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ABSTRACT 

This paper reports a numerical investigation the effect of inclination angle of the vertical face of a 
backward-facing step on the heat transfer performance utilizing Nanofluid for laminar flow. Al2O3 is 
the nanoparticle used in this investigation, and water is the base fluid. The finite volume technique is 
used to solve the momentum and energy equation in 2D backward facing step geometry with an 
expansion ration of 1.5. The effect of Re on Nu is investigated for the Reynolds numbers 40, 100 and 
150 and for different volume fractions of the nanoparticles of 2%, 4% and 6% for all simulations.                                                                                                         
Nusselt number distribution at the bottom wall is computed.  Pressure losses also reported for 
different Reynolds numbers and entropy is studied for a range of Reynolds numbers and for different 
volume fractions of Nanofluid. The results are validated with available literature. Four angles of 
inclination of the vertical step is investigated 90o,97.5o,105o and 115o.  The effect of the inclination 
angle on the heat transfer showed that the heat transfer was enhanced with a decrease in the 
inclination angle. 
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INTRODUCTION 

Separations in flows due to the adverse pressure gradient can be encountered in many industrial applications 
such as electronic cooling, passage of turbine blades, combustors, and many heat exchangers. Backward facing 
step is one of the basic configurations where flow separation takes place. The separation and reattachment of the 
flow play a vital role in determining the flow structure and affect the heat transfer performance. A significant 
amount of high fluid energy occurs in the reattachment region of these devices. There are several ways to 
enhance heat transfer, one of which is to employ nanofluids. Nanofluids are formed by dispersing nanoparticle in 
a base fluid; the base fluid could be water, ethylene glycol or oil. The application of nanofluids in many 
industrial application are investigated by many researchers since the first research by  (Choi and Eastman, 1995). 
There were many studies focused on the flow separation and reattachment in the past decades, and the BFS 
geometry received much attention. (Armaly et al., 1983) conducted an experimental work on backward facing 
step to investigate the reattachment length. (Biswas et al., 2004) investigated Laminar backward-facing step flow 
for a wide range of Reynolds numbers and expansion ratios in two and three-dimensional simulations. The 
finding was that this primary recirculation length increases non linearly with increasing expansion ratio.  (Abu-
Nada, 2006) presented a numerical study of entropy generation over a 2D backward facing step with various 
expansion ratios and  the results showed that total entropy generation increases with the increase in Reynolds 
number.. (Mohammed et al., 2011) studied the effect of Nanofluids on heat transfer performance in Backward 
facing step and found that there is a primary recirculation region for all nanofluids behind the step and the skin 
friction coefficient is sensitive to the recirculation flows.  (Pour and Nassab, 2012) has numerically studied  the 
convective flow of nanofluids with different  volume fractions over a BFS under bleeding condition. They found 
that the recirculation zones and the reattachment length increase as bleed coefficient increases. (Togun et al., 
2014) investigated numerically the effect of volume fraction on the heat transfer rate using nanofluid, the results 
showed that the recirculation flow as created by the backward-facing step enhanced heat transfer.  (Erturk, 2008) 
presented a comprehensive numerical work of the 2-D steady incompressible backward-facing step flow, the 
results showed that, for the backward-facing step flow an inlet channel that is at least five step heights long is 
required for accuracy, he also found that the size of the recirculating regions grows almost linearly as the 
Reynolds number increases. (Lan et al., 2009) reported the effect of aspect ratio and the Re number on the flow 
and the heat transfer performance and showed that the effect of Re on the flow reattachment is minimal in the 
range of the parameters. (Mohammed et al., 2015) carried out Numerical simulation of laminar and turbulent 
mixed convection heat transfers of nanofluid flow over backward facing step placed in a horizontal duct having 
baffle. They reported that Nusselt number and velocity distribution increased gradually by increasing the 
Reynolds number of laminar and turbulent flows. (Kherbeet et al., 2014a) and (Kherbeet et al., 2014b)  studied 
numerically and experimentally the heat transfer characteristic of nanofluid laminar flow over the microscale 
backward facing step. They also carried out a simulation of three dimensional laminar mixed convection to study 
the effect of step height on the flow and heat transfer characteristics. They found that the Nusselt number 
increase with increases volume fraction. Water–SiO2 nanofluid showed a higher enhancement of the average 
Nusselt number in comparing to the pure water and water– Al2O3 nanofluid. The finding was also revealed that 
the increasing of the step height increases the reattachment length and thus Nusselt number, the size of the 
sidewall reverse flow region. (Chen et al., 2006) presented simulations of three-dimensional laminar forced 
convection adjacent to inclined backward-facing step in rectangular duct, the finding was that the friction 
coefficient inside the primary recirculation region increases with the increase of the step inclination angle.  

The aim of the present work is to investigate the effect of the inclination of the facing step on the heat transfer 
performance in the backward facing step geometry using Al2O3/water as a working fluid and investigate the 
entropy generation. 

 

 



DESCRIPTION OF PROBLEM 

The problem geometry considered in this work is shown in Figure 1. A channel with a backward facing step with 
length L1 is considered filled with Al2O3 /water nanofluid. The fluid is assumed to be Newtonian, 
incompressible and there is no slip velocity between the particle and the base fluid.  The thermal properties of 
the nanoparticle and base fluid are presented in Table 1. The step size of backward facing step is h and channel 
height H and expansion ration (H/h) equal to 1.5 and the bottom length is L2. At the inlet of the channel, a 
velocity U and a uniform temperature (T = 300 K) are imposed. The downstream length starting from the edge of 
the step to the exit of the channel is 20H to ensure that the flow is fully developed flow. The downstream bottom 
surface of the backward facing step is maintained at T=274 K, while the other walls of the channel are assumed 
to be adiabatic, the outlet is assumed to be outlet boundary condition. These boundary conditions have been 
previously used by other authors and the present work is an extension in line with those works. L1=1300 mm, 
L2=800 mm and h=20 mm 
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Figure 1 Problem Geometry 

                              

Figure 2   Mesh  

 

                                              Figure 3 Detailed flow feature of the backward facing flow(Kostas et al.) 

 

 



                                        Table 1 Thermophysical properties of the base fluid and nanoparticle 

Physical property Base fluid ( water) Al2O3 

Heat Capacity(J/Kg K) 4179 765 

Density (Kg/m3) 997.1 3970 

Thermal conductivity (W/m K) 0.613 40 

Thermal diffusivity α x 107 (m2/s) 1.14 131.7 

 

GOVERNING EQUATIONS AND THERMOPHYSICAL PROPERTIES OF NANOFLUID 

The governing equations are continuity, momentum equation and energy equation and can be written  

as follows  

Continuity equation 
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Momentum equation 
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Energy equation 
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The thermophysical properties of the nanofluid are expressed as 

The Nanofluid density 
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The specific heat of the nanofluid 
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The effective thermal conductivity was modelled as  (Corcione, 2011) 
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Where 
fk  and 

sk  are the thermal conductivity of base fluid and particle respectively 
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bk = 231038066.1 −× J/K is the Boltzmann’s constant; 
pd  is the particle diameter; Pr is the Prandtl number for 

base fluid and expressed as: 
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frT  is the freezing temperature for the base fluid. 

 

The viscosity was modelled by (Corcione, 2011) as 
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Where dp is the nanoparticle diameter, df is the equivalent diameter of the base fluid and given by: 
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Where M is the molecular mass weight of the base fluid, N is the Avogadro number, 0fρ  is the mass density of 

the base fluid calculated at T=293 K  
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q is the heat flux 
h is the heat transfer coefficient  
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Where D is the hydraulic diameter and H is chosen as the hydraulic diameter in this calculations   

 
 



The entropy  is modelled as  (Mahian et al., 2013) 
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NUMERICAL PROCEDURE 

In the present work the conservation equation ( 1 to 3 ) are solved numerically using finite volume scheme, the 
Ansys Work bench 15 package was sued. A source code written in C language was developed to introduce the 
thermophysical properties of the nanofluids as a user defined function. The geometry was created using ANSYS 
Workbench design modeler, the mesh created using ANSYS Mesh. Explicit relaxation factor 0.75 for 
momentum and pressure, standard for pressure spatial discretization. A convergence criterion of 1X10-6 is chosen 
for continuity, x-velocity and y-velocity, refined mesh is adopted in the near wall region as shown in Figure 2.  
A grid independence test was carried out and 24x1200 grid, 36 x 1385 grid and 48x 1620 were tested. The 
average Nu for these cases was 4.89, 4.92 and 4.93. Hence the final calculations were obtained with 36X 1385. 

SIMULATION VALIDATION  

This simulation is validated by comparing the present results with experimental results from Armaly for Re=800 
and other numerical published results as shown in Table 1. The present results have good agreement with the 
other numerical results. However, most of the numerical published works, including the present work, 
underestimate the reattachment length. According to Armaly et al the flow at Re = 800 has three dimensional 
features, this features arises when using Reynolds number equal to or greater than 400. The reason for the 
underestimation of x1  (as shown in Fig. 3) and x2 which are the reattachment lengths for first and second 
circulation zones respectively  is the assumption of the two-dimensional assumption by all numerical published 
data. 

 

                    Table 2 Simulation Validation 

Authors Work Type x1 x2 

Armaly Experimental 7.2 5.3 

Vradis Numerical 6.13 4.95 

Pepper Numerical 5.88 4.75 

Abu-Nada Numerical 6.03 4.81 

Present simulation Numerical 5.94 4.79 

 

 

 

 

 



 

 

RESULTS AND DISCUSSION 

The effect of inclination angle α of the face step using nanofluid is investigated numerically and the results of 
this effect is shown in Figure 4, four angles of facing step is investigated 90o, 97.5o, 105o and 115o. The increase 
in angle of the face step was found to decrease Nu number and hence the heat transfer rate, the angle 90 was 
found 4% higher, it is clearly seen that on the bottom wall Nu number has the peak value at the reattachment of 
Nu is in the separation region where the generated recirculation flow. The flow in the separating region is 
impinged on the stepped wall and it is responsible for developing the peak values in Nusselt number. As a result 
of adding the nanoparticle to the base fluid the thermal conductivity is increased and this is the reason for the 
reduction in temperature gradient at the bottom wall, developing in thermal conductivity is accompanied by 
developing in thermal diffusivity. The surface Nu number on the bottom wall increases linearly from zero (just 
before the bottom wall) up to  a peak value which lies in the circulation zone( coincide with the point of 
reattachment), after this point the value of Nu decreases due to the temperature gradient decreases. It is clearly 
seen that the four angles 90, 97.5, 105 and 115 have identical variation of Nu umber in the bottom wall except in 
the circulation zone, where 90o angle of face step has the higher Nu number.  The reason for this is the change of 
the shear stress in this area as well as the thermal diffusivity is pronounced in the circulation zone. 

 

 

Figure 4 effect of inclination angle on the heat transfer rate  

 

 

 

 

 



The entropy is also investigated for Re number 40, 100 and 150 for α=90o and volume fraction 2%. The results 
are presented in Fig 5. As shown in equation (13) entropy is a function of thermal conductivity and viscosity, 
these two thermal properties are the most important properties among nanofluid thermal properties. Entropy 
generation determines the level of the gained irreversibilities during a thermal process. Therefore, entropy 
production can be employed as a measure to evaluate the performance of engineering devices. For proper 
optimization of engineering systems in terms for operation and design, the entropy has to be minimized as well 
as maximizing the heat transfer. It is clearly seen that the increase in Re number results in decrease in entropy, 
this change is in a good agreement with results in Figure 5 (will be discussed later) which implies that increasing 
Re number has an advantage of enhancing the heat transfer rate. Re number 150 has minimum entropy compared 
with Re 40 and 100, the minimum value of the entropy is noted in the circulation zone, the entropy decreases 
with Re number up to circulation zone and has the minimum value at 0.352 m from the corner of the geometry, 
i.e. coincides with the reattachment point. The same trend applies to 100 and 40 Re numbers, the only change is 
the point of the minimum entropy, the explanation for this is that decreasing Re number will result in decreasing 
the reattachment length which was one of the findings from  (Armaly et al., 1983) experimental work. 

 

                    Figure 5 effect Re on the entropy on the bottom wall 

 

 

 

 

 

 

 

 

 

 

 

 



The effects of the Re number on the surface Nusselt number in the bottom surface for the laminar ranges are 
depicted in Fig 6. The increase in Re number increases Nu number along the bottom surface, three Re numbers 
are investigated 40, 100 and 150, where the substantial compression of thermal boundary layer  exist (Kumar et 
al 2014)  the Nu number has a maximum value. Increasing Re number results in increasing in inertia force and 
increase in thermal conductivity and subsequently an enhancement in Nu number, Re number is also increased 
by minimizing the viscous forces, using nanofluid may result in increasing the viscosity of the fluid, the increase 
is very small compared to the develop in the thermal conductivity and hence the inertia force amplifying is the 
pronounce.  

The increase in the Re number has a peak value of Nu umber in the reattachment point and then decreases 
linearly, along the bottom wall, as the reattachment length increases with the increase in Re ( as discussed 
previously) so the Peak value of Nu number for Re= 100 lies at a point before the location of  the peak of Nu for 
Re=150 

 

 

Figure 6 Variation of Nu number for different Re number 

The effect of volume fraction on the pressure coefficient is shown in Figure 7. The results show that increasing 
the volume fraction leads to a slight penalty in the pressure coefficient, the pressure coefficient decreases linearly 
to the point in which the circulation zone exist, after which the curve increases until the flow passes the 
circulation zone and drops linearly after that the circulation, the negative sign arises due to the outflow boundary 
condition at the outlet. In order to ensure the flow is fully developed and to prevent ill-posed. This boundary 
condition is assumed far from the reattachment point where the diffusion flux for all flow variables in the outlet 
direction are zero. It is also noted that the three volume fractions 2%, 4% and 6% are almost identical trend 
before the reattachment point in which the shear stress changes, and far from the circulation zone the more 
evident the change of these volume fractions. 



 

                        Figure 7 Variation of Pressure coefficent vs vlume fraction 

The effective thermal conductivity increase of the nanofluid due to the nanoparticle dispersing is presented in 
Fig. 8. A comparison of the findings with those of the base fluid (water) is also presented, the results shows that 
the increase in the volume fraction of the nanoparticle will increase the thermal conductivity of the nanofluid. 
This increase is due to the high thermal conductivity of the nanoparticle compared to the base fluid as stated in 
Table1. This increase in thermal conductivity is the main cause of the increase in the heat transfer rate in the 
system, it is evident that the nanofluid has a higher thermal conductivity than the base fluid which is water, i.e. 
decreasing the volume fraction results in decreasing in thermal conductivity which is expressed in equation (6) 

 

                                  Figure 8 Thermal conductivity enhancement for different volume fractions 



 

 

NOMENCLATURE  

 �  Area [m2] �  Theraml conductivity [W/m2K]  ��  Nusselt number �"  Heat flux [W/m2K]  

Cp Specific heat at constant 
pressure [Kj kg-1 K-1] 

Pr Prandtl number 

µ Viscosity [kg m-1 s-1] 

α Inclination angle of facing step 

H Downstream channel height  
[m] 

ρ Density [Kg m-3] 

ɸ Volume fraction 

///S  Entropy [L K-1] �̇      Heat transfer rate [W] ��      Reynolds number �      Temperature [oK] 

h                Heat Transfer Coefficient 

L       length [m] 

α                Thermal diffusivity[k/(ρcp)] 

Subscripts ���  effictivt �  fluid 

P particle �nf  nanofluid 

H  Hot 

C       cold 

 

  

  

   

  

 



CONCLUSION 

The effect of inclination angle on the heat transfer of laminar Al2O3/water nanofluid flow over a backward-
facing step was numerically studied. Three nanofluid volume fractions 2%, 4% and 6% were considered at an 
expansion ratio 1.5 and Reynolds numbers 40,100 and 150 for the laminar regime at a uniform temperature on 
the wall. Four inclination angles were tested 90o, 97.5o, 105o and 115o. . The results showed that the increase in 
the angle decreases the heat transfer rate, 4% enhancement in angle 90o was found. 
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