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Résumé de la thèse en français 

Le design de molécules possédant une propension à l’auto-assemblage est un des domaines 

les plus fascinants et offrant le plus de challenges que cela soit en chimie supramoléculaire, 

chimie des matériaux ou encore en biologie. Parmi ces molécules, un domaine tout 

particulièrement intéressant est le design de molécules artificielles qui peuvent s’auto-assembler 

en hélices multiples, non seulement dans le but de mimer les structures et fonctions du vivant (e.g. 

ADN, protéines), d’aider à mieux comprendre certains processus biologiques,  mais aussi créer 

de nouvelles structures codants pour des fonctions originales. Ce manuscrit de thèse traite avant 

tout du développement de la recherche sur les foldamères (i.e. oligomères artificiels qui peuvent 

adopter une structure stable et compacte en solution) et notamment d’avancées effectuées sur les 

oligomères d’amides aromatiques. 
 

Le premier chapitre de ce manuscrit de thèse consiste en une revue non exhaustive traitant  

de travaux marquants dans le domaine de la reconnaissance de molécules invitées au sein de 

cavités hélicoïdales. Au cours des deux dernières décades, la communauté des chimistes a investi 

un effort substantiel sur le développement de la chimie des foldamères. Ces structures qui 

peuvent être également définies comme des « oligomères artificiels qui se replient de façon 

ordonnée en solution via  un ensemble d’interactions faibles » ont permis d’étendre le registre 

des structures et fonctions pouvant être obtenues par des molécules non naturelles. Il est possible 

de subdiviser le domaine entre deux grandes classes de foldamères: aliphatiques et aromatiques. 

Ce chapitre s’intéresse principalement à cette dernière catégorie et notamment au développement 

d’oligomères d’amides aromatiques dont le squelette rigide est stabilisé entre autres par des 

liaisons hydrogènes intramoléculaires et de l’empilement aromatique ce qui leur confèrent des 

propriétés exceptionnelles telles que: i. la stabilité; ii. la prédictibilité ; iii. la modularité; iv. la 

facilité de synthèse. Une propriété unique des ces objets est la formation de cavité dès leur 

repliement secondaire, cavité qui peut être utilisée à des fins de reconnaissance moléculaire. 

Chaque monomère de la séquence code à la fois pour une propriété structurale (diamètre de 

l’hélice), et portent également une fonction précise, par exemple pour la reconnaissance 

moléculaire. Le fait de pouvoir remplacer chaque monomère individuellement sans changer la 

séquence intégralement confère un haut degré de modularité, propriété indispensable au design de 

récepteur possédant à la fois affinité et sélectivité en reconnaissance moléculaire.  



 

 

Le second chapitre traite de la préparation et la caractérisation d’une nouvelle famille de 

pseudorotaxanes, nommée foldaxane, pour laquelle le macrocycle est remplacé par une hélice. 

Dans ce système, une hélice (foldamère) peut s’enrouler lentement autour d’une tige en forme 

d’haltère pour former un complexe hôte-invité stable (foldaxanes) dans lequel la molécule réside 

au sein de la cavité de l’hélice tout en exhibant deux groupes protubérants à chaque extrémité de 

l’hôte. La formation des foldaxanes est favorisée thermodynamiquement et sa force motrice 

résident principalement dans la formation de liaisons hydrogènes entre les pinces pyridines 

(2,6-pyridinedicarboxamide – donneurs de liaisons hydrogènes) et les points d’ancrage sur la tige 

que sont les carbonyles des fonctions carbamates. Ainsi, il a pu être établi qu’il existait une 

concordance exacte entre la longueur du foldamères et celles de la tige. Le processus par lequel le 

foldaxane se forme requiert le déroulement partiel de l’hélice ainsi que son repliement autour de 

la molécule invitée, ce qui implique un contrôle fin des cinétiques permettant de s’affranchir des 

liaisons mécaniques « irréversibles » observées dans les architectures de type rotaxanes. De plus, 

cette barrière cinétique considérable permet la préparation de complexe stable dans le cas d’une 

dissociation plus lente que l’enroulement. Le mécanisme d’enroulement a également été 

démontré par comparaison entre des tiges en forme d’haltère et des tiges linéaires sans bouchons 

stériquement encombrant à chaque extrémité. Enfin, dans ce chapitre il est démontré qu’une fois 

la tige enroulée sur la tige il est possible de la faire glisser longitudinalement le long de celle-ci 

tel un piston moléculaire. Ce mouvement moléculaire a notamment été démontré par RMN 

bidimensionnelle d’échange (EXSY). Enfin, un pas supplémentaire dans la complexité a été 

franchi, en ce qui concerne le démarrage et l’arrêt du glissement via la protonation ou la 

déprotonation de la molécule invitée. Cette étude représente un des premiers exemples de 

l’utilisation de l’auto-assemblage pour le développement de nano-machines. 

 

 



Le troisième chapitre de ce manuscrit de thèse est dédié à la mise en évidence pour la 

première fois à l’échelle moléculaire d’un mouvement de vissage. Pour ce faire, une double 

hélice antiparallèle basée sur un squelette d’oligoamides aromatiques a été designé et préparé. 

Cette double hélice, à l’instar des simples hélices présentées dans le chapitre précédent peut 

également s’enrouler autour de molécules invitées en forme d’haltère en utilisant un trimère de 

pyridines dicarboxamides à une extrémité de chaque brin de la double hélice qui peut ainsi se lier 

par liaisons hydrogènes aux carbonyles de la tige en configuration antiparallèle. Cependant, à la 

différence des foldaxanes simple brin, les architectures en double hélice possèdent une plus 

grande tolérance quant à la longueur des tiges qui peuvent être liées. Cette propriété a été mise en 

évidence grâce a de multiples titrages en RMN du proton pour lesquelles les constantes 

d’association pour des tiges de longueur différentes ont été calculées. Les structures cristallines 

de plusieurs complexes double hélices-tiges ont pu être obtenues et ont mis en évidence une 

adaptabilité de l’hôte pour la molécule invitée avec un bilan net entre les différentes structures 

qui s’apparente à un vissage de la double hélice. Afin de réellement mettre en évidence le vissage 

de deux brins, une tige plus longue comportant deux stations de longueurs différentes (i.e. une 

courte pour l’hélice vissée et une longue complémentaire de l’hélice dévissée) a été préparée. Le 

mouvement de vissage (glissement et rotation simultanée) entre les deux stations a pu être mis en 

évidence grâce à l’utilisation de la RMN ROESY qui permet d’identifier les signaux en échange 

lent entre deux espèces (amides de des tiges vissée et dévissée). Au bilan, cette étude a permis de 

caractériser un phénomène inhabituel à l’échelle moléculaire et ouvert la porte à 

l’implémentation du vissage comme nouvelle fonction à l’échelle nanométrique. 

 

 

Le dernier chapitre de cette thèse traite du piégeage d’un foldaxane comme intermédiaire 

cinétique supramoléculaire au cours d’un équilibre simple hélice-double hélice. Un oligomère 

d’amide aromatique a été designé et préparé afin de former un foldaxane dont la tige est un dérivé 



 

d’acide tartrique fonctionnalisé par des groupements stériquement encombrant et présentant une 

forme globale en haltère. Le foldamère seul en solution possède une capacité à s’auto-assembler 

en double hélice à forte concentration et rester en simple hélice à faible concentration. La simple 

hélice peut s’enrouler autour du dérivé d’acide tartrique grâce notamment à la présence des 

motifs aminopyridines des naphtyridines qui sont connus pour former de très bonnes liaisons 

hydrogènes avec les fonctions acides carboxyliques. Le foldaxane a été mis en évidence en 

utilisant notamment la RMN et le dichroïsme circulaire et il a pu être montré que le complexe 

existait avec une stœchiométrie 1:1 (simple hélice:tige). Cependant une analyse poussée a permis 

d’observer la transformation lente de ce complexe en un second complexe plus stable 

thermodynamiquement. La structure de ce dernier a pu être déterminée grâce à la diffraction des 

rayons X et par RMN et s’est révélé  être un complexe 2:2 (une double hélice et deux acides 

tartriques à chaque extrémité). La stabilité de ce complexe est révélée par l’existence de huit 

liaisons hydrogènes entre les unités pyridines des deux brins de l’hélice et les fonctions acides 

carboxyliques de la molécule invitée. En parallèle il est intéressant de noter que les propriétés 

chiroptiques sont très affectées par la transition simple hélice-double hélice. En effet, une 

inversion du signe de l’effet Cotton a été observée lors de la conversion du complexe cinétique 

vers le complexe thermodynamique. Ce chapitre montre notamment l’importance du contrôle des 

échelles de temps lors de conversion supramoléculaire. 

 

 

La Nature démontre une maitrise inégalée dans l’art d’exploiter les interactions 

non-covalentes ayant pour but de produire et contrôler des phénomènes complexes, organisés et 

fonctionnels. Les efforts déployés dans cette thèse ont eu pour objectif de démontrer qu’à 

l’échelle du chimiste les oligomères d’amides aromatiques peuvent s’avérer de bons candidats 

pour l’élaboration de machines moléculaires. Il est raisonnable de penser qu’à moyen terme les 

foldamères d’amides aromatiques puissent être utilisé en routine pour la fabrication 

d’architectures pourvues de fonctions complexes   
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INTRODUCTION 

Inspired by the amazing structural and functional diversity of biological macromolecules, 

chemists have been actively engaged in developing synthetic oligomers with well-defined folded 

structures, termed as foldamers, to improve our understanding of the natural counterparts. 

Due to the diversity of sizes and shapes of monomers, a vast number of foldamers have been 

reported so far, and some significant advances have been achieved, for example catalysis, 

recognition, and self-assembling materials. 

Over the last decade, our group has developed several families of aromatic oligoamides 

which fold into exceptionally stable helical conformations, and found that their folded structures 

and properties can be tuned by varying the size of monomers, and/or by changing the relative 

orientation of the acid and amine groups on each aryl group, and/or by replacing side chains of 

monomers. For instance: 1) higher-order helical structures (double, triple, quadruple helices) 

could be obtained with different sequences via spring-like motion; 2) water soluble foldamers 

have been developed by introducing water soluble side chains on each monomer; 3) helices with a 

large diameter in the center and narrow diameters at the ends have also been designed by using 

different monomers, thus creating a cavity able to encapsulate various guests. 

Following these earlier studies, in this thesis, we will described the design, synthesis, and 

motion properties of a new series of helical foldamers based on aromatic amide backbones, which 

could be used as modern prototypes of molecular machinery.  

Chapter 1 will consist in a short review of several significant achievements on molecular 

recognition within the cavities of foldamer receptors. The recognition behaviors of foldamers is 

the common theme of the research, and are based on the design discussed in this chapter. 

In chapter 2, a series of aromatic oligoamide helices are proved to wind around rod-like 

guests to form host-guest complexes. The helices can shuttle along the rods without dissociating, 

because the timescale of helical unwinding prove to be relatively slow.  

In chapter 3, a double helical foldamer is shown to bind to a series of rod-like guests of 

various lengths upon winding around guests, as a result of a screw motion, an unusual motion that 

is observed for the first time in artificial architecture. 

In chapter 4, an aromatic oligoamide sequence is shown to trap a dumbbell-shaped guest 

forming a 1:1 host-guest complex. This complex was found to be a long-lived kinetic 
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supramolecular by-product as it slowly transformed into a thermodynamically favored 2:2 

host-guest complex composed of two guests and a double helix.  
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1. Introduction 

Molecular recognition is one of the most fundamental issues in the field of supramolecular 

chemistry. Supramolecular chemistry originated from the discovery of crown ethers complexed 

with alkai metal ions.1 In crown ethers, oxygen and/or sulfur atoms are arranged in a macrocycle 

to create a binding cavity, that is suitable for recognition of metal ions.  

From then on, many macrocyclic compounds acting as receptors have been established, such 

as cryptands, carcerands or others cyclodextrins.2-6 Recognition patterns are all based on the 

spatial organization of arrays of functional groups converging towards a binding site. However, 

there are several main disadvantages for these receptors: 1) the synthesis of macrocycles presents 

low efficiency although templated self-assembly may provide some improvement; 2) 

macrocycles being symmetrical they can mostly complex simple spherical guests; 3) they are 

very difficult to tune because of the methods used for their preparation. Thus, there has been a 

continuously growing interest in development of novel high-performance synthetic receptors. 

Nature is a good teacher. In biomolecules, folded conformations are ubiquitous, play vital 

roles and present exquisite biological functions. For example, protein folding is controlled by 

diverse non-covalent forces, consequently forming binding sites that can effectively recognize 

substrates and provide complicated functions, such as catalysis, signal transduction or immunity. 

Inspired by Nature’s receptor design, over the last two decades chemists have actively explored 

the possibility to elicit molecular recognition within the cavities of oligomeric chains folded into 

helical structures.  

These oligomers, termed as foldamers,7-16 adopt well-defined helical structures in solution 

that may act as receptors able to accommodate guest molecules within the helical hollow. In 

addition, some linear oligomers that are not initially folded can adopt helical structures once 

complexed with a complementary guest to form guest-induced foldamers. 

Compared to conventional macrocyclic receptors, foldamers are more dynamic, i.e., 

equilibrium in the process of folding and unfolding, and easily tunable: they are based on 

sequences whose monomers can be changed one at a time and introduced by using the same 

synthetic methods. Therefore, foldamers represent a novel and important class of hosts for the 

design of synthetic receptors, and they have been shown to exhibit very efficient and selective 

abilities for molecular recognition. This chapter will be dedicated to a non-exhaustive review on 
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several significant achievements based on molecular recognition (e.g. organic chiral and achiral 

molecules, metals, anions) within the cavities of foldamer receptors. 
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2. Recognition of neutral molecules 

2.1 Achiral polar guests 

The Huc group reported that aromatic oligoamide foldamer 1 composed of oligopyridine 

dicarboxamide units at the center of the sequence and two 8-amino-2-quinolinecarboxylic acid 

units at each extremity can encapsulate a water molecule in its small cavity as shown in the 

crystals (Figure 1).17 These helical structures were driven by intramolecular hydrogen bonding as 

well as aromatic π–π stacking interactions and electrostatic repulsions between carbonyl and 

endocyclic nitrogens of the pyridine ring. One of typical features of the architectures is that the 

diameter of the capsule is large at the center and narrower at both ends. The whole sequence thus 

shapes like a capsule and can accomodate one water molecule which is completely isolated from 

the solvent. This was proven by contrastive 
1H NMR experiments, which were 

performed both in dry and wet CDCl3 

solution. It was found that drying or wetting 

the solvent had little effect on the chemical 

shift of the signals of the peripheral amide 

protons (0.2 ppm). However, large downfield 

chemical shifting (1.31 ppm) was observed 

for the signals of most of the central amide 

protons. The results supported that a water 

molecule was encapsulated in the cavity, which formed strong hydrogen bonding with these 

inwardly located amide protons. 1H−1H nuclear Overhauser effect (NOE) experiments were 

useful in proving the host–guest complementarity. At low temperature (-50 oC), water signals 

split and gave rise to two different water peaks, only one of which showed NOE cross peaks with 

some of the inwardly located amide protons and therefore could be assigned to the encapsulated 

water. More recently, Zeng et al. prepared some other aromatic oligoamides sequences able to 

complex water molecules.18 

 

Furthermore, increasing the number of pyridine units at the central segment from three to 

seven led to the new helical capsule 2 with larger cavity of which could host two water molecules 

(Figure 1).19 Interestingly, 1H NMR presented distinct signals for the empty, half-full or full 

 

Figure 1. Structures of helical capsule 1 and 2 and crystal 
structures of helical capsule 1 and 2 with one and two 
molecules of water trapped in the cavity, respectively. 
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capsules, which indicated that all these species were in slow exchange on the NMR timescale at 

low temperature. Additionally, it was found that small polar molecules like hydrazine and 

hydrogen peroxide can also be encapsulated. However, no encapsulation was observed in the 

presence of methanol and formic acid. Although the guests were small, one or two water 

molecules, these findings provide useful hints to synthesize larger capsules, capable of trapping 

larger guests, by incorporating new monomers coding for lower curvature. 
 

Following this principle, four different aromatic units: 8-amino-2-quinolinecarboxylic acid 

(Q), 2,6-diaminopyridine and 2,6-pyridinedicarboxylic acid (P), 7-amino-8- 

fluoro-2-quinolinecarboxylic acid (Qf), and 1,8-diaza-9-fluoro-2,7-anthracene- dicaboxylic acid 

(Af), were assembled together using amide 

linkages to generate helical capsule 3 (Figure 

2).20 In this sequence, the terminal segment Q3 is 

known to form a helix too narrow to 

accommodate any guest and acts as a cap closing 

each extremity of this capsule.21 P3 is used as 

cleft able to bind to guests containing hydroxyl 

and amino groups.17 Qf
2 and Af code for a greasy 

hollow thus providing an ideal environment for 

an alkyl chain.22 NMR investigations 

demonstrated that alkane diol and diamine are 

ideal candidates to be encapsulated. The 

molecules ranging in size from ethylene glycol to 

1,4-butanediol were incorporated in the close shell with affinities in the range from 500 to 5000 

M-1 in chloroform. X-ray analyses provided direct proof for the encapsulations (Figure 2).  
 

 

Figure 2. Structure of foldamer 3 and X-ray crystal 
structures of 3 containing 4-amino-1-butanol. 
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Encapsulating an elongated guest in a helical capsule, requires a long and close space. For 

this regard, self-assembly which is usually based on small and accessible building blocks 

provides an efficient approach to produce large supramolecular containers. Along this line, Huc 

and coworkers have designed oligomer 4 comprised of three different segments: Qf
8, which can 

form very stable double helices,22 Q3 and 

P3, whose functions are similar to that in 

oligomer 3. Thus, the foldamer 4 was 

envisaged to possess all features required 

to form an antiparallel double helical 

capsule twice as long as its single helical 

precursor. With the distinct character in 

the structure, the double helical capsule 

provides an unprecedented opportunity 

to investigate the binding properties of 

long linear guest molecules in confined space. As expected, the crystal structure of 4 showed that 

in the center two Qf
8 segments entwined one another to form a duplex section, while the two 

narrow peripheral single Q3 subunits capped the cavity of the duplex. The double helical capsule 

had a dimerization constant calculated to be 250 M-1. Long guests like nonanediol, decanediol 

and undecanediol tended to reside in the close hollow of the double helical capsule. Among the 

different guests, decanediol showed the better complementarity to the cavity as observed in 

solution and in the solid phase (Figure 3).23  
 

All of the above 

aromatic amide oligomers 

are formed by 

intramolecular hydrogen 

bonds to adopt a well 

ordered helical 

conformation for binding 

guests. In principle, the 

sequences may adopt random coil conformations due to the flexible rotation of the amide bonds 

without intramolecular hydrogen bonding. Nevertheless, they can fold into helical structures by 

 

 

Figure 3. Structure of foldamer 4 and crystal structures of 
foldamer 4 with a 1,10-decanediol molecule trapped 

Figure 4. Hydrogen bonding of complementary guest 6 to foldamer 5 results 
in a helical host-guest complex 
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induction of guest. One such example is linear oligomer 5, which was reported by Lehn et al. 

(Figure 4).24 Upon adding 2 equiv. of monosubstituted cyanurate 6 to the solution of 5 in 

chloroform, 1H NMR spectra showed that the signals of heptamer were sharpened, indicating the 

ability of the oligomer to form specific conformations. Results showed that a 1:2 complex formed 

depending on the rotation of the central aryl–CO bonds and enforced by was the six 

intermolecular DAD/ADA hydrogen bonds. The helical strand could stack to disklike 

architectures, which could further self-assemble to supramolecular fibers of several µm of length, 

as revealed by electron microscopy. 
 

2.2 Chiral polar guests  

2.2.1 Carbohydrates 

Hydrogen bonding-driven aromatic foldamers normally have relatively rigid helical 

structures. Specific binding sites, such as hydrogen bonding donors and acceptors, thus can be 

selectively arranged inside of the cavities. In this way, saccharides, which play very important 

roles in biological processes, could be recognized by aromatic foldamers. Li and coworkers 

reported a series of hydrazide-based foldamers 7a-c possessing a rigid cavity of ca. 1 nm in 

diameter and with half of the hydrazide carbonyl groups 

orientated toward the center of the cavity, creating a 

hydrogen bond-accepting environment inside (Figure 

5).25 1H NMR, fluorescent and CD experiments 

confirmed that alkylated saccharides 8a-d could be 

entrapped inside to form a 1:1 complexes in chloroform 

through the formation of multiple intermolecular 

C=O⋅⋅⋅H−O hydrogen bonds. The highest binding 

constant displayed by complex 7c⋅⋅⋅⋅8d in chloroform was 

determined to be 6.9×106 M-1, which was about 10-fold 

higher than that of the complexes of the monosaccharides, 

suggesting that the increasing the length of the sequence 

has helped to raise the binding ability. 
 

In continuing investigations, a similar series of foldamers but with long decyl side chains 

and two large aromatic units, such as naphthalene, anthracene and pyrene, at the terminals of 

 

Figure 5. Structures of foldamers 7a-c 
and the guests 8a-d 
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their backbones, was found to strongly gelate organic solvents of varying polarity.26 Addition of 

chiral guests 8a or 8b could further enhances the capacity of the foldamers to gelate through 

complexation. As a consequence, chiral induction occured in the gel phase, as evidenced by 

formation of induced circular dichroism. Afterwards, Li and coworkers appended chiral proline 

moieties at the terminal units of aromatic hydrazide foldamers to generate chiral foldamers 

having a preferred handedness defined by the stereochemistry of proline. This chiral foldamer 

was shown to achieve diastereoselective recognition of glucose by CD experiments.27 These 

results demonstrated that handedness could be induced in order to form a chiral cavity for 

selective complexation of chiral guests by introducing rationally designed chiral groups. 
 

Similar amide-based foldamers 9a and 9b 

have also been developed by the same group 

(Figure 6).28 Molecular modeling showed that 

the cavity of the helical conformations was 

less than 1 nm in diameter. Their binding for 

saccharides 8 in chloroform was proven by the 
1H NMR, fluorescent and CD spectroscopy, 

which were shown to be in a 1:1 stoichiometry. The binding constants (550-7800 M-1 in 

chloroform) obtained by fluorescent experiments were lower than those of their hydrazide 

analogues 7 that had the same number of benzene units. 
 

Conversely, saccharides could be used as templates to induce flexible oligomers to fold. 

Inouye and coworkers have reported the synthesis of oligo-(pyridine-ethynylene)s 10 having 

alkoxy side chains (Figure 7).29 These oligomers adopted an linear extended conformation in 

dichloromethane due to the dipole-dipole repulsion between the adjacent pyridine units. However, 

upon addition of of n-octyl β-pyranoside, long oligomers (n = 18, 24) folded into compact helical 

structures driven by intermolecular multiple hydrogen bonds between the pyridine nitrogen atoms 

and hydroxyl groups of the saccharides enclosed inwardly. The chirality was transferred from the 

bound saccharides to the helices, as evidenced by the formation of induced CD signals. The 

binding was in a 1:1 stoichiometry and the binding constant of the complex (n = 24) was 

determined to be 1200 M-1 in dichloromethane.  
 

 

Figure 6. Structures of foldamers 9a and 9b  
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Recent research found that ICD signals of the saccharide complex 10 (n = 18) was enhanced 

through addition of copper(II) triflate. It was expected that the copper(II) could coordinate with 

the pyridine nitrogens, thus stabilized the resulting helical complex with a saccharide guest by 

interlinking the pyridine nitrogens and the hydroxy groups inside the helix. After subsequent 

addition of o-phenanthroline, a strong ligand for copper compared to saccharide, the saccharide 

was replaced by o-phenanthroline and was thus kicked out of the helix cavity. The new helical 

structure and chirality of the complex was further stabilized as a result of the cooperativity of 

copper and achiral ligand o-phenanthroline inside. This phenomenon suggested that the helix 

could memorize its biased helicity even after the removal of the initial chiral source 

(saccharide).30 

 
 

At the same time, to further explore the saccharide-binding ability of these oligomers in 

aqueous solution, the same group developed water-soluble polymers by replacing alkoxy side 

chains with hydrophilic ethylene glycol side chains.31 1H NMR, UV/Vis and CD spectroscopy 

consistently demonstrated that these polymers spontaneously collapse into stable helical 

structures in protic media as a result of the solvophobic effect. The helices could also bind 

saccharides with helical cavities, as reflected by the formation of ICD signals in the absorptive 

region of the polymers. Most interestingly, when pure α- and β anomers of D-glucoside were 

used, the preferred helical sense of the complex could be inverted by mutarotation of the 

saccharides.32 
 

In addition, the oligomeric and polymeric pyridine-ethynylenes can be further modified in 

different ways. For example, polymers with dialkylamino side chains have been prepared. The 

protonation of the dialkylamino pyridines allows one to reversibly modulate saccharide binding 

and thus folding.33  
 

 

Figure 7. Helical structure of 10 induced by the saccharide complexation 
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A series of saccharide-linked 

oligomers 11 have also been designed 

(Figure 8).34 The oligomers and 

glycoside moieties self-assembled into 

unique intramolecular helical complexes, 

due to intramolecular hydrogen bonds, 

which were studied with CD and 1H 

NMR experiments. The sign and strength of the ICD signals were found to depend strongly on 

the length of pyridine-ethynylene segments and the types of the glycosides, indicating that the 

primary structures of oligomers encoded their further self-assembled architectures. 
 

2.2.2 Chiral diacids 

Recently, the Huc group introduced an aromatic oligoamide foldamer 12 that can 

encapsulate tartaric acid with 

high affinity, selectivity and 

diastereoselectivity (Figure 

9).35,36 Its design is based on 

amino-acid units coding for a 

large helix cavity in the center 

of the sequence and a narrow 

helix diameter at the ends, as 

mentioned above, thus creating a 

binding site completely 

surrounded by the helix 

backbone. Upon addition of 1 equiv of a single enantiomer of tartaric acid as a guest, 1H NMR 

showed that all the signals of the free helix completely disappeared, indicating very high binding 

constant (> 106 M-1) of the complex in chloroform; a new single set of sharp signals emerged, 

suggesting that it existed in a single diastereomeric form (de > 99%). A mirror imaged CD 

spectrum was observed upon adding each enantiomeric guest. The induced CD signals are the 

consequence of the foldamer association with tartaric acid in a diastereoselctive manner, resulting 

in a helix-preferred handedness. The crystal structure showed an unambiguous attribution of the 

 

 

Figure 9. Structure of foldamer 12 and its crystal structures 
containing tartaric acid 

Figure 8. Helical structure of 11 formed by autophagy 
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matching stereochemistry: the natural L-tartaric acid is bound by the M helix of 12 and D-tartaric 

acid by the P helix.  
 

2.3 Apolar guests 

In 2000, Moore et al. reported a series of oligomers of m-phenylene-ethynylenes (mPE) 13 

that presented an extended conformation in chloroform and folded into a compact helical 

conformation by solvophobic interactions in polar 

medium, such as acetonitrile.37 Upun folding, a cavity 

was formed, which could hold the chiral pinene 14 

inside (Figure 10).38 The binding strictly adhered to a 

1:1 stoichiometry and the binding constant was 

determined to be 6830 M-1 in water/acetonitrile (40:60 

vol/vol). With the increase of the water content in the 

solvent, the binding constant was increased linearly, 

showing that the binding was a solvophobically driven 

process.39 Other similar chiral hydrophobic molecules 

15-19 were also found to bind to the foldamer mPE (n 

= 12) in a 1:1 stoichiometry under identical conditions, 

albet with lower binding constants. When methyl 

groups were introduced at the 4-positions of the 

benzenes of foldamers, the binding capacity of the 

corresponding foldamer toward pinene was decreased dramatically. The methyl groups thus 

disfavored the binding of small molecules, supporting that binding takes place within the tubular 

cavity. 
 

When elongating the backbones, the cavity depth of the foldamers 13 was also increased. 

This may maximize their binding strength for rodlike chain guests of appropriate diameter. The 

Moore group showed that the complexes of mPE foldamers (n = 10, 12, 14, 16, 18, 20, 22, 24) 

and rigid straight guest diphenyl-piperidine 20 were still in a 1:1 stoichiometry, but binding 

affinities were remarkably dependent on oligomer length.40 The binding constant of foldamer n = 

10 was smaller than that of foldamer n = 12, and binding constants in water/acetonitrile (40:60 

vol/vol) were dramatically enhanced by increasing oligomer length to reach a maximum when n 

 

Figure 10. Structures of foldamers 13 and the 
guests 14-21 
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= 20 and 22, and then dropped for n = 24. The decrease in the binding affinity for n = 24 was 

ascribed to the volume mismatch between the foldamer cavity and the guest as shown by models. 

This result stimulated the researchers to propose two possible mechanisms of guest binding by 

helices. The first is the chiral ligand threading into the helical cavity of a rigid oligomer, and the 

second involves a transiently unfolded oligomer winding around the chiral ligand. To further 

clarify the binding mechanisms, Moore et al. synthesized a dumbbell-shaped guest 21 with bulky 

termini. Kinetic studies showed that the oligomers were able to bind the dumbbell-shaped guest, 

suggesting that a second mechanism was plausible.41 However, a simple threading appears to be 

more likely for thin guests, even though partial unfolding could not be ruled out. 
 

Most recently, Li and coworkers demonstrated that intramolecular C−H⋅⋅O hydrogen 

bonding can be utilized to 

induce alternative 

diphenyl-triazole oligomer 

22 to form helical 

structure.42 In the structure, 

all the nitrogen atoms of 

triazole units were 

positioned inward to form 

a cavity with ca. 1.8 nm in 

diameter (Figure 11). It 

was proven that this foldamer was capable of binding bidentate and tridentate organohalogens 

23-27 through multiple N⋅⋅⋅X (X = Cl, Br and I) halogen bonds to form stable 1:1 complexes. The 

binding affinity of the complexes increased from organobromine to organochlorine and then to 

organoiodine, which was consistent with the order of halogen donor ability. These results 

revealed that halogen bonding may be used for recognition in macromolecular system. 

 

Figure 11. Structures of foldamer 22 and the guests 23-27 
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3. Recognition of cations 

 The formation of helical structures with six units per turn could be obtained from 

alternating sequences of pyridine–pyrimidine units by adopting the transoid conformational 

preference of ortho-linked aromatic azaheterocycles, as demonstrated by Lehn et al.43 However, 

the cavity of the helices are too small to host any metallic or organic guest. Replacement of the 

pyridine units by the 1,8-naphthyridine units provided a larger 

cavity of about 3.5 Å in diameter for the resulting helix 28.44 

Naphthyridines possess large electric dipoles (∼ 4.1 D), which 

point into the interior cavity formed upon helical folding. 

Hence, 28 was suitable to bind to cations such as K+, Cs+, 

hydronium, and guanidinium through ion-dipole or 

dipol-dipole interactions (Figure 12). Titrations of 28 with the 

metal salts in a mixture of CDCl3 and CD3CN showed a 

strong broadening and upfield shift of all the aromatic 

resonances, indicating that aggregation behavior occurred. 

The formation of cylindrical aggregates was further confirmed by ES-MS experiments, X-ray 

powder diffraction and transmission electron microscopy. 
 

The same group described a pyridine-hydrazone oligomer 29 that bound to Pb2+ ions in 

acetonitrile and subsequently formed a 

two-turn, helically folded complex (Figure 

13).45 The X-ray structure definitely showed a 

dinuclear complex consisting of a helically 

folded strand wrapped around two Pb2+ ions. 
1H NMR experiments also proved the 

formation of the complex; the aromatic 

resonances shifted to high field in accordance 

with the π-π stacking upon folded strand. The 

ions could be controlled by pH and the structure of strand will thus reversibly transform form 

linear to helical shape. 
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Moore and coworkers have shown that the mPE oligomers with cyano groups could tightly 

and selectively bind silver ions in the internal cavity of a helical structure by a combination of 

solvophobic and metal-coordination interactions (Figure 14).46 These oligomers all adopted a 

random coil conformation in tetrahydrofuran. 

However, upon addition of silver triflate, complex of 

30 with silver irons resulted in a well-defined helical 

structure in the same solvent. Therefore, the 

formation of the helix is entirely dependant on metal 

coordination. UV-Vis, 1H NMR titrations and 

ESI-MS experiments indicated that 30 complexed 

AgO3SCF3 in a 1:2 stoichiometry, and the binding 

constant of the complex K1K2, was more than 1012 M-2. In comparison to 30, oligomer 31 with the 

same length but half cyano groups formed a 1:1 complex with AgO3SCF3, and the binding 

constant was calculated to be 2×104 M-1. The result suggested that K2 >> K1 and the binding of 2 

equiv of AgO3SCF3 to 30 was a cooperative process. In another experiment, it was also found 

that short hexamer 32 did not complex AgO3SCF3 at all. Comparing 31 with 32, the addition of 

phenylacetylene segments that cannot bind metals to 32 but allowed for metal-ligand 

coordination to 31, showing that solvophobic interactions played an important role in the 

metal-induced formation of the helical structure. 
 

 

Figure 14. Structures of oligomers 30-32 
and the schem of binding to Ag2+ 
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Zhao and coworkers described that amino functionalized cholic acid could be used as a 

useful building block for the construction of 

amphiphilic foldamers. The native cholic acid is 

very rigid, with four fused rings that have a 

distinctive shape and facial amphiphilicity. These 

cholate oligomers could fold into helical 

structures with nanometer-sized hydrophilic 

internal cavities in mostly nonpolar solvents such 

as carbon tetrachloride or hexane/ethyl acetate, 

which was driven by the solvophobic 

interaction.47 An oligocholate 33 decorated with 

two methionine units as bidentate ligands in the 

middle and with fluorescent dansyl groups at the 

chain end could bind Hg2+ (Ka > 107 M-1) ions in 

5% MeOH in hexane−ethyl acetate (2:1 vol/vol) 

(Figure 15).48 The fluorescent emission of 33 was quenched due to the recognition processes. The 

selectivity for Hg2+ was very high in comparison to other divalent cations including Mg2+, Zn2+, 

Cu2+, Co2+, Ni2+, and Pb2+, and was attributed to the great binding affinity of Hg2+ for the 

orthionine sulfur. When two glutamic acid units were incorporated into the center, the two free 

carboxylic acid groups of the resulting oligocholate 34 could also chelate with a divalent metal 

ion (Figure 15).49 The enhancement of an intramolecular pyrene excimer was most evident for 

both folding and binding processes. Specific binding for Zn2+ was observed, which was most 

sensitive in 15% MeOH/ethyl acetate, a little of polar environment, because the foldamer sensed 

the metal ion by going from the unfolded to the folded conformation. 
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A double helix could be obtained by consisting of two ortho-linked oligophenol strands 

bridged by two boron atoms via the formation of two spiroborate (−BO4) moieties, as 

demonstrated by Yashima and Furusho groups.50 Subsequently, researchers optimized the 

sequence and prepared a new double helix 35 in which the central sodium cation is coordinated to 

the spiroborate moieties (Figure 16).51 Upon adding cryptand [2.2.1] 36 to the solution, the 

sodium ions are removed from the double helix. A detailed analysis of the structure by X-ray 

crystallography revealed that the helix approximately doubled its length, from 6 to13 Å. This 

noticeably large extension is most likely attributable to the enhanced electrostatic repulsion 

between the two anionic 

spiroborate moieties due 

to the absence of the 

central Na+ ion. After 

adding NaPF6 

subsequently, the initial 

double helix with Na+ 

inside was completely 

recovered through a 

contraction and winding 

motion. This 

extension-contraction 

cycle can be repeated 

several times by the sequential addition of cryptand 36 and NaPF6 in an alternating manner. Most 

importantly, helix chirality was maintained during the contraction and extension processes by CD 

studies, that is, the helix underwent a unidirectional rotary motion. 
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Figure 16. Structures of double helix 35 and cryptand 36 and schematic 
representation of the contraction and extension of a double helix by trigger with 
a cryptand and sodium 
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Besides metal ions, organic cations can also be recognized by foldamers. Li, Chen and 

coworkers developed novel oligomer 37 consisted of naphthalene units linked by ethylene glycols, 

which was used for ammonium receptors (Figure 17).52 In 

polar solvents, these sequences could fold into helical 

conformations due to solvophobically driven π-π stacking 

of the naphthalene groups, and a cavity was created that 

was similar to that of 18-crown-6, but more size-tunable. 

Upon adding ammonium or ethane-1,2-diaminium to the 

long oligomers (n > 3) in acetonitrile, 1H NMR studies 

showed that the glycol methylene protons were shifted 

upfield, indicating the interactions between them. The 

binding for ammonium was shown to be in a 1:1 

stoichiometry and the binding constants were determined to be in the range of 103-104 M-1 in 

acetonitrile. UV/Vis experiments in a chloroform−acetonitrile mixture showed hypochromic shifts 

due to intramolecular aromatic π-stacking effects, indicating the helical conformation of the 

oligomers became even more compact and rigid upon complexation.  
 

Aromatic fluoro foldamer 38 was 

established by Li et al.53 It revealed that N−H⋅⋅⋅F 

bond was strong enough to form stable 

intramolecular five- or six-membered and even 

three-centered continuous hydrogen bonds, 

inducing the whole sequence to form a rigid 

helical structure (Figure 18). 1H NMR, mass, 

fluorescent experiments indicated that foldamer 

38 could bind dialkyl ammonium ions 39 in a 

1:1 stoichiometry with high binding affinity (Ka 

= 8×106 M-1) in chloroform, which is 

considerably higher than those of the complexes between dibenzo[24]crown-8 and 

dialkylammonium ions in chloroform (ca. 2.7×104 M-1).54 Furthermore, chiral induction could 

also be achieved by complexation of 38 with chiral L-tyrosine-derived ammonium ion 40. 
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4. Recognition of anions 

 The field of anion recognition has expanded rapidly in the last two decades because anions 

play important roles in 

biology, medicine, and the 

environment.55 Recent 

research has shown that 

anions could be used to 

template the formation of a 

series of helical oligomers. 

One original example is the 

oligoindoles 41, which was developed by Jeong and coworkers in 2005.56 These oligoindoles 

containing four, six and eight indole rings connected by ethynyl linker adopted an expanded 

conformation due to the transoid preference of ortho-linked aromatic azaheterocycles, but fold 

into helical structures in the presence of chloride (Figure 19a). This was demonstrated by 1H 

NMR and ROESY experiments. When chloride was added, 1H NMR showed that the NH signals 

of the indoles shifted downfield as a result of hydrogen bond formation, and that aromatic signals 

shifted upfield because of aromatic stacking between indole moieties. The induced helical 

conformation was further proved by ROESY experiments where NOE cross peaks have been 

observed between protons located at adjacent aromatic units. It was evidenced that oligoindoles 

form 1:1 complexes with chloride; association constants were determined to be 1.3×105, 1.2×106, 

and >107 M−1 in acetonitrile for oligomers having four, six, and eight indole rings, respectively. In 

order to recognize larger anions, indolocarbazole units instead of indoles had been used to 

construct oligomer 42, which contained six indole NHs and two aliphatic OHs at each terminus 

(Figure 19b).57 1H NMR and ROESY experiments proved that this oligomer could form a helical 

structure induced by sulfate ion. The X-ray structure directly revealed that the tetrahedral sulfate 

ion was encapsulated in a helical cavity by a total of eight hydrogen bonds, with each oxygen 

forming two hydrogen bonds. Oligomer 42 displayed a high binding strength and selectivity 

towards sulfate (Ka = 6.4×105 M-1 in 10% CH3OH/ CH3CN (vol/vol) compared to other anions, 

such as Cl-, Br-, I-, AcO-, CN-, N3
- and H2PO4

-. 
 

 

Figure 19. a) Structure of oligomer 41 binding to the chloride anion. b) 
Structure and crystal structure of oligomer 42 binding to the sulfate anion. 

a) b) 



 

 
Doctoral dissertation. Foldaxanes: foldamer based self-assembled pseudorotaxanes 

22 
 

When connected with chiral amide 

groups at terminal units, the similar 

oligomer 43 could fold into a helical 

conformation with M-handed preference 

via intramolecular hydrogen bonds 

between amide oxygens with NH protons 

of the indolocarbazole rings (Figure 20).58 

Most interestingly, when sulfate ions were 

added, the preferred chirality of the helix 

inverted into P-handedness upon the anion 

binding, as demonstrated by CD spectra 

and in the X-ray structure. This behavior is 

unique in that the foldamer interaction with an achiral anion leads to an opposite helical 

preference. 
 

 Thanks to the highly efficient formation of triazoles by click reactions, oligotriazoles could 

be used as anion receptors exploiting hydrogen bonds between the electropositive CH side of the 

1,4-substituted 1,2,3-triazole ring and 

electron-rich guests such as anions. In 2008, 

Craig reported a series of novel 

1,4-diaryl-triazole oligomers 44 with 

ester-solubilizing side chains, which was 

used as a chloride receptor.59 It was shown 

that the oligomer 44 was in a random coil 

conformation due to the flexibility of 

aryl-triazole single bond. However, the C-H 

chloride bond could induce the oligomer to 

fold into a helical structure (Figure 21a). The complex was evidenced by the downfield shift of the 

1,2,3-triazole protons, and an upfield shift of the aryl protons due to aromatic stacking. The 

complexation was further proven by ROESY experiments where NOE cross peaks had been 

observed between the protons converging toward the helix cavity in the presence of chloride. It was 

evidenced that the oligomer forms 1:1 complexes with chloride; association constants in acetone 

 

 b) a) 

Figure 21. a) Folded structure of oligomer 44 induced 
by anion binding. b) Folded Structure of oligomer 45 
induced by anion binding. 

b) 

c) 

Figure 20. a) Structure of oligomer 43. b) Scheme of the 
handedness inversion based on anion binding. c) CD spectra 
showing the handedness inversion. 

a) 
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were determined to be 1.7×104 M−1. Hecht and coworkers independently synthesized oligomer 45 

with chiral side-chains by alternating pyridine and aryl-1,2,3-triazole moieties (Figure 21b).60 

Dipole–dipole repulsion between the heterocycles enables 45 to adopt a two-turn helical 

conformation in water–acetonitrile mixture that is further stabilized by π-stacking of the 

overlapped strand and solvophobic effects. The presence of the chiral side chains induced the 

foldamer 45 to generate CD signals. Interestingly, the addition of HCl did not result in denaturation 

of the helical conformation, but rather an inversion of the CD signals. At neutral pH, such an 

inversion could also be realized by adding KCl or KBr, even the intensity caused by KCl was not so 

high. Instead, KF did not cause the inversion. It was hypothesized that the halide interaction with 

the chiral ethylene glycol side chains of 45 transfered helicity to the aromatic backbone, thus 

resulting in an inversion between left- and right-handed helicity. 
 

Using similar design principles of alternating meta-phenyl groups with 1,2,3-triazoles, Flood 

and Jiang independently have reported the oligotriazole 46 and 47 coupled with photoswitchable 

azobenzene groups (Figure 22).61,62 These oligomers adopted helical conformations with a cavity 

suited for anions in polar solvents via solvophobic effect. The behavior of binding anions could 

be controlled by light. From these reports it is clear that 1,2,3-triazoles are useful building blocks 

for foldamers as anion receptors due to their ease of synthesis, and also due to their inherent 

electronic (strong dipole, electropositive CH), and structural (planar, π-rich) properties. 

 

Figure 22. Structures and schemes of oligomers 46 and 47 binding anions by using light as a trigger 
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Besides inorganic anions, organic anions can also be recognized by forldamers. Li et al. 

designed a class of oligomers 48a-d, which consisted of alternate benzene and naphthalene 

segments (Figure 23).63 Modeling studied suggested that 48c formed a folded structure with a 

cavity that was large enough to host a 1,3,5-tricarboxylate anion 49. The long oligomer 48d did 

not adopt defined conformations in DMSO, even though the large stacking naphthalene units 

were available. However, these oligomers could fold into compact helical structures completely 

in the presence of 49, as evidenced by 1H NMR, fluorescence and UV-Vis experiments. 1H NMR 

studies showed that a new set of signals of low field was exhibited, while the signals of the free 

oligomers themselves disappeared completely upon addition of ca. one equivalent of 49. The 

bindings for 49 were shown to be in a 1:1 stoichiometry for all the complexes by 1H NMR and 

UV-Vis experiments, and the binding constants were determined to be in the range of 104-106 M-1 

in DMSO. The complexes were further proven by the NOESY experiments, in which relative 

multiple intermolecular NOE cross-peaks were observed. It was thus revealed that the folded 

conformations were induced by intermolecular N−H⋅⋅⋅O- and C−H⋅⋅⋅O- hydrogen bonds or 

electrostatic interactions between the amide and aromatic hydrogen atoms of the oligomers and 

the oxygen atoms of the anion. 

 

Figure 23. The structure of oligomers 48 and guest 49 stabilized by hydrogen bond 
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5. Conclusion 

In the last decade, a large number of synthetic foldamers with recognition behaviours have 

been researched. The tunable versatility and flexibility of these structures make them suitable 

models for accommodating guests, as well as accompanying corresponding functions. 

Despite the progress made so far, the research field is still in its early stages. We suggest 

several aspects that we think are worthy to receive more attention or to be addressed in the future: 

1) new families of backbones, and structures of larger size and complexity will certainly be 

continued; 2) development of selective recognition in a series of guests by exchanging certain 

units in the foldamer receptor are also worth researching; 3) the broader applications in 

supramolecular devices, such as catalysis, sensors, and drug-delivery, are also expected. 
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1. Introduction 

Biological ‘machines’ play an important role in nature, in that they are clearly indispensable 

to cellular functions. Two prominent examples are myosin, which moderates muscle contraction, 

and kinesin, which moves cargo inside cells away from the nucleus along microtubules.1 All these 

remarkable behaviours fascinate and inspire scientists to construct artificial compounds that can 

mimic the functions of their natural counterparts. Over the decades, a wide variety of ingenious 

molecular machines have been synthesized, including switches, motors, shuttles, “molecular 

muscles”.2-8 Most of them are constructed from mechanically-interlocked molecular architectures, 

such as rotaxanes and catenanes. In rotaxanes, rings are irreversibly locked around rods along 

which they may slide. In catenanes, interlocked rings may rotate around each another (Figure 1). 

An important improvement to these designs would use a reversible assembly method to avoid the 

difficulty of mechanically interlocking molecular components, meanwhile the machines can still 

work long enough to perform their task, just as biological molecular machines self-assemble and 

disassemble slowly while their work regime is rapid. 
 

 

Figure 1. Cartoon representation of a rotaxane and a catenane 

 

Helical architecture is one of the most significant structural motifs observed in biomolecules.9 

Thus, much effort has recently focused on foldamers, synthetic molecules that can fold into an 

stable ordered (helical) conformation in solution, to mimic protein-like structures and their 

distinctive functions. As an example, Moore et al. reported a series of oligomers of 

m-phenylene-ethynylene (mPE) that could wind around a dumbbell-shaped guest by solvophobic 

interactions in a polar medium.10 These structures resemble rotaxanes in which macrocycles are 

replaced by helices. It has thus triggered us to design new molecular machines based on aromatic 

oligoamide foldamers. The following pages describe details this concept.  

We have previously shown that the aromatic oligoamide sequence 1 composed of four 

different monomers (see below) can fold into a robust helical structure which possesses a hollow 

large enough to bind a linear alkyldiol or diamine such as 1,4-butanediol or 1,4-butanediamine 

(Figure 2).11 Such constructs proved to completely surround their guests, especially because of 
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quinoline units present at both extremities of the capsule. The quinoline units act as ‘stoppers’, 

closing the molecular shell, but also preventing the single helix assembling into a double helix. 

Without quinoline units, we thus anticipated that the sequence 3 would not only hybridize to the 

double helix, but also give a chance to open the ‘mouth’ of the helix at each end and thus bind 

longer guests, typically dumbbell molecules with hydrogen bond acceptor groups. 
 

 

Figure 2. Structures of sequences 1 and 3 

 

A series of aromatic oligoamide sequences like 3 were designed. It was revealed that they 

could slowly wind around rod-like guests (Figure 3). The winding process requires helix 

unfolding and refolding, as well as a strict match between helix length and anchor points (golden 

balls, figure 3) on the rods. Because the timescale of helical unwinding is relatively slow, the 

helix can shuttle along the guest without dissociating. This modular design and dynamic 

assembly open up promising capabilities in molecular machinery. 
 

 

Figure 3. Cartoon representation of the formation of foldaxane: double helix dissociate to single helix, and then single 
helix winds around rod-like guest via unfolding and refolding mechanism. 
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2. Synthesis 

2.1 Synthesis of helices 

Aromatic oligoamides 2-4 were designed according to well-established rules12,13 to fold into 

helical structures stabilized by local preferential conformations at aryl-amide linkages and 

intramolecular interactions between aromatic groups (Scheme 1). They were composed of three 

different units that have all been characterized: 2,6-diaminopyridine and 2,6-pyridinedicarboxylic 

acid (P),14-16 7-amino-8-fluoro-2-quinolinecarboxylic acid (Qf),17 and 

1,8-diaza-9-fluoro-2,7-anthracene-dicaboxylic acid (Af).11 Based on studies of related 

compounds,11,18,19 it was predicted that the fluoroaromatic units in the center of the sequence would 

form a helix wide enough to accommodate an alkyl chain but nothing much larger, whilst each 

peripheral 2,6-pyridinedicarboxamide units are hydrogen bond donors and may thus act as anchor 

points to bind a guest at a defined position in the helix cavity. 

The procedures for the synthesis of aromatic oligoamides 2-4 via a convergent approach are 

depicted in Scheme 1. There is one criterion for the synthesis of these capsule-shaped sequences: 

in ordor to avoid the aggregation of early synthetic segments, which may reduce their reactivity 

in subsequent steps, the order of coupling units should be carried out from the sequence termini to 

its center, that is, from P monomer to Af monomer. Precursor 16 was obtained by coupling the 

trimer P3 14 and Qf segments of different length. The Boc group was subsequently cleaved using 

TFA, affording the corresponding amine 17. In a final step, the activation of diacid 11 was carried 

out in the presence of Ghosez reagent to generate diacid chloride 12 which was directly coupled 

with monoamine 17 to generate the target products 2-4. 

2.2 Synthesis of guests 

The dumbbell-shaped guests 5a-5g were synthesized through the reaction of benzyl 

chloroformate with the corresponding diamines. The guest 6 with non-bulky groups at the end 

was obtained via activation of n-butanol with 4-nitrophenyl chloroformate, and subsequent 

coupling to 1,5-diaminopentane. The synthetic procedures for guests 7-10 were similar to that of 

guest 6: first activation of the alcohol to get the carbonate intermediate, and then reaction with the 

corresponding amine. Details are shown in Scheme 2.  
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Scheme 1. The synthesis of foldamers 2-4: a) DIEA, DCM, r.t.; b) TFA, DCM, r.t.; c) 1-chloro-N,N,2-trimethyl 
propenylamine, CHCl3, r.t., 2 h. 
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Scheme 2. The synthesis of guests 5-10: a) DIEA, DCM, r.t.; b) 4-nitrophenyl chloroformate, TEA, DCM, r.t.; c) 
LiAlH4, THF, r.t.; d) TFA, DCM, r.t., then, 4-nitrophenyl chloroformate, TEA, DCM, r.t.; e) benzyl chloroformate, 
DCM, r.t.; f) TFA, DCM, r.t.; g) Pd/C, H2, EtOAc. 
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3. Results and discussion 

3.1 Hybridization behavior of foldamers 2-4 

The foldamers 2-4 have very similar structures: they are all made up of the four different 

monomer units, and their sequence only differs in the number of Qf units (Figure 4). Increasing 

strand length (from 4 to 2) allows one to adjust the distance between the binding anchor points (P3) 

along the helix axis and their relative orientation in a plane perpendicular to the helix axis. It also 

determines the timescale of helix unfolding and refolding dynamics, which may range from 

fractions of seconds, to minutes, to hours or even days for multiturn helices.20 
 

 

Figure 4. Structures of foldamers 2-4 

 

 

Figure 5. Crystal structures of a) double helix (4)2 and b) double helix (3)2 in tube and CPK representation. Isobutyl 
side chains and solvent molecules have been omitted for clarity. 

As mentioned above, without quinoline units (Q) at the extremities, the foldamers 2-4 fold 

into single helical conformers which then aggregate to form helical duplexes.21 The structures of 

the double helices (3)2 and (4)2 have been characterized in the solid state by x-ray crystallography 

(Figure 5). In solution, there is only one set of broad peaks that can be detected at equilibrium at 

25°C by Nuclear Magnetic Resonance (NMR), even at low concentration. We deduced that only 

double helical conformations of 2-4 exist in these conditions. However, heating to 80 °C in 
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CD2Cl4, some new signals appear at low field, indicating that some duplexes have dissociated 

into single helices (Figure 6).13 Under these conditions, integration signals of the single and double 

helix gives a measure of the dimerization constants Kdim: 2.8×105, 6.4×105 and >106 L.mol–1 for 2, 

3, and 4, respectively (Figure 7). 
 

 

 

3.2 The thermodynamics of the host-guest complexes 

The foldamers 2-4 have different lengths (i.e., different number of Qf units), but the same 

recognition site (P units). Thus, the length of guests should also be different to match helix length. 

Anticipating this, we prepared a range of rod-shaped guests, 5a to 5g, incorporating a successive 

number of methylene units. Each guest has two carbamate groups on both sides, which could act 

as hydrogen bond acceptors to anchor the pyridine dicarboxamide units of the foldamers.  
 

[SH] = single helix concentration 
[DH] = double helix concentration 

Figure 7. Scheme of calculation of the 
dimerization constant Kdim 

Figure 6. Excerpts of the 1H NMR spectra of a) 15-mer 
2; b) 11-mer 3; c) 9-mer 4 at 2 mM in C2D2Cl4 at 80°C 
(left) and 25°C (right). Amide signals of the double 
helix are marked with black diamonds whereas those of 
the single helix which are in slow exchange on the 
NMR timescale are represented with white diamonds. A 
few aromatic resonances are marked with stars. 

Kdim =
[DH]

[SH][SH]
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Figure 8. Representative 400 MHz NMR spectra of 2 (2 mM) in CDCl3 at 318K titrated with various guests. Amide 
signals of the double helix and foldaxane are marked with black diamonds and black circles, respectively. Aromatic 
proton resonances are marked with stars. At higher field (~ 4.3 ppm), one can see a diastereotopic pattern (due to the 
chiral environment of the helix) corresponding to benzylic -CH2 of the guest (white squares). 

 

d) 

f) 

a) b) 

c) 

e) 
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Figure 10. Representative 400 MHz NMR spectra of 4 (2 mM) in CDCl3 at 318K titrated with 
various guests. Amide signals of the double helix and foldaxane are marked with black 
diamonds and black circles, respectively. Aromatic proton resonances are marked with stars. 

a) b) 

Figure 9. Representative 400 MHz NMR spectra of 3 (2 mM) in CDCl3 at 318K titrated with 
various guests. Amide signals of the double helix and foldaxane are marked with black 
diamond and black circles, respectively. Aromatic proton resonances are marked with stars. At 
higher field (~ 4.9 ppm), one can see a diastereotopic pattern (due to the chiral environment of 
the helix) corresponding to benzylic -CH2 of the guest (white squares). 

a) b) 

c) d) 
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Upon adding each rod-like molecule 5a-g to a solution of 2, 3 or 4, the NMR signals of the 

duplexes in some cases disappeared and a new species emerged corresponding to a complex in 

which a single helix is wound around a rod-like guest (Figure 3). Aromatic signals of the 

complexes are shifted downfield compared to those of the double helices, indicating weaker ring 

current effects and thus less extensive π-stacking to that expected in the single helix. In addition, 

some of the guest protons become diastereotopic in complexes due to the chiral environment of the 

helix (Figure 8-10). Because the kinetics of host-guest complex formation can be extremely slow 

at room temperature (see below), all titrations were carried out at 45°C, and the spectra are 

showed in Figure 8-10. The binding constants Ka, listed in table 1, could be calculated between 

double helix and host-guest complex by integration of the corresponding signals (Figure 11). 
 

 

Figure 11. Schematic representation of foldaxane formation and the equation used for the calculation of the 
association constant Ka 

 

Table 1. Titration of oligomers 2, 3 and 4 by different dumbbell molecules monitored by Nuclear Magnetic 
Resonance (400 MHz) in CDCl3 at 318K. Dashes reflect no measurable affinity of the oligomers for the rods. All 
experimental errors < 5%. 

 5a 5b 5c 5d 5e 5f 5g 6 7 8 

2 - nd 
45 

(± 2) 
31000 

(± 1000) 
22000 
(± 300) 

140 
(± 5) 

nd 
33000 

(± 1300) 
- 

30000 
(± 1400) 

3 nd 
1000 
(± 40) 

90 
(± 3) 

nd - - -  
1000 
(± 35) 

 

4 150 
(± 20) < 1 - - - - -    

 

 The stoichiometry and structure of these complexes can also be assessed by other 

techniques, such as nuclear Overhauser effect (NOE) and Diffusion Ordered Spectroscopy 

(DOSY) NMR,22 mass spectrometry and X-ray crystallography, i.e., in solution, in the gas phase, 

and the solid state, respectively. In solution, multiple intermolecular nuclear Overhauser effect 

(NOE) correlations are observed between aromatic amide protons of the helices and aliphatic 

[F] = foldaxane concentration   
[DH] = double helix concentration 
[R] = rod concentration 

Ka =
[F]

2

[R]2[DH]
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alkyl protons of the guests (Figure 12); and Diffusion Ordered Spectroscopy (DOSY) shows that 

the diffusion coefficient of the complex of 2⊃6 is similar to (but slightly higher than) that of the 

double helix; these were calculated to be 5.61×10-10 m2s-1 for complex of 2⊃6 and 4.86×10-10 

m2s-1 for the double helix (Figure 13). This means the structure of the complex is smaller than 

that of the double helix, according to the Stokes-Einstein equation. 
 

 

 

Both mass spectrometry and thin layer chromatography (TLC) confirmed that the complexes 

had been generated (Figure 14 and 15). 
 

Figure 13. Zoom of 1H DOSY NMR spectrum 
(400 MHz) of a mixture of 2 and 6 at 4 mM in 
CDCl3 (298K) showing the terminal pivaloyl 
groups of both double helix (1)2 (DH) and 
foldaxane 2⊃6 (F).  

Figure 12. Expansion from the 1H-1H ROESY 
spectrum (700 MHz) of 2⊃9 (4 mM each) in CDCl3, 
showing intermolecular correlations. These cross 
peaks correlate between aromatic amide protons of 
the helix and aliphatic alkyl protons of the guests. 
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In the solid state, crystal structures of 3⊃⊃⊃⊃7, 2⊃⊃⊃⊃8, 2⊃⊃⊃⊃6 all show that a single helix winds 

around a guest, and the 2,6-pyridinedicarboxamide units of the helix hydrogen bond to the 

carbonyl groups of the guest (Figure 16). It follows that the complexes form only when the helix 

and the guest match in length with a tolerance of, at most, one CH2 unit of the guest (table 1). 

This trend may be extended to even longer helices, demonstrating a high modularity in space of 

this system. Remarkably, the affinity of the single helices for their guests is clearly high enough 

to overcome their strong propensity to form double helices. In fact, the dimerization constant Kdim 

and equilibrium constant Ka of host-guest formation (estimated as mentionned above actually) 

are comparable. However, the overall equilibrium shows that the helix dimerization constant Kdim 

is in balance with the square of the rod-helix equilibrium constant K from the single helix (Figure 

17). This is facilitated by the fact that it takes two strands to form a duplex and only one to form a 

host-guest complex. Therefore, the equilibrium constant Ka of host-guest formation largely 

prevails even though thermodynamic parameters do not differ so much from dimerization 

constant Kdim. 
 

Figure 14. Electrospray mass spectrum of foldaxane 2⊃⊃⊃⊃8. 
MS (ES+): m/z calcd for C217H221F9N34O3 [2⊃⊃⊃⊃8+2H]2+ 
1976.8334 found 1975.5; m/z calcd for [2⊃⊃⊃⊃8+H+Na]2+ 
C217H220F9N34O3Na 1987.8244 found 1986.5. 
 

Figure 15. Photograph of a thin layer 
chromatography (EtOAc/CH2Cl2:10/90) of: 
a) foldaxane 2⊃⊃⊃⊃8 (Rf = 0.79); b) a co-spot 
of foldaxane 2⊃⊃⊃⊃8 and double helix (2)2; c) 
double helix (2)2 (Rf = 0.11). 
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Figure 16. Crystal structures of a) complex 3⊃7; b) complex 2⊃8; c) complex 2⊃6. Isobutyl side chains and solvent 
molecules have been omitted for clarity. 

 

 

Figure 17. Schematic representation of the overall equilibrium between the single, double helix and the complex. 

 

3.3 The kinetics of association and dissociation of the host-guest complex 

The complexes between the shortest oligomers 3 and 4 and their respective guests form 

readily at 25 °C. However, complexes involving 2 do not form even after days unless the mixture 

undergoes a heating-cooling cycle. The reasons lie in slow kinetics of complex formation from 

the single helix and in very slow kinetics of double helix dissociation into single helices.21 The 

pure single helical conformer of 2 could be fortuitously isolated by selective precipitation from 

methanol even though it constitutes a minor component in solution. Upon dissolving it again in 

CDCl3, the double helix slowly forms over 24 h at 2 mM concentration if no guest is present 

(Figure 18). However, in the presence of 8, which possesses bulky end groups, the complex 2⊃8 

forms at 25 °C over the course of 30 min, which allowed us to estimate a kinetic second order 

rate constant k1 of host-guest complex formation of about 2.25 M-1s-1 (Figure 19).  
 

K
2 = KaKdim

K = the equilibrium constant of host-guest complex 
(between single helix and complex)  

Kdim = the dimerization constant 
Ka = the equilibrium constant of host-guest complex 

(between double helix and complex) 
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Figure 18. a) Excerpts of the 1H NMR spectra (300 MHz) showing the formation of double helix from a 2 mM 
solution of single helix 2. The selected window presents the amide resonances as a function of time (t). Single helix 
of 2 was dissolved in CDCl3 then spectra were instantaneously recorded at 298K. Amide signals of the double helix 
are marked with black diamonds whereas those of the single helix (which are in slow exchange on the NMR 
timescale) are represented with white diamonds. A few aromatic resonances are marked with stars. b) Time trace of 
duplex hybridization of a 2 mM solution of 2 in CDCl3 monitored by 1H NMR at 298K. 

 

 

Figure 19. a) Excerpts of the 1H NMR spectra (300 MHz) showing the formation of foldaxane 2⊃⊃⊃⊃8 from a mixture 
of single helical 2 (2 mM) and 8 (2mM) in CDCl3. Host and guest were dissolved in CDCl3 then spectra were 
instantaneously recorded at 298K. Amide signals of foldaxane 2⊃⊃⊃⊃8 are marked with black circles where double and 
single helices of 2 are marked with black and white diamonds respectively. b) Time trace of the formation of 2⊃⊃⊃⊃8 
from single stranded oligomer 2 (2 mM) and rod 8 in CDCl3 monitored by 1H NMR at 298K. 

 

We also estimated that the rod-helix equilibrium constant K of 2⊃8 was over 92000 M-1 

from the overall equilibrium as discussed above (Figure 17). We can conclude the rate constant 

of host-guest complex dissociation k-1 is slower than 2.5×10-5 s-1 (about twice per day) (Figure 

a) b) 

a) b) 
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20). Because helical dissociation is relatively slow compared to complex formation (they differ 

by 5 orders of magnitude), once the complex is formed the helix does not dissociate from the rod. 
 

 

Figure 20. Schematic representation of calculation of the rate constant of host-guest complex 

 

In contrast, 6 does not possess any bulky groups and forms the complex 2⊃6 at rates too fast 

to monitor. These results indicate that complexes such as 2⊃6 may form by a simple threading of 

the guest into the helix cavity, whereas the formation of 2⊃8 requires an unwinding and 

rewinding of the helix around the guest (Figure 3).10,23,24 The crystal structures of 2⊃8 and 2⊃6, 

shown in Figure 17, illustrate that 6 is thin enough to thread itself into the helix of 2, whereas 8 is 

much too bulky to do so.  

These complexes relate to some structurally labile rotaxane structures in which molecular 

rings are closed by noncovalent bonds25,26 or by reversible covalent attachments.27,28 Due to their 

mechanism of formation, i.e., unfolding/refolding, we thus propose to term the architectures 

described here “foldaxanes”. 

3.4 The shuttling motion of foldaxane 

High foldaxane stability and slow kinetics of foldaxane formation in the case of 2 hint at 

even slower kinetics of foldaxane dissociation. Indeed, complexes such as 2⊃8 can be eluted on a 

silica gel thin layer chromatography support without any observable dissociation (Figure 15). We 

thus endeavoured to explore the extent to which helices of 2 wrapped around guests could 

undergo sliding motions much faster than they dissociate. Rod-like guest 9 possesses three 

hydrogen bond acceptors and thus two degenerate stations which, because of their proximity, can 

bind only one helix at a time (Scheme 2). Both solution and solid state (Figure 21) data confirm 

that it forms a 1:1 complex with oligomer 2. 
 

K =
k1

k-1

K = the equilibrium constant of host-guest 
complex (between single helix and complex)  

k1 = the rate constant of host-guest complex 
formation 

k-1 = the rate constant of host-guest complex 
dissociation 
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Figure 21. Crystal structure of complex 2⊃9. Isobutyl side chains and solvent molecules have been omitted for 
clarity. 

 

The single helix of 9 is C2 symmetrical but this symmetry is broken in 2⊃9, because one 

extremity of 2 lies near the central urea function of 9, whereas the other extremity is bound to one 

of the two carbamate functions. This loss of symmetry is seen in the 1H and 19F NMR spectra of 

2⊃9 which feature twice as many signals as symmetrical complexes (Figure 22).  
 

 

Figure 22. a) Representative 300 MHz 1H NMR spectra of 2 (2 mM) in CDCl3 at 298K titrated with 9. b) 282 MHz 
19F NMR spectra of 2 (2 mM) in CDCl3 titrated with 9. 

 

The two extremities of 2 should exchange their environments when 2 goes from one binding 

station of 9 to the other. Exchange spectroscopy (EXSY) NMR29 experiments were carried out on 

solutions of 2⊃9 and showed clear correlation resulting from the motion of 2 between the two 

stations of 8 (Figure 23). This motion can be calculated to take place at rates between 2 and 4 

min–1, a time scale considerably smaller than that of foldaxane formation and dissociation, 

implying that 2 exchanges between the two stations of 9 via a sliding (shuttling) process and not 

via a dissociation (unfolding)−association (refolding) mechanism. Other kinetic parameters for 

b) a) 
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the shuttling process of the foldaxane could be calculated according to the EXSY experiments, 

such as the Gibb's free energy showed in Figure 24. 
 

 

Figure 23. a) Part of 2D-EXSY spectrum of 2⊃9 (4 mM, 700 MHz, CDCl3, 298 K, τµ= 300ms). b) Schematic 
representation of shuttling of foldaxane. c) Scheme of calculation of the exchange rate constant of shuttling. 

 

 

 IA IB IAB IBA 
kobs 
(s-1) 

∆G
‡ 

(kcal.mol-1) 

a-a’ 0.749 0.773 0.017 0.017 0.074 18.99 

b-b’ 0.739 0.742 0.013 0.015 0.064 19.07 

cd-c’d’ 1.771 1.580 0.012 0.015 0.028 19.56 

Figure 24. a) Schematic representation of calculation the Gibbs energy using Eyring equation. b) The results of the 
Exchange Rate Matrix (Figure 23). 

3.5 Controlling the foldaxane motion  

A step beyond a random sliding consists in triggering motion so that all molecules would 

undergo the same change within a given time window. To reach this objective, guest 10 was 

designed with two different binding stations, one with a heptyl segment, the other with a 

IA and IB (blue), IAB and IBA (red) are the raw 
volume intensities of diagonal and cross peaks 
observed in the EXSY experiments.  
τm: mixing time 
k (constant for rate exchange) which correspond 
to the sum of forward (k1) and backward (k-1) of 
the pseudo-first order rate constants for the 
shuttling process. 

a) b) 

c) 

∆G‡ : the Gibbs energy of activation 
R : gas constant (1.9872 cal.K-1.mol-1) 
kB : Boltzmann's constant (3.3×10-24 cal.K-1) 
h : Planck's constant (1.58×10-34 cal.s) 
T : absolute temperature (298 K) 
kobs = k1 = k-1 

a) b) 
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diethylamine segment (Scheme 2), with the expectation that a foldaxane would form on the 

neutral amine segment, but not on the corresponding ammonium. As with 9, only a 1:1 complex 

forms between 2 and 10, as confirmed by integrating the 1H NMR signals belonging to 2 and to 

10 in 2⊃10. However, 2 may not reside equally at the two different stations of 10. Indeed, 1H and 
19F NMR spectra of 2⊃10 feature two sets of signals in slightly different (58/42) proportions 

corresponding to a slight bias in favour of one station. Upon titrating 2⊃10 with an acid, the 

smaller NMR signals disappear without any measurable delay during the measurement of a 1H 

NMR spectrum (ca. 2 min) and only one set of signals remains after adding excess acid (Figure 

25). This is consistent with the trapping of 2 on a single station of 10, as it is repelled by the 

ammonium function of the other station. Adding a base instantly reverses the process. Again the 

timescale of this controlled motion is much faster than the rates of unfolding and refolding of 2 

around 10, implying that motion is mediated by the rapid sliding of 2 along 10. 
 

 

Figure 25. a) Schematic representation of helix sliding along a non-degenerate guest possessing a station which can 
be blocked or unblocked upon protonation or deprotonation, respectively. The green dot symbolizes the amine 
function of 10 which can be included in the helix cavity. The back dot is the corresponding ammonium which is not 
included in the helix cavity. b) and c) Part of the 1H and 19F NMR spectra of 2⊃10 in CDCl3 at equilibrium, after 
adding excess of an organic acid (2,4-dinitrophenol), and after neutralizing with a base (Et3N). AF and QF stand for 
fluoro-anthracene and fluoro-quinoline, respectively. 
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4. Conclusion 

In conclusion, upon controlling the length of the helically folded oligomers and the 

matching length of their rod-like guests, one may generate specific foldaxanes of controlled 

kinetic and thermodynamic stability. One may thus fully segregate the timescale of foldaxane 

assembly and that of sliding motions of the helix along the rod. Using long helices will 

expectedly result in slower sliding but also in much slower foldaxane dissociation. It can thus be 

predicted that combining rods with multiple distinct stations with mixtures of foldamers of 

different lengths will allow several controlled motions to proceed at different rates within a single 

supramolecular construct. It can be envisaged that foldamer-based molecular shuttles via a 

reversible assembly method will give a new chance for constructing molecular nanotechnological 

devices. 
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5. Experimental part 

5.1 Methods for NMR 

NMR spectra were recorded on 3 different NMR spectrometers: (1) an Avance II NMR 

spectrometer (Bruker Biospin) with a vertical 7.05T narrow-bore/ultrashield magnet operating at 

300 MHz for 1H observation, 282 MHz for 19F observation and 75 MHz for 13C observation by 

means of a 5-mm direct BBO H/X probe with Z gradient capabilities; (2) a DPX-400 NMR 

spectrometer (Bruker Biospin) with a vertical 9.4T narrow-bore/ultrashield magnet operating at 

400 MHz for 1H observation by means of a 5-mm direct QNP 1H/13C/31P/19F probe with gradient 

capabilities; (3) an Avance III NMR spectrometer (Bruker Biospin) with a vertical 16.45T 

narrow-bore/ultrashield magnet operating at 700 MHz for 1H observation by means of a 5-mm 

TXI 1H/13C/15N probe with Z gradient capabilities. Chemical shifts are reported in parts per 

million (ppm, δ) relative to the 1H residual signal of the deuterated solvent used. 1H NMR 

splitting patterns with observed first-order coupling are designated as singlet (s), doublet (d), 

triplet (t), or quartet (q). Coupling constants (J) are reported in hertz. Samples were not degassed. 

Data processing was performed with Topspin 2.0 software.  

ROESY. Rotating-frame Overhauser spectroscopy (ROESY) experiments were recorded at 700 

MHz and were used to observe dipolar interactions between NH amides from the helices pointing 

towards the methylene groups of the rods with the following acquisition parameters: the 

acquisition was performed with 2048(t2) × 256(t1) data points, in States-TPPI mode with Z 

gradients selection and with CW-spinlock for mixing, relaxation delay of 2 s, and 64 scans per 

increment; sweep width of 14000 Hz in both dimensions; mixing time of 300 ms. Processing was 

done after a sine-bell multiplication in both dimensions and Fourier transformation in 1K x 1K 

real points.  

DOSY. Diffusion Ordered spectroscopy (DOSY) experiments were recorded at 400 MHz and 

were used to study diffusion coefficients of the double helices and host-guest complexes with the 

following parameters: longitudinal eddy current delay (LED) using sine-shaped gradient of 2 ms 

(δ), ∆ of 100 ms, a relaxation delay of 2 s and 32 scans for each gradient intensity (2 to 95%, 10A 

gradient unit).  

EXSY. Exchange spectroscopy (EXSY) experiments were recorded at 700 MHz and were used 

to study helix motions along rods with the following parameters: the acquisition was performed 

with 2048(t2) × 512(t1) data points, in States-TPPI mode with Z gradients selection, relaxation 
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delay of 1.5 s, and 45 scans per increment; sweep width of 14000 Hz in both dimensions. 

Processing was done after a Sine Square multiplication in F1, Gaussian multiplication in F2 and 

Fourier transformation in 1K × 1K real points. 

5.2 Methods for X-ray crystallography 

The data for crystal structures of compounds (3)2, (4)2, 3⊃7, have been collected at the European 

Institute for Chemistry and Biology X-ray facility (UMS 3033) on a Bruker X8 proteum rotating 

anode at the CuKα wavelength. The system features the microstar micro-focus x-ray source with 

the PLATINUM135 CCD detector combined with the 4-circle KAPPA goniometer and the 

Helios multilayer graded optics. The system is driven by the PROTEUM2 software.30 The unit 

cell determinations have been performed using a combination of Fast Fourier and Difference 

Vector techniques, the data were integrated using SAINT and scaled and corrected for absorption 

with SADABS. The data for crystal structures of compounds 2⊃6 and 2⊃8 and 2⊃9 were 

collected at the European Synchrotron Radiation facility (ESRF) in Grenoble on ID29 Beamline 

at three different wavelength (0.77492, 0.87260 and 0.80000 Å). The data were processed using 

the XDS package.31 All the structures except 2⊃8 have been solved by direct methods with 

SHELXD and refined by full-matrix least-squares methods using SHELXL.32 2⊃8 was solved by 

the charge flipping algorithm implemented in the program Superflip.33 The SQUEEZE procedure 

from PLATON34 was used for solvent flattening at the end of the refinement of structures 2⊃9, 

3⊃7 and 2⊃8. The WinGX-software35 was used for modelling. It has to be noticed that all the 

crystals described below contain a large percentage of disordered solvent molecules and very few 

of them could be modeled in the Fourier difference density maps. High flux X-ray Beams on 

small crystals with high solvent contents can explain the modest quality of the refinement 

statistics reported in this study. 
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5.3 Summary of X-Ray crystallographic data 

Name 
Double  

helix (3)2 
Double 

helix (4)2 
Foldaxane 

3⊃7 
Foldaxane 

2⊃8 
Foldaxane 

2⊃6 
Foldaxane 

2⊃9 

Formula 
C255 H249 Cl13 

F10 N48 O46.50 
C95 H94 Cl3 
F3 N20 O15 

C163 H163 
Cl11.54 F5 N26 

O22 

C242 H223 
Cl2.54 F9 N34 

O35 

C229 H243 Cl6 
F9 N34 O30 

C452 H456 
Cl11 F18 N72 

O100 

M 5380.87 1919.25 3342.33 4428.49 4335.27 9228.86 

Crystal system Triclinic Monoclinic Triclinic Triclinic 
Orthorhomb

ic 
Monoclinic 

Space group P-1 C2/c P-1 P-1 Pna2(1) C2/c 

a/Å 19.757(4) 35.415(7) 18.372(4) 15.820(3) 39.021(8) 40.797(8) 

b/Å 22.968(3) 22.130(4) 19.185(4) 26.120(5) 16.630(3) 32.399(7) 

c/Å 31.494(6) 25.416(5) 24.904(5) 30.170(6) 32.270(7) 42.089(8) 

α/o 92.40(3) 90.00 81.34(3) 81.06(3) 90.00 90.00 

β/o 103.25(3) 111.62(3) 70.43(3) 84.39(3) 90.00 114.82(3) 

γ/o 99.67(3) 90.00 85.92(3) 78.08(3) 90.00 90.00 

U/Å3 13665.1 18519(6) 8174(3) 12022(4) 20941(7) 50494(18) 

T /K 213 213 100 100 100 100 

Z 2 8 2 2 4 4 

ρ/g cm–1 1.308 1.377 1.358 1.223 1.375 1.214 

size (mm) 
0.05 x 0.05 x 

0.05 
0.1 x 0.1 x 

0.1 
0.05 x 0.05 

x 0.05 
0.1 x 0.05 x 

0.05 
0.1 x 0.1 x 

0.1 
0.05 x 0.01 

x 0.01 

λ/ Å 1.54178 1.54178 1.54178 1.54178 0.77492 0.87260 

µ/mm-1 1.926 1.591 2.458 0.100 0.171 0 

Absorption 
correction 

none none none none none none 

unique data 23608 11267 24316 27262 42152 33446 

parameters/rest
raints 

3384/22 1240/7 2075/7 2874/16 2757/23 2799/22 

R1, wR2 
0.1577, 
0.3725 

0.0908, 
0.2387 

0.1256, 
0.4206 

0.1557, 
0.4253 

0.0992, 
0.2781 

0.1744, 
0.4877 

goodness of fit 1.512 0.959 2.149 2.076 1.259 2.311 

CCDC# 797911 797906 797907 797908 797910 797909 
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5.4 Methods for chemical synthesis 

All reactions were carried out under a dry nitrogen atmosphere. Commercial reagents were 

purchased from Sigma-Aldrich or Alfa-Aesar and were used without further purification unless 

otherwise specified. Tetrahydrofurane (THF) and dichloromethane (DCM) were dried over 

alumina columns; chloroform, triethylamine (Et3N) and diisopropylethylamine (DIEA) were 

distilled over calcium hydride (CaH2) prior to use. Reactions were monitored by thin layer 

chromatography (TLC) on Merck silica gel 60-F254 plates and observed under UV light. Column 

chromatography purifications were carried out on Merck GEDURAN Si60 (40-63 µm). Melting 

points were measured on a Büchi B-540. ESI and MALDI mass spectra were obtained on a 

Waters LCT Premier and a Bruker Reflex III spectrometers respectively, from the Mass 

Spectrometry Laboratory at the European Institute of Chemistry and Biology (UMS 3033 - 

IECB), Pessac, France. 

 

5.4.1 Synthesis of helix 2 

15mer 2. Diacid11 11 (38.7 mg, 0.085 mmol) was suspended in anhydrous CHCl3 (10 mL). 1-chloro-N,N, 

2-trimethylpropenylamine (0.08 mL, 0.6 mmol) was added and the reaction was allowed to stir at room temperature 

for 3 h. The reaction mixture remains a suspension, but the reaction does work under these conditions. The solvent 

and excess reagents were removed under vacuum and the residue was dried under vacuum for at least 2 h to yield 

acid chloride 12 as a yellow-orange solid. To a solution of heptamer amine19 16c (180 mg, 0.12 mmol) and distilled 

diisopropylethylamine (DIEA) (0.17 mL, 0.96 mmol) in anhydrous CHCl3 (10 mL) was added dropwise a solution of 

the freshly prepared diacid chloride 12 in anhydrous CHCl3 (10 mL) via a syringe at 0°C. The reaction was allowed 

to proceed at room temperature for 12 h. The solution was evaporated and the residue was purified by flash 

chromatography (SiO2) eluting with EtOAc/CH2Cl2 (5:95 to 20:80, vol/vol) to obtain 2 as a yellowish solid (130 mg, 

68% yield). 1H NMR (CDCl3, 300 MHz): δ 10.10-9.72 (m, 10H), 9.36 (br, 2H), 9.19 (br, 2H), 8.45-8.40 (m, 2H), 

8.32 (br, 1H), 8.05-8.00 (m, 2H), 7.74-7.47 (m, 11H), 7.20-6.07 (m, 29H), 4.21-4.08 (m, 8H), 3.88-3.66 (m, 8H), 

3.48-3.46 (m, 2H), 3.28-3.23 (m, 2H), 2.43-2.33 (m, 5H), 2.31-2.22 (m, 5H), 1.32-1.00 (m, 60H), 0.25 (s, 18H). MS 

(MALDI-TOF): m/z calcd for C178H170F9N32O26 [M+H]+ 3342.28 found 3342.02, calcd for C178H169F9N32NaO26 

[M+Na]+ 3364.26 found 3364.05. 
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5.4.2 Synthesis of helix 3 

11mer 3. Diacid11 11 (32 mg, 0.07 mmol) was suspended in anhydrous CHCl3 (10 mL). 1-chloro-N,N, 

2-trimethylpropenylamine (0.07 mL, 0.56 mmol) was added and the reaction was allowed to stir at room temperature 

for 3 h. The reaction mixture remains a suspension, but the reaction does work under these conditions. The solvent 

and excess reagents were removed under vacuum and the residue was dried under vacuum for at least 2 h to yield 

acid chloride 12 as a yellow-orange solid. To a solution of pentamer amine19 16b (115 mg, 0.12 mmol) and distilled 

DIEA (0.17 mL, 0.96 mmol) in anhydrous CHCl3 (10 mL) was added dropwise a solution of the freshly prepared 

diacid chloride 12 in anhydrous CHCl3 (10 mL) via a syringe at 0°C. The reaction was allowed to proceed at room 

temperature for 12 h. The solution was evaporated and the residue was purified by flash chromatography (SiO2) 

eluting with EtOAc/CH2Cl2 (2:98 to 15:85, vol/vol) to obtain 3 as a yellowish solid (70 mg, 51% yield). 1H NMR 

(CDCl3, 300 MHz): δ 10.45 (br, 2H), 10.11 (br, 2H), 9.92 (br, 6H), 8.58 (br, 1H), 8.45 (m, 2H), 8.04 (m, 2H), 

7.64-7.58 (m, 6H), 7.46 (d, J(H, H) = 9.0, 2H), 7.08-6.25 (m, 20H), 4.35-3.57 (m, 12H), 2.57-2.48 (m, 2H), 

2.38-2.29 (m, 2H), 2.25-2.17 (m, 2H), 1.40-1.14 (m, 36H), 0.38 (s, 18H). MS (MALDI-TOF): m/z calcd for 

C122H118F5N24O18 [M+H]+ 2301.90 found 2301.93, C122H117F5N24NaO18 [M+Na]+ 2323.88 found 2323.92. 

 

5.4.3 Synthesis of helix 4 

Tetramer 16a. To a solution of trimer amine11 14 (0.11 g, 0.25 

mmol) and distilled DIEA (0.27 mL, 1.54 mmol) in dry 

dichloromethane (10 mL) was added dropwise a solution of the 

freshly prepared acid chloride17 15 (0.12 g, 0.29 mmol) in dichloromethane (10 mL) via a syringe at 0°C. The 

reaction mixture was allowed to proceed at room temperature for 12 h. The solution was evaporated and the residue 

was purified by flash chromatography (SiO2) eluting with cyclohexane/EtOAc (60:40, vol/vol) to obtain product 16a 

as a light yellow solid (0.13 g, 63% yield). 1H NMR (CDCl3, 300 MHz): δ 10.71 (s, 1H), 10.49 (s, 1H), 10.38 (s, 1H), 

8.53 (s, 1H), 8.50 (s, 1H), 8.44 (t, J(H, H) = 9.1, 1H), 8.21-7.97 (m, 7H), 7.91 (t, J(H, H) = 8.0, 1H), 7.83 (t, J(H, H) 

= 8.0, 1H), 7.66 (s, 1H), 7.07 (d, J(H, H) = 2.6, 1H), 4.10 (d, J(H, H) = 6.6, 2H), 2.35-2.26 (m, 1H), 1.60 (s, 9H), 

1.15 (d, J(H, H) = 6.6, 6H), 0.98 (s, 9H). 13C NMR (CDCl3, 75 MHz): δ 177.5, 163.4, 163.3, 162.4, 161.7, 161.6, 

152.4, 151.0, 150.3, 149.6, 149.4, 149.2, 148.6, 148.5, 147.2, 143.9, 141.0, 140.7, 139.4, 137.5, 137.4, 127.8, 127.7, 

125.9, 125.8, 120.8, 118.8, 117.7, 117.6, 110.7, 110.4, 110.2, 110.1, 98.0, 81.6, 75.5, 39.6, 28.4, 28.2, 27.0, 19.3. 

HRMS (ES+): m/z calcd for C41H45FN9O7 [M+H]+ 794.3426 found 794.3439. 
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Tetramer amine 17a. Tetramer 16a (0.12 g, 0.15 mmol) was dissolved in 

dichloromethane (4 mL), and excess trifluoroacetic acid (TFA) (1 mL) 

was added dropwise. The mixture was allowed to stir at room temperature 

for 3 h. The solvent was evaporated and the residue was dissolved in CH2Cl2 (20 mL), washed with saturated 

NaHCO3, dried over Na2SO4, filtered and then concentrated to give amine 17a (0.10 g, 95% yield) as a yellow solid 

which was used without further purification. 1H NMR (CDCl3, 300 MHz): δ 10.71 (s, 1H), 10.13 (s, 1H), 10.04 (s, 

1H), 8.56 (s, 1H), 8.53 (s, 1H), 8.22-7.81 (m, 9H), 7.57 (s, 1H), 7.08-7.03 (m, 1H), 4.20 (br, 2H), 4.08 (d, J(H, H) = 

6.6, 6H), 2.32-2.23 (m, 1H), 1.14 (d, J(H, H) = 6.6, 6H), 1.07 (s, 9H). 13C NMR (CDCl3, 75 MHz): δ 177.6, 163.3, 

163.3, 162.9, 161.8, 161.7, 150.7, 150.3, 149.6, 149.3, 149.1, 148.9, 145.3, 142.1, 141.0, 140.7, 139.7, 138.7, 138.6, 

135.3, 1351, 126.2, 119.3, 118.0, 116.0, 110.4, 110.2, 96.7, 75.3, 39.8, 29.8, 28.3, 27.2, 19.4. HRMS (ES+): m/z 

calcd for C36H37FN9O5 [M+H]+ 694.2902 found 694.2925. 

 

9 mer 4. To a solution of amine 17a (0.10 g, 0.15 mmol) and distilled DIEA (0.21 mL, 1.22 mmol) in anhydrous 

CHCl3 (10 mL) was added dropwise a solution of the freshly prepared diacid chloride 12 (45 mg, 0.09 mmol) in 

anhydrous CHCl3 (10 mL) via a syringe at 0°C. The reaction mixture was allowed to proceed at room temperature 

for 12 h. The solution was evaporated and the residue was purified by flash chromatography (SiO2) eluting with 

EtOAc/CH2Cl2 (2:98 to 15:85, vol/vol) to obtain compound 4 as a yellowish solid (60 mg, 45% yield). 1H NMR 

(CDCl3, 300 MHz): δ 10.41 (br, 2H), 10.09 (br, 2H), 9.87 (br, 2H), 9.76 (br, 2H), 8.81 (br, 1H), 8.45 (br, 2H), 

7.73-7.08 (m, 24H), 4.29 (br, 4H), 4.14-3.99 (m, 4H), 2.57-2.46 (m, 2H), 2.43-2.35 (m, 2H), 1.39 (d, J(H, H) = 6.3, 

12H), 1.30-1.26 (m, 12H), 0.54 (s, 18H). HRMS (ES+): m/z calcd for C94H92F3N20O14 [M+H]+ 1781.7054 found 

1781.6201. 

 

5.4.4 Synthesis of guests 

Synthesis of guests terminated by benzylcarbamate group:  

Benzylethane-1,2-dicarbamate 5a. To 1,2-diaminoethane (0.13 mL, 2.0 mmol) and 

DIEA (2.0 mL, 12.0 mol) in CH2Cl2 (10 mL) at 0°C was added dropwise benzyl 

chloroformate (0.62 mL, 4.4 mmol). Then the reaction mixture was allowed to reach 

room temperature and stirred for 12 h. The solution was evaporated and the residue was purified by flash 

chromatography (SiO2) eluting with CH2Cl2/EtOAc (15:85, vol/vol) to obtain product 5a as a white solid (0.58 g, 

88% yield). 1H NMR (CDCl3, 300 MHz): δ 7.36-7.34 (m, 10H), 5.09 (br, 6H), 3.34 (s, 4H). 13C NMR (CDCl3, 75 

MHz): δ 156.9, 136.5, 128.7, 128.3, 128.3, 67.0, 41.4. HRMS (ES+): m/z calcd for C18H21N2O4 [M+H]+ 329.1501 

found 329.1501. m.p.: 168.1-168.5°C. 
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Other guests terminated by benzylcarbamate group 5b-5g were synthesized using the similar method as guests 5a. 

 

Synthesis of guest terminated by n-butyl group:  

n-butylpentane-1,5-dicarbamate 6. To a solution of 4-nitrophenyl chloroformate 

(1.19 g, 5.91 mmol) in dry CH2Cl2 (10 mL) was added dropwise a mixture of 

1-butanol (0.49 mL, 5.37 mmol) and distilled triethylamine (Et3N) (1.80 mL, 10.74 

mmol) in CH2Cl2 (10 mL) via a syringe at 0°C. After 5 min stirring, a solution of 1,5-diaminopentane (0.315 mL, 

2.68 mmol) and Et3N (1.80 mL, 10.74 mmol) in CH2Cl2 (10 mL) was added via a syringe. Then the reaction mixture 

was allowed to proceed at room temperature for 12 h. The solution was evaporated and the residue was purified by 

flash chromatography (SiO2) eluting with EtOAc/CH2Cl2 (10:90 to 30:70, vol/vol) to obtain product 6 as a white 

solid (0.63 g, 78% yield). 1H NMR (CDCl3, 300 MHz): δ 4.83 (br, 2H), 4.02 (t, J(H, H) = 6.6, 4H), 3.14 (q, J(H, H) 

= 6.3, J(H, H) = 6.6, 4H), 1.58-1.42 (m, 8H), 1.38-1.26 (m, 6H), 0.90 (t, J(H, H) = 6.6, 6H). 13C NMR (CDCl3, 75 

MHz): δ 157.0, 64.6, 40.7, 31.2, 29.7, 23.8, 19.1, 13.8. HRMS (ES+): m/z calcd for C15H31N2O4 [M+H]+ 303.2284 

found 303.2286. m.p.: 63.3-63.6°C. 

 

Synthesis of rods terminated by 4,4-diphenyl groups:  

4,4-diphenylbutan-1-ol 18.36 To a stirred suspension of lithium aluminium hydride (LiAlH4) 

(3.3 g, 87 mmol) in dry THF (20 mL) was added a solution of 4,4-diphenylbutanoic acid37 (4.2 g, 

18 mmol) in THF (20 mL) at 0°C, then the resulting mixture was stirred at room temperature for 

6 h. The reaction mixture was quenched by 1 N NaOH with ice-cooling bath. The THF layer was separated and dried 

over Na2SO4. After concentration, the residue was purified by flash chromatography (SiO2) eluting with 

EtOAc/CH2Cl2 (5:95, vol/vol) to obtain product 18 as colourless oil (3.6 g, 91% yield). 1H NMR (CDCl3, 300 MHz): 

δ 7.31-7.14 (m, 10H), 3.94 (t, J(H, H) = 8.7, 1H), 3.69 (q, J(H, H) = 6.3, J(H, H) = 6.0, 2H), 2.17-2.09 (m, 2H), 

1.59-1.50 (m, 2H), 1.18 (t, J(H, H) = 5.4, 1H). 13C NMR (CDCl3, 75 MHz): δ 145.1, 128.6, 128.0, 126.3, 63.0, 51.3, 

32.0, 31.5. 

 

4,4-diphenylbutyl-(4-nitrophenyl)carbonate 19. To a solution of 4-nitrophenyl 

chloroformate (1.76 g, 8.7 mmol) in dry CH2Cl2 (20 mL) was added dropwise a mixture 

of 4,4-diphenylbutan-1-ol 18 (1.88 g, 8.3 mmol) and Et3N (3.46 mL, 25.0 mmol) in 

CH2Cl2 (10 mL) via a syringe at 0°C. Then the reaction mixture was allowed to proceed at room temperature for 12 h. 

The solution was evaporated and the residual oil was purified by flash chromatography (SiO2) eluting with 

Hexane/CH2Cl2 (20:80, vol/vol) to obtain product 19 as colourless oil (2.5 g, 77% yield).1H NMR (CDCl3, 300 

MHz): δ 8.29 (d, J(H, H) = 6.9, 2H), 7.37 (d, J(H, H) = 6.9, 2H), 7.32-7.17 (m, 10H), 4.32 (t, J(H, H) = 6.6, 2H), 

3.97 (t, J(H, H) = 7.8, 1H), 2.24-2.16 (m, 2H), 1.79-1.69 (m, 2H). 13C NMR (CDCl3, 75 MHz): δ 155.7, 152.6, 145.5, 

144.5, 128.7, 128.6, 127.9, 126.5, 126.4, 125.4, 121.9, 69.5, 51.1, 31.8, 27.3.  

 

 

 

 



 

 
Chapter 2. Foldaxanes: helically folded aromatic oligoamides around dumbbell-shaped molecules 

 

57 
 

(4,4-diphenylbutyl)propane-1,3-dicarbamate 7. To a solution of 

4,4-diphenylbutyl-(4-nitrophenyl)carbonate 19 (0.18 g, 0.46 mmol) in dry 

CH2Cl2 (10 mL) was added dropwise a mixture of 1,3-diaminopropane (0.02 

mL, 0.23 mmol) and DIEA (0.50 mL, 2.8 mmol) in CH2Cl2 (10 mL) by a syringe at 0°C. Then the reaction mixture 

was allowed to proceed at room temperature for 12 h. The solution was evaporated and the residue was purified by 

flash chromatography (SiO2) eluting with EtOAc/CH2Cl2 (30:70, vol/vol) to obtain product 7 as a white solid (0.11 g, 

79% yield). 1H NMR (CDCl3, 300 MHz): δ 7.31-7.16 (m, 20H), 5.06 (br, 2H), 4.09 (t, J(H, H) = 6.0, 4H), 3.94 (t, 

J(H, H) = 7.8, 2H), 3.22 (q, J(H, H) = 6.0, J(H, H) = 6.0, 4H), 2.15 (q, J(H, H) = 7.8, J(H, H) = 7.8, 4H), 1.64-1.56 

(m, 6H). 13C NMR (CDCl3, 75 MHz): δ 157.2, 144.8, 128.6, 127.9, 126.3, 66.8, 51.1, 37.5, 32.0, 30.6, 27.7. HRMS 

(ES+): m/z calcd for C37H43N2O4 [M+H]+ 579.3223 found 579.3235. m.p.: 57.9-59.3°C. 

 

(4,4-diphenylbutyl)pentane-1,5-dicarbamate 8. To a solution of 

4,4-diphenylbutyl-(4-nitrophenyl)carbonate 19 (0.18 g, 0.46 mmol) in dry 

CH2Cl2 (10 mL) was added dropwise a mixture of cadaverine (0.03 mL, 

0.23 mmol) and DIEA (0.50 mL, 2.8 mmol) in CH2Cl2 (10 mL) by a syringe at 0°C. Then the reaction mixture was 

allowed to proceed at room temperature for 12 h. The solution was evaporated and the residue was purified by flash 

chromatography (SiO2) eluting with EtOAc/CH2Cl2 (30:70, vol/vol) to obtain product 8 as a white solid (0.11 g, 79% 

yield). 1H NMR (CDCl3, 300 MHz): δ 7.31-7.15 (m, 20H), 4.64 (br, 2H), 4.08 (t, J(H, H) = 6.3, 4H), 3.93 (t, J(H, H) 

= 7.8, 2H), 3.15 (m, 4H), 2.15 (q, J(H, H) = 7.8, J(H, H) = 7.8, 4H), 1.60-1.51 (m, 4H), 1.49-1.44 (m, 4H), 1.36-1.27 

(m, 2H). 13C NMR (CDCl3, 75 MHz): δ 156.9, 144.9, 128.6, 127.9, 126.3, 66.7, 51.1, 40.8, 32.0, 29.7, 27.8, 23.9. 

HRMS (ES+): m/z calcd for C39H47N2O4 [M+H]+ 607.3536 found 607.3552. m.p.: 83.5-84.1°C. 

 

(4,4-diphenylbutyl)-N-tert-butoxycarbonylaminopentyl-carbamate 20. To 

4,4-diphenylbutyl-(4-nitrophenyl)carbonate 19 (0.55 g, 1.40 mmol) in dry CH2Cl2 

(10 mL) was added dropwise a mixture of tert-butyl-N-(5-aminopentyl)carbamate 

(0.32 mL, 1.50 mmol) and Et3N (0.78 mL, 5.60 mmol) in CH2Cl2 (10 mL) via a 

syringe at 0°C. Then the reaction mixture was allowed to proceed at room temperature for 12 h. The solution was 

evaporated and the residual oil was purified by flash chromatography (SiO2) eluting with EtOAc/CH2Cl2 (15:85, 

vol/vol) to obtain product 20 as colourless oil (0.58 g, 91% yield). 1H NMR (CDCl3, 300 MHz): δ 7.30-7.14 (m, 

10H), 4.65 (br, 1H), 4.50 (br, 1H), 4.08 (t, J(H, H) = 6.3, 2H), 3.93 (t, J(H, H) = 7.8, 1H), 3.14-3.07 (m, 4H), 

2.14-2.07 (m, 2H), 1.62-1.55 (m, 2H), 1.52-1.47 (m, 4H) 1.44 (s, 9H) 1.37-1.29 (m, 2H). 13C NMR (CDCl3, 75 MHz): 

δ 156.9, 156.2, 144.9, 128.6, 127.9, 126.3, 79.3, 64.8, 51.1, 40.9, 40.4, 32.0, 29.9, 29.7, 28.6, 27.8, 23.9. HRMS 

(ES+): m/z calcd for C27H38N2NaO4 [M+Na]+ 477.2729 found 477.2747. 

 

Bis-(4,4-diphenylbutyl)-1,1'-pentylcarbamate-5,5'-urea 9. 

(4,4-diphenylbutyl)-N-tert-butoxycarbonyl 

aminopentyl-carbamate 20 (0.45 g 1.0 mmol) was dissolved in 
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CH2Cl2 (6 mL), and excess trifluoroacetic acid (1.5 mL) was added. The reaction mixture was stirred at room 

temperature for 3 h. The solvent was evaporated and the residue was dissolved in CH2Cl2 (20 mL), washed with 

saturated NaHCO3, dried over Na2SO4 and then concentrated to give amine as colourless oil. To a solution of this 

amine and Et3N (0.55 mL, 4.00 mmol) in dry CH2Cl2 (10 mL) was added dropwise a solution of 4-nitrophenyl 

chloroformate (0.10 g, 0.50 mmol) in CH2Cl2 (10 mL) via a syringe at 0°C. The reaction mixture was allowed to 

proceed at room temperature for 12 h. The solution was washed with 1N NaOH and brine several times, then dried 

over Na2SO4. After filtration and concentration, the residual oil was purified by flash chromatography (SiO2) eluting 

with EtOAc/CH2Cl2 (10:90 to 90:10, vol/vol) to obtain product 9 as a white solid (0.19 g, 52% yield). 1H NMR 

(CDCl3, 300 MHz): δ 7.31-7.15 (m, 20H), 4.80 (br, 2H), 4.64 (br, 2H), 4.07 (t, J(H, H) = 6.3, 4H), 3.93 (t, J(H, H) = 

7.8, 2H), 3.17 (m, 8H), 2.15 (q, J(H, H) = 7.8, J(H, H) = 7.8, 4H), 1.63-1.51 (m, 4H), 1.49-1.44 (m, 8H), 1.36-1.27 

(m, 4H). 13C NMR (CDCl3, 75 MHz): δ 158.6, 157.0, 144.8, 128.6, 127.9, 126.4, 66.8, 51.1, 40.8, 40.2, 32.0, 29.9, 

29.7, 27.8, 23.9. HRMS (ES+): m/z calcd for C45H59N4O5 [M+H]+ 735.4485 found 735.4512. m.p.: 107.1-108.3°C.  

 

4,4-diphenylbutyl 5-(2-(tert-butoxycarbonylamino)ethylamino) 

pentylcarbamate 21. To a solution of 4,4-diphenylbutyl-(4-nitrophenyl) carbonate 

19 (0.46 g, 1.22 mmol) in dry CH2Cl2 (10 mL) was added dropwise a mixture of 

tert-butyl-2-(2-aminoethylamino)ethylcarbamate38 (0.26 g, 1.28 mmol) and Et3N (0.70 mL, 5.00 mmol) in CH2Cl2 

(10 mL) via a syringe at 0°C. Then the reaction mixture was allowed to proceed at room temperature for 12 h. The 

solution was washed with 1N NaOH and brine several times, then dried over Na2SO4. After filtration and 

concentration, the residual oil was purified by flash chromatography (SiO2) eluting with MeOH/CH2Cl2 (5:95 to 

15:85, vol/vol) to obtain product 21 as yellowish oil (0.26 g, 47% yield). 1H NMR (CDCl3, 300 MHz): δ 7.30-7.14 

(m, 10H), 5.07 (br, 1H), 4.88 (br, 1H), 4.08 (t, J(H, H) = 6.6, 2H), 3.93 (t, J(H, H) = 7.8, 1H), 3.26-3.17 (m, 4H), 

2.75 (q, J(H, H) = 5.7, J(H, H) = 5.7, 4H), 2.15-2.07 (m, 2H), 1.61-1.54 (m, 2H), 1.44 (s, 9H). 13C NMR (CDCl3, 75 

MHz): δ 157.0, 156.3, 144.8, 128.6, 127.9, 126.3, 79.4, 64.8, 51.1, 48.9, 48.8, 40.7, 40.4, 32.0, 28.5, 27.7. HRMS 

(ES+): m/z calcd for C26H38N3O4 [M+H]+ 456.2862 found 456.2867. 

 

4,4-diphenylbutyl-5-(2-(tert-butoxycarbonylamino)ethylbenzyloxycarbonylami

no)pentylcarbamate 22. To 4,4-diphenylbutyl-5-(2-(tert- 

butoxycarbonylamino)ethylamino)pentylcarbamate 21 (0.40 g, 0.88 mmol) and 

Et3N (0.49 mL, 3.5 mmol) in dry CH2Cl2 (10 mL) was added dropwise a solution of benzyl chloroformate (0.15 mL, 

1.00 mmol) at 0°C. Then the reaction mixture was allowed to proceed at room temperature for 12 h. The solution 

was evaporated and the residual oil was purified by flash chromatography (SiO2) eluting with EtOAc/CH2Cl2 (5:95 

to 30:70 vol/vol) to obtain product 22 as colourless oil (0.51 g, 92% yield). 1H NMR (CDCl3, 300 MHz): δ 7.33-7.14 

(m, 15H), 5.32 (br, 1H), 5.10 (s, 2H), 4.97 (br, 1H), 4.04 (br, 2H), 3.92 (t, J(H, H) = 7.8, 1H ) 3.39-3.30 (m, 8H), 

2.09-2.08 (m, 2H), 1.59 (br, 2H), 1.42 (s, 9H). 13C NMR (CDCl3, 75 MHz): δ 157.0, 156.4, 156.1, 144.8, 136.4, 

128.7, 128.6, 128.3, 128.1, 127.9, 126.3, 79.6, 67.7, 64.9, 51.1, 48.0, 40.1, 39.6, 32.0, 28.5, 27.7. HRMS (ES+): m/z 

calcd for C34H43N3NaO6 [M+Na]+ 612.3050 found 612.3064. 
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 (4,4-diphenylbutyl)-N-tert-butoxycarbonylaminoheptyl-carbamate 23. To 

4,4-diphenylbutyl-(4-nitrophenyl)carbonate 19 (0.48 g, 1.20 mmol) in dry 

CH2Cl2 (10 mL) was added dropwise a mixture of 

tert-butyl-N-(7-aminoheptyl)carbamate (0.34 g, 1.50 mmol) and Et3N (0.68 mL, 4.9 mmol) in CH2Cl2 (10 mL) via a 

syringe at 0°C. Then the reaction mixture was allowed to proceed at room temperature for 12 h. The solution was 

evaporated and the residue was purified by flash chromatography (SiO2) eluting with EtOAc/CH2Cl2 (15:85, vol/vol) 

to obtain product 23 as a white solid (0.52 g, 88% yield). 1H NMR (CDCl3, 300 MHz): δ 7.30-7.14 (m, 10H), 4.60 

(br, 1H), 4.49 (br, 1H), 4.08 (t, J(H, H) = 6.3, 2H), 3.93 (t, J(H, H) = 7.8, 1H), 3.17-3.06 (m, 4H), 2.14 (q, J(H, H) = 

7.8, J(H, H) = 7.8, 2H), 1.65-1.55 (m, 2H), 1.44 (br, 13H) 1.29 (br, 6H). 13C NMR (CDCl3, 75 MHz): δ 156.8, 156.1, 

144.9, 128.6, 128.0, 126.3, 79.2, 64.7, 51.1, 41.0, 40.7, 32.0, 30.1, 29.0, 28.6, 27.8, 26.8. HRMS (ES+): m/z calcd for 

C29H42N2NaO4 [M+Na]+ 505.3042 found 505.3054. m.p.: 64.3-64.9°C. 

 

Guest 25. Compound 22 (1.46 g, 2.3 mmol) and 23 (1.11 g, 

2.3 mmol) were respectively dissolved in CH2Cl2 (6 mL), 

and excess trifluoroacetic acid (3 mL) was added separately. 

The two reactions were stirred at room temperature for 3 h. The solvent was evaporated and the residue was 

dissolved in CH2Cl2 (20 mL), washed with saturated NaHCO3, dried over Na2SO4 respectively and then concentrated 

to give the corresponding amines as oils. To a solution of amine 24 corresponding to 23 and Et3N (0.64 mL, 4.6 

mmol) in dry CH2Cl2 (10 mL) was added dropwise a solution of 4-nitrophenyl chloroformate (0.46 g, 2.3 mmol) in 

CH2Cl2 (10 mL) via a syringe at 0°C. The reaction mixture was stirred for 5 min before adding the other amine 

corresponding to 22 and Et3N (0.64 mL, 4.6 mmol) in dry CH2Cl2 (10 mL). The resulting reaction mixture was then 

allowed to proceed at room temperature for 12 h. The solution was washed several times with 1N NaOH and brine, 

then dried over Na2SO4. After filtration and concentration, the residual oil was purified by flash chromatography 

(SiO2) eluting with MeOH/CH2Cl2 (5:95 to 25:85, vol/vol) to obtain product 25 as colourless oil (0.58 g, 28% yield). 

1H NMR (CDCl3, 300 MHz): δ 7.30-7.14 (m, 20H), 5.39 (br, 1H), 5.33 (br, 1H), 5.09 (s, 2H), 4.74 (br, 2H), 

4.07-4.01 (m, 4H), 3.93-3.86 (m, 2H), 3.36 (br, 8H), 3.14-3.09 (m, 4H), 2.15-2.05 (m, 4H), 1.57 (br, 4H), 1.44 (br, 

4H) 1.27 (br, 6H). 13C NMR (CDCl3, 75 MHz): δ 158.7, 158.4, 157.5, 157.1, 156.8, 144.8, 144.7, 136.4, 128.7, 128.6, 

128.2, 127.9, 126.3, 126.3, 67.5, 65.0, 64.7, 51.0, 49.3, 48.8, 48.4, 40.9, 40.4, 39.5, 32.0, 31.9, 30.1, 29.9, 28.9, 27.7, 

27.7, 26.7, 26.6. HRMS (ES+): m/z calcd for C54H67N5NaO7 [M+Na]+ 920.4938 found 920.4952. 

 

Guest 10. Compound 25 (0.4 g, 0.45 mmol) was dissolved in 

EtOAc (40 mL), and 10% Pd/C (40 mg) was added. The 

reaction mixture was stirred for 48 h under hydrogen at 

atmospheric pressure. After filtration through celite and concentration, the residual oil was purified by flash 

chromatography (SiO2) eluting with MeOH/CH2Cl2 (5:95 to 40:60, vol/vol) to obtain product 10 as colourless oil 

(0.20 g, 59% yield). 1H NMR (CDCl3, 300 MHz): δ 7.30-7.14 (m, 20H), 5.10 (br, 1H), 4.98 (br, 1H), 4.68 (br, 2H), 
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4.05 (br, 4H), 3.92-3.87 (m, 2H), 3.24-3.21 (m, 4H), 3.14-3.12 (m, 4H), 2.73-2.70 (m, 4H), 2.14-2.06 (m, 4H), 1.57 

(br, 4H), 1.45 (br, 4H) 1.29 (br, 6H). 13C NMR (CDCl3, 75 MHz): δ 159.2, 157.2, 156.9, 144.8, 144.8, 128.6, 128.0, 

127.9, 126.3, 126.3, 64.9, 64.7, 51.0, 49.4, 48.9, 40.9, 40.3, 39.9, 32.0, 32.0, 30.2, 29.9, 28.8, 27.7, 26.7, 26.6. 

HRMS (ES+): m/z calcd for C46H62N5O5 [M+H]+ 764.4751 found 764.4780. 
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1. Introduction 

Important steps have been made to control motions at the molecular scale in synthetic systems. 

Examples of elementary molecular motions such as rotations1,2 and translations3,4 have been 

reported, as well as combined motions such as coupled rotations,5-7 coupled translations8,9 and 

spring-like extensions.10-12 In addition, the direction of molecular movements can sometimes be 

controlled in translations (shuttling)13-15 and in rotations.16-20 

Folding is the process nature has selected to control the conformation of its molecular 

machinery. Thus, foldamers, defined as artificial folded molecular architectures, have been 

constructed to mimic the structures and functions of “biomachinery”. Already, some examples of 

functional foldamers capable of processing motion have been designed. For example, some 

helical molecules can unfold into a linear strand and refold to a helical conformation by pH 

control.21-23 In an other example, a double helical system, sliding of the two single helices along 

one another has been demonstrated by our group.12 Recently, Yashima and Furusho have revealed 

that a spiroborate-based double helix in which the central sodium cation was coordinated to the 

spiroborate moieties can do extension−contraction motion by the sequential addition of cryptands 

and NaPF6 in an alternating manner.10 In this case, sodium cation binding and release processes 

are keys to trigger the spring-like motion. 

In the previous chapter, we described the ability of some multi-turn single helical aromatic 

amide foldamers to wind around rod like guests and form stable complexes in which the guest 

resides through the helix cavity.24 By analogy with rotaxanes, these complexes can be termed 

foldaxanes. When the rods have bulky residues at the termini, foldaxanes do not form by the 

threading of the rod into the helix cavity but by an unfolding-refolding mechanism of the helix. 

This creates a high kinetic barrier, due to the high energy cost to unfold a helical aromatic 

oligoamides as shown, for example, in quinolinecarboxamide oligomers.25 The unusual kinetic 

stability of foldaxanes has allowed us to induce and observe shuttling of the helix between distinct 

stations along a dumbbell rod at timescales that are much shorter than the timescale of foldaxane 

dissociation. Foldaxane formation is thermodynamically favored owing to intermolecular 

hydrogen bonds between binding sites, which are located at each extremity of the helix (namely 

2,6-pyridinedicarboxamide hydrogen-bond donors) and anchor points on the rods (carbonyl 

hydrogen-bond acceptors). It follows that a strict match between helix and rod lengths is required 

to ensure foldaxane stability; the tolerance is typically one CH2 unit of the rod. 
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Following this, we devised that foldaxanes might form not only with aromatic oligoamide 

sequences folded as single helices, but also when they hybridize into double helices.12,26,27 For 

example, sequences related to 1 (Figure 1) have been shown to hybridize into stable double 

helical antiparallel duplexes.28 Because (1)2 possesses two 2,6-pyridinedicarboxamide hydrogen 

bond donors, that is one on each strand, we predicted that it might also bind to rod-like guests 

having carbonyl hydrogen-bond donors. Furthermore, in the presence of guests of different 

lengths, the two strands of the duplex could undergo a relative screw motion to adjust the 

distance between hydrogen bond donors located at the end of one of their extremities so that the 

length of the duplexes matches with the length of the guest (Figure 1). 
 

 

 

Figure 1. a) The structure of sequence 1. b) Cartoon representation of the screw motion of the two strands of a 
molecular duplex and of the trapping of screwed (left) and unscrewed (right) double helices upon binding to short 
and long rod-like guests, respectively. Hydrogen-bond acceptors (the golden sticks protruding from the rods) on the 
guests match with hydrogen-bond donors (small rings) at the ends of a double helix. 
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2. Synthesis 

2.1 Synthesis of helices 

Aromatic oligoamides 1 comprises at one extremity of a trimer of 2,6-diaminopyridine and 

2,6-pyridinedicarboxylic acid (P), that can form a cleft that bind to hydroxyl or amino groups that 

may thus constitute hot spots to anchor guests within the helix cavity.24,28,29 A tetrameric amide 

segment of 7-amino-8-fluoro-2 -quinolinecarboxylic acid (Qf) was also included in 1, and this 

segment was known to hybridize into duplex or quadruplex architecture.27,28 Thus, 1 was 

envisaged to form an antiparallel double helix with two hydrogen bond donors at the termini.  

The synthetic procedures of 1 via a convergent approach have been described in early 

studies,28 and are depicted in Scheme 1. The oligoamides 1 was successfully achieved from 

coupling monoamine mono-pivaloyl-protected trimer P3 with acid chloride of Qf
4 in the moderate 

yield. 
 

 

Scheme 1. The synthesis of 1: a) DIEA, DCM, r.t. 

 

2.2 Synthesis of guests 

The dumbbell-shaped guests 2a-2f were synthesized through the reaction of benzyl 

chloroformate with corresponding diamine as shown in chapter 1. The guest 3 with two stations 

was obtained from diphenylbutanol. The hydroxyl group of diphenylbutanol was first activated 

with 4-nitrophenyl chloroformate, then coupled to an excess of 1,6-diaminohexane to yield 4. 

Compound 5 can be prepared by the same procedure. The activation of 5 with 4-nitrophenyl 

chloroformate, subsequent reaction with an excess of ethylene glycol afforded 6, which activated 

again and coupled with 4 to generate guest 3. The detailed synthesis is shown in Scheme 2. 
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Scheme 2. The synthesis of guests 2 and 3: a) DIEA, DCM, r.t.; b) 4-nitrophenyl chloroformate, TEA, DCM, r.t.; c) 
4-nitrophenyl chloroformate, TEA, DCM, r.t., then ethylene glycol, reflux. 
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3. Results and discussion 

3.1 The double-helical foldaxane formation 
 

 

Figure 2. Representative 300 MHz NMR spectra of 1 (8 mM) in CDCl3 at 298K titrated with guests a) 2b; b) 2c; c) 
2d; d) 2e. Amide signals of the double helix and foldaxane are marked with black diamond and black circles, 
respectively. Aromatic proton resonances are marked with stars. 

 

Titrations between double helix (1)2 and guests 2a-2f in CDCl3 were monitored by 1H NMR 

spectroscopy and, in some cases, revealed the formation of a new species in slow exchange with 

(1)2 on the NMR timescale (Figure 2). Specifically, the longest (2f) and shortest (2a) rods do no 

form inclusion complexes, whereas rods of intermediate sizes 2b-2e do. The binding constants, 

listed in table 1, based on integration signals of free double helix and complex (Figure 3), were 

a) b) 

c) d) 
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calculated to be 55, 20, 140 and 35 L.mol-1 for (1)2⊃2b, (1)2⊃2c, (1)2⊃2d and (1)2⊃2e, 

respectively. These complexes all formed at rates too fast to monitor by NMR; equilibrium is 

reached before the first NMR spectrum can be measured, which takes approximately 2 minutes. 

This process is faster than that previously observed for single-helical foldaxanes that are derived 

from longer aromatic amide sequences. Thus, to bind a rod of given length, two short strands 

appear to unwind and rewind faster than a long one. 
 

 

Figure 3. Scheme of calculation of the association constant Ka. 

 

Table 1. Titration of oligomer 1 by different dumbbell molecules monitored by NMR (300 MHz) in CDCl3 at 298K. 
Dashes reflect no affinity of the oligomers for the rods. All experimental errors < 5%. Ka in L.mol-1. 

 2a 2b 2c 2d 2e 2f 

(1)2 - 55 20 140 35 - 

 

The crystal structures of (1)2⊃2b, (1)2⊃2d, and (1)2⊃2e were obtained from the slow 

diffusion of hexane into a chloroform solution of 1 mixed with guests 2b, 2d and 2e, respectively 

(Figure 4). They confirmed the stoichiometry, symmetry and structure of the double helical 

foldaxanes, in agreement with NMR titration data. In particular the crystal structures revealed: (i) 

the expected hydrogen bonds between the 2,6-pyridinedicarboxamide units and carbonyl groups 

on the rod as observed for single helical foldaxanes;24 (ii) the antiparallel nature of the double 

helices; (iii) the C2 symmetrical structure of the complexes; (iv) that the double helix cavity 

accommodates the alkyl and carbamate moieties of the guest but that the terminal benzyl groups 

are too large to be threaded through the helix, thus suggesting a helix unfolding-refolding 

mechanism of formation for the double-helical foldaxanes as demonstrated for single-helical 

foldaxanes.24 
 

[F] = foldaxane concentration   
[DH] = double helix concentration 
[R] = rod concentration 

Ka =
[F]

[R][DH]



 

 
Chapter 3. Double-helical foldaxanes: template induced screw motion 

71 
 

 

Figure 4. Solid state structures of a) (1)2⊃2b; b) (1)2⊃2d; and c) (1)2⊃2e. The antiparallel strands of (1)2 are shown 
in red and blue (tube representation). Rod-like guests are shown in CPK (C grey, H white, O red, N light blue. 
Isobutyl side chains and solvent molecules have been omitted for clarity. 

 

3.2 The screw motion of the double-helical foldaxane 

Unlike single-helical foldaxanes, double helical-foldaxanes feature a high tolerance with 

respect to guest length: 2e is three CH2 units longer than 2b yet they have comparable affinities 

for (1)2. In addition, the binding constants as a function of guest length do not follow a trend. A 

close-up look at the crystal structures shows that, to accommodate 2b or 2d, the two strands of 

(1)2 undergo a relative screw motion of over a third of a turn to adjust the distance along the helix 

axis between the two 2,6-dicarboxamide units and their angular orientation perpendicular to the 

helix axis (Figure 5). The structure of (1)2⊃2e is almost superimposable on that of (1)2⊃2d, 

except that the alkyl segment of the guest is compacted in the case of 2e so as to accommodate its 

extra CH2 unit, an effect which has been observed in other systems.30,31 In agreement with the 

solid-state structures, 1H NMR analysis of the solutions showed that signals belonging to terminal 

functionalities of the strands, for example, the pivaloyl protons and some pyridine protons 

(Figure 6), consistently shift upfield when the guest is shortened (from 2e to 2b), thus suggesting 

an increase of ring-current effects as would be expected when the two strands screw into one 

another. 
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Figure 5. Solid state structures of a) (1)2⊃2b; b) (1)2⊃2d illustrating the screw motion. Rods are in yellow CPK 
representations. The carbonyl oxygen atoms of the carbamate groups are shown in green. l and L represent the 
distance between the two pyridine clefts in each complex (1)2⊃2b and (1)2⊃2d and are equal to 6.8 Å and 9.0 Å, 
respectively. The red and blue arrows illustrate the screw motion mechanism between complex (1)2⊃2b and (1)2⊃2d. 
Isobutyl side chains and solvent molecules have been omitted for clarity. 

 

 

 

Screwing is also the mechanism by which these double helices are presumed to form from 

single-stranded precursors in the absence of rod-like guest.32 Here, it is the length of the guest 

that templates the extent of relative screwing of the two strands within each duplex. The binding 

constants as a function of guest length do not follow a trend; this result is probably due to the fact 

that an adjustment in the distance between the 2,6-pyridinedicarboxamide units of the duplex is 

accompanied by a concomitant change in their angular orientation, therefore not allowing a 

perfect match for all guests. 
 

Figure 6. 300 MHz NMR spectra of 1 (8 
mM) in CDCl3 at 25°C titrated with a) 2b (10 
equiv.); b) 2c (20 equiv.); c) 2d (10 equiv.); d) 
2e (10 equiv.). Unlabeled signals are those of 
the foldaxanes. Circles denote residual signals 
of (1)2. The resonances of pivaloyl protons 
and of pyridine protons in position 4 shift to 
higher fields when the guest is shortened, 
consistent with the screwing of the two 
strands into one another, resulting in an 
increased ring current effect. In contrast, NH 
amide protons which converge towards the 
helix cavity do not shift. 
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A titration of (1)2 with an equimolar mixture of 2b and 2e was then carried out, producing a 

mixture of (1)2⊃2b and (1)2⊃2e in a 2:1 ratio (Figure 7d). Rotating-frame nuclear Overhauser 

effect 2D spectroscopy (ROESY) measurements (Figure 8) were recorded on this mixture and 

showed intense exchange peaks between corresponding protons of the two complexes. 

Correlations were also observed between each foldaxane and the uncomplexed (free) double 

helix (1)2. This experiment demonstrates that the double helices may dissociate from one rod and 

then reassociate with another rod having a different length. The net outcome of this exchange 

process is a screw or unscrew motion within the duplex, yet it does not proceed through 

correlated translations and rotations of the strands, but through an unwinding/rewinding 

mechanism. 
 

Figure 7. Part of the 1H NMR spectra (700 
MHz) showing the amide and some pyridine 
proton resonances of (1)2 (8 mM) in CDCl3: a) 
at 25°C in the absence of guest; b) at 0°C in 
the presence of 2b (10 equiv.); c) at 0°C in the 
presence of 2e (10 equiv.); d) at 0°C in the 
presence of 2b and 2e (10 equiv. each). The 
signals of the starting double helix (1)2 are 
marked with empty circles (�), the signals of 
(1)2⊃2b with black circles (●) and the signals 
of (1)2⊃2e with black squares (�). Sharper 
NMR spectra could be recorded at 0°C and are 
shown in this figure. 
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Figure 8. Expansion of the 1H-1H ROESY spectrum (700 MHz) at 4°C of (1)2 (8 mM) in the presence of 2b and 2e 
(10 equiv. each) recorded with 300 ms mixing time. Intense cross peaks show that protons of the free double helix 
(1)2, (1)2⊃2b and (1)2⊃2e complex exchange in a slow exchange regime on the NMR time scale. NOEs cross peaks 
are observed in red whereas exchange peaks are seen in blue. Some exchanges cross peaks have been labelled in 
green. P1, P2, P3 denote protons belong to independent pyridine spin systems but have not been assigned to each 
pyridine rings in the sequence. C3 or C6 denotes the number (3 or 6) of CH2 units of the alkyl chain of the guest on 
which the double helix resides. 

 

3.3 The screw motion through the shuttling 

A step further consisted in placing two helix binding stations of different lengths on a single 

rod. For this purpose, guest 3 was equipped with two binding stations equivalent to those of 2b 

and 2e (Scheme 2). Upon titrating (1)2 with a large excess of 3, a complex (1)2⊃3 forms in which 

a single duplex binds to 3. No measurable amount of the higher aggregate, in which two double 
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helices bound to 3, was observed. As expected, the 1H NMR spectrum of (1)2⊃3 revealed two 

sets of signals that corresponded to two isomers of position of (1)2 either on the long station or on 

the short station of 3 (Figure 9). Neither of these two isomers has a symmetrical structure: the 

two strands of the duplex are inequivalent in each isomer (Figure 10a). Consequently, the 1H 

NMR spectrum of (1)2⊃3 features four times as many signals as that of, for example (1)2⊃2b 

(Figure 9b, 9d). 
 

 

 

ROESY experiments on (1)2⊃3 in CDCl3 solutions revealed that intense exchange takes 

place between the isomer in which (1)2 is positioned on the long station of 3 and the one in which 

(1)2 is positioned on the short station, while cross-peaks with traces of the free (1)2 were very 

weak. As above, the net outcome of this exchange is a screw or an unscrew motion within (1)2. 

Remarkably, ROESY data demonstrate that exchange and consequently the screw/unscrew 

motion, proceeds through the shuttling of the duplex along the guest and not via a 

dissociation-association mechanism. If the latter would occur, each of the four signals of any 

given proton of the duplex would correlate with the three others (Figure 10c) because the 

positions of the strands would be randomized in the dissociation process. However, correlations 

show that any given proton of one isomer of (1)2⊃3 exchanges with a single proton of the other 

isomer (Figure 10b, d), consistent with the shuttling of the duplex along the rod, and the 

concomitant screw motion. Shuttling requires the disruption of hydrogen bonds between the rod 

and the duplex and the screw motion of the two strands into one another, but these processes 

occur faster than foldaxane dissociation. 
 

Figure 9. Part of the 1H NMR spectra (700 
MHz) showing the amide and some pyridine 
proton resonances of (1)2 (8 mM) in CDCl3: a) 
at 25°C in the absence of guest; b) at 0°C in 
the presence of 2b (10 equiv.); c) at 0°C in the 
presence of 2e (10 equiv.); d) at 0°C in the 
presence of 3 (10 equiv.). The signals of the 
starting double helix (1)2 are marked with 
empty circles (�). Sharper NMR spectra could 
be recorded at 0°C and are shown in this 
figure. 
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Figure 10. a) A schematic representation of the controlled screw/unscrew of a molecular duplex by its shuttling 
between two inequivalent stations of a rodlike guest. b) A schematic representation of the number of cross-peaks 
upon exchange of the duplex between the two inequivalent stations when exchange takes place by shuttling or c) by a 
dissociation/association mechanism. d) Expansion of the 1H-1H ROESY spectrum (700 MHz) at 4°C of (1)2⊃3 (8 
mm) recorded with 300 ms mixing time, thus showing that any given proton of one isomer of (1)2⊃3 exchanges with 
a single proton of the other isomer. NOEs cross peaks are observed in red whereas exchange peaks are seen in blue. 
P1, P2, P3 denote protons that belong to independent pyridine spin systems but have not been assigned to each 
pyridine rings in the sequence. C3 or C6 denotes the number (3 or 6) of CH2 units of the alkyl chain of the guest on 
which the double helix resides. 

 



 

 
Chapter 3. Double-helical foldaxanes: template induced screw motion 

77 
 

4. Conclusion 

This work showed that an anti-parallel double helical aromatic oligoamide foldamer binds to 

a series of rod-like guests of various lengths upon winding of the duplex around the guests. The 

two strands of the duplex undergo a relative screw motion to match with the length of the guests.  

The next step could be a regulatory screw motion by triggering it through an external 

stimulus. Or control the absolute sense of rotation in right- or left-handed helices. One may also 

be expected to bind this system with a useful function to a surface and achieve relative action. All 

of these would set the stage for the construction of a truly molecular machinery. 
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5. Experimental part 

5.1 Methods for NMR 

NMR spectra were recorded on 2 different NMR spectrometers: (1) an Avance II NMR 

spectrometer (Bruker Biospin) with a vertical 7,05T narrow-bore/ultrashield magnet operating at 

300 MHz for 1H observation and 75 MHz for 13C observation by means of a 5-mm direct BBO 

H/X probe with Z gradient capabilities; (2) an Avance III NMR spectrometer (Bruker Biospin) 

with a vertical 16,45T narrow-bore/ultrashield magnet operating at 700 MHz for 1H observation 

by means of a 5-mm TXI 1H/13C/15N probe with Z gradient capabilities. Chemical shifts are 

reported in parts per million (ppm, δ) relative to the 1H residual signal of the deuterated solvent 

used. 1H NMR splitting patterns with observed first-order coupling are designated as singlet (s), 

doublet (d), triplet (t), or quartet (q). Coupling constants (J) are reported in hertz. Samples were 

not degassed. Data processing was performed with Topspin 2.0 software.  

ROESY. Rotating-frame Overhauser spectroscopy (ROESY) experiments were recorded at 700 

MHz and were used to distinguish dipolar interactions and exchange between free and bound 

double helices with the following acquisition parameters: the acquisition was performed with 

2048(t2) x 512(t1) data points, in States-TPPI mode with Z gradients selection and with 

CW-spinlock for mixing, relaxation delay of 2 s, and 64 scans per increment; sweep width of 

14000 Hz in both dimensions; mixing time of 300 ms. Processing was done after a sine-bell 

multiplication in both dimensions and Fourier transformation in 1K x 1K real points.  

5.2 Methods for X-ray crystallography 

The data for crystal structures of compounds (1)2⊃2b, (1)2⊃2d and (1)2⊃2e, have been collected 

at the European Institute for Chemistry and Biology X-ray facility (UMS 3033) on a Bruker X8 

proteum rotating anode at the CuKα radiation wavelength. The system features the microstar 

microfocus x-ray source with the PLATINUM135 CCD detector combined with the 4-circle 

KAPPA goniometer and the Helios multilayer graded optics. The system is driven by the 

PROTEUM2 software.33 The unit cell determinations have been performed using a combination 

of Fast Fourier and Difference Vector techniques, the data were integrated using SAINT and 

scaled and corrected for absorption with SADABS. All the structures have been solved by direct 

methods with SHELXD and refined by full-matrix least-squares methods using SHELXL.34 The 

WinGX-software was used for modelling.35 It has to be noticed that all the crystals described 
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below contain a large percentage of disordered solvent molecules and very few of them could be 

modelled in the Fourier difference density maps. High flux X-ray Beams on small crystals with 

high solvent contents can explain the modest quality of the refinement statistics reported in this 

study. 
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5.3 Summary of X-Ray crystallographic data 

Name Foldaxane (1)2⊃2b Foldaxane (1)2⊃2d Foldaxane (1)2⊃2e 

Formula C97 H96 Cl9 F4 N16 O17.5 
C196 H206 Cl17.91 F8 N31 

O34.5 
C195 H201 Cl21 F8 N32 

O46.75 

M 2160.95 3980.4 4637.34 

Crystal system Triclinic Triclinic Triclinic 

Space group P-1 P-1 P-1 

a/Å 19.909(4) 17.764(4) 17.995(4) 

b/Å 21.829(4) 21.407(4) 23.036(5) 

c/Å 25.945(4) 30.835(4) 31.217(6) 

α/o 78.12(3) 101.31(3) 74.79(3) 

β/o 84.31(3) 100.24(3) 81.13(3) 

γ/o 78.30(4) 112.31(3) 78.79(3) 

U/Å3 10785 10219 12152 

T /K 213 213 213 

Z 4 2 2 

ρ/g cm–1 1.331 1.294 1.267 

size (mm) 0.1 x 0.05 x 0.05 0.05 x 0.02 x 0.02 0.1 x 0.05 x 0.05 

λ/ Å 1.54178 1.54178 1.54178 

µ/mm-1 2.782 1.702 2.838 

Absorption correction none none none 

unique data 21169 15775 19696 

parameters/restraints 2586/12 2426/44 2646/22 

R1, wR2 0.1126, 0.3815 0.1869, 0.4340 0.1796, 0.4477 

goodness of fit 1.824 1.135 1.914 

CCDC# 816152 816315 816316 
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5.4 Methods for chemical synthesis 

All reactions were carried out under a dry nitrogen atmosphere. Commercial reagents were 

purchased from Sigma-Aldrich or Alfa-Aesar and were used without further purification unless 

otherwise specified. Tetrahydrofurane (THF) and dichloromethane (DCM) were dried over 

alumina column; triethylamine (Et3N) was distilled from calcium hydride (CaH2) prior to use. 

Reactions were monitored by thin layer chromatography (TLC) on Merck silica gel 60-F254 

plates and observed under UV light. Column chromatographies were carried out on Merck 

GEDURAN Si60 (40-63 µm). Melting points were measured on a Büchi B-540. ESI mass spectra 

were obtained on a Waters LCT Premier from the Mass Spectrometry Laboratory at the European 

Institute of Chemistry and Biology (UMS 3033 - IECB), Pessac, France. 

 

5.4.1 Synthesis of helix 1 

 

Heptamer 1. Trimer28 P3 (68 mg, 0.16 mmol) and DIEA (0.1 mL, 1.27 mmol) were dissolved in dry CH2Cl2 (10 mL), 

the freshly prepared tetramer acid chloride27 (200 mg, 0.17 mmol) in CH2Cl2 (5 mL) was added dropwise at r.t. After 

stirring overnight, solvents were was evaporated and the product was purified by flash chromatography (SiO2) 

eluting with cyclohexane/EtOAc (70:30, vol/vol) to obtain heptamer 1 as a white solid (0.17 g, 68%). 1H NMR 

(d6-DMSO, 300 MHz): δ 11.47 (s, 1H), 11.28 (s, 1H), 11.02 (s, 1H), 10.42 (s, 1H), 10.08 (s, 1H), 9.94 (s, 1H), 9.20 

(s, 1H), 8.48 (t, J(H,H) = 8.1, 1H), 8.06 (d, J(H,H) = 6.6, 1H), 7.94 (t, J(H,H) = 8.1, 2H), 7.86-7.82 (m, 3H), 7.70 (d, 

J(H,H) = 7.5, 2H), 7.63-7.56 (m, 4H), 7.23 (d, J(H,H) = 9.0, 1H), 7.16-7.14 (m, 2H), 6.96-6.94 (m, 3H), 6.83 (t, 

J(H,H) = 8.1, 1H), 6.67 (d, J(H,H) = 8.4, 1H), 6.52 (s, 1H), 4.34-4.17 (m, 6H), 4.08-4.00 (m, 2H), 2.42-2.27 (m, 4H), 

1.35-1.20 (m, 33H), 0.67 (s, 9H). MS (ESI) : m/z :1574.54 [2M+2H]2+, 1586.54 [2M+Na+H]2+, 1596.51 [2M+2Na]2+ 

 

5.4.2 Synthesis of guests 

4,4-diphenylbutyl 3-aminopropylcarbamate 4. To a solution of 4-nitrophenyl 

chloroformate (1.1 g, 5.5 mmol) in dry CH2Cl2 (20 mL) was added dropwise a solution 

of 4,4-diphenylbutan-1-ol36 (1.1 g, 5.0 mmol) and Et3N (2.8 mL, 20.0 mmol) in CH2Cl2 

(10 mL) via a syringe at 0°C. After 30 min stirring at room temperature, the reaction mixture was added dropwise 

over a 1 h period to a solution of 1,3-diaminopropane (4.2 mL, 50.0 mmol) in dry CH2Cl2 (100 mL) at 0°C. Then the 
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reaction mixture was allowed to proceed at room temperature for 12 h. The solution was washed with 1N NaOH and 

brine several times, dried over Na2SO4. After filtration and concentration, the residual oil was purified by flash 

chromatography (SiO2) eluting with MeOH/CH2Cl2/Et3N (10:90:1 to 30:70:1, vol/vol) to obtain product 4 as yellow 

oil (1.32 g, 83% yield). 1H NMR (CDCl3, 300 MHz): δ 7.29-7.14 (m, 10H), 5.12 (br, 1H), 4.08 (t, J(H, H) = 6.6, 2H), 

3.93 (t, J(H, H) = 7.8, 1H), 3.29 (q, J(H, H) = 6.0, J(H, H) = 6.6, 2H), 2.80 (t, J(H, H) = 6.6, 2H), 2.14 (q, J(H, H) = 

7.8, J(H, H) = 7.8, 2H), 1.70 (br, 2H), 1.65-1.53 (m, 4H). 13C NMR (CDCl3, 75 MHz): δ 157.0, 144.7, 128.5, 127.8, 

126.2, 64.6, 50.9, 39.1, 38.6, 32.1, 31.9, 27.6. HRMS (ES+): m/z calcd for C20H26N2O2 [M+H]+ 327.2073 found 

327.2067. 

 

4,4-diphenylbutyl 6-aminohexylcarbamate 5. To a solution of 4-nitrophenyl 

chloroformate (0.35 g, 1.7 mmol) in dry CH2Cl2 (20 mL) was added dropwise a 

solution of 4,4-diphenylbutan-1-ol33 (0.36 g, 1.6 mmol) and Et3N (0.89 mL, 6.4 

mmol) in CH2Cl2 (10 mL) via a syringe at 0°C. After 30 min stirring at room temperature, the reaction mixture was 

added dropwise over a 1 h period to a solution of 1,6-diaminohexane (0.93 g, 8.0 mmol) in dry CH2Cl2 (100 mL) at 

0°C. Then the reaction mixture was allowed to proceed at room temperature for 12 h. The solution was washed with 

1N NaOH and brine several times, dried over Na2SO4. After filtration and concentration, the residual oil was purified 

by flash chromatography (SiO2) eluting with MeOH/CH2Cl2/Et3N (10:90:1 to 30:70:1, vol/vol) to obtain product 5 as 

yellow oil (0.47 g, 80% yield). 1H NMR (CDCl3, 300 MHz): δ 7.30-7.14 (m, 10H), 4.62 (br, 1H), 4.08 (t, J(H, H) = 

6.3, 2H), 3.93 (t, J(H, H) = 7.8, 1H), 3.17 (q, J(H, H) = 6.6, J(H, H) = 6.6, 2H), 2.68 (br, 2H), 2.14 (q, J(H, H) = 7.8, 

J(H, H) = 7.8, 2H), 1.60-1.32 (m, 12H). 13C NMR (CDCl3, 75 MHz): δ 156.8, 144.8, 128.6, 127.9, 126.3, 64.7, 51.1, 

42.1, 41.0, 32.0, 30.1, 27.7, 26.6, 26.6. HRMS (ES+): m/z calcd for C23H32N2O2 [M+H]+ 369.2542 found 369.2529. 

 

Compound 6. To a solution of 4-nitrophenyl chloroformate (0.734 g, 3.6 mmol) 

in dry CH2Cl2 (20 mL) was added dropwise a solution of 4,4-diphenylbutyl 

6-aminohexylcarbamate (1.08 g, 3.3 mmol) and Et3N (1.83 mL, 13.2 mmol) in 

CH2Cl2 (10 mL) via a syringe at 0°C. After 30 min stirring at room temperature, the above reaction mixture was 

added dropwise over a 1 h period to a solution of ethylene glycol (9.2 mL, 0.16 mol) in dry THF (100 mL) at 0°C. 

Then the reaction mixture was allowed to proceed at room temperature for 12 h. The solution was washed with 1N 

NaOH and brine several times, dried over Na2SO4. After filtration and concentration, the residual oil was purified by 

flash chromatography (SiO2) eluting with EtOAc/CH2Cl2 (20:80 to 60:40, vol/vol) to obtain product 6 as colourless 

oil (0.58 g, 42% yield). 1H NMR (CDCl3, 300 MHz): δ 7.30-7.15 (m, 10H), 5.39 (br, 1H), 5.04 (br, 1H), 4.20 (t, J(H, 

H) = 4.2, 2H), 4.08 (t, J(H, H) = 6.6, 2H), 3.93 (t, J(H, H) = 7.8, 1H), 3.80 (t, J(H, H) = 4.2, 2H), 3.24-3.18 (m, 4H), 

2.52 (br, 1H), 2.14 (q, J(H, H) = 7.8, J(H, H) = 7.8, 2H), 1.67-1.55 (m, 4H). 13C NMR (CDCl3, 75 MHz): δ 157.5, 

157.3, 144.8, 128.6, 127.9, 126.3, 66.9, 65.0, 61.9, 51.1, 37.7, 37.6, 32.0, 30.5, 27.7. HRMS (ES+): m/z calcd for 

C23H30N2NaO5 [M+Na]+ 437.2052 found 437.2045. 
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Compound 7. To a solution of 4-nitrophenyl chloroformate (0.21 g, 

1.06 mmol) in dry CH2Cl2 (20 mL) was added dropwise a solution of 6 

(0.4 g, 0.97 mmol) and Et3N (0.54 mL, 3.86 mmol) in CH2Cl2 (10 mL) 

via a syringe at 0°C. Then the reaction mixture was allowed to proceed at room temperature for 2 h. The solution was 

evaporated and the residual oil was purified by flash chromatography (SiO2) eluting with EtOAc/CH2Cl2 (10:90 to 

30:70, vol/vol) to obtain product 7 as colourless oil (0.50 g, 88% yield). 1H NMR (CDCl3, 300 MHz): δ 8.30-8.25 (m, 

2H), 7.41-7.38 (m, 2H), 7.30-7.14 (m, 10H), 5.32 (br, 1H), 4.93 (br, 1H), 4.48-4.45 (m, 2H), 4.38-4.36 (m, 2H), 4.08 

(t, J(H, H) = 6.6, 2H), 3.93 (t, J(H, H) = 7.8, 1H), 3.26-3.20 (m, 4H), 2.14 (q, J(H, H) = 7.8, J(H, H) = 7.8, 2H), 

1.68-1.53 (m, 4H). 13C NMR (CDCl3, 75 MHz): δ 157.2, 156.3, 155.3, 152.3, 145.3, 144.6, 128.4, 127.7, 126.1, 

125.2, 121.7, 67.4, 64.7, 61.9, 50.8, 37.5, 37.3, 31.8, 30.2, 27.5. HRMS (ES+): m/z calcd for C30H33N3NaO9 [M+Na]+ 

602.2114 found 602.2063. 

 

Rod 3. To compound 7 (0.33 g, 0.58 mmol) in dry 

CH2Cl2 (10 mL) was added dropwise a solution of 

4,4-diphenylbutyl 6-aminohexylcarbamate (0.21 g, 0.58 

mmol) and Et3N (0.32 mL, 2.3 mmol) in CH2Cl2 (10 mL) via a syringe at 0°C. Then the reaction mixture was 

allowed to proceed at room temperature for 12h. The solution was washed with 1 N NaOH and brine several times, 

dried over Na2SO4. After filtration and concentration, the residual oil was purified by flash chromatography (SiO2) 

eluting with EtOAc/CH2Cl2 (20:80 to 50:50, vol/vol) to obtain product 3 as a white solid (0.39 g, 84% yield). 1H 

NMR (CDCl3, 300 MHz): δ 7.30-7.14 (m, 20H), 5.18 (br, 1H), 5.04 (br, 1H), 4.81 (br, 1H), 4.67 (br, 1H), 4.23 (br, 

4H), 4.08 (t, J(H, H) = 6.6, 4H), 3.93 (t, J(H, H) = 7.8, 2H), 3.23-3.12 (m, 8H), 2.14 (q, J(H, H) = 7.8, J(H, H) = 7.8, 

4H), 1.66-1.53 (m, 6H), 1.47-1.45 (m, 4H), 1.31 (br, 4H). 13C NMR (CDCl3, 75 MHz): δ 157.2, 156.8, 156.7, 156.3, 

144.8, 144.7, 128.5, 127.8, 126.3, 64.8, 64.6, 63.2, 63.1, 51.0, 40.9, 40.8, 37.6, 37.5, 31.9, 30.4, 29.9, 29.8, 27.7, 26.3. 

HRMS (ES+): m/z calcd for C47H60N4NaO8 [M+H]+ 831.4309 found 831.4313. m.p.: 101.5.-102.3°C. 
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1. Introduction 

Self-assembly has been widely applied in biological system, chemistry, material science and 

nanotechnology.1-4 Following Whitesides and Grzybowski,4 self-assembly can be defined as a 

process by which pre-existing discrete components organize into patterns or structures without 

human intervention. This process is generally assumed to involve the cooperative procedures of 

misassembly, dissociation, correction, and reassembly, leading from initial kinetic intermediates 

to final thermodynamic product.6,7 

Indeed, some investigations have found that these kinetically controlled reaction steps in 

self-assembly events is crucial to construct out-of-equilibrium artificial ordered aggregates,8-10 

complex self assemblies11-13 or sophisticated molecular machines14,15 that would resemble their 

biological counterparts. However, the detailed understanding of kinetic steps is still a challenge, 

since the kinetic compounds that form prior to the final thermodynamic product normally can not 

be easily observed or characterized due to their short life time and multi-component equilibrium 

processes. A successful way to get the kinetically controlled products have been achieved by 

using a robust metal coordination method in which the structures of intermediates could be 

stabilized and the whole self-assembly process slow down.11,16 

Here, we noticed that our foldaxane systems could be used for the same purpose: An 

aromatic helix as a trapper could catch a dumbbell-shaped guest to form a 1:1 host-guest complex. 

This complex was found to be a long-lived kinetic supramolecular by-product as it slowly 

transformed into a thermodynamically more favorable 2:2 architecture. The details of design are 

as follows. 

Recently, we introduced helical aromatic oligoamide foldamer molecular capsule 1 which 

can bind tartaric acid diastereoselectively (Figure 1a).17,18 Its design is based on amino-acid units 

coding for a large helix cavity in the center of the sequence and a narrow helix diameter at the 

ends, thus creating a binding site completely surrounded by the helix backbone. In previous 

chapters, we showed that multi-turn single or double helical oligoamide foldamers possessing 

open cavities can wind around urethane dumbbell guests to form thermodynamically stable 

complexes in which the two bulky stoppers of the guest protrude from each side of the helix 

cavity in a pseudo-rotaxane-like geometry.19,20 These complexes were termed foldaxanes. We 

devised that a combination of these two concepts may allow assembly of foldaxanes using 

dumbbell guests 3, derived from tartaric acid and oligomer 2 based on the shortened version of 1. 
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On one hand, the helix of 2 without the terminal quinoline units is expected to possess an open 

cavity and could bind to the guests 3 to form a 1:1 foldaxane via hydrogen bonds between 

carboxylic acid groups of the guest and the naphthyridine units of the helix. On the other hand, 

the helix 2 could also hybridize itself to duplex (2)2, and the symmetrical pyridine units at the 

termini of (2)2 may thus provide hydrogen bonding sites suitable for the guest, and as a result of 

form a 2:2 host-guest complex in which two guest molecules are located at the extremities of a 

double helix. Compared to the 1:1 foldaxane, the 2:2 complex is more thermodynamic stable. 

Therefore, when mixed, the helical host 2 and the guest 3 initially form the foldaxane (kinetic 

product) and then slowly transform into the 2:2 host-guest complex (Figure 1). 
 

 

 

Figure 1. a) Structures of oligomers 1 and 2 and of dumbbell guest 3. A letter code is used for the abbreviations of 
the oligomer subunits. b) Cartoon representation of self-assembly process from single helix 2 to 1:1 kinetic 
by-product M-2⊃3-(L), then to 2:2 thermodynamic complex.P-(2)2⊃(3-(L))2.  

 

During the transformation process, it was found that the chiroptical signals which reflect the 

handedness of helix also reversed by circular dichroism (CD) detection, that is, the same guest is 

thus able to induce P or M helicity depending on whether it interacts with a single or a double 

helix.  
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2. Synthesis 

2.1 Synthesis of helix 

The structure of the aromatic oligoamides 2 and its synthetic procedures were listed in 

Scheme 1. The synthesis of 2 involves the piv-PN2-Boc building block which, after Boc cleavage, 

was coupled twice to the acids of the central pyridine-pyridazine-pyridine unit (pyr-pyz-pyr). 

 

 

Scheme 1. The synthesis of foldamer 2: a) pivaloyl chloride, Et3N, DCM, rt, 12 h (83%); b) TFA, DCM, rt, 6 h 
(95%); c) PyBOP, Et3N, CHCl3, 45 °C, 12 h (88%). 

 
 

2.2 Synthesis of guests 

The two optically pure enantiomers 3-(D) and 3-(L) were prepared upon coupling 

3,5-di-tert-butylbenzoyl chloride to either D or L-dibenzyl tartrate, respectively, followed by the 

Pd/C catalyzed hydrogenolysis of the benzyl groups (Scheme 2). 
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Scheme 2. Synthesis of guest 3 (R,R)-Tartaric acid di-3,5-di-tert-butylbenzoate. a) oxalyl chloride, DCM, rt, 3 h 
(78%); b) Et3N, DMAP, DCM, rt, 24 h; c) H2, Pd/C, EtOAc, rt, 12 h (quant.). 
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3. Results and discussion 

3.1 Hybridization behavior of foldamer 2 

A preliminary investigation of the behavior of 2 in solution revealed that, like many other 

aromatic amide sequences,21-23 its single helical conformation is at equilibrium with a double 

helical species. This is reflected by e.g. two sets of signals on 1H NMR spectra assigned to the 

monomer and the dimer, the proportion of which vary with concentration (Figure 2). 
 

 

Figure 2. Part of 400MHz 1H NMR of 2 at various concentrations in CDCl3 at 293K. Empty circles indicate a single 
helix configuration, black circles indicate a double helix configuration whereas stars denote an aromatic resonance. 
Each measurement has been performed 10 minutes after the preparation of the sample. 

 

A 1H DOSY measurement on a 2 mM solution of 2 at 293 K (Figure 3) showed two distinct 

diffusion coefficients for 2 and its double helix (2)2 which were calculated to be 7.38×10-10 and 

6.44×10-10 m2s-1, respectively. 
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Figure 3. Part of 1H DOSY (diffusion ordered spectroscopy) NMR spectrum (400 MHz) of a mixture of 2 (blue 
circles) and (2)2 (red circles) at 2 mM in CDCl3 (293K) showing the NH amide and CH aromatic region of both 
single and double helix of 2. 

 

However, unlike for other aromatic amide double helices, 21-23 we found that the NMR 

signals of the double helix also varied with concentration (∆δ up to 0.2 ppm) (Figure 2), 

indicating another aggregation phenomenon that takes place rapidly on the NMR time scale. 

Self-aggregation of the double helices themselves due to the aromatic and hydrogen bonding 

groups present at their termini could explain these chemical shift variations. This resulted in a 

bias of the single helix ⇄ double helix equilibrium, which shifted in favor of the double helix at 

high concentration. For example, the apparent dimerization constants were measured to be 420 

M−1 at 0.5 mM and 4900 M−1 at 8 mM, based on the integration of the single helix vs the double 

helix amide resonances (Table 1). 
 

Table 1. Dimerization constants (Kdim) of 2 calculated using dilution experiments at 293K  

Concentration (mM) 0.2 0.5 1 2 4 6 8 16 

Kdim (L.mol-1) 367 422 829 1243 1860 3034 4861 8940 

 

Exchange Spectroscopy (EXSY) NMR experiments at 293 K allowed to calculate the rate 

constants of double helix formation and dissociation to be 107 s-1M-1 and 0.061 s-1, respectively 

(Figure 4). The double helical dimer was also characterized in the solid state by x-ray 
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crystallography (Figure 5). These results further expand to the central pyr-pyz-pyr segment the 

already wide range of aromatic amino acids that are compatible with double helix formation. 

Double helices do not form in the case of the capsule sequence 1 from which 2 is derived.17,18 

This is explained by the poor ability of the terminal quinoline units to undergo the spring-like 

extension required for double helix formation.24 Suppressing (or reducing the number of) 

quinoline units that code for a narrow helix diameter has been observed to promote double helix 

formation in other systems.25 
 

 

Figure 4. Part of 2D-EXSY spectrum at 400 MHz of 2 (2.4 mM CDCl3, 293K) at: a) τm = 0 ms; b) τm = 150 ms. SH 
donates amide peaks of the single helix and DH donates amide peaks of the double helix. 

 

 
Figure 5. a) Side view of the crystal structure of (2)2; b) Top view of the crystal structure of (2)2 in tube representation. 
Encapsulated water molecules are highlighted in yellow. Isobutyl side chains and included solvent molecules (other 
than encapsulated water molecules) have been removed for clarity. 
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3.2 The kinetic formation of 1:1 foldaxane 

Host-guest interactions were then investigated both by 1H NMR and circular dichroism (CD) 

to estimate the ability of 2 to fold around tartaric acid derivative 3. Upon adding 3 to a solution of 2 

in CDCl3 (0.1 mM), a concentration at which the single helical conformation of 2 predominates 

(>99%), (Figure 6, empty circles), the NMR signals of the latter disappeared and a new species 

emerged that corresponds to a complex in which 3 is bound within the cavity of 2 (Figure 6, empty 

squares). The binding constant was measured accurately by titration experiments (Figure 7) 

through the integral ratios of the free and bound receptor amide resonances to be Ka = 2.7×104 L 

mol–1 at 298 K in CDCl3. Based on previous investigations of the binding of tartaric acid to 1,17 the 

sharp signal at 15.7 ppm in the spectrum of 2⊃3 was assigned to the acid protons of the guest which 

are hydrogen-bonded to the central naphthyridine units of 2, suggesting similar modes of binding 

of tartaric acid by 1 and 2. This similarity is further expressed in CD titrations for which strong 

responses of opposite signs appeared upon the addition of either 3-(D) or 3-(L).  
 

 

Figure 6. a) Part of 1H NMR spectra at 298 K (300 MHz) of single helix of 2 (0.1 mM); b) 1H NMR spectra at 298K 
of single helix of 2 (0.1 mM) after the addition of guest 3 (0.6 mM) in 10 min. 
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Figure 7. Part of the 700 MHz NMR spectra recorded for the binding study of 2 as a single helix vs. guest 3 in 
CDCl3 at 298K. [2]initial = 50 µM, [3]titrant = 2 mM. Empty black circles correspond to the empty receptor as a single 
helix. The star (*) denotes the hydrogen bonded acid protons of the guest in single helix⊃guest 3. NH amides of the 
single helix⊃guest 3 are marked with empty squares whereas those of the complex with double helix are marked 
with a black square. Measurements have been performed 5 minutes after each addition of guest. 

 

The host-guest interaction is fully diastereoselective and results in an induced handedness in 2. 

A strong negative Cotton effect at 360 nm for 2⊃3-(L) suggests that the same handedness 

preference occurs in 2⊃3 as in 1⊃tartaric acid: the L enantiomer favors M helicity. CD was also 

employed as an additional technique to support NMR titrations. The progressive addition of 3-(D) 

into a solution of 2 (10 µM) resulted into the appearance a positive signal which gave an excellent 

fit to a 1:1 binding model (Figure 8). The binding constant measured by CD at 273 K (4.4×104 L 

mol–1) was reasonably close to that obtained by NMR at 298 K.  
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Figure 8. a) CD spectra recorded for the binding study of 2 as a single helix vs. guest 3 in CDCl3 at 273K. [2]initial = 
10 µM, [3]titrant = 2 mM. Measurements have been performed 5 minutes after each addition of guest. b) Experimental 
(red circles) and calculated (black line) values for the CD binding study. Association constant Ka measured at 340 nm: 
44000 M–1. 

 

These results, along with the detailed structural data available for the complex of 1⊃tartaric 

acid17 allow to propose an energy minimized model of the structure of M-2⊃3-(L) having the 

expected foldaxane architecture with the helix wrapped around the dumbbell guest (Figure 9) and 

carboxylic acid groups of the guest hydrogen bonded to naphthyridines of the host.  
 

 

Figure 9. a) CPK (guest) and tube (host), and b) CPK (host and guest) representations of the foldaxane M-2⊃3-(L) as 
obtained by molecular modeling (MMFFs force field) using Maestro v.6.5. 

 

3.3 The formation of 2:2 thermodynamic complex  

The kinetics of the quantitative formation of 2⊃3 from the single helix of 2 and the kinetics of 

guest-induced single helix handedness inversion are fast: a steady state is reached within seconds 

(before CD or NMR measurements can be carried out). When stored at –18°C, a sample remains 
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unchanged for weeks. However, upon standing at 25°C, the complex 2⊃3 slowly disappears over 

the course of days and is quantitatively replaced by another species, showing that 2⊃3 is not a 

thermodynamic product. This conversion can be monitored both by NMR where all initial signals, 

including the guest resonance at 15.7 ppm, disappear (Figure 10a), and by CD where a remarkable 

inversion of sign at 360 nm is observed. This modification reflects an inversion of the handedness13 

of 2 mediated by the guest which, in the case of 3-(D), changes the helicity from P to M, and from 

M to P for 3-(L) (Figure 10b, c). 
 

 

Figure 10. a) Part of the 300 MHz 1H NMR spectra of 2 (0.1 mM) in CDCl3 at 298K before the addition of guest 
(top), and 5 min., 8 hours, 4 days, 10 days and 18 days after the addition of 3 (6 equiv.). Empty black circles 
correspond to the empty capsule. The star (*) denotes the hydrogen bonded acid protons of the guest in single 
helix⊃guest 3. NH amides of the single helical host-guest complex are marked with empty squares whereas those of 
the double helical host-guest complex are marked with a black square. b) CD spectra of 2 (0.1 mM) in CDCl3 at 
298K 10 min. after the addition of 6 equiv. of 3-(D) (blue spectrum) then after 5 hours, 15 hours, 30 hours, 70 hours 
and 18 days (increasing red intensity). c) CD spectra of 2 (0.1 mM) in CDCl3 10 min. after the addition of 6 equiv. of 
3-(L) (red spectrum) then after 5 hours, 15 hours, 30 hours, 70 hours and 18 days (increasing blue intensity). 

 

X-ray quality single crystals were obtained from the slow diffusion of hexane into a 

chloroform solution of 2 mixed with racemic 3 at thermodynamic equilibrium. The structure in the 

solid state was solved (Figure 11). It revealed an original architecture, completely different from 

that of the foldaxane 2⊃3, composed of a 2:2 complex consisting of (2)2 as a double helix with two 

bound molecules of 3 capping the helix cavity at each extremity. The structure of (2)2 complexed 

with 3 much resembles its structure without bound 3. As a slight difference, the duplex diameter is 
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slightly decreased in the complex with 3, as reflected by a helix span longer by about half a 

pyridine ring (Figure 12). In the crystal structure, 3-( L) is bound to P-(2)2 and 3-( D) is bound to 

M-(2)2, consistent with the inversion of preferred handedness observed over time when titrating 2 

with either 3-(L) or 3-(D) (Figure 10). Each tartaric acid derivative adopts a typical conformation 

with trans acid groups and gauche hydroxy groups. Carboxylic acid groups are oriented 

perpendicular to the edge of the helical strand and doubly hydrogen bonded to the distal pyridines 

((dOH...N = 2.63 Å, dNH…OC = 2.99 Å) giving a total of eight intermolecular hydrogen bonds. 

Interactions between 3 and (2)2 differ from those between 3 and single helical 2 in that hydrogen 

bonds occur with natphthyridine units of 2 and pyridine units of (2)2. Also, van der Waals contacts 

between the 3,5-di-tert-butyl-phenyl rings of 3 and 2 appear to be more extensive in the crystal 

structure of (2)2⊃(3)2 than in the calculated structure of 2⊃3. However, it is unclear why these 

differences result in a much higher stability of (2)2⊃(3)2. 
 

 

Figure 11. a) CPK (guest) and tube (host), and b) CPK (host and guest) representations of the solid-state structures 
of P-(2)2⊃(3-(L))2. Isobutoxy side chains and solvent molecules have been omitted for clarity, except the water 
cluster included in the cavity of the double helix (purple balls). 
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Figure 12. a) Side view; b) Top view of the overlay of the solid state structures in tube representation of the double 
helix (2)2 (red) and the double helical complex (2)2⊃(3)2 (grey). Guest molecules 3, isobutyl side chains and included 
solvent molecules have been removed for clarity.  

 

Consistent with the solid state structure, evidence was found of the double helical nature of 

the host in solution. In particular, 1H signals of 2 in (2)2⊃(3)2 are strongly upfield shifted from 

those of 2 in 2⊃3 due to enhanced ring current effects in the double helical dimer.21-23 A 1H DOSY 

experiment confirmed the larger size of the species whose signals are assigned to (2)2⊃(3)2 than 

2⊃3 (Figure 13).  
 

 

Figure 13. Part of 1H DOSY (diffusion ordered spectroscopy) NMR spectrum (400 MHz) of a mixture of 2⊃3-(L) 
(blue empty square) and (2)2⊃(3-(L))2 (red square) at 2 mM in CDCl3 (293K) showing the NH amide and CH 

aromatic region of both single and double helix of 2. The diffusion coefficients were calculated to be 7.21x10-10 and 
5.26x10-10 m2s-1, for 2⊃3-( L) and (2)2⊃(3-( L))2, respectively. 
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Adding racemic 3 to a racemic (P/M) solution of (2)2 (at 30 mM the double helix prevails) 

readily caused shifts of both aromatic and amide signals reflecting that P/M-(2)2 and its complexes 

with 3-(L) and 3-(D) exchange fast on the NMR timescale  (Figure 14). The association constant 

between (2)2 and 3 was too high to be accurately calculated from a curve fitting of the titration data 

(Figure 15). Indeed, this binding is expected to be significantly higher than the binding of 3 to 

single helical 2 (i.e., higher than 2.7x104 L mol–1) as the apparent dimerization of 2 into (2)2 is 

strongly enhanced in the presence of 3 (Figure 10). Also, this titration experiment did not allow to 

characterize any cooperativity between the binding of the first and second guests. 
 

 

Figure 14. Part of the 400 MHz NMR spectra recorded for the binding study of (2)2 vs. guest 3 (racemic) in CDCl3 
at 293K. [2]initial = 30 mM, [3]titrant = 90 mM. A 3 mm NMR tube was used for this titration. The number of guest 
equivalent on the left are compared to the double helix of 2. Measurements have been performed 5 minutes after each 
addition of guest. 
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Figure 15. Experimental values for the NMR binding study of double helix (2)2 vs. guest 3 (racemic) in CDCl3 at 
293K, analyzing three different signals starting at δ = 10.52, 10.0 and 9.26 ppm. [2]initial = 30 mM, [3]titrant = 90 mM. 
Saturation of the host is observed at two equivalent (referring to the double helical host) indicating a very high 
binding constant. A host concentration (DH) of 15 mM was chosen in order to favor the double helix, however at this 
high concentration it is not possible to give a precise quantification of the strength of the complexation. 

 

In another titration, a single enantiomer of 3 was added to a racemic (P/M) solution of (2)2 

(Figure 16). This resulted in the induction of CD bands and in the splitting of 1H NMR signals into 

two sets, one having chemical shift values identical to those observed in the titration with racemic 3 

and one having chemical shift values almost identical to those of free (2)2. This reflects that the 

pure enantiomer of 3 forms a stable complex with the (2)2 duplex that has a matching 

stereochemistry, and a weak or no complex at all with the (2)2 duplex that has a mismatching 

stereochemistry, suggesting that the interaction between (2)2 and 3 is also strongly 

diastereoselective. Since the equilibrium between P-(2)2 and M-(2)2 is slow on the NMR timescale, 

3 acts as a sort of chiral shift reagent that resolves them into distinct signals before their 

interconversion occurs. 
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Figure 16. Part of the 400 MHz NMR spectra recorded for the binding study of (2)2 vs. guest 3-(L) in CDCl3 at 293K. 
[2]initial = 30 mM, [3]titrant = 90 mM. A 3 mm NMR tube was used for this titration. Empty circles denote the free 
double helix (2)2 or weakly hydrogen bonded mismatching complex M-(2)2⊃3-(L). Half-filled red circles denote 2:1 
matching complex P-(2)2⊃3-(L). Red circles denote the 2:2 matching complex P-(2)2⊃(3-(L))2. The number of guest 
equivalent on the left are compared to the double helix of 2. Measurements have been performed 5 minutes after each 
addition of guest. 

 

Interestingly, the induced CD spectrum of 2 resulting from a handedness bias by 3 was found 

to be about five time more intense in (2)2⊃(3)2 than in 2⊃3 (Figure 10b, c) despite the fact that 

handedness induction is (close to) quantitative in both cases. ∆ε values appear to be higher for 

double helical (2)2 than for single helical 2 whose helix pitch is half as small. 



 

 
Chapter 4. Identification of a foldaxane kinetic by-product during guest-induced single to double helix conversion 

105 
 

4. Conclusion 

In summary, guest 3 enhances the thermodynamic stability of double helical duplex (2)2 but it 

simultaneously reduces the kinetics of formation of (2)2 upon forming a foldaxane with monomeric 

2 which can be long-lived at low temperature. While each individual equilibrium appears to be 

relatively fast when assessed in the mM range, the formation of 2⊃3 at 0.1 mM results in a very low 

concentration of remaining free single helix 2 which slows down the formation of (2)2. Similarly, 

the formation of (2)2⊃(3)2 is slower when the concentrations of both (2)2 and free 3 are low. The 

sequence of steps to convert 2⊃3 into (2)2⊃(3)2 is shown in Figure 17: (i) dissociation into 2 and 3; 

(ii) helix handedness inversion of 2;26 (iii) association of 2 into (2)2;; (iv) binding of 3 to (2)2. The 

timescales involved in the equilibria at each step, allow to isolate both kinetic and thermodynamic 

supramolecular products and to monitor the inversion of chiroptical properties with time as the 

system first evolves towards a product with one handedness and then reverts into another product 

having an opposite handedness. 
 

 

Figure 17. (Left) Equilibrium between oligomer 2 as P (blue) and M (red) single helices and P and M double helices; 
(Top) Equilibrium between oligomer 2 as P and M single helices and M-2⊃3-(L); (Bottom) Equilibrium between 
oligomer 2 as P and M double helices and a 2:2 complex between P-(2)2 as a double helix and two 3-(L) molecules. 
Note that the P and M single helices are at equilibrium whereas the P and M double helices are not unless they first 
dissociate into single helices. 

 

These results represent a striking illustration of the multiple processes that compete and take 

place at different time scales in supramolecular reaction sequences. The combined features of 

supramolecular systems − constitution, dynamics, and information − are leading toward a 

supramolecular science of complex, informed, evolutive matter, as mentioned by Lehn.6 A next 

step could be coupled systems with multiple chiral and achiral distinct stations, transferring the 
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chiral information from a passage to others. The incorporation of time irreversibility implies the 

passages may change their information from one to another. 
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5. Experimental part 

5.1 Methods for NMR 

NMR spectra were recorded on 3 different NMR spectrometers: (1) an Avance II NMR 

spectrometer (Bruker Biospin) with a vertical 7,05T narrow-bore/ultrashield magnet operating at 

300 MHz for 1H observation and 75 MHz for 13C observation by means of a 5-mm direct BBO 

H/X probe with Z gradient capabilities; (2) an Avance 400 NMR spectrometer (Bruker Biospin) 

with a vertical 9.4T narrow-bore/ultrashield magnet operating at 400 MHz for 1H observation by 

means of a 5-mm direct QNP 1H/13C/31P/19F probe with gradient capabilities; (3) an Avance III 

NMR spectrometer (Bruker Biospin) with a vertical 16.45T narrow-bore/ultrashield magnet 

operating at 700 MHz for 1H observation by means of a 5-mm TXI 1H/13C/15N probe with Z 

gradient capabilities. Chemical shifts are reported in parts per million (ppm, δ) relative to the 1H 

residual signal of the deuterated solvent used. 1H NMR splitting patterns with observed 

first-order coupling are designated as singlet (s), doublet (d), triplet (t), or quartet (q). Coupling 

constants (J) are reported in hertz. Data processing was performed with Topspin 2.0 software. 

Samples were not degassed. CDCl3 from Eurisotop was used after filtration through an alumina 

pad followed by a distillation over calcium hydride. 

DOSY. Diffusion Ordered spectroscopy (DOSY) experiments were recorded at 400 MHz and 

were used to study diffusion coefficients of the single and double helices with the following 

parameters: longitudinal eddy current delay (LED) using sine-shaped gradient of 2 ms (δ), ∆ of 

100 ms, a relaxation delay of 2 s and 32 scans for each gradient intensity (2 to 95%, 10A gradient 

unit).  

EXSY. Exchange spectroscopy (EXSY) experiments and were recorded at 400 MHz with use of 

a standard phase-sensitive NOESY pulse program (noesyph) with the following parameters: the 

acquisition was performed with 2048(t2) x 512(t1) data points, in States-TPPI mode with Z 

gradients selection, relaxation delay of 2 s, and 80 scans per increment; sweep width of 14000 Hz 

in both dimensions at 318K. Processing was done after a Sine Square multiplication in F1, 

Gaussian multiplication in F2 and Fourier transformation in 1K x 1K real points. Magnetization 

exchange rates were obtained from cross and diagonal peak integration using Topspin 2.0 at 

different mixing times. EXSYCalc software was used to extract the magnetization exchange rate 

constants kass* and kdiss* from the integrations of single and double helix exchange diagonal- and 
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cross-peaks. 

5.2 Methods for Circular Dichroism 

Circular dichroism studies were carried out in distilled chloroform using 2 or 10 mm pathlength 

cell on a JASCO J-815 Circular Dichroism spectrometer. 

5.3 Methods for X-ray crystallography 

Needle shaped crystals of the double helix (2)2 were obtained from slow diffusion of n-hexane 

into chloroform. The data were collected at a synchrotron beamline (PROXIMA1 SOLEIL). The 

data were integrated and scaled using the XDS package.27 Plate shaped crystals of the complex 

(2)2⊃(3)2 grew from slow diffusion of n-hexane into chloroform. Data were collected on a home 

source Bruker X8 proteum rotating anode at the CuKα wavelength. SAINT28 was used for 

integrating and scaling the diffraction intensities. Both structures were solved using the charge 

flipping algorithm implemented in Superflip29 and were refined using SHELXL.30 The positions 

of the H atoms were deduced from coordinates of the non-H atoms. The non-H atoms were 

refined with anisotropic temperature parameters. H atoms were included for structure factor 

calculations but not refined.  

The crystals of the complex (2)2⊃(3)2 are composed of more than 10% of disordered solvent 

molecules. In order to get convergence of the refinement process, the structure factors were 

squeezed using the procedure implemented in PLATON.31  
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  5.4 Summary of X-Ray crystallographic data 

Name Double helix (2)2 complex (2)2⊃32 

Formula C179 H179 Cl9 N44 O28 C126 H134 Cl12 N22 O25 

M 3713.72 2781.96 

Crystal system Monoclinic Monoclinic 

Space group P2(1)/n P2(1)/c 

a/Å 23.453(5) 23.097(4) 

b/Å 37.806(8) 31.196(5) 

c/Å 25.788(5) 40.446(6) 

α/o 90.00 90.00 

β/o 115.10(3) 100.388(7) 

γ/o 90.00 90.00 

U/Å3 20707(7) 28666(8) 

T /K 100 180 

Z 4 8 

ρ/g cm–1 1.220 1.289 

size (mm) 0.1 x 0.05 x 0.05 0.1 x 0.1 x 0.01 

λ/ Å 0.82650 1.54178 

µ/mm-1 0.287 2.727 

Absorption correction 20647 29514 

unique data 100361 165090 

parameters/restraints 2342/23 3312/10 

R1, wR2 0.1554, 0.3787 0.1429, 0.3437 

goodness of fit 1.455 1.807 
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5.5 Methods for chemical synthesis 

All reactions were carried out under a dry nitrogen atmosphere. Commercial reagents were 

purchased from Sigma-Aldrich or TCI and were used without further purification unless 

otherwise specified. Dichloromethane (DCM) was dried over alumina column; chloroform 

(CHCl3) and triethylamine (Et3N) were distilled from calcium hydride (CaH2) prior to use. 

Reactions were monitored by thin layer chromatography (TLC) on Merck silica gel 60-F254 

plates and observed under UV light. Column chromatographies were carried out on Merck 

GEDURAN Si60 (40-63 µm). Melting points were measured on a Büchi B-540. ESI mass spectra 

were obtained on a Waters LCT from the IMAGIF CNRS Laboratory at the Gif/Yvette, France. 

 

5.5.1 Synthesis of helix 2 

Piv-PN2-Boc 5. To a solution of the amine NH2-PN2-Boc17 4i (1.2 g, 1.7 

mmol) and Et3N (2.4 mL, 17 mmol) in dry CH2Cl2 (20 mL) was added 

pivaloyl chloride (0.4 mL, 3.4 mmol) dropwise via a syringe at 0 °C. 

Then the reaction mixture was allowed to proceed at room temperature 

for 12 h. The solution was evaporated, and the residue was purified by flash chromatography (SiO2) eluting with 

EtOAc/CH2Cl2 (5:95 to 30:70) to obtain product 5 as white solid (1.12 g, 83% yield). 1H NMR (CDCl3, 300 MHz): δ 

11.27 (s, 1H), 10.61 (s, 1H), 8.12 (d, J(H, H) = 9.0, 1H), 8.74 (d, J(H, H) = 9.0, 1H), 8.60 (d, J(H, H) = 9.3, 1H), 

8.39 (d, J(H, H) = 9.3, 1H), 8.12 (d, J(H, H) = 8.1, 1H), 8.03 (d, J(H, H) = 8.1, 1H), 7.96 (br, 1H), 7.89 (br, 1H), 7.82 

(t, J(H, H) = 8.1, 1H), 7.80 (s, 1H), 7.75 (s, 1H), 4.15-4.11 (m, 4H), 2.36-2.27 (m, 2H), 1.38 (s, 9H), 1.28 (s, 9H), 

1.17 (d, J(H, H) = 6.9, 6H), 1.16 (d, J(H, H) = 6.9, 6H). 13C NMR (CDCl3, 75 MHz): δ 183.6, 177.2, 164.2, 164.1, 

163.6, 162.5, 155.5, 154.9, 154.6, 154.4, 153.7, 152.8, 152.3, 150.2, 149.3, 140.8, 134.5, 134.2, 115.2, 115.1, 114.3, 

114.1, 109.7, 109.6, 99.0, 98.7, 82.2, 75.9, 39.9, 38.7, 28.4, 28.2, 27.7, 27.4, 19.3. HRMS (TOF-ES-): m/z calcd for 

C41H48N9O7 [M-H]- 778.3677; found 778.3664.  

 

Piv-PN2-NH2 6. Piv-PN2-Boc 5 (0.47 g, 0.6 mmol) was dissolved in CH2Cl2 

(5 mL), and excess trifluoroacetic acid (TFA) (2 mL) was added dropwise. 

Then the reaction mixture was allowed to proceed at room temperature for 6 

h. The solution was evaporated, and the residue was dissolved in CH2Cl2 

(20 mL), washed with saturated NaHCO3, dried over Na2SO4, filtered and then concentrated to give amine of 

Piv-PN2 6 (0.39 g, 95% yield) as a white solid which was used without further purification. 1H NMR (CDCl3, 300 

MHz): δ 11.34 (s, 1H), 10.66 (s, 1H), 8.79 (d, J(H, H) = 9.0, 1H), 8.72 (d, J(H, H) = 9.0, 1H), 8.34 (d, J(H, H) = 8.7, 

                                                      
i Thank Chandranouli Nagula (postdoctor) for synthesizing the compound NH2-PN2-Boc 4. 
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1H), 8.12 (d, J(H, H) = 7.8, 1H), 8.01 (d, J(H, H) = 8.1, 1H), 7.94 (br, 1H), 7.81-7.76 (m, 2H), 7.63 (s, 1H), 6.86 (d, 

J(H, H) = 8.7, 1H), 5.28 (br, 2H) 4.14 (d, J(H, H) = 6.6, 2H), 4.08 (d, J(H, H) = 6.6, 2H), 2.36-2.22 (m, 2H), 1.36 (s, 

9H), 1.17 (d, J(H, H) = 6.6, 6H), 1.13 (d, J(H, H) = 6.6, 6H). 13C NMR (CDCl3, 75 MHz): δ 177.2, 164.1, 164.0, 

163.8, 162.5, 160.7, 156.2, 154.9, 154.4, 153.6, 151.8, 150.2, 149.3, 140.7, 134.4, 133.0, 115.1, 115.0, 113.2, 111.4, 

109.7, 109.5, 98.9, 97.7, 75.9, 75.5, 39.9, 28.7, 28.3, 27.6, 19.3. HRMS (TOF-ES+): m/z calcd for C36H42N9O5 

[M+H]+ 680.3309; found 680.3298. 

 

 

Piv-PN2PyrPyzPyrN2P-Piv 2. To a solution of diacid of pyr-pyz-pyr 7ii (93 mg, 0.29 mmol) and Piv-PN2 6 (0.39g, 

0.57mmol) in CHCl3 (20 mL) was added Et3N (0.2 mL, 1.4 mmol) and PyBOP (0.75g, 1.4 mmol). Then the reaction 

mixture was heated at 45 °C for 12 h. The solution was evaporated, and the residue was purified by flash 

chromatography (SiO2) eluting with EtOAc/cyclohexane (10:90 to 30:70) to obtain product 2 as white solid (0.42 g, 

88% yield). 1H NMR (CDCl3, 16 mM, 300 MHz): δ 10.57 (s, 2H), 10.07 (s, 2H), 9.55 (s, 2H), 9.32 (s, 2H), 8.45 (d, 

J(H, H) = 7.2, 2H), 8.25 (d, J(H, H) = 9.0, 2H), 8.02 (d, J(H, H) = 9.0, 4H), 7.89 (d, J(H, H) = 9.0, 2H), 7.61-7.53 (m, 

4H), 7.48 (br, 2H), 7.45-7.38 (m, 4H), 7.29-7.24 (m, 2H), 7.22 (s, 2H), 6.72 (s, 2H), 3.86-3.69 (m, 8H), 2.32-2.19 (m, 

4H), 1.29-1.26 (m, 12H), 1.18-1.13 (m, 12H), 0.69 (s, 18H). 13C NMR (CDCl3,16 mM, 75 MHz): δ 177.1, 162.9, 

162.7, 162.1, 161.2, 160.9, 156.2, 153.8, 153.6, 153.3, 153.2, 152.6, 151.8, 151.5, 149.7, 148.2, 146.9, 139.4, 137.0, 

134.6, 133.3, 127.7, 124.1, 121.7, 115.0, 114.7, 113.7, 113.5, 109.1, 108.4, 98.5, 97.9, 75.5, 75.3, 39.4, 28.4, 28.3, 

26.9, 19.6, 19.5, 19.5, 19.4. HRMS (TOF-ES+): m/z calcd for C88H89N22O12 [M+H]+ 1645.7030; found 1645.7010. 

 

5.5.2 Synthesis of guests 

(R,R)-Dibenzyl tartrate di-3,5-di-tert-butylbenzoate 8. 3,5-Di-tert-butylbenzoic acid 

(0.7 g, 3 mmol) was dissolved in dry CH2Cl2 (10 mL). Oxalyl chloride (1.3 mL, 15 

mmol) was added, and the reaction was allowed to stir at room temperature for 3 h. The 

solvent and excess reagents were removed under vacuum and the residue was dried 

under vacuum for at least 2 h to yield 3,5-di-tert-butylbenzoyl chloride as a white solid. 

To a solution of (R,R)-dibenzyl tartrate (0.49 g, 1.5 mmol), Et3N (2.5 mL, 18 mmol) and 

4-dimethylamino-pyridine (DMAP) (7.3 mg, 0.06 mmol) in dry CH2Cl2 (10 mL) was added dropwise a solution of 

freshly prepared 3,5-di-tert-butylbenzoyl chloride in dry CH2Cl2 (5 mL) at 0 °C. Then the reaction mixture was 

allowed to proceed at room temperature for 24 h. The solution was evaporated, and the residue was purified by flash 

chromatography (SiO2) eluting with DCM/cyclohexane/ether (5:90:5 to 25:70:5) to obtain product 8 as white solid 

(0.88 g, 78% yield). 1H NMR (CDCl3, 300 MHz): δ 7.93 (d, J(H, H) = 1.8, 4H), 7.68 (t, J(H, H) = 1.8, 2H), 

7.28-7.09 (m, 10H), 6.08 (s, 2H), 5.27 (d, J(H, H) = 12, 2H), 5.15 (d, J(H, H) = 12, 2H), 1.35 (s, 36H). 13C NMR 

                                                      
ii Thank Didier Dubreuil group (Université de Nantes) for providing the compound pry-prz-pry 7. 
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(CDCl3, 75 MHz): δ 165.9, 165.9, 151.3, 134.9, 128.6, 128.4, 128.2, 128.0, 124.5, 71.6, 67.8, 35.0, 31.5. HRMS 

(TOF-ES+): m/z calcd for C48H58O8Na [M+Na]+ 785.4029; found 785.4050. mp 140.6-141.3 °C.  

 

(R,R)-Tartaric acid di-3,5-di-tert-butylbenzoate (3-L). A suspension of (R,R)-dibenzyl 

tartrate di-3,5-di-tert-butylbenzoate 8 (0.4 g, 0.52 mmol) and 10% Pd/C (40 mg) in 

ethyl acetate (20 mL) was vigorously stirred under hydrogen atmosphere at room 

temperature for 12 h. The mixture was filtered through a pad of Celite with ethyl acetate 

and concentrated under vacuum to give product 3 (0.3 g, quant.). 1H NMR (CDCl3, 300 

MHz): δ 9.14 (br, 2H), 7.90 (d, J(H, H) = 1.8, 4H), 7.61 (t, J(H, H) = 1.8, 2H), 5.95 (s, 

2H), 1.25 (s, 36H). 13C NMR (CDCl3, 75 MHz): δ 171.5, 166.1, 151.3, 128.2, 127.9, 124.5, 71.4, 35.0, 31.4. HRMS 

(TOF-ES-): m/z calcd for C34H45O8 [M-H]- 581.3114 found 581.3117. mp 152.0-153.1 °C. 

 

(S,S)-Tartaric acid di-3,5-di-tert-butylbenzoate (3-D) was synthesised using a similar procedure than for (3-L) : see 

above. 
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CONCLUSION AND PERSPECTIVES 

Design of molecules with self-assembled functions is a challenging research in the field of 

supramolecular chemistry, chemical biology and materials science. Among these studies, one 

particularly interesting topic is to design artificial foldamers that can self-assemble into a helical 

structure, for the purpose of not only mimicking the structure and function of living matter, such 

as DNA and proteins, to facilitate one to understand the nature of life, of but also creating new 

artificial structures and functions.  
 

A new series of single helical pseudorotaxanes, termed as foldaxanes, have been designed 

and synthesized. In this system, helical molecular tapes can slowly wind around rod-like guests to 

form host-guest complexes. The winding process only requires unfolding and refolding of helices, 

and no longer needs them irreversibly fixed with guests. At the same time, the length of helices 

and anchor points on the rods must be strictly matched in the complexes. While the single helical 

foldaxanes form, the helices can shuttle along the guests without dissociating, because the 

timescale of helical unwinding is relatively slow. Furthermore, the regulation of sliding motion is 

achieved according to protonation and deprotonation of the rods. 
 

 
 
 

An anti-parallel double helical aromatic oligoamide foldamer is shown to bind to a series of 

rod-like guests of various lengths upon winding of the duplex around the guests. X-ray structures 

of the host-guest complexes show that the two strands of the duplex undergo a relative screw 

motion to adjust the distance between hydrogen bond donors located at the end of one of their 

extremities so that they bind to hydrogen bond acceptors of the guest. When the duplex binds to a 

long guest possessing two binding stations of different lengths, it is shown to shuttle between the 
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two stations without dissociating, implying a simultaneous screw motion to adjust to the length of 

the binding station where it resides. 
 

 
 
 

An aromatic oligoamide sequence has been designed and synthesized to fold in a single helix 

having a large cavity and to behave as a host for a dumbbell-shaped guest derived from tartaric acid. 

NMR, molecular modeling and circular dichroism evidence demonstrated the rapid formation of 

this 1:1 host-guest complex and the induction of the helix handedness of the host by the guest. This 

complex was found to be a long-lived kinetic supramolecular by-product as it slowly transformed 

into a 2:2 host-guest complex in which two guest molecules are bound at the extremities of a 

double helix formed by the host, as shown by NMR, CD and by a solid state structure. The guest 

also induces the handedness of the double helical host, but with an opposite bias. The chiroptical 

properties of the system are thus found to revert with time as the 1:1 complex forms first, followed 

by the 2:2 complex. 
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All our efforts in the previous studies demonstrated that aromatic oligoamide foldamers 

could be good candidates for the elaboration of molecular machines and further steps of research 

should still be passed. 

 

� In the studies presented herein, the control of chirality was transiently achieved upon 

trapping one enantiomer of tartaric acid. One can imagine a similar chirality transfer 

not from the cavity but from the terminus of the rod to form a stable chiral 

foldaxane.  

� A step further into complexity would consist in decorating a long rod with several 

single, double or triple helices loaded on pre-designed stations. It would require that 

all the helices could strictly match their corresponding stations and simulteanously 

present high diastereoselectivities at their points of contact.  

� Foldaxanes assembly proceeds through hydrogen bonding and fine kinetic control. A 

crucial question is: can we use other non-covalent interactions? In fact, hydrophobic 

effect could be particularly efficient as a drving force for the foldaxane formation. 

Water soluble helix with an apolar hollow (Qf) would accomodate an alkyl chain in 

the cavity.  

� A last aspect that could be envisaged is the control of the screw sense by polarized 

ligth. All of these new lines of development would push foldaxanes to be truly 

molecular machinery. 

 


