wave-number side~direct cascade!. This fact yields two
types of energy spectra,E(k);k25/3 in the inverse cascade
region andE(k);k23 in the direct cascade region@2–4#. As
a result the energy is concentrated in large scale eddies in the
physical space in the course of time and the self-organization
of large scale structure of vortices is observed. These are the
important characteristics of the 2D turbulence.

Moreover, direct numerical simulations of the turbulence
have been extensively carried out in 1980s and the structure
of the physical space in the turbulent field have been attract-
ing researcher’s attention. Particularly in the 2D decaying
Navier-Stokes~NS! turbulence@5–7#, it was proved that the
coherent vortices self-organize and stably exist for a long
time. In addition these coherent vortices dominate the dy-
namics of this system, in which vortices with the same sign
coagulate each other into larger ones. This dynamical pro-
cess is closely connected with the energy transfer in the
wave-number space.

Recently one of the 2D turbulent systems, the Charney-
Hasegawa-Mima~CHM! equation, is studied theoretically
@8# and numerically@9,10#. This equation approximately de-
scribes the dynamics of the electrostatic field on the plane

perpendicular to the strong magnetic field uniformly applied
to plasma@11#. Furthermore, the time evolution of the flow
in the geostrophic equilibrium in the planetary atmosphere,
which is called the quasigeostrophic potential vorticity equa-
tion, is also described by this equation@12#. The CHM equa-
tion is written as

]

]t
~¹2f2l2f!1J~f,¹2f!50, ~1!

where¹5(]/]x,]/]y), J(a,b)5axby2aybx . Heref(r ,t)
denotes the electrostatic potential in plasma or the geo-
strophic stream function at the positionr5(x,y), andl is
the characteristic wave number representing the ratio of the
system size to the ion Larmor radius or the Rossby radius. In
the limit of l→0, Eq.~1! is reduced to the 2D NS equation.
The existence of nonvanishingl separates Eq.~1! from the
2D NS equation. Equation~1! can be rewritten by operating
(l22¹2)21 as

]f~r ,t !

]t
5E D~r2r 8!J„f~r 8,t !,¹ r8

2 f~r 8,t !…dr 8, ~2!

D~r2r 8!5
1

~2p!2
E eik•~r2r8!

l21uku2
dk5

1

2p
K0~lur2r 8u!,

~3!

whereK0(z) is the modified Bessel function of the second
kind. Equation~3! stands for the interaction kernel inf field
and l21 represents its interaction range. The interaction
range is infinite in the limit ofl→0, while in the limit of
l→` the interaction becomes local,D(r2r 8)
5l22d(r2r 8). In this system, several works have been car-
ried out for the freely decaying turbulence@9# and the forced
turbulence@8,10#. It is found that Eq.~1! has the same char-
acteristics as the NS equation for a large wave-number re-
gion k@l and the statistical law specific of the CHM equa-
tion for k!l. Furthermore, the shell model of the CHM
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equation is proposed and studies from the viewpoint of the
dynamical systems theory@13# start to be carried out.

The fundamental aim of the present paper is to investigate
the formation process of the large scale turbulent fluctuation
maintained by the inverse cascade of the energy randomly
injected at the narrow band region located at the wave num-
berkf (.l). Especially we aim to study the statistical char-
acteristics of the vortical quasicrystal structure in the case of
k!l observing the development of the turbulent fluctuation
@10#.

The paper is organized as follows. In Sec. II we briefly
review the scaling law of the energy spectrum in the CHM
equation. In Sec. III we present the results of the numerical
simulation of the CHM equation with the random forcing at
the narrow band wave-number region. Then we derive the
scaling law of the structure function of the potential vorticity
field in connection with the numerical results. In Sec. IV we
briefly discuss the possibility of the intermittency effect on
the scaling law and summarize our results.

II. SCALING LAW OF THE ENERGY SPECTRUM
IN THE CHM EQUATION

Equation~1! contains two fundamental conserved quanti-
ties, the total energyE and the total enstrophyU as

E5
1

L2E @~¹f!21l2f2#dr5(
k

~k21l2!ufku2, ~4!

U5
1

L2E @~¹2f!21l2~¹f!2#dr5(
k
k2~k21l2!ufku2,

~5!

where fk denotes the Fourier component given via
f(r ,t)5(kfke

ik•r. The shape of the energy spectrum is
formed by the dual cascades of these two conserved quanti-
ties; one can obtain the scaling law of the energy spectrum
by using the Kolmogorov-type dimensional analysis@8,9#.

The equation of motion forfk(t) is written by

dfk

dt
52

1

l21uku2(k8
~k3k8!zuk2k8u2fk8fk2k8 . ~6!

The dimensional analysis yields

fk;l2k24t21f ~k/l!, ~7!

e;l6k28tE
23 f̃ ~k/l!, h;l6k26tU

23 f̃ ~k/l!, ~8!

where the energy transfer ratee (;E/t) and the enstrophy
transfer rateh (;U/t) are assumed to be constant with time,
respectively, in the energy cascade region and in the enstro-
phy cascade region. The timestE andtU , respectively, rep-
resent the energy transfer time scale~eddy turnover time!
and the enstrophy transfer time scale. Moreover,f (x) and
f̃ (x) „[(11x2)@ f (x)#2… are dimensionless functions,f (x)
being finite forx!1 and f (x)5x2 for x@1. From Eq.~8!,
tE andtU are evaluated as

tE;l2e21/3k28/3g~k/l!, tU;l2h21/3k22g~k/l!,
~9!

whereg(x)5@ f̃ (x)#1/3. Let kf be the wave number around
which the energy is injected. Fork,kf , the process is domi-
nated by the energy transfer, while fork.kf the enstrophy
cascade is dominated. The energy spectrumE(k) defined via
E5*0

`E(k)dk5(k(k
21l2)ufku2 is, therefore, supposed to

be

E~k!;l2e2/3k211/3g~k/l! ~k,kf !, ~10a!

E~k!;l2h2/3k25g~k/l! ~k.kf !. ~10b!

In order to determine the asymptotic forms of the above sta-
tistical quantities, we consider the following two cases:

l!kf , kf!l. ~11!

It is easy to see that when we consider the casek!l in Eq.
~6!, thel dependence in the CHM equation is incorporated
into the time by puttingt→t/l2. So thel dependence of the
dynamics does not appear explicitly. Thek region under con-
sideration is temporally steady and the energy spectrum has
no time dependence. Therefore, the intensity offk is inde-
pendent ofl, andE(k) in Eqs. ~10a! and ~10b! is propor-
tional to l2. The prefactorl2 in E(k) comes from the sec-
ond term in Eq.~4!. Consequently, the scaling function
g(x) should be finite forx→0. On the other hand, for
k@l, the CHM equation has the characteristics of the NS
equation, and therefore statistical quantities are independent
of l, which is compatible with the asymptotic form
g(x)5x2 (x@1). This givestE,U andE(k) quite different
from those fork!l. These results are summarized in Table
I.

III. NUMERICAL SIMULATION AND SCALING LAW
OF THE STRUCTURE FUNCTION

To investigate the formation process of the turbulent field,
we consider the random injection of energy and take the
dissipation into account. The CHM equation with a damping
term and a forcing term is represented by the Fourier com-
ponent off as

TABLE I. The asymptotic forms of characteristic time scales
tE,U and the energy spectrumE(k) for different k regions. The
upper~lower! part corresponds tol!kf (kf!l), kf being the en-
ergy injection wave number. The energy spectrum fork!kf
(k@kf) is determined by the energy~enstrophy! cascade process.

l!kf
k!l l!k!kf kf!k

tE l2e21/3k28/3 e21/3k22/3

tU l2h21/3k22 h21/3

E(k) l2e2/3k211/3 e2/3k25/3 h2/3k23

l@kf
k!kf kf!k!l l!k

tE l2e21/3k28/3 e21/3k22/3

tU l2h21/3k22 h21/3

E(k) l2e2/3k211/3 l2h2/3k25 h2/3k23
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dfk

dt
5

1

l21uku2 F2(
k8

~k3k8!zuk2k8u2fk8fk2k8

1n~ uku2!p~2uku2fk!1Fe~k,t !G . ~12!

Here we put the hyperviscosityp52 andn53.031028. The
system size is fixed asL52p, the parameter is put as
l550. Moreover,Fe(k,t) represents the forcing term in the
wave-number space applied to the narrow shell of
51<kf<54, and thereforel,kf . We consider the form of
Fe(k,t) as Fe(k,t)5 i „k3f(k,t)…z , where the real and
imaginary parts of components off(k,t) are chosen to be
normal random numbers with the mean value 0 and the vari-
anceA0.5. The initial condition is chosen such thatfk'0
which is a random value with small intensity compared with
the forcing term and the pseudospectral method@14# is used
by dividing the physical space into 2563256 points under
the periodic boundary condition. The numerical integration
is carried out by using the Runge-Kutta method of the fourth
order with the time incrementDt52.531023. We observe
the evolution of the potential vorticity j(r ,t)
5(¹22l2)f(r ,t).

In the process of time evolution, the energy is located in
the narrow region aroundkf just after the switch on of the
forcing, and it is transported to the small wave-number side
~the inverse cascade! as well as to the large wave-number
region ~the direct cascade!. The developing process of the
turbulent fluctuation is divided into two time regions. In the
process of the energy injection the energy spectrum has a
single peak structure and its peak position moves to the small
wave-number region. If we define the timetl when the peak
arrives atl, the coherent vortices being a characteristic of
the NS equation are formed duringt,tl . The spatial distri-
bution of vortices is at random fort,tl , while they form the
quasicrystal structure fort.tl and the time evolution be-
comes slow in accordance with that the transport of the en-
ergy to the small wave-number side also becomes slow. We
define the position of a peak of the energy spectrum at time
t askm(t), which moves to the small wave-number side. In
the time regionl!km(t),kf the system dynamics is similar
to the NS equation. Thenkm(t) is evaluated as
km(t);e21/2t23/2, provided that we carry out the discussion
similar to Eqs. ~6!–~9! for l→0. The time defined by
l;km(tl),

tl;e21/3l22/3, ~13!

represents the characteristic time transferring from the be-
havior of the NS turbulence to the special behavior of the
CHM turbulence.

The time evolution of the potential vorticity field is shown
in Fig. 1. The figure shows that the peak of the energy local-
ized atkf in the first time stage moves to the small wave-
number side with the increase of the width. This process
corresponds to the formation of coherent vortices and the
increment of the characteristic length of the system due to
the coagulation of vortices. Heretl is the time when the peak
of the energy spectrum reachesl. The structure similar to
the quasicrystal of the potential vorticity field reported in
@10# is observed att.tl . The time evolution of the energy

FIG. 1. Snapshots of the potential vorticity fieldj5¹2f
2l2f at ~a! t52, ~b! 20, ~c! 40, ~d! 60, ~e! 100, ~f! 200. White
~black! region indicatesj.0 (,0).

FIG. 2. The time evolution of the energy spectrumE(k,t).
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spectrum is shown in Fig. 2, which confirms thek211/3 law in
the energy inverse cascade region.

To investigate how the typical distance among neighbor-
ing vortices with the same sign, the characteristic spatial
scale of the system, evolves with time, we observe the struc-
ture functionS(k,t) of j(r ,t) in each time as

S~k,t !5 K U E j~r ,t !e2 ik•rdrU2L , ~14!

where^•••& denotes the average taken over the orientation
of k. S(k,t) is characterized by the peak heightSmax(t) and
the characteristic wave-number defined as

k̄~ t !5

(
k50

l

kS~k,t !

(
k50

l

S~k,t !

. ~15!

By noting thatS(k,t) has a single peak, the peak position is
well approximated byk̄(t). k̄(t) andSmax(t) are plotted as
the function of timet in Fig. 3, which asymptotically take
the power-law forms

k̄~ t !;t2a, Smax~ t !;tb, ~16!

wherea.0.37 andb.1.8. If k̄(t) is regarded as the peak
position ofS(k,t), 2p/ k̄(t) evaluates the lattice constant of
the quasicrystal structure which is observed fort@tl .

We can estimate the exponentsa andb from the afore-
mentioned Kolmogorov-type dimensional analysis by corre-
sponding the self-organization process of this quasicrystal to
the energy inverse cascade process in the Fourier space. We
evaluated the eddy turnover timetE @Eq. ~9!# from the di-
mensional analysis for the energy transfer rate. This time
scale can be regarded as the life time of the eddy with the
wave numberk. On the other hand, the characteristic wave
numberkt of the eddy which disappears at a timet after the
start of the injection of the energy is given as
e;l6kt

28t23. From this, we can evaluate the time depen-
dence ofkt as

kt;l3/4e21/8t23/8. ~17!

On the other hand, to obtain the asymptote ofSmax(t), we
use the relation between the energy spectrumE(k) and the
structure functionS(k,t),

E~k,t !5
kS~k,t !

k21l2 ~18!

and Eq.~10a! in the case ofk!l. This combination of Eqs.
~10a! and ~18! immediately leads to

S~k,t !;l4e2/3k214/3. ~19!

This asymptotic form is valid fork̄(t),k!l. The fluctua-
tion in the regionk̄(t),k!l is steady because the shape of
the structure function in this region does not depend on the
time @15#.

Now, if we suppose thatkt; k̄(t) andSmax(t) is replaced
by S@ k̄(t)#, the insertion of Eq.~17! into Eq. ~19! yields

Smax~ t !;l1/2e5/4t7/4. ~20!

Thus one findsa53/8 andb57/4, which turn out to be in
good agreement with the numerical result~Fig. 3!. Further-
more, one should note that the evaluation oftl @Eq. ~13!# is
also obtained from Eq.~17! by puttingl; k̄(tl). In order to
investigate the temporal evolution ofS(k,t), we plot
S(k,t)/Smax(t) vs k/ k̄(t) for different times in Fig. 4. The
figure clearly indicates the existence of the dynamical scal-
ing law as

S~k,t !

Smax~ t !
5F„k/ k̄~ t !…, ~21!

FIG. 3. The time evolution of the characteristic wave number~a!
k̄(t) and ~b! the peak heightSmax(t) of the structure function
S(k,t). The slopes23/8 and 7/4 are the theoretical values with
u50 and20.36 and 1.6 denote the values in the caseu'0.1,
respectively.
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whereF(x) is a scaling function@16#. From Fig. 4, the scal-
ing function asymptotically takes the forms

F~x!;x2g ~x.1!, F~x!;xd ~x,1!. ~22!

The exponentg514/3 determined from Eq.~19! agrees with
the observation in Fig. 4. Sinced is not related to the energy
inverse cascade, we have no theory concerning with the de-
termination of d. Numerical study showsd;3, which is
consistent with the result of the energy spectrum of freely
decaying turbulence in the low wave-number region in@9#,
i.e.,E(k);k4.

Finally, let us estimate the Reynolds number Re. In the
casep52, the Reynolds number is evaluated by the rate of
the nonlinear term and the dissipation term in Eq.~12! as

Re;
l21AEl2

n
;t5/4. ~23!

Here we usedf;l21AE;t1/2 ~see later! and the character-
istic lengthl52p/ k̄(t);t3/8. Therefore, the Reynolds num-
ber monotonously increase with time. Att5200, we get
Re;104 from Figs. 3 and 5.

IV. DISCUSSION

Until now, we have studied the time evolution of the char-
acteristic spatial scale in the turbulent field from the scaling
viewpoint. The scaling law is based on the Kolmogorov-type
dimensional analysis with the assumption that the energy
transfer ratee is temporally and spatially constant in the
energy inverse cascade region. Numerical experiment shows
that this is a quite good assumption. Figure 5 shows the time
evolution of the energyE per a unit area. If the energy is
transfered to the small wave-number side in a constant rate,
the energyE is proportional to time (E}t) because the dis-
sipation is negligible in this region. However Fig. 5 shows
the asymptotic formE}t12u with a nonvanishingu in a
sufficient time. The excess exponentu is due to the fluctua-

tion of the energy transfer rate. The energy injected atkf is
not only transported to the small wave-number side, but also
a portion of the energy is transported to the large wave-
number region where it is dissipated. Therefore, if the tem-
poral change of the amount of the energy transported to the
small wave-number region is random, the fluctuation of the
energy transfer rate is observed. It is widely believed that the
fluctuation of the energy transfer rate in the 3D turbulence is
related to the intermittency of small scale dynamics, con-
sisted of high-vorticity regions and rather low-vorticity
~regular! regions in the space@17,18#. In this sense the origin
of the fluctuation of the energy transfer rate in the 2D turbu-
lence is different from that in the 3D turbulence.

Without going into the statistical law of the fluctuation of
e, we take into consideration the effect of the intermittency
phenomenologically by puttinge;t2u. The substitution of
this into Eqs.~17! and ~20! immediately leads to the modi-
fication

k̄~ t !;l3/4t2~32u!/8, Smax~ t !;l1/2t ~725u!/4. ~24!

Although the excess exponentu must be in principle calcu-
lated from the CHM equation, if we estimateu'0.1 from
Fig. 5, one getsk̄(t);t20.36 and Smax(t);t1.6. Numerical
results seem to be compatible with this analysis~Fig. 3!.

In the present paper we have investigated the statistical
characteristics in the developing process of the turbulent
field described by the CHM equation with the random forc-
ing at the narrow band wave-number region. Consequently,
we found out the dynamical scaling law asS(k,t)
5l1/2e5/4t7/4F„k/ k̄(t)…, @ k̄(t);l3/4e21/8t23/8#, using the
Kolmogorov-type dimensional analysis, which turned out to
be in good agreement with the numerical simulation pro-
vided that the energy transfer rate is constant in time. More-
over, we have discussed the revision of the scaling exponents
by taking account of the effect of an intermittency as consid-
ering the time dependency of the energy transfer rate

FIG. 4. Scaling plots ofS(k,t)/Smax(t) vs k/ k̄(t) at t540, 80,
120, 160, 200.

FIG. 5. The time evolution of the energyE per a unit area at
t50–200.
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e;t2u. In this connection, we attempt to consider in the case
of freely decaying turbulence of the CHM equation. In this
case, the energy is almost constant in a long time region. So,
if we put u51, Eq. ~24! yields k̄(t);t21/4, Smax(t);t1/2.
Here k̄(t);t21/4 has been already derived, e.g., in@9# by
using the similarity of the energy spectrum and our other
simulation of this case seems to support above results. But
the difference between the statistics of the forced turbulence

and the decaying one is quite large, and we must deal with
this scaling law more carefully.
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