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Abstract 

To exploit the vast data obtained from high throughput molecular biology, a variety of 

modelling and analysis techniques must be fully utilised. In this thesis, Petri nets are in­

vestigated within the context of computational systems biology, with the specific focus of 

facilitating the creation and analysis of models of biological pathways. 

The analysis of qualitative models of genetic networks using safe Petri net techniques 

was investigated with particular reference to model checking. To exploit existing model 

repositories a mapping was presented for the automatic translation of models encoded in the 

Systems Biology Markup Language (SBML) into the Petri Net framework. The mapping 

is demonstrated via the conversion and invariant analysis of two published models of the 

glycolysis pathway. 

Dynamic stochastic simulations of biological systems suffer from two problems: com­

putational cost; and lack of kinetic parameters. A new stochastic Petri net simulation tool, 

NASTY was developed which addresses the prohibitive real-time computational costs of 

simulations by using distributed job scheduling. In order to manage and maximise the use­

fulness of simulation results a new data standard, TSML was presented. The computational 

power of NASTY provided the basis for the development of a genetic algorithm for the 

automatic parameterisation of stochastic models. This parameter estimation technique was 

evaluated on a published model of the general stress response of E. coli. An attempt to 

enhance the parameter estimation process using sensitivity analysis was then investigated. 

To explore the scope and limits of applying the Petri net techniques presented, a realistic 

case study investigated how the Pho and aB regulons interact to mitigate phosphate stress 

in Bacillus subtilis. This study made use of a combination of qualitative and quantitative 

Petri net techniques and was able to confirm an existing experimental hypothesis. 
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Chapter 1 

Introduction 

1 

We are now in a post-genomic age; with advances in high-throughput biological techniques 

making whole genomic experiments possible [GCN+02]. From shotgun clustering tech­

niques to sequence alignment methods, mathematical and computer science techniques 

have played an important role in the advancement of biology. It is now possible to se­

quence a complete genome in a matter of weeks [KO+97]. With the genome available, 

experimental techniques such as microarrays can simultaneously monitor expression levels 

of every gene in an organism [SSDB95]. Post genomic techniques such as microarrays are 

capable of producing vast amounts of data. Indeed, the future investigation of biological 

systems will greatly dependant on novel theoretical techniques to manage and interpret this 

data. For example Bacillus subtilis [HCWOI] contains over 6000 genes [KO+97]. Infor­

mation on the dynamics of 6000 genes is clearly too large to be analysed and interpreted 

by the human eye. Hence the rapidly maturing fields of Bioinformatics [WPT02] and Sys­

tems biology [KitOl] will play important roles in the future understanding of life. Varied 

theoretical techniques, both new and well studied, need to be applied to further our under­

standing of biological systems. The Bioinformatition will fill a key role interfacing between 

the advanced mathematical, statistical and computing science techniques and the wet lab 
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biologists, with their increasingly sophisticated high throughput techniques. Biological 

network modelling will form a large component of these integrative studies. A conceptual 

model of a biological system in silico allows a researcher to move from reductionist biol­

ogy through to understanding of how a whole pathway or even a whole cell functions. A 

well constructed model in the right formalism will allow a researcher to ask many ques­

tions of the model, from the validation of current understanding through to the generation 

of hypotheses testable in the laboratory. The interdisciplinary work of this nature will no 

doubt be a key factor in the advancement of biological sciences over the coming years. 

As integrative studies begin to gather momentum it is important to have a suitable mod­

elling framework in which to investigate and analyse the resulting biochemical network 

models. This thesis argues that Petri nets are such a formalism. Petri nets combine a sim­

ple graphical notation with powerful, flexible analysis techniques. This thesis begins with 

the post genomic age and seeks to investigate computational systems biology within the 

field of Petri nets [Pet62]. Petri nets and accompanying techniques will be investigated 

with the aim of applying these techniques to advance systems biology. To put the work into 

context, a brief historical background follows. 

1.1 Bioinformatics 

As molecular biology techniques advanced appropriate computational methods and re­

sources were required to cope with the ever increasing volume of data. Ever more CPU 

power and memory was needed to process this data. With regard to computer hardware 

Moore's law continued to be true in all aspects of computer hardware. It is now possible 
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to buy hard disk space at less than 50 pence a Gigabyte, several thousand times cheaper 

than 20 years ago. As molecular biology developed, the increasing amount of data meant 

that problems became more computational. Furthermore, methods for storing data, as well 

as analysing and comparing it became a challenge. The investigation of molecular biology 

using computational methods is known as bioinformatics [OV03]. Bioinformatics can be 

defined as, "The development and use of computational and mathematical methods for the 

acquisition, archiving, analysis and interpretation of biological information to determine 

biological functions and mechanisms as well as their applications in user communities" 

[BBS05]. Bioinformatics has become a field of research in its own right, with many papers 

and books being published and researchers around the world tackling its problems. In the 

1990s Bioinformatics dealt mainly with the management and analysis of DNA, RNA and 

protein sequences. Now Bioinformatics covers many more areas of research, including but 

not limited to, physical protein structures, prediction of gene networks and protein protein 

interactions [WPT02]. 

1.2 Computational Systems Biology 

With the emerging success of Bioinformatics and molecular biology, biological experi­

ments are possible on a genomic scale [GCN+02], via the use of technologies such as 

microarrays [SSDB95]. Advances in biology alongside the advanced computational tech­

niques and effective data storage provided by bioinforrnatics has provided researchers with 

the ability to study multiple components of biological systems. It is now important to 

appropriately investigate how biological components interact and collectively produce the 
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behaviour of the system as a whole [IWK+04]. Studies seeking to elucidate the behaviour 

of biological systems often involve a cycle between laboratory experiments, bioinformatics 

and modelling components. Studies such as these form what is known as "systems biol­

ogy". Systems biology can be defined as, " ... an approach of study where the goal is to 

understand how the parts of a (biological) system interact to yield a the behaviour of that 

system as a coherent whole"[IWK+04]. Systems biology is an emerging field, exemplified 

by the creation of a systems biology dedicated journal [IWK+04]. 

Systems biology often involves the combination of work by laboratory scientists, com­

puting scientists and statisticians. One aspect of these studies is the creation and analysis 

of models representing the biological systems of interest. Systems biology studies ideally 

involving a cycle between model development and analysis allied to biological experimen­

tation. As the model is created, laboratory experiments help fill in the gabs by collection of 

necessary data. When the model is mature, it can be utilised to make predictions and help 

direct laboratory experiments. With regard to modelling there are a number of techniques 

that can be applied to systems biology studies. These techniques include, amongst others: 

Boolean based modelling [Kau69]; deterministic simulations [lBO+04]; stochastic simula­

tions [MA97]; and network validation [HK04]. While there are many methods that provide 

great insight to biological systems, they are all targeted at a specific problem domain (for 

example high level Boolean modelling, or detailed kinetic simulations). Hence the main 

drawback of the techniques such as these currently applied in systems biology is the lack 

of flexibility. Ideally a suitable framework for the investigation of computational systems 

biology will combine intuitive graphical notations, powerful analysis techniques, theoret-
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ically justified simulation methods and a mature tool support. In this thesis it is argued 

that the established Petri net formalism [Pet62] should be adopted as a suitable vehicle for 

systems biology studies. 

1.3 Petri Nets 

Petri nets [Pet81] are a well studied mathematically based modelling framework orig­

inating from computer science. As well as providing an intuitive graphical notation, Petri 

nets provide powerful analysis and simulation algorithms and techniques (see [PNW04] for 

a bibliography). The creator of Petri nets, Carl Petri, envisaged right from the start their 

use for modelling biological Phenomena [Pet62]. 

Petri nets are bipartite graphs consisting of the following components: 

• Places, to represent resources, or inputs into a reaction; 

• Transitions to represent reactions or events; 

• Directed Arcs to link places to transitions or transitions to places; 

• Tokens which are distributed over the places, and represent a measure of quantity or 

concentration. 

Petri nets have been used to study a number of different phenomena including hard­

ware design [YK98], industrial manufacturing processes [DHP+93, ZD90], communica­

tions networks [BR99], system verification [Kho03], verification of distributed algorithms 
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[DK98], Local Area Networks [MNCYOO] and neural networks [Zar88] to name a few. In 

recent years they have been used to model biological phenomena [RLM96], and we discuss 

this area in detail in Chapter 2. Petri nets provide a flexible and powerful framework for the 

analysis of biological networks. Within the same formalism analysis can be carried out at 

different levels depending on the information available. Petri nets provide, among others, 

the following key features to assist the analysis of a network: 

• An intuitive graphical representation of networks; 

• The network structure can be analysed for structural properties, elucidating such phe­

nomena as feedback loops and providing validation of a model for further analysis; 

• Given the initial amounts of molecules or proteins reachability analysis can be carried 

out to determine the reachable states of the system; 

• By including the notion of time, the network can be dynamically simulated to pro­

duce time series data similar to lab experiments. 

Other slight variations such as Coloured nets [HKYOl] extend the formalisms mod­

elling power even further. Petri nets are discussed in much greater detail in Section 2. 

1.4 Aims and Structure of the Thesis 

This thesis focuses on the modelling aspect of computational systems biology specifically 

within the Petri net framework. The thesis investigates the creation, analysis and simulation 

of biological networks using Petri nets [Pet77]. In particular there are a number of more 

specific aims: 
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• Model composition. With large models having a great deal of complexity. is the 

composition of smaller models an effective modelling strategy? 

• Stochastic network analysis. With stochastic Petri nets having the potential to pro­

vide a powerful tool for systems biology. what can be done to assist this approach. 

particularly with regard to missing parameters and simulation costs . 

• Tool support is to be investigated. While there are a range of Petri net tools available. 

how are they suited to the study of biological systems? Will further tool development 

be required? 

• Standards and interchange. Is there a way of easily importing system biology 

models into the Petri net framework? What other standards, if any, are needed to 

support Petri net modelling of biological systems. 

• Finally the thesis aims to present a case study of Phosphate stress response in Bacillus 

subtilis incorporating a number of Petri net techniques and drawing the knowledge 

of the thesis together. 

The remainder of this thesis is organised as follows. 

Chapter 2: This chapter presents the background to this work, including relevant tech­

niques and related works. Systems biology is introduced, along with a detailed discussion 

of stochastic simulation techniques, including the Gillespie algorithms [Gil77, Gil76] and 

the Gibson-Bruck algorithm [GBOO]. Petri nets are discussed in detail, with a formal defi­

nition and discussion of relevant analysis techniques. Related studies utilising the Petri net 

framework in systems biology, are then surveyed and discussed. 
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Chapter 3 This Chapter is concerned with the Safe Petri nets analysis of Boolean rep-

resentations of genetic regulatory networks and with the import and analysis of Place tran­

sition net models of metabolic networks. Boolean representations of genetic networks are 

first minimised by logic reduction techniques [BMSSV93], and translated into Petri net 

structures via techniques presented by Steggles et al. [SBSW05]. A novel model of the lac 

operon in E. coli is created using this technique. The model is then analysed, and are found 

to present accurately the high level understanding of the systems behaviours. A mapping 

is presented allowing the automatic import of systems biology models encoded in SBML 

[HP+03] to be imported into the Petri net framework, in PNML format [BCvH+03]. This 

opens a vast resource of models for analysis with Petri nets. This approach is illustrated by 

the structural analysis of models converted from the SBML repository [SBM04] and the 

KEGG metabolic database [KGKN02]. 

Chapter 4: This Chapter presents a new stochastic Petri net simulation tool, NASTY 

which combines stochastic Petri nets with the Gibson-Bruck algorithm, providing an effi­

cient tool for stochastic simulations within the Petri nets framework. The investigation of 

the dynamic, time course behaviour of biological systems is an important aspect of systems 

biology. With stochastic simulations being computationally expensive [EBOl], NASTY 

utilises a distributed engine, allowing jobs to be carried out over a large number of comput­

ers. A novel interchange fonnat, namely Time Series Markup Language (TSML) is then 

presented. TSML allows results from computationally intensive simulations to be stored in 

an efficient and complete fonnat. This allows the data to be statistically investigated and 

transferred between groups. The results format is also computationally amenable, facilitat-
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ing the storage and manipulation of the data. 

Chapter 5: This Chapter presents a probabilistic technique which seeks to parameterise 

stochastic models with the use of genetic algorithms. This technique addresses a current 

problem with stochastic models, in that there is often a lack of complete kinetic parameter 

sets [MS03]. An existing model of the general stress response in E. coli [SPBOl] is taken 

as a case study for this technique. The model is stripped of all kinetic parameters, with 

the model's topology and initial concentrations forming the input to the genetic algorithm. 

The genetic algorithm utilises NASTY as its simulation mechanism to assess the fitness of 

parameter sets, evolving populations relative to their closeness to the original time-courses. 

The algorithm is successful in finding qualitatively suitable parameters for all simulation 

conditions, and quantitatively suitable solutions for the vast majority. Future improvements 

to the algorithm are also discussed. To further investigate stochastic network dynamics, 

sensitivity analysis is applied to the E. coli model. The aim here is to determine how indi­

vidual reaction rates contribute to the overall system performance and, if only approximate 

reaction rates are know, how much insight sensitivity analysis can give. As such, sensitivity 

analysis is applied to models with complete and approximate parameter sets. Sensitivity 

analysis of the complete parameter set demonstrates that the model is highly sensitive to a 

particular parameter. All other parameters had only a small effect on the models dynam­

ics. The approximate model, using random rates, gave very different results. suggesting 

great care must be taken when utilising sensitivity analysis to assist parameterisation of a 

stochastic model. 
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Chapter 6: This Chapter presents a case study, in which a variety of techniques pre-

sented previously are utilised to investigate the phosphate stimulon in B. subtilis. The 

purpose of the case study is to further demonstrate the applicability of Petri nets to sys­

tems biology. Of particular interest here is the investigation into the interaction of the Pho 

and aB regulons [PH02]. A novel Boolean model was created in a modular fashion from 

a number of smaller models. Reachability analysis validated that the model captured the 

high level behaviour of the phosphate stimulon, giving confidence to create a stochastic 

model. A stochastic Petri net model of the phosphate stimulon was then created. While 

this model remained reasonably high level in nature, it captured the important behaviour 

of the stimulon. Sensitivity analysis carried out on the kinetic parameters suggested that 

the competition of sigma factors for RNA polymerase could indeed provided an explana­

tion for the phenomenon seen in laboratory experiments, adding weight to the suggested 

explanation by the experimentalists [PH02]. 

Chapter 7: Finally. this Chapter reflects on the work presented. reviewing the work 

and where it fits in the current state of systems biology. Future research avenues that have 

been uncovered by the investigation of this thesis are discussed, along with a general vision 

for the future systems biology studies, including the role and effectiveness of Petri nets in 

this field. 

.-1 



Chapter 2 

Background 

11 

The recent parallel growth in the fields of molecular biology and computing science and 

the emerging field of Bioinformatics have opened up many areas of research related to the 

biological sciences. The central theme of this thesis is the study of biological networks, 

specifically bacterial metabolic and genetic networks, utilising Petri net techniques. In this 

section the relevant background to studies relating to this thesis are discussed. 

The fundamentals of biological network representation are introduced, followed by a 

range of analysis techniques relevant to this thesis. Simulation techniques, both stochas­

tic and deterministic are discussed with their assumptions and limitations explained. First 

the Petri net framework is introduced. Relevant mathematically theory and analysis tech­

niques, including behavioural and structural properties, from the Petri net framework are 

discussed. Stochastic Petri nets, which extend Petri nets with a time element, are introduced 

and formally defined. Stochastic Petri nets allow the discrete event stochastic simulation 

of biological networks and are analogous to other stochastic simulation techniques. An re­

view of the current state of the growing application of Petri nets to computational systems 

biology is presented. Finally the problem of model interchange and storage of is discussed, 

with the Petri Net Markup Language (PNML) and the Systems Biology Markup Language 
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Figure 2.1: A classical marine food web, from [JNC] 

(SBML) taking particular prominence. 

2.1 Biological Networks 

Many phenomena in the biological world can be represented as a network, from classical 

food webs [JNC], such as that shown in Figure 2.1, to complex protein-protein interactions, 

as shown in Figure 2.2. These networks are at a basic level made up of nodes, representing 

a particular state or entity. and arcs, giving the details of node interactions. For example in 

Figure 2.1. nodes represent organisms involved in the food web, while the arcs represent 

an organism at the sink of the arc being a consumer of the source of the arc. In a network 

representation of a biological system the arcs may or may not be directed. For example, 

in a metabolic network the nodes represent molecules and the arcs would indicate the di-

rection in which the reactions proceed. In protein-protein interaction networks they may 
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Figure 2.2: Protein-Protein interactions, from [JMBOOll 

only represent the knowledge that there is some interaction between one or more proteins, 

therefore the arc will not be directed. Graphs may also be bipartite, possessing two types 

of node. In a metabolic reaction for example, a node of type X would represent the reaction 

while node of type Y would represent reactants and products. 

A biological network representation of the molecular state of a cell may consist of 

many biochemical reactions and interactions. Large networks can be viewed as a number of 

smaller sub-networks or reactions, with distinct topological characteristics. Each individual 

reaction is essentially simple but, when combined, the number of reactions and their strong 

interconnections may manifest the complexity of the networks as a whole [GibOO]. 

At a most basic level, representing biological systems as networks is a knowledge cap­

ture and documentation method. Drawing a model documents understanding and high­

lights areas where there is uncertainty. If an appropriate modelling framework is utilised 
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modelling biological systems allows the application of many network analysis techniques 

and algorithms. These techniques can provide great insight into current understanding 

and also allow the generation hypotheses "in-silico" that may aid the direction of lab­

oratory experiments. Network analysis techniques have a strong history in computing 

science and are responsible for many important advances. Network analysis techniques 

are exemplified by the success of Petri nets [Mur89]. Petri nets and many similar tech­

niques, new and old, are increasingly being applied to networks in molecular biology 

[RML93, PSB+05, GPB+04, CRRT04, AKMM98, IBG+04]. The computational anal­

ysis of molecular biological networks is an integral part of the newly developing inter­

disciplinary field of systems biology, which will be discussed next. 

2.2 Systems Biology 

Traditionally molecular biology has taken a reductionist approach, with experiments in­

vestigating the function of a single gene or protein [DDB+04]. Systems biology looks 

to build on this classical work by taking a more holistic view of biology. Systems biol­

ogy can be defined as, " ... an approach of study where the goal is to understand how the 

parts of a (biological) system interact to yield a the behaviour of that system as a coherent 

whole"[IWK+04]. The system definition applies at a number of levels: how proteins in­

teract to manifest the behaviour of a cell; how cells interact to manifest the behaviour of a 

population or a tissue; or how tissues interact to manifest the behaviour of an organism. 

Systems biology seeks to utilise expertise from molecular biology, computing science, 

statistics and bioinformatics. The in silico component of these studies are more precisely 
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referred to as computational systems biology [Kit02]. Computational systems biology is 

the creation, analysis and/or simulation of models. Therefore the definition of systems 

biology must also encompass the creation, definition, storage and simulation/analysis of 

these models. The aim of computational systems biology is not to capture and model a 

definitive, complete representation of the system in question. Instead the model is usually 

an abstract mathematical representation of what are deemed to be the important features 

and behaviours of the biological system under study [GBOl]. The resulting model is then 

subsequently utilised, via a number of techniques, to interrogate the the system alongside 

traditional laboratory experiments. Computational modelling within systems biology can 

reduce the number of experiments needed in the preliminary stages of an investigation, and 

as such has the following benefits: 

• Cost. Laboratory experiments use costly equipment and machinery; 

• Time, Laboratory experiments take a long time to prepare and carry out, while the 

organism under study may take a long time to grow to a stage required by the exper-

iment; 

• Novel insights. By attempting to construct a model of the system, features that are 

currently unknown may become apparent; 

• Repetition. Many repetitions of experiments on a model can be carried out for very 

little cost; 

• Documentation. A full description of the model will be created and stored. 
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Figure 2.3: A conceptual view of systems biology, with lab experiments and computational 
modelling closely coupled 

It is imperative that Systems biology be an iterative process. Creation of models must 

come from real laboratory experiments, molecular biology literature and, where necessary, 

educated estimates. These models are then analysed and or simulated in silico. Results 

of these in silico experiments are compared to laboratory data, adjustments made to the 

model as necessary, and hypothesis are re-generated from the model (Figure 2.3). For a de-

tailed discussion on the merits and aims of systems biology we refer the interested reader 

to [Kit02] and [IWK+04]. There are numerous techniques that form a component of com-

putational systems biology. A relevant subsection of these techniques are now discussed. 

2.3 Deterministic Simulations 

Detenninistic simulation techniques are commonly used in systems biology [GHS99]. This 

is exemplified by the large number of published deterministic models available from the 

SBML (see Section 2.8) web site [SBM04]. Deterministic simulations utilise Ordinary 

Differential Equations (ODEs), which are based around tracking the changes in molecular 
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Degredation • 

Figure 2.4: A simple system, proteins A and B combine to form protein C, via a reversible 
reaction. Protein C can then be degraded 

concentrations at different time slices. In order to model a system as a set of ODEs the 

first step is is to write down the reactions involved in the system. The simple system shown 

in Figure 2.4 is now considered. This hypothetical system involves the combination of 

proteins A and B to produce the product C. This binding reaction is reversible, allowing 

protein C to revert back to proteins A and B. Finally protein C can degrade. This simple 

system can be represented by the following equations: 

A+B ~ C (2.1) 

C ~ A+B (2.2) 

c ~ e (2.3) 

where A, B, C are biochemical reactants and products, and k\ , k2, k3 are kinetic rate con-

stants associated with individual reactions. Kinetic rate constants detennine the rate at 

which reactions proceed. Once the equations are defined, the system can be represented 

by the changes in each reactants concentration at each time slice. Of interest are the con-

centrations of reactants at a particular time point, where the concentration of any given 
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reactant X is denoted [Xl. The changes in each reactants concentration at each time slice is 

represented in the following ODEs: 

d[A] 
k2[C] - kl [A][B] (2.4) -dt 

d[B] 
k2[C] - kdA][B] (2.5) -dt 

d[C] 
- kdA][B]- k3[C] - k2[C] (2.6) 

dt 

By using a number of these equations, and having a knowledge of the initial concentra-

tions and the kinetic rate constants, it is possible to simulate time trajectories of the system. 

The ODEs can be solved or integrated to find a solution to the system [Dre93]. There are 

many general techniques for analytically solving ODEs, however these techniques are not 

practical for the complicated systems presented by systems biology [GBOl]. The only vi-

able solution is to use numerical methods, (such as the Runge-Kutta method, the collection 

method or the Galerkin method), to generate the time course of the reactants in the system 

[Dre93]. There is a large tool support for modelling biological systems with ODEs and 

generating their time courses with numerical methods. Tools such as Cellware [DMS+05] 

and Gepasi [MK98] make ODE modelling techniques relatively accessible to biologists, 

with little to no theory on the numerical methods needed in order to simulate a system of 

interest. 

The use of detenninistic techniques such as ODEs in systems biology rely on a number 

of assumptions. These assumptions are said to take the "macroscopic" view of the physical 

world [GibOO]. The main assumptions for deterministic simulation with ODEs are that: 
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(a) Concentrations vary detenninistically over time; 

(b) Concentrations vary continuously and continually; 

(c) Concentrations are well defined quantities; 

(d) Rate constants are well defined quantities. 

These assumptions are approximately satisfied if the number of molecules in the system 

are sufficiently large, hence "macroscopic" chemistry [GibOO]. However these assumptions 

may not be valid for some important aspects of biological systems. For example, with re­

gard to assumption (a), an analysis of cell protein production (i.e. transcription and transla­

tion events) showed that proteins are produced in variable numbers at random time intervals 

[MA97]. Importantly these variations can lead to large time differences between successive 

events in regulatory cascades and subsequently produce probabilistic outcomes in switch­

ing between alternative regulatory paths [MA97]. These stochastic effects may be a source 

of some of the unexplained phenotypic variations in isogenic populations [MA97], and 

detenninistic techniques are unable to capture these interesting and important behaviours 

[SYSY02, MA97]. Assumption (b) breaks down theoretically at the low molecular con­

centrations found in single-cell based biological systems [GibOO]; while it is reasonable 

to suggest there is a continuation of concentrations between 6mols/l and 7molsll, this as­

sumption is not valid under low concentrations as there is no midpoint between 10 and 11 

molecules. 

Detenninistic simulation techniques have proved a successful component of systems 

biology, particularly in the analysis of metabolic pathways [TPR+OO, Kel04]. However, 



20 

as discussed above, some of the assumptions behind deterministic modelling appear inap-

propriate for modelling of single-cell genetic regulatory networks [GibOO, ARM98, GBOO, 

SPBOl, MA97]. The pioneering work of Gillespie [Gil77, Gil76], has provided alternative, 

tractable techniques based on more suitable assumptions for mesoscopic systems [GibOO], 

and has initiated the study of biological networks with stochastic simulation techniques 

these are discussed in the next section. Finally there are other drawbacks to ODE based 

modelling. ODE based tool support has improved greatly over the last decade, however the 

is still a lack of an integrated graphical framework for representing these equations. Other 

network analysis techniques such as model checking, which may provide crucial informa­

tion if full kinetic rate constants and initial concentrations are not available, are also absent 

from the formalism. 

2.4 Stochastic Simulations 

2.4.1 Assumptions 

As previously discussed, deterministic techniques take a macroscopic view of chemical 

systems. This view is based on the assumptions discussed in the previous section. One 

alternative set of assumptions is the "mesoscopic" view of biochemistry [GibOO]. The 

main assumptions behind mesoscopic chemistry can be summarised as follows: 

(a) The solution is well-mixed and at thermodynamic, (but not necessarily chemical) 

equilibrium. 

(b) Concentrations change only by discrete numbers of molecules, corresponding to sin-
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gle reaction events. 

(c) Single reactions happen at random times. 

While these assumptions are very different from those used in deterministic techniques, 

it should be noted that the stochastic approach is always valid when a deterministic ap­

proach is valid and in addition is also valid for certain conditions where the deterministic 

approach is not [Oil77]. The mesoscopic view of biochemical systems, described in detail 

by Oillespie [OiI77] and Oibson [OibOO] necessitate different techniques in order to analyt­

ically investigate the system of interest. In order to facilitate the future discussions of the 

stochastic techniques an example system is presented. The same system discussed in Sec­

tion 2.3 is used to facilitate the discussion, where protein A and protein B can combine to 

form protein C. Protein C can disassociate back to proteins A and B. protein C is subject to a 

degradation pathway. As with macroscopic models. mesoscopic models can be represented 

by a number of equations. each representing a reaction. Note that the reactions are uni 

directional. If a reaction is reversible it must be represented by two reaction equations. The 

contrived system described above (Figure 2.4 can be represented by the equations below: 

A+B ~ C 

C ~ A+B 

C ~ e 

(2.7) 

(2.8) 

(2.9) 
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While this is a very simple, contrived system, the techniques are valid for larger sys-

tems, with complexity of large networks simply manifests from the additional size of these 

networks and their strong interconnections [GibOO]. A cursory scan of the equations sug­

gests the difference between these equations and those used to describe the same system 

in Section 2.3 is the use of Cx instead of kx as the reaction constants. This is a fundamen­

tal and important difference between stochastic and deterministic techniques. Stochastic 

simulation techniques rely on the assumption that reactions are not determined by constant 

reaction rates, but as reaction probabilities per unit time [Gil76]. The speed of these re­

action is given by the stochastic rate constant Cj. Consider the reaction in Equation 2.7, 

it can be rigorously argued that Cl exists, such that cldt is the average probability that a 

molecular pair will react, according to Equation 2.7 in the next infinitesimal time interval 

dt. For this it is implied that the probability of some pair of unique molecules of A and B, 

from the total number of reacting molecules #A and #8, reacting is given by; 

Cl x #A x #B x dt = a (2.10) 

where a is the probability that reaction of type 2.7 will occur in the reacting volume in 

the next infinitesimal time interval, also know as the "propensity" function. 

With the system assumptions defined, the next step is to generate a time-trajectory of 

components of the model, that is how the behaviour model changes over time [Gil77]. 

There are two general methods for achieving this: firstly the "master equation" approach 

[Gi177], and secondly the utilisation of a stochastic simulation algorithm [GBOO, Gil77, 

Gi176]. While the two techniques appear different, "amazingly" their assumptions are prov-
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ably equivalent [GibOO]. 

2.4.2 The Chemical Master Equation 

As discussed previously, the mesoscopic view of chemistry is founded upon the idea that 

reactions are governed by the reaction probability per unit time [GiI76], with the state of a 

system defined by the number of each molecule type in the system. with this state changing 

whenever one of the reactions occurs [GBOO]. The probability of a given reaction occurring 

moving the system from state S to S' in the next instance of time dt. is given by: 

P(S',t +dtIS,t) = aldt (2.11 ) 

Notice here that the reaction probability depends only on the current state and not on 

previous states, since time is continuous this is exactly the definition of a Markov process 

[Mit98] or a Continuous Time Markov Chain (CTMC) [Mar89]. Hence the underlying 

process can be viewed as a Markov process or CTMC [GBOO]. 

A classical approach for dealing with a system of this type is to construct and solve the 

"chemical master equation" [Gil77]. Using the argument above, this is the equivalent of 

solving the underlying Markov process. The key element of the master equation formalism 

is constructing and solving the "grand probability function" P(XI ,X2, ... ,XN;t) [Gil77], Le 

the probability that at time t there will be Xl molecules of species SI, X2 molecules of 

species S2 ... and XN molecules of species SN. This can be viewed as a three step process 

[GibOO]: 

• For each possible state of the system S, let P(S,tISo,to) be the probability that the 
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state is S at time t, given the state is So at time to: 

• Use the underlying rules ofmesoscopic chemistry to specify how P(S, tlSo, to) varies 

as a function of t~ 

• The previous steps lead directly to the chemical master equation, a system of linear 

differential equations with constant coefficients, which when solved gives the time 

evolution of the reacting system. 

The methods for constructing and solving the chemical master equation are beyond 

the scope of this thesis. The interested reader is referred to [GibOO] for detail of these 

methods and examples of their use. The chemical master equation approach captures all 

information in a compact vector equation, while solving it gives the complete probability 

distribution at any point in time. However, while the master equation is an elegant and 

powerful approach, it poses insurmountable difficulties for the majority of biochemical 

systems [Oil77]. The master equation does not lend itself to computational solutions due 

to the number and nature of the variables involved [Oil77]. For example, a system with 

three degrading proteins, with initial levels of 100 proteins each, taking part in no reactions 

other than individual degradations has a state space of 106• Solving even this small system 

requires analysis with a vector of size 1 million and a matrix of 1 million by 1 million 

[GibOO]. The state space of the model of the lambda phage presented by Arkin [ARM98] 

leads to a state space of 1070, which is clearly intractable [OibOO]. Worse still, if there 

is a reaction producing a chemical species, the state space of a Markov chain (and hence 

the chemical master equation) becomes infinite [Mar89]. For these reasons, stochastic 

simulation techniques are a necessary alternative [GiI76]. 
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2.4.3 Exact Stochastic Simulation 

Stochastic simulation techniques in (bio)chemical systems arose due to the unsuitability of 

macroscopic chemistry based assumptions for certain, "small" systems and the intractabil­

ity of the master equation approach [Gil76]. While the master equation approach seeks 

to solve the probabilities of all possible trajectories, stochastic simulation techniques aim 

to evaluate a single time time trajectory of the system,(also known as a realisation of the 

system [GBOO]). In order to do this, it is necessary to answer two questions: when will the 

next reaction occur; and what reaction will that be [GiI77]. Due to the stochastic nature of 

the system these questions are only answerable in a probabilistic sense [Gil77]. However if 

these questions are asked using the correct probability distributions, a given realisation of 

the system will have the exactly the probability that would come out of the solution to the 

master equation, even if it is not possible to write out the master equation [GBOO]. Tech­

niques that generate realisations of the system equivalent to the master equation are know 

as exact simulation techniques [GBOO]. While there are techniques for the approximate 

simulation of stochastic systems [GilO!], here we concentrate on "exact" techniques. 

In order to answer the question relating to when the next reaction will occur, it is nec­

essary that the time between individual reactions called sojourn times, is known. The 

Markovian property requires that the next state to be entered depends only on the current 

state and not the time spent in it or in any other previous state [Mit98]. This implies that 

if at any moment the process is observed in state S, the time spent in that state is indepen­

dent of the time already spent there. This requires a probability distribution function (POF) 

with "memory less" properties, and indeed the Markovian property requires that the sojourn 
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time in states be exponentially distributed random variables [Mar89]. The only PDF with 

this property is the exponential distribution function [Mit98]. The exponential distribution 

function is defined as: 

(2.12) 

where this function depends on a single variable /.. > O. The corresponding probability 

density function is: 

(2.13) 

The first and second moments of a random variable X from these functions are [Mit98], 

hence the residual life time is equal to [Mit98]: 

M2 1 
E(R) = 2E(X) = X 

(2.14) 

(2.15) 

(2.16) 

This states that the remainder of a randomly observed exponentially distributed interval 

has the same length, on average, as the whole interval [Mit98], also it can be shown that the 

remainder of the observed interval has the same pdf as the whole interval [Mit98]. All this 
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Algorithm 1 Oillespie's First Reaction Algorithm 
1: Initialise initialise rates, molecule numbers, set t = 0 
2: while Stop conditions are not met do 
3: for all reactions i do 
4: calculate aj 

5: calculate 'tj using an exponential function with parameter aj 

6: end for 
7: Let /l be the reaction i, where /li is least 
8: Let 't ~ 'tp. 

9: Update molecular numbers to reflect the execution of J1., set t ~ t + t 
10: end while 

implies that the future progress of an exponential distributed activity does not depend on its 

past. This is know as the "memoryless property", and as previously discussed it is closely 

related to the Markov property, and is a requirement of the sojourn times of the evolution 

of a Markov system. 

To simulate a realisation of the random variable X the inverse transformational method 

is utilised [Ros05]: 

_\ ( ) 1 F u = --logu 
A 

(2.17) 

That is, a random variable u, is obtained with a value between 0 and 1 and use this to 

obtain exponential sojourns from the propensity functions. 

Three predominant exact stochastic simulation techniques are now discussed, namely: 

• Gillespie's first reaction method [Gil76]; 

• Oillespie's direct method [Oil77]; 

• The Oibson-Bruck algorithm [OBOO]; 

In order to facilitate the discussion of these algorithms, some definitions are required. 
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The propensity function of a reaction, the probability that the reaction i will occur in the 

next infinitesimal time step, is defined to be ai. The putative time until the occurrence of 

reaction i is defined as 'ti. Finally the reaction that will occur next is labelled /-t. A crucial 

step in any stochastic simulation algorithm is the transition from the value of the propensity 

function to the putative time until the reaction occurs, as shown in the arguments above, 

this has to be done utilising the exponential probability distribution function. 

The pioneering work of Oillespie is the first algorithm to be discussed. Oillespie's First 

reaction method (Algorithm 1) [Oil76] calculates the ai for each reaction i and from this 

generates a putative time 'ti, until the reaction will occur. To be precise, this is the interval 

of time before the reaction occurs assuming that no other reactions occur in that time that 

would alter the system. The reaction with the shortest't becomes 1J., and the system state and 

time are updated accordingly. This algorithm requires a random number for every reaction 

i E I, and takes a time proportional to I to update the ai for alII's and a time proportional 

to I to find the /-t. 

Oillespie's Direct method (Algorithm 2) [Oil77] asks which reaction will occur next 

and when it will occur. This method is very different in approach to the first reaction 

method, but it is provably equivalent [Oil76]. The direct method is based on the idea that 

for a given system with m reactions the propensity function for reaction i is ai, and the 

propensity of a reaction of any type is: 

m 

ao= ~ai 
i=1 

(2.18) 

From this the time till the next reaction (of any type) can be simulated by sampling 
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Algorithm 2 Oillespie's Direct Method 
1: Initialise initialise rates, molecule numbers, set t = 0 
2: while Stop conditions are not met do 
3: for all reactions i do 
4: calculate ai 
5: end for 
6: Calculate ao = L~ 1 ai 
7: Simulate t' by sampling from the exponentially distributed function of ao 
8: Select a random number, r from the unit interval unifonn distribution 
9: select 1.1. to be the reaction index for which L~: ~ av < r * ao ~ L~= 1 av 

10: t - t+t' 
11: end while 

from an exponential distribution of Lt=l ai. The gives the time until the next reaction. The 

reaction type must now be detennined. The probability the reaction will be of type i is 

a;/ ao. Hence the type of the next reaction can be probabilistically picked. The algorithm 

is listed in Algorithm 2. This method uses two random numbers per iteration, takes time 

proportional to the number of reactions to update the ai's and to calculate ao. 

Oibson's next reaction [0800] method was devised as an improvement on Oillespie's 

first reaction method. It "does away" with: 

a) updating ai'v'I; 

b) generating a putative time t;'v'I; 

c) identifying t/!. 

The Gibson-Bruck algorithm (Algorithm 3) achieves these improvements through the 

intelligent use of a "dependability graph" and an "indexed priority queue". This allows the 

algorithm to achieve the following: 

• Only recalculate ai (and hence ti) if it changes. This is made possible by the use of 
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Algorithm 3 The Gibson-Bruck Algorithm 
1: Initialise, set initial molecular numbers, kinetic rates and t - 0 
2: for all reactions i do 
3: calculate aj 
4: calculate 'tj according to an exponential distribution with parameter aj 

5: end for 
6: while Stopping conditions not met do 
7: store the 'tj'S in an indexed priority queue P 
8: set IL to the reaction whose Ilu is at the top of P Le whose putative time is least. 
9: update molecular amounts to reflect the execution of JL, set t - 'r 

10: end while 

a dependability graph. Hence the reactions that alter aj is known. If aj is not changed 

there is no need to recalculate it. 

• Reuse 'rj where appropriate. If aj is not changed then it is not necessary to up-

date'rj. Conversely if a aj has changed the memory less property of the exponential 

distribution allows us to simply re-sample 'tj from the newly calculated aj. 

• Switch from relative time to absolute time. By using an indexed priority queue 

the differences in times can be stored, hence once the 'tj is in the queue, there is no 

further book-keeping in updating times when other reactions occur. 

Again the Gibson-Bruck algorithm, is provably equivalent to the First reaction algo-

rithm and Gillespie's direct method [GBOO]. Hence it is exact and provably equivalent to 

the master equation approach. 

The important algorithms by Gibson-Bruck and Gillespie were developed from with-

ing the field of (bio)chemical reaction systems. Interestingly during this time, and quite 

independently, stochastic Petri nets [Mo182] were developed within the field of comput-

ing science. Stochastic Petri nets also provide an exact method of simulating realisations 
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a) 

~ Arc 

0 Place 1 T~'.oo 
fires 

• Token 

b) • Transition 

Figure 2.5: Illustration of basic Petri net, including the firing of a transition 

of a stochastic system, with an underlying Markov process and hence can be utilised in 

the investigation of biochemical networks [0P98]. In order to discuss stochastic Petri nets 

[MoI82]. discussed in Section 2.6 Petri nets [Pet62] must be introduced. 

2.5 Petri Nets 

Petri nets [Pet77] are a fonnal. mathematical framework for modelling of complex concur-

rent systems. Petri nets are bipartite graphs made up of places. transition. arcs and tokens 

(Figure 2.5). A model of a system represented as a Petri net" ... can then be used to evaluate 

the modelled system and suggest improvements or changes" [PetS1]. Petri nets were orig-

inally fonnalised by Dr Petri in his thesis in 1962 [Pet62]. Since then Petri nets have been 

extensively studied and. at the most recent count. there were over 8500 papers in the Petri 

net bibliography [PNW04]. 

Petri nets have their foundation in theoretical computing science with numerous papers 



32 

on their fundamental concepts, theory and algorithms. For a listing of these topic and their 

references see the Petri net Bibliography [PNW04]. Petri net modelling has been applied in 

a wide range of disciplines. including manufacturing [DHP+93], hardware design [YK98], 

business process management [L003], verification of distributed algorithms [DK98], local 

area networks [MNCVOO], neural networks [Zar88] and more recently biological networks 

[HKVOI, GP98, SKSW04a, RLM96]. Petri nets have a number of desirable features as a 

modelling framework: 

• A clear graphical visualisation of the system; 

• The ability to analyse the network topology and to determine structural properties; 

• The ability to analyse the network topology and state to determine behavioural prop-

erties; 

• The ability to simulate a network by the addition of a time element; 

• The ability to analyse a model with high level variants of a Petri net. 

Basic theory for Petri nets is now introduced. For a more detailed introduction the reader 

is referred to [Mur89]. 

2.S.1 Place Transition Nets 

The most common form of a Petri net is a Place Transition net (Pff net). A Pff net is a 

bipartite graph consisting of places, arcs, transitions and tokens (Figure 2.5). A Pff net has 

places and transitions connected by directed arcs. An arc can connect a place to a transition, 
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or a transition to a place, but is not pennitted to connect a place to a place, or a transition 

to a transition. An arc is given a weight which signifies the replication of that arc (Figure 

2.6). The connectivity of the places and transitions gives us the structure, or topology of 

the network. Each place in a Pff net has a non negative number of tokens. Tokens signify 

the number of the particular resource represented by the place. The number of tokens in 

a particular place is called the place's marking. The collection of all place markings is 

referred to as the marking of the Petri net and this represents the current state of a Petri 

net. A transition is said to be enabled in a given marking if all of its input places have a 

marking greater than the weight of the arc. Enabled transitions can fire, this represents an 

event, or reaction happening, this alters the marking of the net. Firing a transition removes 

a number of tokens from the input places (specified by arc weight) of that transition, and 

adds a number of tokens to the output places (again specified by arc weight). 

A place transition net, its transitions, inputs and outputs can be interpreted in a number 

of different ways. Usually places represent conditions or resources, while transitions gen­

erally represent events or processes. A number of different examples are shown in Table 

2.1. This variety of interpretations displays how flexible the fonnalism is. Many different 

models can be constructed and analysed with the same rigorous mathematical techniques 

and algorithms. A fonnal definition is now given for P(f Petri net: 
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Input Places Transitions Output Places 

Preconditions Events Post-conditions 
Input Data Computational Step Output data 

Input signals Signal processor Output signals 
Resources needed Task or Job Resources released 

Conditions Clause in logic Conclusions 
Buffers Processor Buffers 

Reactants Biochemical Reaction Products 

Table 2.1: Some interpretations of Transitions and Places (Modified from [Mur89]) 

A Petri net PN can be described more formally as a 5-tuple PN = (P, T,F, W,Mo) where: 

P = {P},P2 .... 'Pm} is a finite set of places, 

T = {t},t2 .... ,tn} is a finite set of transitions, such that pn T =0 and PU T =f 0, 

F ~ (P x T) U (T x P) is the flow relation (arcs), where (x,y) E F denotes an arc from x to ... 

y, 

W : F - {I, 2, 3 .... } is the weight function (default: 1), 

Mo : P - {O, 1,2, .... } is the initial marking of the Petri net. 

For any transition t we say p is an input place for t if (p, t) E F. Conversely, p is called'[ 

an output place if (t, p) E F. The set of all input places to a transition is denoted et and is 

called the preset of transition t. More formally defined as: 

.t = {p I (p,t) E F} 

Similarly the output places of a transition t are called the post-set of t, denoted te, and is 

formally defined by: 

te = {p I (t,p) E F} 
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a)~ 

b)~ 

Figure 2.6: Arc weights represent replication of arcs. Hence Petri nets a) and b) are equiv­

alent. 

A transition t is said to be enabled in a given marking M when every place in et has a 

marking greater that the weight of the arc from each place to the transition. That is for every 

input place p E et we have M(p) ~ W(Plt). A transition is then enabled to fire. However 

there is no guarantee when or if an enabled transition fires. When a transition fires the nets 

marking changes as tokens are removed from input places and added to output places. The 

dynamic behaviour of the system is modelled by the change of state or marking of the net. 

A transition t E T in a marking M may fire according to the following rules: 

1. A transition is enabled (able to fire) if each input place contains at least as many 

tokens as the input arcs weight i.e every place p E et satisfies M (p) ~ W (p It); 

2. Firing a transition removes W (P, t) tokens from each input place. p E et. of t and 

adds W (t I p) tokens to each output place. p E te of t. 

Given a marking M and an enabled transition t in M we can formally define the marking 

resulting from firing t can formally be defined as follows: 
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M(p) if p ~.t andp ~ t. 

M(p) - W(p,t) if pE .t and p ~ t. 

M(p) + W(t,p) if P ~ .t and pEt. 

M(p) - W(p,t) + W(t,s) if pE .t and pEt. 

The firing of a transition t leading from marking M to marking M' is denoted as M ~ 

M'. A sequence of firings is called an occurrence or firing sequence. A firing sequence 

may be finite or infinite. A firing sequence cS = t., t2, .. . tnleads from Moto Mn if: 

This defines a standard Placerrransition net. With the net formally defined it is possible 

to analyse the net to deduce interesting properties and these are discussed in the following 

sections. 

2.5.2 Structural Properties 

Having formally defined a Petri net formal analysis techniques are possible. A net can be 

analysed simply from a knowledge of the graph structure, that is the network topology. 

Analysis using just this structural knowledge is the analysis of structural properties. Struc-

tural properties do depend on the initial marking Mo only in that the resulting properties 

hold for any initial marking. The analysis of these structural properties depends greatly on 
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the matrix based techniques, and this is now discussed. 

A Petri net ,PN with n transitions and m places, can be represented by its incidence 

matrix. The incidence matrix, is an n x m matrix defined as: A = [aij] , where a typical 

entry in the matrix is given by aij = w(i, j) - w(j, i), that is the weight of the arcs from 

transitions to places, take away the weights of the arcs to places to transitions. A number 

of structural properties can be gleaned based upon this incidence matrix, two of the most 

common are P-invariants and T-invariants. 

2.5.3 Invariant Analysis 

Both P (Place) invariants and T (Transition) invariants are calculated from the incidence 

matrix A. A P-invariant x, is calculated as solution to Ax = 0, while aT-invariant y, is 

calculated as Aty, where At is the transpose of the incidence matrix A. T invariants are a 

set of transitions in a given net, that once fired, return the net to its original marking. In 

terms of biochemical networks, T invariants may represent reversible reactions, or loops in 

a reaction. More recently Heiner et al. [HK04] have used T invariants in order to validate 

the structure of a metabolic pathway prior to further investigation with more advanced 

techniques. P invariants represent a set of places where the total number of tokens on those 

places does not change regardless of which transitions are fired. P-invariants apply to any 

initial marking and may represent simple biochemical coupling, such as ATP and ADP. 

P invariants may also represent the conservation of a particular molecular group, such as 

phosphate, through a chain of reactions [RLM96]. 
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Figure 2.7: A 2-Bounded Petri net 

2.5.4 Behavioural Properties 

If the topology of the network is known then, as we have seen above many structural prop­

erties can be analysed. If, alongside the topology, the initial state of the net is know then 

behavioural properties can be analysed. Many of the behavioural properties depend on the 

analysis of the nets reachability and coverability trees. Construction and analysis of these 

trees is discussed in Section 2.5.5.1. Some of the more commonly analysed behavioural 

properties are now presented. 

2.5.4.1 ReacbabUity 

Reachability is a key property when studying the dynamics of a system. It determines if it 

is possible, however likely or unlikely, to reach a given marking from an initial marking. 

Building on the previously described firing rules we can define reachability more formally. 

The firing of a enabled transition will alter the marking of a net. A sequence of such firings 

a will result in a sequence of markings. A marking Mn is said to be reachable from from 

Mo if there exists a firing sequence a that transforms M to Mn. If this is the case we can 
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Figure 2.8: A Safe Petri net 

write M[8 > Mn. The set of all possible markings reachable from M in a net N is denoted 

by R(N,M) , or R(M). The reachability problem for a marking Mn is to find if Mn E R(M). 

Often we may only be interested in the marking of a subset of places, denoted M~. This 

is then known as the sub-marking reachability problem [Mur89]. which is the problem of 

finding if M' E R(M). The reachability problem has been proven to be decidable [Hac75], 

although it takes exponential time and space to verify [Lip76]. 

2.5.4.2 Boundedness and Safe Nets 

Boundedness tests if there is an upper limit, k on the number of tokens in a place. If 

this upper bound applies to all places in the net then the net is said to be k-bounded. More 

formally we state that a net (N,Mo) is k-bounded if the number of tokens in every place does 

not exceed k for any reachable marking from the initial marking Mo. More mathematically 

M(p) ~ k for every place p and every marking ME R(Mo). Figure 2.7 shows an example 

of a 2-bounded Petri net in which no place ever has a marking of more than two tokens. 

Safeness is a special case of boundedness. A safe net is one where the bound on every 

place is 1. That is M(p) ~ 1 for every p in every marking M E R(Mo). Safeness is a 
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Process a Process b 

\3 \6 

Figure 2.9: Deadlocks in Petri nets 

property traditionally used in hardware design due to the obvious benefits of dealing with 

binary states. Hence safe Petri nets offer an alternative to Boolean networks. The net in 

Figure 2.8 i an example of a safe Petri net. 

2.5.4.3 Deadlocks and Liveness 

The study of liveness arose from the problem of dealing with deadlocks [Heb70]. Dead­

locks are a common problem in the field of computing science. A deadlock arises when 

the system reaches a state where no next state is possible, they are a long studied problem, 

and they typically occur when there is a problem with resource allocation. The Petri net 

in igure 2.9 gives an example of deadlock. In this example process a and process b share 

the resources p and q. There are firing sequences that allow both processes to proceed 

normally, mainly tl ,t2,t3,t4,t5,t6 and 14 , t5 , t6 , tl , t2,t3. However deadlock occurs when the 

sequence tl ,14 is fired, preventing either process from proceeding. 
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When analysing Petri nets the absence of deadlocks, or liveness properties are of inter-

est. A net (N , Mo) is said to be live if in any marking Mn that satisfies Mo[8MIl it is possible 

to fire any of the nets transitions at some future time via another firing sequence o. Hence 

a live Petri net guarantees deadlock free operation. As liveness is a costly property to ver­

ify, it is often relaxed, and different levels of liveness analysed ([Mur89] and references 

therein). A transition t in a Petri net (N ,Mo ) is denoted as: 

1. LO-live, or dead. If it can never be fired in any firing sequence in L(Mo) where L(Mo) 

is the set of all possible firing sequences from Mo. 

2. LI-Live, or potentially fireable. If t can be fired at least once in ome firing sequence 

in L(Mo). 

3. L3-Live. If given a positive integer k, t can be fired at least k times in ome cquence 

in L(Mo) . 

4. L4-Live, or live. If t is Ll-live for every marking M in R(Mo). 

Coverability is closely related to liveness. A marking M is said to b coverable if there 

exists a marking M' in the reachability set where the marking of every place in M' is greater 

than or equal to every place in M. More formally a marking M i aid to b coverable if 

there exists a marking M' E R(Mo) such that M'(p) 2:: M(p) for every p in the net. Finally 

a net (N ,Mo) is reversible if from each marking M in R(Mo), Mois reachable fr mM. 
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2.5.5 Petri Net Analysis Techniques 

2.5.5.1 Place Transition Net Reachability Trees 

Given a Petri net, a reachability tree [Pet81] can be constructed. From an initial marking 

Mo a new marking for each enabled transition can be obtained. This process leads to a tree 

representation of the original net. In this tree the nodes represent net markings and the arcs 

represent the transition fired that move from one state to another. If the net is unbounded 

then the reachability tree created would be infinitely large. Thus a coverability tree [Mur89] 

can be constructed. The special symbol 00 is used. (J) can be thought of as infinity. Another 

problem arises if the net is a loop. In this case the reachability tree would continue to grow 

infinitely large. To prevent this only new markings (ones not already present as a node in 

the tree) are considered. Transitions from an old marking are also not considered. Using 

these rules we can construct a reachability tree from a net using the following algorithm 

(Algorithm 4) [Pet8l, Mur89]. 

To show how the reachability tree algorithm is used the coverability tree for the Petri 

net in Figure 2.10 is constructed. The full reachability tree is shown in Figure 2.11. The 

initial marking given in the net forms the root, (1,0,1,0). From this marking only transition 

t3 can fire, this leads to the new state (1,0,0, l). From this state the only enabled transition 

is t2. Firing this leads to the state (1,1,1,0), however there is a marking from the root to 

this state where every place has at least as many tokens, and the two markings are not the 

same (Algorithm 4 part ii) ). Thus the token in P2 is replaced with a 00, giving us the state 

(l,ro, 1,0). From here both'l andt3 are enabled. Firing tl gives (1,00,0,0) which is a dead­

end as no transitions are enabled. If 13 had fired the marking becomes (1,00,0,1). Now t2 



43 

Algorithm 4 The construction of a Petri nets Reachability tree 

1. Label the initial marking Mo as the root, and tag it new 

2. While new markings exist, do; 

(a) Select a new marking M 

(b) If Mis is identical to a marking on the path from the root to M, then tag M old 
and go to another marking 

(c) If no transitions are enabled at M tag M dead-end 

(d) While there exists enabled transitions at M, do the following for each enabled 
transition t at M 

i. Obtain the marking M' obtained by firing t 

ii. On the path from the root to M there exists a marking M", such that 
M' (p) ~ M" (p) for each place p and M' =1= M", replace M' (p) by 00 for 
each p such that M' (p) > M" (p). 

iii. Introduce M' as a node, draw an arc with label t from M to M', and tag M' 
new. 

is enabled. Firing t2 gives the marking (1,00,1,0), which has already appeared, hence the 

tree is complete. 

2.S.S.2 Structural Reduction 

Petri nets can be reduced to a simpler, smaller form to facilitate analysis, and reduce the 

state space. When a Petri net is reduced it is important that the reduction does not affect 

the behaviour of the system to be analysed. More common structural reduction techniques 

are shown in Figure2.12. 

The reductions in Figure 2.12 preserve liveness, safeness and boundedness. The proper-

ties of liveness, safeness and boundedness are discussed in section 2.5.4. The six reductions 

in Figure 2.12 are as follows: 

• Fusion of Series Places Fig 2.12(a); 
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p3 

Figure 2.10: A Place Transition net to illustrate the construction of reachability trees 

(l,ro,O,O) 

(t.OF) 

(1,0,0,1) 

1 " 
(l,ro,l,O) 

(t'r':) 
(l,ro,I,O) 

Figure 2.11: The Reachability tree of Figure 2.10 
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a) b) 

Figure 2.12: Some standard structural reduction rules of Petri nets, from Murata [Mur89} 
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• Fusion of Series Transitions, Fig 2.12(b); 

• Fusion of Parallel Places, Fig2.12(c); 

• Fusion of Parallel Transition, Fig2.12(d); 

• Elimination of Self-Loop Places, Fig2.12(e); 

• Elimination of Self-Loop Transitions, Fig2.12(f). 

While these properties are helpful for preservation of boundedness, liveness and safe­

ness, other properties of behaviours may be lost. Hence while these structural reductions 

reduce the complexity problem for certain properties, care must be taken in ensuring the 

desired properties hold after a reduction. 

2.6 Stochastic Petri Nets 

As discussed in Section 2.5, Petri nets provide a powerful, integrated formalism for the 

analysis of a networks properties in a variety of problem domains. In Section 2.5 the tech­

niques answer questions of the type "Is it possible x can happen" where x can be topics 

of reachability or the possibility of a reaction happening. These techniques address the 

"qualitative" issues in model analysis. It is often desirable to ask questions such as, "what 

happens to the concentration of protein x over 10 minutes" and "what is the system state at 

time x". These questions are "quantitative" in nature and can only be answered if a notion 

of time is included as an integral part of the modelling formalism. The issue of adding 

a timing element to increase the modelling power and versatility led to the creation of 
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Stochastic Petri Nets (SPNs) [MoI82]. In this fonnalism Petri nets are extended by the as-

sociation of an exponentially distributed firing delay with each transition. There are several 

alternative methods of introducing a timing element into a Petri net, for example time can 

be associated with either the places or the transitions, the firing semantics can be altered, 

(e.g atomic or phase firing) and finally the temporal specification may be detenninistic or 

probabilistic. These alternatives will not be discussed further, due to the prominence of 

SPNs and their inherent suitability to the modelling of biological networks, exemplified by 

the fact a SPN can be viewed as a continuous time Markov chain [Mar89]. Systems that 

can be represented by Markov chains have theoretical justification to their application to 

biological systems [Gil77]. The interested reader is however referred to [Mar891 for other 

methods of associating time to Petri nets and the various firing semantics therein. 

Stochastic Petri nets have been utilised in the analysis of various computing science 

problems, such as local area network configurations [MNCVOO1. manufacturing systems 

[SAS99]. work-flows [LQRM02] and analysis of program language execution [RSJOO]. 

Stochastic Petri nets are models of a probabilistic nature operating in continuous time 

[Mar89]. and hence are analogous to the stochastic simulation techniques discussed in Sec­

tion 2.2. As such there have been a number of papers on the utilisation of stochastic Petri 

nets in systems biology. Goss and Peccoud used SPNs to analyse the stabilising effect of 

the ROM protein on the replication of the Col-El plasmid [GP98]. Srivastava et al. utilised 

similar techniques to investigate the response of the sigma factor, 0 32 in E. coli to heat and 

ethanol shock [SPBOl]. A slight modification of SPNs. stochastic activity networks. were 

used to study blood coagulation [ML97] and the human menopause [TL02]. these studies 
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are discussed further in Section 2.7. 

A stochastic Petri net SPN can be described more formally as a 6-tuple SPN = 

(P,T,F,W,Mo,R) where: 

P = {PI,P2 .... 'Pm} is a finite set of places, 

T = {tI, t2 .... , tn} is a finite set of transitions, such that pn T =0 and PUT =1= 0 

F £:;; (P x T) U (T x P) is the flow relation (arcs), where (x,y) E F denotes an arc from x to 

y, 

W : F -+ {1,2,3 .... } is the weight function (default: 1), 

Mo : P -+ {O, 1,2, .... } is the initial marking of the Petri net. 

R = (AI, A2, ... An,) is a set of firing rates (possibly marking dependent) associated with the 

transitions. 

It is noted that the definition of a stochastic Petri net is the same as a Pff net, with the 

addition of the set of firing rates associated with each transition. In the implementation 

of a SPN a firing delay is associated with each transition, this delay is a random variable, 

sampled from the negative exponential pdf, with the parameter being the transitions rate A.. 

With the net defined we have two options, either to solve the underlying Markov chain, 

or to simulate the system utilising an algorithm that produces a random walk with the same 

probability as the Markov chain [Mar89]. When applied to biological networks, the number 

of molecules generally implies that the solving the Markov chain is intractable[GibOO]. 

Hence simulation is the only tractable means of investigating the time evolution of a SPN. 

Utilising the memoryless property of the negative exponential (as described in section 

2.4) an efficient simulation algorithm can be developed. This is discussed in more detail 
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in section 4 where stochastic Petri nets are amalgamated with the Gibson-Bruck algorithm 

[GBOO] to produces a new tool for the simulation of biological networks. 

2.7 Petri Nets and Biology 

Biological molecular systems may be viewed as complex concurrent processes. Cellular 

mechanisms are complex and dynamic, multiple genes are transcribed, multiple types and 

copies of transcripts are translated to proteins, and those proteins partake in multiple sig­

nalling processes and metabolic reactions in a concurrent fashion. Petri net modelling tech­

niques have evolved to model complex concurrent computing systems in a discrete fashion 

and hence are inherently suitable for modelling biological networks in systems biology 

applications. For example, Figure 3.6 shows a representation of the glycolysis pathway in 

Saccharomyces cerevisiae as in this Figure 3.6 we see examples of concurrency and choice, 

features of complex systems from computing science commonly modelled with Petri nets. 

Beyond their inherent suitability for modelling complex, concurrent, discrete systems, 

Petri nets have several features specifically advantageous to their application in systems 

biology: 

• They provide an intuitive graphical representation of the system in question; 

• There is a large tool support base incorporating numerous analysis techniques and 

algorithms; 

• They provide analysis opportunities at different levels of model completeness (i.e 

topology through to fully quantified timing parameters); 
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• There is a large body of literature related to their theory and track record in modelling 

complex concurrent systems for nearly four decades [PNW04]; 

• They are readily extendable in a diverse number of ways, for example by the incor­

poration of time in stochastic Petri nets, or guards in coloured Petri nets. 

As discussed in previous sections, there are a large number of different analysis tech­

niques available within the Petri net framework. For ease of description we consider these 

to be divided into three groups: structural and behavioural properties, timed network be­

haviour and Boolean based representations. The analysis techniques that can be carried. 

out on these Petri net models are dependent on the information available to the modeller. 

A current problem in biological modelling is the lack of quantitative data, especially with 

regard to the kinetic rates of reactions [MS03]. However, if only the topology of a network 

is known, structural analysis techniques may be applied. If topology and the molecular 

amounts are known, then both structural and behavioural analysis techniques may be ap­

plied. If the topology, initial molecular amounts and kinetic parameters are known, struc­

tural, behavioural and timed network analysis techniques may be applied. If the genetic 

interactions in a regulatory sense are known, Booleanlsafe Petri net approaches may be 

applied. The difference in the view of the network may be viewed more simply as quan­

titative (behavioural and structural properties) and qualitative (timed network behaviour) 

[PWM03]. 

The investigation of biological phenomena was envisaged by C.A Petri as one of the 

problem areas to which Petri nets could be applied [Pet62], however it is only in the last 

ten years, with the concurrent advances in biological and bioinformatics techniques that 
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full studies of biological modelling with Petri nets has been carried out. The application of 

Petri nets in the analysis of biologically systems was pioneered by the work of Reddy et 

al. [RLM96, RML93] (it is often said that Reddy suggested the application of Petri nets to 

biology [HR04], however C.A. Petri documented this many years beforehand [Pet62]). To 

date there have been a number of varied studies of the application of Petri nets to biological 

modelling, and a range of Petri net techniques and extensions have been utilised. These are 

now discussed. 

2.7.1 Behavioural and Structural Analysis 

Reddy utilised Pff nets to quantitatively analyse metabolic pathways [RLM961. Structural 

and behavioural properties such as P-invariants, T-invariants, liveness and boundedness 

were analysed and characterised to validate a model of the glycolysis pathway [RLM96]. 

Reddy et al. introduced the first mapping of Petri net elements to biochemical features. In 

this mapping tokens represent individual molecules, places represent the particular type of 

a biochemical entity represented by the tokens attached to it, transitions represent discrete 

biochemical reactions, with the directed arcs of Petri nets indicating the direction that re­

action proceeds. This is how most future works mapped biological processes, with some 

manipulation where necessary. Reddy et al. also noted that one of the possible advantages 

of Petri nets are their extendability, this has proved prophetic as a number of papers have 

appeared, championing a variety of Petri net extensions [GP98, MDNMOO, GKVOl]. 

HofesU1dt et al. [HT98, Hof94] also investigated the application of Petri nets to the 

analysis of metabolic networks at a similar time to Reddy et al .. HofesU1dt et al.'s work 
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also suggested the use of Petri nets as a simulation technique. Unfortunately they did not 

investigate stochastic Petri nets and as a result their simulation framework has been, to 

some extent, superseded by the theoretical rigour of other simulation techniques available 

to systems biologists. Kuffner et al. [KZLOO], utilised Petri nets to store the results of a 

systematic search of metabolic databases such as KEGG [KGKN02], integrating genomic 

infonnation and functional annotations. The data was stored in such a way that the future 

analysis of networks would be facilitated. 

Koch, Heiner et al. have perhaps been most active in the validation of metabolic net­

works with Petri nets [KJH05, HKVOl, HK04]. The motivation for these studies was 

the lack of quantitative data hindering the study of these networks via kinetic methods 

[HKVOl]. In their first study they extended the work of Reddy [RLM96] by utilising high 

level Petri nets to analyse glycolysis and pentose phosphate metabolic pathways in red 

blood cells. Coloured Petri nets were utilised in order to differentiated the origin and desti­

nation of molecules of the same metabolite via their "colour" [HKVO 1]. Utilising colOUred 

Petri nets allowed the manipulation of the model, removing "unreasonable" processes and 

cyclic loops. The main results of the paper are then based around detailed T and P invari­

ants analysis, which did not require the use of coloured nets. These invariants were used to 

validate the model against the information available in the literature. Genrich et al. utilised 

executable coloured Petri nets to investigate metabolic networks, their work enhanced that 

of Reddy by the use of coloured tokens, these were used to represent both the metabolites 

name and its concentration [GKVOl]. A later paper by Koch, Heiner et al. [HK04], again 

concerned with circumventing simulation techniques due to lack of data, utilises Pff nets 



53 

rather than coloured nets. In order to exploit T invariants more fully, certain modifica-

tions of the pathway were carried out. Here the tokens for all input compounds are seen 

to be generated by auxiliary input transitions, while all output compounds are consumed 

by auxiliary output transitions [HK04]. This approach was tested on various metabolic 

pathways, with the P and T invariant used to validate the derived Petri net models. The 

most recent contribution by Koch, Heiner et al., again describes Petri nets and metabolic 

pathways, specifically sucrose breakdown in a potato tuber [KJH05]. They utilise the tech­

niques in the previous paper [HK04], again concentrating on invariant analysis as a method 

for validating the model, prior to further investigation, for example by kinetic analysis. 

2.7.2 Boolean Based Petri Net Representations 

The application of Petri nets to metabolic pathways has, as the above studies show, had 

much success in the early stages of its study. These studies are greatly facilitated by 

the fact that metabolic networks have a well understood topology, with many of these 

networks stored in easily accessible databases such as KEGG [KGKN02]. The study 

of genetic regulatory networks requires a different approach. Often researchers wish to 

recreate the time series data arising from lab studies. Many authors have pointed out the 

lack of quantitative data necessary for the simulation of a time course of these networks 

[KJH05, CRRT04, MS95, EBOl], other approaches must be taken to circumvent this prob­

lem, for example the automatic parameterisation of these networks [GB01] an approach 

that is discussed in Chapter 5. 

An alternative approach to model gene networks is to view genes in the system as 
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Figure 2.13: A simple Boolean network 

abstract switches, having states represented by Boolean values [SBSW05. AKMM98]. 

There have been a number of studies taking this Boolean view [SBSW05, PS04]. Simpli­

fying a complex regulatory system, encompassing genetic, metabolic and environmental 

influences into a simple system of Boolean switches has obvious advantages. Figure 2.13 

demonstrates a simple gene network, represented as a Boolean model. The Boolean view 

of genetic regulatory systems has been investigated by a number of groups using the Petri 

net formalism. 

Chaouiya et al. investigated the application of Petri nets to Boolean views of genetic 

regulatory networks, via the use of so called "Boolean Regulatory Petri Nets" (BRPN). 

[CRRT04]. Techniques such as complementary-place transformation allowed inhibitory 

relationships to be modelled without undesirable read arcs and ensured that each place is 

limited to a token capacity of 1. Petri nets where every place has a bound of 1 are know as 

safe Petri nets. As a result of this bound on token numbers, safe nets are more amenable 

to state-space based analysis techniques, while still allowing many of the more traditional 

Petri net analysis methods to be carried out. The drawback of this approach is the large 

numbers of transitions generated, make simple visual analysis difficult. This approach was 
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then applied to analysis of the Drosophila cell cycle and flowering in Arabidopsis. The 

BRPN approach validated the fundamental properties of these networks through the use 

of simple reachability analysis. Chaouiya et al. 's initial investigation [CRRT04] was built 

upon by Simao et al. [SRTC05], by allowing the activity of a gene to be considered at 

three levels, rather than the pure Boolean views presented previously, more realistic regu­

latory relations could be investigated. Simao et al. attempted to model both the metabolic 

pathway and the genetic regulation of tryptophan biosythisis. The study focused upon two 

regulatory feedbacks, namely the inhibition of the enzyme TrpE by the final product of the 

metabolic pathway, and the transcriptional inhibition of all enzymes by the holorepressor, 

involving Trp at high concentrations. They validated their modelling technique, finding 

that the network was structurally bounded (that is each place is bounded regardless of the 

initial marking) and conservative (a net with k initial tokens remains k-bounded) which are 

to be expected from a safe net system. Upon investigation of the reachability of system 

states they found their model successfully replicated the dynamics of homoeostatic levels 

of internal trytophan and TrpE activity under low levels of external Trp [SRTC05]. Under 

moderate Trp influx they found a dead marking with TrpE and the repressor inactive. Fi­

nally under high external Trp 6 dead markings were discovered, interpreted as illustrating 

that the metabolic pathway can be inhibited at any of its six steps. 

An alternative approach into the Boolean analysis of regulatory network was put for­

ward by Steggles et al.. This method has a number of differences to that of Chaouiya et 

al. [CRRT04], firstly logical simplification techniques, in particular the McCluskey min­

imisation algorithm [Bre92], were utilised, greatly reducing the size and complexity of the 
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resulting network. Secondly a two phase commit protocol is utilised to aid the simulation 

and analysis of the network. The technique was then applied to the analysis of sporulation 

in Bacillus subtilis, with reachability analysis utilised to validate the fundamental regula_ 

tory properties of the model [SBSW05]. 

2.7.3 Timed Network Analysis 

There are a number of ways of associating time with a Petri net in order to investigate the 

time evolution of a biological system. Timed Petri nets can offer a deterministic approach 

[PWM03, Mur89], but have remained unused presumably due to the mature ODE tool 

support available to systems biologists. While Petri nets may not provide an especiaUy 

usefully way of simulating deterministic systems it should be noted that Petri nets may 

be used to perform other, model checking analysis on networks whose time evolution is 

typically evaluated using ODEs [HKVOl, HK04]. In the sequel we examine modelling 

attempts utilising hybrid and stochastic Petri nets. 

Stochastic Petri nets (SPNs) [MoI82], extend PIT nets by adding a firing rate to each 

transition. Stochastic Petri nets are Markovian systems operating in continuous time [Mar89] 

and as such have a strong theoretical justification for their use in biochemical systems 

[0i177]. Indeed it is though that stochastic simulation techniques are required to capture 

fine grained network behaviour and pathway switching, that is crucial to the analysis of 

regulatory systems [MS03, SPBOl]. While there are some inherent problems with the 

stochastic simulation of biochemical networks [EBOl, MS03] stochastic Petri nets have 

been used in a number of studies to date. The earliest investigation into the applicability 
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of SPNs to the modelling of biological networks was that of Goss and Peccoud [GP98]. 

They utilised the SPN tool "Mobius" [CCO+Ol] to model and simulate the stabilising ef­

fect of the ROM protein on the replication of the Col-El plasmid. Their study utilised the 

SPN fonnalism to find distributions of protein numbers, plasmid numbers time courses. 

The study showed the applicability of SPNs to molecular systems with "small" numbers 

of reactants, however the results gave no greater insight when compared to the mean on an 

ODE approach [GP98]. The authors also called for optimisation techniques, required by 

the lack of quantitative kinetic data, which has become a current research topic in Systems 

biology. A study conducted at a similar time to that of Goss and Peccoud, was the use of 

Stochastic Activity Networks (SANs), again modelled inside the Mobius tool [CCD+OI], 

in the analysis of blood coagulation in pathological states haemophilia A and B [ML97]. 

SANs are very similar to SPNs, the main difference between the two is the use of "gates" to 

control the input and/or output of certain transitions. The interesting work carried out here 

was the "divide and conquer" approach where smaller networks are refined against existing 

data, and then a number of these networks integrated into the final, composed model. The 

simulation data from the full model successfully reproduced the biological results. The 

same group went on to simulate the pathways involved in human menopause [TL02). This 

study utilised similar techniques and tools, e.g Mobius and SANs [CCO+Ol]. Again small 

subsystems were validated against experimental data before the smaller networks were in­

tegrated, again the simulation data matched well against the available experimental data. 

SPNs have also proved to provide an insight into bacterial regulatory networks. Srivastava 

et al. utilised SPNs to investigate regulatory pathways in E. coli, specifically the response 
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of the sigma factor, 0 32 to heat and ethanol shock [SPB01]. The time courses were analYsed 

and correlated well to lab data, interestingly the simulation results gave a useful insight into 

the end locations of the sigma factor in relation to the chaperon proteins. 

An alternative to the use of SPNs is the use of hybrid Petri nets [Heb70]. Matsuno 

et al. have been productive over recent years, providing a hybrid Petri net architecture for 

simulating biological processes [NDMM04, MDNMOO, MFD+03]. These nets are referred 

to as Hybrid Functional Petri Nets (HFPN) [NDMM04]. HFPN were developed due to per­

ceived inadequacies with ODE based techniques that made them inaccessible to biological 

researchers due to poor OUI interfaces [NDMM04, MDNMOO]. While hybrid Petri nets 

have great potential in the integration of metabolic and regulatory networks, it is unclear 

from Matsuno et al. 's papers what theoretical justifications have been considered in relation 

to their hybrid approach. . The tools produced by the group have been made available as 

commercial packages, this may hint at why there is little in-depth insight into theoretiCal 

assumptions and algorithms utilised in their approach. 

Other useful investigations into Petri nets and biology include Schuster et al. 's investi­

gation into the decomposition and analysis of metabolic networks from Mycoplasma pneu­

moniae [SPM+02]. The authors note that some of the analysis techniques developed were 

equivalent to methods already available in the Petri net literature. Finally Pelag et al. sur­

veyed many analysis and knowledge capture methods and proposed that a mixture of Petri 

nets and worldiows captures knowledge and relations well and is amenable to analYSis. 

They suggest that this technique may be extended utilising kinetic methods or Bayesian 

reasoning techniques. 
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At present, Petri net models described in the literature, (both biological and non bi-

ological) have generally been encoded by hand, using expert knowledge. This is a time 

consuming and error prone process that may involve the duplication of models that have 

already been defined in a different modelling environment. The advent of common mod­

elling languages for both Petri nets and systems biology, discussed in Section 2.8, open 

up the possibility of automatically generate Petri net models from predefined biological 

networks in repositories such as KEGG [KGKN02]. This is discussed further in Section 

3.3. 

2.8 XML Interchange Formats 

The discipline of Petri net research and the emerging field of systems biology have nu­

merous tools and techniques for modelling complex concurrent systems. The storage and 

interchange of models is an important aspect of modelling in any domain [IWK+04I. As 

such, model storage and interchange techniques and formats are crucial to the development 

of the fields of Petri nets and their application within systems biology. In order to analyse 

and recreate previous model based studies is is imperative that the models be fully pub­

lished and accessible to a range of computational tools. The publication of a model used 

in scientific literature may prove problematic where the model is defined in a formalism 

that is not amenable to plain English interpretation, or if the model is simply too large to fit 

within the space of a scientific paper. Assuming the model is fully published. how are other 

researchers able to evaluate and learn from it? The analysis of a model via a computational 

tool has traditionally been a problem in both Petri net and systems biology related disci-
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plines, due to the variety of tools, and the accompanying variation in (or lack of) standards. 

Previous tools simply used a proprietary text or binary file fonnat for saving their results 

meaning that models had to be rebuilt completely if researchers needed to evaluate them. 

Models also had to be frequently rebuilt due to upgrades in a particular tool [HP+03]. In 

addition to being able to share models, modelling disciplines need a well developed repos­

itory of test models and software tools with which to evaluate these. The development 

of a suitable test suite facilitates tool validation, while providing an important educational 

resource for researchers. 

A number of eXtensible Markup Language (XML) [W3C04] based standards have 

been developed and have begun to facilitate the interchange of models. In this section the 

Systems Biology Markup Language (SBML) [HF+03], the Petri Net Markup Language 

(PNML) [WK02] and CellML [LHN04] are discussed. The Systems Biology Markup Lan­

guage was envisaged by a large and wide ranging consortium of systems biologists in 2000 

and level I, which contained a definition of a number of elements needed to produce large 

scale models, was officially released in 2002 [HF+03]. SBML aims to become the stan­

dard language of computational systems biology [Kit02] and is fast becoming the lingua 

franca of systems biology. Around the SBML standard has sprung a wide range of tools 

and aids from the community. A number of tools, both deterministic and stochastic have 

been developed to utilise SBML models. Many of these tools can be found via links from 

the SBML website, including tools such as Cellware [DMS+OS] and Gepasi [MK98], there 

are also tools to facilitate the study of biological networks, such as network editors and au­

tomatic layout tools. There are also attached to the site a test suite of models, for example 
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to evaluate a new tools perfonnance, and a community support and infonnation forum. 

A SBML model is made up of the following components: 

• Compartments, containers of a finite volume where reactions take place; 

• Species, a chemical substance or entity that takes part in a reaction; 

• Reaction, a transfonnation, transport or binding process that can change one or more 

species; 

• Parameter, a quantity with a symbolic name; 

• Unit definition, a unit used in the expression of quantities in a model; 

• Rule, a mathematical expression constructed from the set of reactions, rules can 

establish constraints, set parameters etc. 

A great deal of modelling power can be realised using the components above, although 

there are constant improvements being introduced by the community, especially in the the 

area of stochastic simulation. 

The Petri Net Markup Language [WK02] has an almost identical aims and objectives 

to SBML. Nearly forty years of Petri net research has led to a large tool support. Unfor­

tunately, as with the early systems biology tools, they relied on proprietary file fonnats for 

model storage. Many Petri net tools allow investigation into specific, specialist aspects of 

Petri net theory. In order get the most out of the analysis of a model, it is necessary to 

utilise the specialities of a number of different tools. PNML was designed to facilitate the 

interchange of data between Petri net tools by adhering to the following principles: 
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• Readability, XML is employed to facilitate computer readability but the XML must 

be understood by human eye 

• Universality, The format should allow any version of Petri nets, with any extensions 

to be represented 

• Mutuality, The format should allow as must information to be obtained as possible~ 

even if the Petri net type is unknown to the tool, Le it should be possible to extract 

the common principles and features of Petri nets. 

A PNML model is comprised of the following features: 

• Petri net objects, most commonly places, transitions and arcs, but also includes 

paging information; 

• Labels, each object may have a set of labels, for example, a place name or marking; 

• Graphical information, this states where the object will appear on the screen; 

• Tool specific information, Allows any arbitrary information not covered by objects 

and labels. Other tools can safely ignore this; 

• Page and reference nodes, a page can consist of other objects and are placed to­

gether by the use of reference nodes. 

The Petri net markup language also presents some potentially fruitful ideas regarding 

the composition of models [KWOlb). Models can build recursively from module instances 

allowing a system to be composed from small modules and allows module instances to be 
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created from a common template. This feature is potentially very applicable to modelling 

biological network enabling small systems, for example translation, to appear multiple 

times in a large module, with a small alteration, for example the gene being transcribed. 

There has been some discussion on extending PNML to include biochemical information 

via the creation of a biological Petri net markup language [CFKR02], however with the 

community adoption of PNML and SBML it is considered that the conversion between for­

mats (for example [SKSW04a]) is currently a more desirable option than multiple specialist 

formats. 

CellML [LHN04] is a XML based, open standard for the interchange of biological mod­

els. CellML aims to allow researchers to share models, and to reuse components from one 

model in another, thus accelerating future model building. CellML models include infor­

mation about model structure, mathematical rules, and metadata, which help researchers 

to query specific model components in databases. CellML includes a model repository 

and has a large tool support. CellML clearly shares many attributes and aims with SBML. 

Currently many components are amenable to SBML conversion (and vice versa), with a 

number of converters available. The CellML and SBML development teams are actively 

discussing how the two languages can be made to work together, however, it is felt that 

SBML and CellML have sufficiently different aims to justify the two formats (CeI06]. For 

example, CellML version 2 will allow the use of ontoiogies to document and validate mod­

els. 
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Chapter 3 

Place Transition and Safe Petri Nets: 
Import and Analysis 

3.1 Introduction 

One of the advantages of the Petri net framework is that many interesting properties of a 

network can be gleaned with a relatively small amount of knowledge about the system. If 

the connectivity of the network is known then structural properties can be analysed. Analy_ 

sis of these structural properties allow researchers, for example, to identify the conservation 

of post-translational modification to proteins along a signal transduction pathway or feed-

back loops in a regulatory pathway using invariant analysis [RLM96]. If, along with the 

connectivity of the network, some initial state (quantity of each molecule) is known then 

behavioural Petri net properties can be analysed. This allows us to ask questions such as 

"is state A reachable from state B?", "will reaction X ever occur under these conditions?" 

and "will this protein accumulate?". 

Asking questions such as these within the formalism of Petri nets [Mur89] can validate 

our understanding of a system and create new testable hypotheses for laboratory experi-

ments. Validation of a model verifies that the model in question satisfies our understanding 

" .1 

',. 

'-;', 
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of the real life properties of that system, for example in air traffic control, checking that 

there are no collisions. Validation of models is a key step for further investigation into 

the models properties, and it is argued by Heiner and Koch that in systems biology, model 

validation of structural network properties is an importan t first step before the qualitative 

simulation of these models [HK04]. With the gaps in biological knowledge, validation 

would serve to highlight gaps in our understanding of the system. For example if some 

properties of the model do not match results obtained from the lab, then there are most 

likely some shortcomings in the model or the original data that must be rectified. Analysis 

of the model may also reveal interesting emergent properties that were not considered in 

the modelling process, but point to interesting behaviours that may not be currently unex­

plained. Structural and behavioural Petri net analysis may provide testable lab experiments, 

allowing lab workers to test sensible (according to the model) hypotheses, saving both lab 

time and money. In this chapter the investigation into the behavioural and structural prop­

erties of biochemical networks is discussed in two sections. In the first section the issue of 

modelling genetic regulatory networks is discussed. Here analysable models can be con­

structed and investigated based on the limited knowledge available about some regulatory 

interaction between genes. The second section investigates the analysis of metabolic net­

works where the topology is well known. A method is presented allowing the automatic 

import of metabolic models (or any model encoded in SBML [HI*03]) into the Petri net 

framework. via PNML [BCvH+03]. A number of metabolic networks imported from both 

the systems biology literature and the KEGG database [KGKN02] then have their structural 

properties investigated. 
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Genetic regulatory networks are inherently complex and more levels of complexity are 

being uncovered, such as reverse transcripts (transcribing RNA into DNA) and epigenetics 

(changes in gene regulation that occur without a change in the DNA sequence) [SAOO]. To 

facilitate the preliminary investigation of these complex networks it is necessary to make a 

number of simplifying assumptions. These assumptions allow an initial investigation into 

these systems, with the hope of identifying knowledge gaps, hypothesis generation and 

further understanding of the genetic system. One possible assumption that can simplify 

the analysis of these systems is to view genetic regulatory networks in the binary domain. 

This approach, pioneered by Kaufman [Kau69], views genes as Boolean switches that can 

either be "on" (the gene is expressed) or "off" (the gene is not expressed). Genes have 

causal relationships, allowing genes to activate or inhibit each other, either individually 

or in small clusters. It is immediately apparent that this point of view ignores subtleties 

such as basal expression levels and response governed by differential amounts of tran­

script. Viewing genetic regulatory networks as Boolean based systems does have a number 

of advantages, such as computational efficiency and robustness to noise [SBSW05]. Thus 

these studies can still be of great use in preliminary studies. This Boolean assumption has 

been investigated utilising a number of modelling formalisms, including Boolean networks 

[AKMM98], Bayesian networks [MM99] and Petri nets [SBSW05]. In order to alleviate 

the inherent state space analysis problems (where multiple Boolean states combine com­

binatorially), this chapter utilises a Petri net based approach described by Steggles et al. 

[SBSW05]. This approach converts Boolean models into Petri nets, allowing a model to 

be subject to a number of analysis techniques that can cope with large state spaces. This 



67 

approach is outlined and then utilised on a novel Boolean model of the classical Lac operon 

in E. coli. The resulting models are analysed within the Petri net framework using a number 

of Petri net tools. The model has its behaviour successfully validated, replicating the high 

level behaviour described in the literature. The techniques are taken forward to construct a 

model of phosphate stress response of B. subtilis as part of a larger case study in Chapter 6. 

If the topology of a network or pathway is well known, Petri net structural analysis can 

be applied [Mur89]. Metabolic networks typically have a well understood topology and are 

available in databases such as KEGG [KGKN02]. These databases are comprehensive and 

provide a valuable resource to researchers. To effectively utilise resources such as these 

there must be ways of automatically translating this information into a model suitable for 

analysis. It would be inconceivable for the complete proteomic, metabolomic and genomic 

networks of an organism to be constructed and interpreted manually. Presently, there are 

many readily available data sets and model repositories such as KEGG lKGKN02]. In or­

der to effectively utilise these resources, there must also be ways of transforming this data 

in to a form ready for analysis with Petri nets. With the Systems Biology Markup Language 

(SBML) [HP+03], fast becoming the linguafranca of systems biology, it would be advan­

tageous to be able to automatically convert SBML files into a Petri net format, allowing the 

import of a large number of models ready for analysis with Petri net tools. The Petri net 

community have introduced an interchange format, PNML (Petri Net Markup Language) 

[BCvH+03], which is an ideal candidate for the Petri net format. In this chapter a map­

ping is presented allowing the automatic translation of models from SBML to PNML. This 

mapping forms the basis for a prototype tool implemented using XML [W3C04] and Java 
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technologies. This tool is then utilised to import a metabolic pathway, allowing structural 

analysis with the Petri net tool INA [Sta04]. 

3.2 Petri Net Representations of Boolean Based Genetic 

Networks 

A comprehensive, fully quantitative modelling based study of genetic regulatory networks 

requires a large amount of knowledge of the system, as well as analysis techniques. Net­

work topology, initial concentrations, kinetic rate constants and environmental conditions 

all have to be faetored into the model, with this information generally being unavailable for 

the complete model [HK04, EBOl]. These problems can be mitigated to some extent by the 

parameter inference or estimation techniques discussed in chapter 5. The study of genetic 

regulatory networks can be greatly simplified by viewing gene networks as Boolean based 

systems [AKMM98], where genes represent abstract binary switches [SBSW05] which can 

be either "on" or "off". These genes have causal relationships between them, where genes 

can inhibit or activate one another. This approach was pioneered by Kaufman [Kau69] and 

has fonned the basis of a number of studies. Figure 3.1(a) shows a simple model taking 

this Boolean view (taken from [AKMM98]). In this model three genes interact: 81 and g3 

combine to promote the expression of 82; 81 inhibits the expression of 83; and g2 promotes 

the expression of 81. Systems such as these can be investigated by the use of state transition 

graphs where the whole state spaee of the system is explored. The state space of the model 

in Figure 3.1(a) is depicted in Figure 3.1(b). 



(a) A Boolean network 
with three genes 
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(b) A state transition graph of the Boolean net­
work in a) 

I Current State 11 Next State I 

gl g2 g3 g'l g2 g3 
0 0 0 0 0 1 
0 0 1 0 0 1 
0 1 0 1 0 1 
0 1 1 1 0 1 
1 0 0 0 0 0 
1 0 1 0 1 0 
1 1 0 1 0 0 
1 1 1 1 1 0 
(c) The truth tables relating to a) 

Figure 3.1: An example of a Boolean network with three genes and the resulting state 
transition graph 
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Boolean based models are promising for the study of genetic networks due to the suit-

ability of the abstraction to available biological data [AKMM98]. However they typiCally 

suffer from a number of problems, namely coping with very large state spaces, and an in­

ability to cope with inconsistent or incomplete data [SBSW05]. These problems can be 

alleviated by translating the models into Petri nets. The transformation of Boolean based 

biological models into Petri nets was initially carried out by Chaouiya et al. [SRTC05]9 

and further extended by Steggles et al. [SBSW05]. The approach of Steggles et al. further 

address the fundamental problem of state space explosion by first simplifying the model 

using well studied logic reduction techniques. These compact logical relationships are then 

automatically translated into Petri net structures by a bespoke tool, GNaPN (Gene Net­

works as Petri Nets) [GNa06]. GNaPN allows both the asynchronous and synchronous 

semantics of genetic regulatory networks to be modelled and analysed. The methods pre­

sented by Steggles et al., discussed in the next section, are used to reverse engineer and 

analyse a Boolean abstraction of the well studied Lac operon [JM61]. Later in chapter 6 a 

model of the phosphate stress response in Bacillus subtilis [BVV+97, OLY02, OOB+04]. 

Here a model of the Lac operon is successfully validated by state space analysis techniques. 

Proving the model is consistent with current knowledge of the system at a Boolean level 

gives great confidence to utilise other techniques and assist in the creation of more complex 

models, for example utilising stochastic Petri nets. 
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3.2.1 Logic Simplification and Gene Networks 

In the field of microprocessor design, a technique called logic simplification is used to 

optimise digital circuits built using Boolean logic. Logic simplification can be used to 

simplify Boolean representations of biological networks [SBSW05], utilising techniques 

such as the Quine-McCluskey minimisation algorithm [Bre92]. Logic reduction not only 

assists in the creation of Boolean models, but also greatly aids in the analysis of such 

systems. 

To demonstrate how logic simplification can be applied, consider the simple Boolean 

network presented in Figure 3.1(a), and the accompanying truth table in Table 3.l(c). From 

the truth table in Table 3.1(c), each gene can be represented by Boolean terms that fully de­

scribe each gene's behaviour using the techniques presented in [SBSW05]. These Boolean 

terms are made up of a number of "minterms". These minterms represent system states in 

which the next state results in the gene being on. The Boolean summation of these terms 

completely describes the behaviour of the gene. For example, the gene 82 can be described 

by the following Boolean term: 

82 = (81 A82 1\83) V (gl I\g2 I\g3), (3.1 ) 

where A represents logical "and", V represents logical "or" and hence g 1 A 82 A g3 

represents the state 101. The Boolean terms evaluated from the truth tables are often overly 

complex, holding much redundant information [SBSW05]. Reducing the size of these 

terms is extremely beneficial for future analysis, especially with state space based methods. 

The Quine-McCluskey algorithm [Bre92] minimises logic terms by merging miniterms that 
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differ by only one variable. For example, consider the term in Equation 3.1, this has two 

mini terms that differ by only one variable, g2. It is straightforward to see how this term 

can be simplified by the removal of this variable, and merged into the simpler term gl A g3. 

which is logically equivalent to the original term, and is in fact equivalent to the original 

model shown in Figure 3.1(a). 

The aim of the approach detailed above is to be able to reverse engineer the underlying 

network from an understanding of the Boolean behaviour of the network. While the com­

plete truth table is an ideal starting point from which to reverse engineer the underlying 

Boolean model, it is generally unavailable. Instead a subset of the complete truth table is 

utilised. In the main a good estimate of the complete Boolean behaviour can be gleaned by 

the description of genes and their nearest neighbours. This information can be gained from. 

both expert knowledge and literature searches. These Boolean terms can then be taken 

forward to generate an investigatable Petri net model, this process is now discussed. 

3.2.2 From Boolean Logic to Petri Nets 

Petri nets have been proposed as a formalism in which to study Boolean networks. Petri 

nets have a large body of tools and techniques and can alleviate problems of state space ex­

ploration and can cope with incomplete or inconsistent data [SBSW05]. Petri nets [Mur89]. 

have a large range of analysis techniques available too them, with I-bounded [Mur89] 

or safe Petri nets having tractable techniques to evaluate state spaces, such as unfolding 

[Kho03]. The use of Petri nets to model Boolean based genetic networks was originally 

presented by Chaouiya [CRRT04]. Chaouiya et aZ.'s used complimentary places to model 
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Figure 3.2: A Petri net representation of 82 activating 8\, from [CRRT04] 

an entities state being either on or off. Chaouiya et al.'s technique produced asynchronous 

Petri nets and has been tested on a number of small models [CRRT04j. This method has 

been advanced by the work of Steggles et al. [SBSW05], as discussed this method re­

duces the complexity of a network by the use of logic reduction techniques. The method 

of Steggles et al. also provides a tool support allowing the automated construction of these 

networks via a tool, GNaPN which allows the export of either asynchronous nets or nets 

following a synchronous commit protocol. In this work the asynchronous nets are utilised. 

Steggles et al also considered synchronous nets, with an update phases, however these are 

not utilised and are not discussed further. The construction of asynchronous Petri nets from 

Boolean logic is now discussed. 

The idea behind both strategies is to model each gene 8i with two complementary places 

8;. representing the gene being "on" and 8i. which represents the gene being "off'. With 

careful construction. these complementary places remove the need for inhibitor arcs, and an 

asynchronous model can be constructed [CRRT04]. An example of this is shown in Figure 

3.2. This figure describes the simple relationship of 82 promoting 8\. The idea here is for 

a gene, 8i to be on, there must be a token on Pi. and the input transition for Pi must have 

an input arc from Pi. any genes that promote 8i and the complementary places of any genes 
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LICI .- Cl9 LacZ LICY LacA 

CAP Pro (Jp 
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Low Exptassion .- • Glucose + 

CAP Pro (Jp Lactose+ 

CAPIcAMP RNA PoIymerue .- e> High Expression 

• • Glucose -

CAP Pro (Jp Lactose+ 

Rapr8lSOl 

Cl- No Exptlllion .- • Glucose + 

CAP Pro (Jp Lactose-

CN'IcAMP Repr ... Of .-Cl- No Exprenion 

• • Gluco .. -

CAP Pro (Jp Lactooe-

Figure 3.3: The Lac operon in E. coli [JM61]. Here the proteins bind in a number of 
combinations on the promoter, effecting the resulting expression of LacZ, allowing the 
bacterium to only utilise a lactose resource in the absence of glucose. 

that inhibit gj. It is straight forward to see how this approach can be utilised to construct 

larger networks. 

3.2.3 Modelling and Analysis of The Lac Operon 

In order to facilitate the discussion of the application of the modelling approach presented 

by Steggles et al. the classical model of the Lac operon in E. coli is utilised [JM61]. The 

Lac operon is a classic regulatory system. The Lac operon allows an E. coli to adjust its 

metabolism depending on whether glucose, lactose or both glucose and lactose are avail-

able. E. coli's primary source of food is glucose. This does not have to be modified before 

it is utilised by the bacterium's respiratory pathway. Lactose must go through a number of 

conversion steps before it may be utilised. This means that lactose is a more costly form 
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n ~Lactose 

LacI1-1 ---Alactose 

LacZ 

/\ 
CAP cAMP 

T 
Glucose 

Figure 3.4: A Boolean model of the Lac operon. This depiction is then utilised to describe 
its truth tables 

of energy, and glucose will be used exclusively even if lactose is available [JM61]. As the 

lactose machinery is expensive to maintain, it is switched off in the presence of glucose in 

order to save energy. The Lac operon is pictured in Figure 3.3. When there is not lactose 

in the system a repressor protein, LacI binds to the Lac operon's promoter. This prevents 

RNA polymerase from binding and transcribing the operon. When lactose is present, an 

isomer of lactose, alactose, binds to the repressor, forming a complex. This prevents the 

repressor from binding to the promotor and allows RNA polymerase to bind and transcribe 

the genes in the operon. Under conditions where both glucose and lactose are available, 

the lactose machinery is only transcribed at a basal level, even though the repressor has 

been rendered inactive. This is due to the effect of the catabolite activator protein (CAP). 

CAP can only bind to its DNA binding site near the promotor in the presence of cAMP. If 

glucose is present the level of cAMP is low, so CAP does not bind to the DNA and hence 

does not activate the RNA polymerase. When glucose levels are low the cAMP level rises, 
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1 LacZ 1 lactose 11 Lac 1 

0 0 0 1 lactose 11 alactose 1 1 alactose 11 Lac! 1 

1 ~ 11 ~ 1 t-----::-I ~---tt-II ~~ 0 1 1 
1 0 0 
1 1 0 (b) (c) 

(a) 

1 LacI 1 cAMP 1 CAP 11 LacZ 1 

0 0 0 0 
0 0 1 0 
0 1 0 0 1 glucose 11 cAMP I 

0 1 1 1 
1 0 0 0 

o 
1 11 

1 
o 

1 0 1 0 (e) 

1 1 0 0 
1 1 1 0 

(d) 

Figure 3.5: Truth tables describing the behaviour of the Lac operon. The next state of the 
species of interest is shown on the right, relative to the current state of its nearest neighbours 

allowing CAP to bind, activating the transcription of the Lac operon. 

The molecular species listed in the model are the proteins LacI and LacZ, the metabo-

lites glucose and lactose, and the activity regulators cAMP and CAP. For simplification. 

LacZ is the only protein transcribed from the Lac operon that is considered in the model. 

LacY and LacA are omitted from the model as their behaviour is the same as that of LacZ. 

It is noted that there has been a simplifying assumption made to allow the Lac operon to be 

modelled by the Boolean based Petri net modelling technique proposed by Steggles et al .• 

As discussed previously, in the presence of both lactose and glucose, LacZ is expressed at 

basal levels. This basal expression does not fit with the Boolean modelling technique and 

is simplified by viewing the basal expression as the gene being off. 

The model can be seen in Figure 3.4. The items of interest in the model are then listed. 

along with the affecting molecules in the immediate neighbourhood. The next state of each 
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molecule is listed relative to the current state of its nearest neighbours. This information 

is captured in a series of truth tables as listed in Figure 3.5. These truth tables are then 

converted in to the following series of Boolean equations: 

lactose = (LacZ 1\ lactose) 

alactose = lactose 

Lac/ = Alactose 

LacZ = Lac/ 1\ cAM P 1\ cap 

cAMP = glucose 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

The Boolean equations are then minimised using the approach outlined in Steggles et 

al. [SBSW05], via a Java tool written by one of the authors (R.Banks). The tool, GNaPN, 

minimises the truth tables and automatically produces an asynchronous Petri net according 

to the rules and techniques described above. The resulting Petri net model was then ex­

ported to the PNML [BCvH+03] language, to allow the model to be analysed using PNML 

compliant tools. 

The resulting model then has its state space investigated using reachability analysis. 

Reachability analysis is described in chapter 2 and involves the systematic and efficient 

exploration of a Petri nets possible set of markings dependant upon an initial marking. The 

reachability analysis was carried out using the PEP tool [Gra97]. Reachability is a marking 

dependent property of a Petri net and hence initial markings had to be set. The places of 
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interest in the resulting net are the places indicating the presence or absence of a particu-

lar gene or condition. For example, for the protein LacZ there exist two complementary 

places, LacZ and LacZ indicating the presence or absence of LacZ respectively. For these 

places, the initial conditions used were, LacI+, cAMP+, LacZ- and CAP+. The presence 

of glucose and lactose was then considered in all four possible combinations. 

The net was then assessed for reachability of certain states in PEP [Gra97]. In par­

ticular the model was assessed as to whether the individual places of LacI+, LacZ- and 

alactose+ ever became marked. The results, and their implications were as follows. 

• Alactose The presence of Alactose is an indication of the presence of lactose. Reach­

ability analysis showed that it was possible to have a state where alactose is presen~ 

only in the presence of lactose. 

• Lad- The absence of Lacl indicates that lactose is present in the system and has 

inhibited the expression of LacI via the presence of Alactose. Reachability analysis 

showed that Lacl could only become absent in the presence of lactose. 

• LacZ+ The presence of LacZ is a key indicator of the operon, and indicates that E. 

coli has resorted to the lactose pathway. Reachability analysis showed that LacZ was 

only present when both glucose was absent and lactose was present. 

All of these results were in agreement with the current biological understanding of the 

system and assumptions used in the model. This demonstrates that the technique appears 

suitable for the modelling of Boolean representations of genetic regulatory networks. Im­

portantly, the state space needed for the analysis was swprisingly small with reachable 
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Initial Marking Reachable Marking 

Glucose Lactose Alactose LacZ LacI-
..j ..j ..j ..j ..j 
..j X X X X 
X ..j ..j X J 
X X ..j X X 

Table 3.1: The reachability results obtained via analysis of the Lac model within the PEP 
tool 

states numbering in the order of lOO. Moreover, the technique proved to be extremely 

efficient. All the analysis carried out on this model took less than a second on a 1 gHz 

machine. 

3.3 Import and Analysis of Metabolic Networks 

As discussed in Section 2.8, model documentation and interchange is a important aspect of 

systems modelling. This has become apparent in both the disciplines of systems biology 

and Petri net research, with the development of SBML [Hf+03] and PNML [BCvH+03] re-

spectively. Associated with these community accepted standards are a number of example 

models. SBML in particular has a test suite, and a number of models published in scien-

tific journals. A repository of these is available at the SBML website (SBM04]. There are 

also a number of other network repositories that have become available as SBML models. 

A prime example is that of the KEGG metabolic pathways database [KGKN02]. Here, a 

large number of metabolic pathways are available to researchers. As discussed previously, 

Petri nets have begun to be applied to analysis in systems biology. In order to fully exploit 

the application of Petri nets to systems biology it is important that a researcher can import 

existing SBML models into the Petri net framework, enabling their analysis via a number 
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of PNML compliant tools such as PEP [Gra97] and the Petri net Kernel [PNK04]. 

In the remainder of this chapter, a novel mapping of biochemical networks (represented 

in SBML) to Petri nets (represented in PNML), is considered in detail. Initially, the direct 

mapping of a SBML model into a PNML description of a Pff net is described. This map­

ping fonns the basis for a prototype tool, implemented in Java, that converts SBML level 1 

files into PNML. This tool is then utilised to import a SBML model of a glycolysis pathway 

from the KEGG database into a PNML file. The imported model is then analysed with the 

INA tool, demonstrating the immediate accessibility of the resulting imported models to 

Petri net analysis. Finally, to demonstrate the large scale effectiveness of the conversion 

tool, all pathways from KEGG relating to B. subtilis are imported into PNML. 

Alternative ways of modelling biological systems with Petri nets are then discusse~ 

with particular attention paid to how the SBMIJPNML place/transition net mapping can 

be extended to produce stochastic Petri net models. Work into this area requires current 

PNML standards to mature before this application can be completed. 

3.3.1 Mapping from SBML Level 1 to a Ptr Net encoded in PNML 

To enable the automatic import of SBML models into PNML, it is necessary to establish 

a mapping of the underlying biological phenomena to the Petri net framework. The work 

of Reddy [RLM96] was pioneering in this respect, and provides an excellent starting point 

for this work. In this approach. biological pathways are viewed as a series of parallel dis­

crete events. One molecule of a biochemical substance is deemed equivalent to a single 

token [RLM96] in the accompanying Petri net. Generally, transitions are equivalent to bio-
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chemical reactions, with arcs denoting the direction of the reactants. This simple approach 

is now further defined, demonstrating how a SBML model can be mapped to a PNML 

representation of a Ptr net. 

Each SBML file contains a list of species which take part in the biochemical reac­

tions of a system. Each species is specified using a <species> field which contains a 

unique <ID> attribute to name the species. A <compartment> field identifies where the the 

given species is found; in stochastic systems an <ini tialAmmount> field is also required. 

Each species will be represented by a place in our Petri net model, and so is mapped to a 

PNML <place> field. The species <ID> attribute then becomes the place <ID> attribute 

and <name> field. For example the following PNML would be used to a represent a glucose 

species in a SBML model. 

<place ID="glucose"> 

<name> 

<text>"glucose"</text> 

</name> 

<initialMarking> 

<text>"O"</text> 

</initialMarking> 

</place> 

One added complication is that a species may occur in more than one compartment 

in an SBML model. In this case it is clear why the <ID> attribute must be used as the 

identifier. The information about the compartment may be retained as part of the modular 

or graphical elements. The initial concentration or the initial amount field will be used to 
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-
Figure 3.6: The Saccharomyces cerevisiae glycolysis pathway from [TPR+OO]. Ab­
breviations: G6P, glucose 6-phosphate; F6P, fructose 6-phosphate; Fl,6bP2, fructose_ 
1,6-bisphosphate; GAp, d-glyceraldehyde-3-phosphate; BPG, 1,3-bisphosphoglycerate; 
3PGA, 3-phosphoglycerate; 2PGA, 2-phosphoglycerate; PEP, phospho-enol-pyruvate-, 
PYR, pyruvate; AcAld, acetaldehyde; DADH, glycerone phosphate; ATP, Adenosine 
triphosphate; ADP. Adenosine diphosphate; NAD. nicotinamide adenine dinucleotide (ox­
idised); NADH. nicotinamide adenine dinucleotide (reduced). 

calculate the Petri nets initial marking and this is discussed in more detail below. 

In an SBML file the <reaction> field is used to specify a single reaction that takes cer-

tain species as inputs. as specified by the <listOfReactions> field, and produces certain 

species as products, specified by the <listOfProducts> field. Each reaction is repre-

sented by a transition in the Petri net model using the PNML <transition> field and the 

unique <ID> attribute associated with each SBML reaction maps to the <ID> attribute of 

the corresponding transition. Arcs then need to be defined that will be used to connect the 

input/output places to this PNML transition. Note that in SBML there is no concept similar 

to an arc. To solve this, we create an <arc> entry from each species place in the list of 

reactants to the new transition and from the transition to each species place in the list of 

products. Each arc. Ai. is given an <ID> i where i is an integer that relates to the order in 

which the arcs are created. 

Figure 3.7 shows how the reaction shown in Figure 3.6 is mapped to a transition in 
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<reactlon name-" v'l'reha" rever~nble"· fal •• "> 

- <1 tstOfReactants> 
ATP 

<specieReference specle-" G6p· stol.chl.ometry .. 1I 2" /> 

<specieReterence specle-" An" stolchiomet.ry"" 1" /> 

</11stotReactants> 

.:. <listOfProducts> 

<specieReterence specie.... 'I'rh" stoichiometry·· 1" /> 

<speCl eReference specle-" ADP" stOlchiomet ry." 1" /> 

< /11 stOfProctucts> 

</reaction> ADP 

Figure 3.7: Creation of a simple transition from SBML. 

GAP 

BPG 

.:. <reaction name·~" reversible-'t,ru."> 

.:. <listOfReact.ants> 

<specieReference specie ... • stolchiometry-1." /> 

<specieReference specie-au" stoichiometry'" '1" 1)0 

</1 istOfReactants> 

.:. <listOfProducts> 

<specleReterence specie-aN" atoichiometry.1." I> 

<specieReference .pecie ..... • stoichiometry·"" I> 

</1 istat Products> 

</reaction> 

Figure 3.8: How a reversible reaction is mapped 

PNML. A reaction tag may have the <reversible> field set to true to indicate that the 

reaction can also occur in the reverse direction. If this is the case then we create a second 

transition for the reaction which we name ID_R (where ID is the original reaction <ID» 

such that the input/output places of the original transition are reversed. An example of such 

a Petri net for a reversible reaction and the associated SBML fragment is given in Figure 

3.8. 

Given the Petri net structure it is now necessary to derive the initial marking for the 

PNML model. We set the <ini tialMarking> attribute in PNML using either the SBML 

species <ini tialAmount> or <ini tialConcentration> fields, resulting from stochastic 
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or detenninistic models respectively. The <ini tialAmount> field defaults to define the ini-

tial quantity ofthe species as an absolute amount [HP+03]. If, however, a <substanceUni ts> 

field is given, then <ini tialAmount> is defined in tenns of that unit. If the value is in a 

molar fonn then the <initialMarking> can be obtained simply by multiplication by Avo­

gadro's number [GP98]. If the <substanceUni ts> are a multiplication of a molar amoun~ 

then a simple conversion can be carried out to obtain the molecular amount. In the un­

likely event that the <substanceUnits> are not in a molar fonn then more user input is 

required. The <initialConcentration> field represents the concentration of a substance 

and can only be used if a volume is assigned to a compartment. The units used in the 

<initialConcentration> field take the form of <substanceUnits>l<spatialUnits:> 

(Note <initialConcentration> has only been included since the recent level 2 revi­

sion in SBML.) If the specified initial concentration is in a molellitre amount then the 

molecules can be obtained by assuming one molecule is equal to InM [SPBOl]. In the un­

likely event that molenitre concentrations are not used then more user input is required. The 

<ini tialConcentration> and <ini tialAInount> fields are mutually exclusive; if either 

of these fields is empty then it is implied that the values are unknown or are not needed for 

analysis. If the values are missing from a SBML file then the <initialMarking> is set to 

O. 

3.3.2 A Java\XML Implementation 

The above mapping from SBML to a PNML model has been implemented as a prototype 

Java tool using IDOM [ID004]. IDOM was chosen to facilitate the XML parsing due to 
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its simplicity and platform independence - a JDOM/Java based tool will run on any system 

with a Java virtual machine. The tool takes in a well formed SBML file, and produces 

a standards-compliant PNML file. At present, due to the lack of a PNML extension for 

stochastic nets, an annotation is added to store the stochastic rate constant where appro­

priate. This tool was then utilised to assess the suitability of our mapping, and as a start­

ing point for an investigation into some structural and behavioural properties of metabolic 

pathways, which were obtained from both the KEGG database [KGKN02] and scientific 

literature via the SBML website [SBM04]. 

3.3.3 Import and Analysis of the Glycolysis Pathways 

A SBML representation of the Saccharomyces cerevisiae glycolysis pathway (Figure 3.6) 

was converted to a PNML representation of a Pff net using a prototype tool based on the 

mapping presented previously. This model was obtained via the SBML website (SBM04j, 

where it is listed along with its corresponding publication [TPR+OO]. For the complete 

SBML file and resulting PNML, the interested reader is referred to [SKSW04bj. Once 

converted into PNML, the model was analysed using a number of Petri net tools. The 

Petri net kernel [PNK04] was used to load the PNML and convert the PNML into a format 

understood by the Integrated Net Analyser (lNA) [Sta04]. INA was then utilised to cal­

culate invariants. The model was analysed for for T-invariants and P-invariants [Mur89J. 

P-invariants are a set of places that retain the same total marking in any given state of the 

system. T-invariants are a set of transitions that when fired in a partial order, return the 

the state of the net to its initial marking. Invariant analysis is independent of the initial 
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marking. The methods to calculate invariants are discussed in chapter 2. One P-invariant 

was discovered. relating to the tight coupling between BPG and NAD. Fifteen T-invariants 

relating to the reversible reactions were found. This analysis. while simple, shows how 

Petri net properties can be used to validate the model. 

To further illustrate the presented mapping. a model of pyruvate branches in Laetoeoc_ 

eus lactis [HSM+02] was also imported and converted from the SBML model repository. 

Abbreviations from this model are listed in Table 3.2. Again, this model was based on the 

glycolysis pathway. However. in this case the focus was on pyruvate branching. The ailll 

of the original study [HSM+02] was the optimisation of the production of di-acetyl, a by_ 

product of glycolysis, which is an important flavour component in dairy products such as 

butter. A SBML file of the model used in this study is available from the website [SBM04] 

and is graphically represented in Figure 3.9. Using the prototyped tool, this model Was 

converted into PNML. Again, the PNML produced by the conversion tool was exported 

into INA [Sta04] via the Petri net kernel [PNK04]. The net contained six Place invariants 
9 

but no T-invariants. The P-invariants of this net are as follows: 

(NADH) + (NAD) = 0 (3.7) 

(AcCoA) + (CoA) = 0 (3.8) 

2{Ac) + (Actoinln) + 2{AcCoAate) + (Aeetoinln) + (AeetoinOut) + (AcLae) + 

(02) + (NAD) + 2{AeP} + (Aea) = 0 (3.9) 

(ADP) + {ATP} = 0 (3.10) 
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(Ae) + (lactate) + (Aetoinln) + (pyruvate) + (Aeetoinln) + (AeetoinOut) + 

(Butanediol) + (AeLae) + (EtOH) + (AeP) + (halfglueose) + (AeO) = 0 (3.11) 

(Ae) + (AeP) + (Pi) = O. (3.12) 

The majority of the P-invariants here are explained by the inherent tight coupling be-

tween specific molecular species, validating the basic composition of the model. However, 

equations 3.10 and 3.12 appear more interesting, and may provide further insight into the 

pyruvate branches in the hands of the original experimentalists, perhaps providing prereq-

uisites relating to a specific path through the model. 

Abbreviation Definition 

AC Acetate 
ACCOA Acetyle coenzyme A 

AcetoinInlAcetoinOut Acetoin 
ACLac Acetonlactate 

ACP Acety le phosphate 
COA Coenzyme A 

ETOH Ethanol 
0 Oxygen 
Pi Inorganic phosphate 

ATP Adenosine triphosphate 
ADP Adenosine tiphosphate 
NAD nicotinamide adenine dinucleotide (oxidised) 

NADH nicotinamide adenine dinucleotide (reduced) 

Table 3.2: Abbreviations from the model of glycolysis presented in [HSM+02]. 

Finally as an exemplar of the potential of the SBMUPNML mapping every B. sub-

tilis pathway in KEGG (available in SBML) was converted into PNML. The results are 

not shown, but demonstrate the possibility of automatically importing a large number of 

pathways in to the Petri net framework. 
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Figure 3.9: A graphical representation of the glycolysis pathway from [HSM+02]. Abbre­
viations are listed in Table 3.2 
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3.3.4 Other Pff Net Properties 

Although only P and T invariants have been considered here, there are many other inter­

esting properties that can be analysed and discovered with Petri nets that may be useful to 

biologists. These are now discussed including indications of how some of these Petri net 

properties can be related to biological systems. 

• Deadlock. A deadlock would indicate a Petri net marking that once entered leaved 

no enabled transitions and hence no more transitions can fire. Presence of a deadlock 

would, at the holistic level, represent the death of an organism. Deadlock in smaller 

systems or sub models would represent a pathway no longer available to an organism. 

For example, the lack of a resource would lead to deadlock in that pathway and an 

alternative pathway would be utilised. 

• Boundedness. Places, or a set of places, in a net can be shown to have a particular 

bound on token number. A particular molecule may be toxic/lethal to an organism 

at a certain level. Alternatively a molecule may induce further reactions at a certain 

threshold. Hence, boundedness analysis would be able to check if these conditions 

occur from an initial marking . 

• Traps. A trap is a set of places which never lose all their tokens once marked. In 

biology this could represent a persistent protein or metabolite, i.e. one with no degra­

dation pathway . 

• Siphons. A siphon is a set of places where every transition having an output place in 

the siphon has an input place in the siphon. The presence of a siphon in a biological 
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Petri net would indicate a store of proteins or metabolites that have no way of being 

replenished. For example these could be metabolites that are no longer available in a 

particular environment. 

• Reachability. Reachability is the systematic search of all possible state spaces. It 

can be determined if a particular marking is reachable from a given initial marking. 

Reachability is potentially very interesting to biologists. By systematically deleting 

places from the net (the equivalent of a biological knock out experiment) the biologist 

may be able to find key genes that prevent certain states from occurring. Conversely. 

over-expression studies may be carried out by increasing token number of places 

representing important molecular species. 

There are undoubtedly many other biological analogies in Petri net properties that could 

be exploited using analysis techniques such as model checking. 

3.4 Conclusions 

Many systems biology studies focus on the simulation of biological systems, and the anal­

ysis of the time series data that results [ARM98, GibOO, MA97, SPBOl]. These simula­

tions should be enhanced or ideally preceded by some validation of the model in question 

[HK04]. In this section, the framework of Petri nets is utilised to validate models of bio­

logical networks. Two distinct methodologies are covered in this section: the analysis of 

Boolean representations of biological networks using safe Petri nets; and the import and 

analysis of biological networks utilising Pff nets. These techniques allow a researcher to 
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validate his or her basic understanding of a model while some interesting properties may 

also be gleaned. Validating a model ensures that the model conforms to the researcher's 

assumptions, and gives increased confidence in their understating, allowing more detailed 

kinetic models to be produced. 

The Boolean based modelling of biochemical systems, specifically genetic regulatory 

networks, is an important component of the study of these systems as it gives a clear indi­

cation that the basics of the system has been correctly understood. The investigation and 

validation of these models is interesting in its own right, clarifying the researcher's under­

standing of the system's dynamics. The validation of these systems is also an important 

component that is important for the future study of these systems with the aid of advanced 

stochastic or deterministic simulations. 

In this section a technique presented by Steggles et al. [SBSWOS] was utilised to repre­

sent a Boolean model of the Lac operon as a Petri net, capturing the model's behaviour util­

ising synchronous semantics. This approach builds on previous Boolean based techniques, 

such as those presented by [AKMM98]. By modelling Boolean based systems using safe 

Petri nets the model is immediately amenable to the advanced analysis techniques available 

within the Petri net framework. Importantly, this allows the efficient exploration of the state 

space, and the ability to cope with inconsistent or missing data. 

The technique was applied to the classical Lac operon, (and later in Chapter 6 the 

Bacillus subtilis phosphate stress response). The models were described as Boolean truth 

tables in order to reverse engineer the Boolean model. The safe Petri net models allowed 

fast exploration of the model's state space via Petri net based tools such as PEP [Ora97], 
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and the unfolding algorithms therein [Kho03]. Analysis of these models validated the 

original knowledge of the system. Although no original knowledge or properties were 

gleaned, the validation of these models demonstrates if the biological knowledge has been 

captured and modelled correctly. Once Boolean models have been reverse engineered, 

validated and refined, it is possible to construct kinetic models of biological systems from 

this information. The validation of Boolean models of biochemical systems can greatly 

facilitate the difficult process of constructing a kinetic model, with all the unknowns and 

missing parameters inherent in this approach [MS03]. 

The mapping of biochemical elements to the Petri net formalism was pioneered by 

Reddy [RLM96] and has been built upon in this thesis by the mapping of SBML [HP+03] 

to PNML [KWOla] schema. This work allows a vast number of biological networks avail­

able in SBML to be analysed using Petri nets. Indeed it was possible to apply this conver­

sion to all the metabolic networks for B. subtilis present in the KEGG database [KGKN02], 

(results not shown). This work is potentially fruitfully to both the systems biology com­

munity (for the analysis of their models) and the Petri net community (as an application 

domain for novel techniques). The mapping and the Java implementation was of particu­

lar interest to the PNML community, as exemplified by the publication of a paper on this 

work at a meeting of the PNML community [SKSW04a]. The mapping presented here is 

demonstrated by analysis on two models of glycolysis available from the SBML website 

[SBM04]. The models presented were analysed for invariants, which validated the basic 

structure of the model, and in the case of pyruvate branching, indicated possible interesting 

invariants for future investigation. 
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Chapter 4 

Stochastic Simulation of Biological 
Networks, Theory and Tool Support 

4.1 Introduction 

Kinetic simulation is an important element in computational systems biology studies. This 

is exemplified by the number of kinetic simulation tools available on the SBML website 

[SBM04]. Kinetic simulation based studies generally require: (a) a well defined model 

structure; (b) initial molecular concentrations; and (c) kinetic rate constants. A simulation 

algorithm, via an appropriate software tool, is then utilised to generate a system's state over 

a given period of time. Kinetic simulations have an advantage over the other techniques 

discussed previously in that generation and analysis of time series data is possible. With this 

time series data it is possible to move from asking questions such as, "will this transition 

fire?" to "how many times will this transition fire on average?"; from "can we get from state 

A to state B?" to "how many molecules of x will there be in an average population after 1 0 

minutes?". Depending on the simulation techniques being employed, the state of the system 

at infinitesimal time points can be calculated or error bounds can be placed on molecular 

amounts. Simulation techniques utilised for biological networks can be placed in three 
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main categories, Deterministic [lBG+04], Stochastic [ARM98] or Hybrid [MDNMOO]. 

Initially, this chapter discusses the merits of the three main simulation techniques. Dis­

cussion then focuses solely on stochastic techniques. Whilst a powerful simulation tech­

nique, stochastic simulation suffers from two important drawbacks; high computational 

cost [EBOl]; and a general lack of kinetic parameters [MS03]. To facilitate the stochastic 

simulation of biochemical networks, a new stochastic Petri net simulator, NASTY (Not An­

other Simulator Thank You), has been developed. NASTY is compliant with the Petri Net 

Markup Language (PNML) [BCvH+03], and notably uses mass action kinetics [Wil06] 

as a default since this is fundamental to the stochastic simulation of biological networks 

[GibOO]. 

NASTY is a unique software tool, providing a number of key features: 

• an efficient simulator, incorporating the Gibson-Bruck algorithm; 

• default use of mass action kinetics; 

• PNML compliance, and, through the mapping provided in Chapter 3, SBML com­

pliance; 

• and the distribution of jobs over remote machines. 

The simulation engine is also computationally amenable and has provided the basis for 

all simulation related studies throughout the remainder of this thesis. 

NASTY addresses the computational cost of carrying out stochastic simulations by 

utilising an efficient algorithm, based on the Gibson-Bruck algorithm [GBOO] combined 

with stochastic Petri nets [Mar89]. NASTY further reduces the real time computational 
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costs of multiple simulations by distributing the processing over multiple processors to 

ensure effective use is made of all available processing power. 

Whilst NASTY provides a powerful tool for the stochastic simulation of biochemical 

networks, there was still another technical problem that needed to be addressed. To allow 

full exploitation oftime series results arising from stochastic simulations, these results must 

be stored, transferred and be made amenable for analysis. To assist in this, a standardised 

results format was devised. Time Series Markup Language (TSML), is a novel results 

interchange format for both stochastic and deterministic time series data. TSML provides 

a schema allowing results to be stored in an efficient, loss-less manner. TSML does this by 

tracking the changes rather than storing all the data from the simulations. By doing this, 

all the original information can be constructed and statistically analysed. Both NASTY 

and TSML are taken forward for use beyond this chapter, and prove central to the work in 

future chapters. 

4.2 Simulation Techniques 

There are three broad categories of simulation techniques available for use in systems biol­

ogy: deterministic [IBG+04]; stochastic [ARM98]; and hybrid [MDNMOO]. These simu­

lation techniques are described in chapter 2 Deterministic and stochastic simulations have a 

number of advantages and disadvantages, while hybrid techniques aim to combine the best 

of both approaches (some disadvantages of the original techniques still remain). Hybrid 

simulation techniques are not considered further here as they do not have the theoretical 

justifications and history of the deterministic and stochastic techniques. 
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Due to the accessibility of tools and ease of computation, detenninistic techniques have 

proved popular in systems biology studies. This is exemplified by the large number of 

curated models accessible via the SBML website [SBM04]. As with all simulation tech­

niques, deterministic modelling relies on a number of assumptions, namely: 

• that concentrations are sufficiently large so there can be a mid point between two 

concentrations; 

• that the system behaves in a fully deterministic way; 

• and changes over time are continuous. 

Detenninistic algorithms allow fast and accurate simulations of these systems. While 

deterministic algorithms and techniques have been used frequently, there have been fewer 

examples of detailed stochastic studies. However, this area is growing with some de­

tailed discussions [GibOO] and example models [ARM98]. In systems with small molec­

ular amounts, assumptions justifying detenninistic simulation break down. In systems 

such as these stochastic simulation may be utilised. Stochastic simulations are based 

around Monte-Carlo based algorithms [GiI76, MoI82]. Randomness is inherent in bi­

ological systems [MS95]. and stochastic effects could well account for the non-genetic, 

non-environmental differences observed in biological populations. The main assumptions 

involved in stochastic modelling are as follows: 

• the Rates are well know; 

• the initial amounts of molecules are well known; 
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• and the reagents are well mixed. 

There are many arguments for the relative benefits of stochastic and deterministic mod­

elling, and a detailed discussion of these is presented in Chapter 2. In the remainder of the 

thesis, stochastic simulations are focused on, as they: 

• capture fine grained behaviours; 

• allow different outcomes in the same model, and so non genetic variations in a pop­

ulation can be discovered; 

• have a theoretical justification for small biochemical systems [Gi176}; 

• and have theoretical assumptions that are always valid, when deterministic assump­

tions are valid [Gil??]. 

Stochastic Petri nets [MoI82, Mar89] are used in the modelling framework for the 

NASTY simulator. 

4.3 The NASTY Simulator 

In order to assess the applicability of stochastic Petri nets to systems biology, a Java tool 

has been developed, Not Another Simulator Thank You (NASTY). While a number of 

stochastic Petri net simulators already exist [PNW04], none matched all of the necessary 

requirements, namely: 

• complete computational access; 
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• PNML import and export (and via the use of the mapping in Chapter 3, SBML com-

pliance); 

• integrated use of mass action kinetics; 

• use of a cluster of machines to carry out multiple simulations. 

NASTY was designed with three main elements in mind: a core stochastic Petri net 

simulation engine based on the Oibson-Bruck algorithm [OBOO]; a user friendly OUI in-

terface for the construction of models; and a distributed job scheduling protocol to allow 

simulations to be carried out on multiple machines. The architecture of NASTY is shown 

in Figure 4.1. 

NASTY 
J PNML 

Stochaltlc Import/export 
Petri net 
Simulator Network builder 

-...... GUI 

'-- genetic algorithm -"""-
, 

plugln 
Dlltrlbuted job 

lCheduler 

..... ---
j 

....: 

J computer cluater 

Figure 4.1: A conceptual view of the NASTY simulator 

The NASTY tool was developed to provide a suitable environment for the stochastic 

simulation of biological networks and to this end uses mass action kinetics, which are key 

to stochastic modelling [Oil76] as a default. 
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Mass action kinetics assume that the hazard for two molecular species colliding and 

reacting in a constant volume at a constant temperature is constant [Wil06]. Building on this 

assumption the collision hazard hi and the stochastic rate constant Ci can be calculated for 

each reaction i dependant on the number of species involved. NASTY currently supports 

only zeroth, first and second order reactions. These are implemented as follows; 

• Zeroth order This represents the constant influx of some chemical species. As there 

is no input to the reaction the hazard is simply the reaction constant 

• First order Here the species X undergoes a reaction. The Cj represents the hazard of 

a particular molecule, however when there are Xj molecules of Xj giving a combined 

hazard of CjXj 

• Second order Again Ci represents the hazard of a pair of molecules Xj Xk reacting. 

However there are x jXk different pairs of molecules which may react, hence the com­

bined hazard is CjXjXk. When two of the same molecules are involved in a reaction 

the combined hazard becomes Cj(Xj(Xj - 1)/2. 

The hazard of higher order reactions can be calculated similarly. As mass action kinet­

ics is crucial to biological modelling, the methods involved in firing a transition took into 

account the hazards defined above as a default. 

To enable the cross platform usage of NASTY (essential for the widest user base and 

utilisation of compute resources) the simulator was written in pure Java [SM07]. Stochas­

tic Petri nets [Mar89] provide an exact method for the simulation of stochastic systems, 

allowing the exploration of the underlying Markov chain [Mar89] (see section 2.4 for more 
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details). However, traditional implementations of stochastic Petri nets are not as efficient as 

the algorithm presented by Oibson and Bruck [OBOO]. The main advantages of the Oibson­

Bruck algorithm come from the use of an indexed priority queue and a dependability graph. 

The NASTY tool aimed to implement the Oibson-Bruck algorithm by using a Petri net data 

model In the implementation of NASTY an object oriented view of a Petri net was used 

as a programmatic data model. Here objects representing places, transitions and arcs were 

encoded. The encoded data objects allowed the places and transitions to be connected via 

links to other places/transitions as appropriate. These links were the equivalent of Petri net 

arcs. With this data structure in place it was possible to utilise the underlying Petri net as 

the as the equivalent of the dependability graph of the Oibson-Bruck algorithm [OBOO]. 

This allowed simple method calls to track the transitions that needed re-sampling after a 

transition firing via the change in the connecting places. Once the re-sampling has been 

carried out, the transitions that are currently enabled must then be monitored in an indeXed 

priority queue, the second major component of the Gibson-Bruck algorithm. In NASTY's 

implementation the priority queue was implemented by the addition of certain house keep­

ing methods to a linked list. This involves the correct placement of an enabled transition 

in the queue. Once in the queue the transition either moves to the top as other transitions 

fire, or is removed. When the transition is re-sampled, it is first removed from the list and 

then added again. Finally method calls were implemented that returned the transition of 

at the top of the queue with its associated delay. This delay is then used to monitor the 

progression of time in simulations. With these methods and data structures in place the 

underlying simulation algorithm in NASTY effectively becomes equivalent to the Gibson-
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Bruck algorithm, with the Petri net fulfilling the role of the dependability graph allowing 

the efficient update of propensity functions [GBOO]. 

With user interaction a key component in model building and refinement a convenient 

graphical user interface (GUI) was necessary. NASTY provides a Java swing GUI (SM07] 

which allows the user to build models by hand. Places, transitions and arcs can be inserted. 

moved, modified and deleted. Having a GUI allows the modeller to visually inspect their 

models. A visualisation of the simulation is also available, giving the modeller visual feed­

back on how their simulation is progressing. The combination of these graphical features 

provides an attractive tool for Petri net modelling. 

As well as GUI inputs an important feature of a simulation tool is the import and export 

of standards compliant files. NASTY is compliant with the Petri Net Markup Language 

(PNML) [BCvH+03], allowing users to import or export models from/to the wide range 

of existing Petri net tools [PNW04]. File standards are also important in the systems biol­

ogy community, exemplified by the Systems Biology Markup Language (SBML) (HF+ 03] 

which is becoming the linguafranca of systems biologists. To facilitate the use of NASTY 

as a biochemical simulation environment, the Java tool for interchanging PNML and SBML 

models described in Chapter 3 can be utilised [SKSW04a). Hence, NASTY can be seen as 

having real practical applications for the biological modelling community. 

Currently there are no standardised tests for a stochastic simulator. In order to evaluate 

the correctness of the NASTY simulator, a number of small well-studied models were in­

vestigated. A model of the Lotka-Volterra predator-prey system from [Wil06) was used to 

ensure that NASTY dealt correctly with fluctuating stochastic systems. The Lotka-Volterra 
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Prey 

T2 T1 

Figure 4.2: A Petri net model of the predator prey system presented in [Wil06]. Model 
parameters: Tl=l; T2=O.05; T3=06; initial predator number 200; initial prey number = SO. 
Time is defined in arbitrary units. 

system presents a simple predator prey relationship. The predators can eat the prey, the 

prey can reproduce and the predator can die. The Petri net representation of this is shown in 

Figure 4.2. The results from this model are presented in Figure 4.3, showing that NASTY 

cometly deals with fluctuating levels of tokens. Secondly, a subset of the Arkin model 

[ARM98] presented by Gibson and Bruck, [GBOl] was considered to validate the correct-

ness of the NASTY simulation tool. This model subset depicts translation and transcription 

events in E. coli. The results from simulation this model in NASTY are presented alongside 

the data from Gibson and Bruck in Figure 4.4. The output from NASTY almost exactly 

matches the data from Gibson and Bruck. Finally it is noted that the successful reproduc_ 

tion of a model of the E. coli stress response [SPBOl] in Chapter 5 was the final validation, 
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Predator-Prey Results from NASTY Simulation 

300 r------------------------------

I ....... PredatorNljmbElrs -Prey_ Numbers i 

Figure 4.3: Results from the Petri net model of the predator prey system shown in Figure 
4.2. Time is defined in arbitrary units. 

giving great confidence in the tool. 

As discussed previously, performing multiple simulations can require a prohibitively 

large amount of computation time, with 100 minutes of a lOO reaction system taking up 

to a days computation [EBOI]. However, since each individual simulation is an indepen-

dent job the task is straightforward to parallelise. NASTY exploits this fact and works by 

distributing jobs to a large number of machines to make performing multiple runs compu-

tationally feasible. NASTY can employ two methods of parallelising jobs: 

• By using a number of NASTY simulation engines running as servers; 

• By using the jobs scheduling tool, Condor [TTLOS] 

NASTY can run in two modes, server or client. The client mode is essentially the 

stand alone NASTY GUI. The server mode is a stripped down version, containing the core 

simulation tool and some network "glue" using Java sockets [McLOI) through which Java 
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Comparison of results obtained from the NASTY simulator to the origional resuHs presented by Gibson et al 

~~-------r--------~-------'--------'-------~ ResuHs from NASTY ---+-
Origional results ---)(---

15 20 25 
TIme Is 

Figure 4.4: Results from the NASTY representation of the transcription translation model 
presented in [GB01]. 

objects representing models, simulation parameters and results are passed. The number 

of jobs and their parameters (e.g., simulation time) is created by the NASTY client. Jobs 

are then sent out to NASTY servers on a first in, first out basis. This requires the NASTY 

servers to be started on remote machines and the NASTY client to have of a list of server 

IP addresses. The start-up of clients is achieved through build script that starts NASTY 

servers over a cluster and records the successfully started servers IP addresses. As the 

simulations proceed each NASTY server initially receives a model and a set of simulation 

parameters. The NASTY client maintains a list of the availability of known servers. As 

the batch job progresses the NASTY client sends jobs and parameters to available servers. 

When processing a job a server is marked as busy. Once a job is completed the server is 

deemed available and may have more jobs Sent to it. Each job is simulated utilising the core 
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simulation engine of NASTY, and the results sent back to the central server and collated. 

This method of network distribution is ideally suited to exploratory studies where feedback 

and processing is required as the jobs are being carried out. Indeed, this approach is uti lised 

in the genetic algorithm studies in the next chapter. 

The core simulation engine of NASTY can also be applied via the use the job scheduling 

system condor [TTL05]. Condor aims to support high-throughput computing over a large 

collection of distributed computing resources. For example, at a University there may be 

times when clusters are unused (for example at night or at the weekend). Condor aims 

to utilise this downtime across an organisation and give users access to vast computing 

resources. At the university of Newcastle there is a condor pool of over two thousand 

computers. This resource can be utilised effectively by NASTY. NASTY, packaged as a 

Java jar file, a PNML file of the model and a text file with simulation parameters is first sent 

to condor. Condor then distributes these jobs and calls the functions that allow NASTY to 

carry out the jobs on remote machines. As NASTY is written in pure Java, job submission 

is allowed on Linux, Windows, and Mac machines running condor. While submission 

to condor gives vast computing resources, there is no simple way to allow feedback to a 

core server (as in the previous model). As a result, NASTY simulations via condor are 

ideally suited to batch simulation jobs where the job requirements are known in full before 

submission. Indeed, this technique is utilised in the sensitivity analysis in the next chapter. 
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4.4 Time Series Markup Language 

In order to model stochastic systems, the time series output from the simulations must be 

available for analysis. This analysis can simply be the presentation of a single simulation 

run as a graph, or statistical analysis of a number of multiple runs. 

Currently all simulation tools produce a "one time display" of the results of a simulation 

for specific species specified by the user. However, stochastic simulation of biological 

models is computation ally intensive. For example, it has been estimated that simulating 

a system with 100 reactions for 100 minutes would take 1 day on a personal computer 

[EBOI]. Whilst this is a pessimistic estimate due to ever-increasing processing power, it 

illustrates the problem of simulating a whole cell model with 1015 reactions. 

It would be advantageous for modellers to be able to run their simulations once, and 

have the data in a readily amenable form for analysis in future. This availability may range 

from having the results on a personal computer, through to storing results of a large number 

of multiple simulations on a central server. There are a number of features that a results 

standard should possess: 

• completeness-when investigating stochastic based models, subtle variations may 

lead to interesting conclusions. The format should effectively be "loss-less", Le. 

all data should be maintained; 

• adequate metadata-not only are the results of the data important, but also details of 

how they were obtained. Results should include information on the precise model 

and simulator utilised, along with the author and date. 
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• average results-often, a researcher is interested in the average of a number of si m-

ulation runs, possibly including confidence bars. A results format should allow the 

storage of this data, either alongside complete individual runs or as a average only 

format. 

• computational amenability-the results format should be amenable to computation. 

The implementation of choice for standardisation formats at present is XML (W3C041. 

XML clearly standardises the data format across multiple operating systems and fa-

cilitates implementation with object oriented databases. XML also has a number of 

libraries available to programming languages to facilitate implementation [W3C04); 

• human readability-while XML standards are designed to be machine readable. the 

human eye is still crucial for implementation and analysis, and good XML standards 

should be human readable in a compliant web browser. 

There are a number of common tools available for the visualisation of time series. Most 

prominent are common office spreadsheet applications such as Open-Office or Microsoft 

Excel. These tools are adequate for the representation of time series data with a constant 

time step, for example data in a form such as Table 4.1 

I time/seconds I SpeciesA I SpeciesB I 
10 10 6 
20 11 6 
30 12 6 
40 13 7 
50 14 7 

Table 4.1: Time series data with a discrete, uniform time step 

However, stochastic simulations results do not have uniform time steps, due to the 
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random sampling of the propensity functions. Stochastic systems evolve through the oc-

currence of reactions that happen at non unifonn time intervals. Another important quality 

of these simulations is that the result of a single reaction is sensitive to a change in a small 

number of molecular species in the system. Monitoring every species for every reaction is 

clearly inefficient. A more efficient results fonnat would track the changes in the system, 

noting the number of molecules a place has at a particular reaction time. For example: 

Species A { (10, 1.07232), (11. 2.5342), (12, 7.342) } 

Species B { (6, 3.6548) } 

Here species A is involved in three reactions while species B is only involved in one. 

Therefore, recording the time of each individual reaction and the resulting change in the 

number of molecules is highly efficient, and would offer a loss-less fonn of data storage. 

This putative Time Series standard was implemented in XML, as a proof of concept, in 

collaboration with a project student. The standard is given the name Time Series Markup 

Language (TSML). The features of this XML standard are represented in Figure 4.5 and can 

be summarised as follows. The TSML standard is split into two main elements, Resul ts 

and Metadata. Metadata has a number of components to represent the full infonnation on 

the model, which is crucial, especially when the differences between simulators and models 

and the effect this may have on the results is considered. The sub-elements of Metadata 

are: 

• TItle-the title for the results, preferably a meaningful name for fast look up; 

• Model-sources-a URL of the model utilised for this simulation. It is vital to state 
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Figure 4.5: The TSML schema 

the model used. For example, if a model improves then the results may become 

redundant; 

• Simulation-date-to track the date that the simulation was run; 

• Generator-it is important to know which simulator these results came from. There 

are many stochastic tools available, but only preliminary work on their correctness. 

As a result, the quality of data from these simulators may be low; 

• Description-a field that allows the researcher to specify the aims and objectives of 

their experiments; 

• Author-the author of the study, including name, email and institution. 
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The main results are stored in the Resul ts element. The results element has two op-

tional sub-elements: run and average, which represent and individual run and the average 

of a number of runs respectively. A TSML file may have any number of run objects, and it 

mayor may not have an average element. TSML file may contain have just an average 

element. However, this may not hold enough information for future work on the results. A 

run element contains a number of species elements. These species also contain a number 

of event elements, containing the time of a reaction and the resulting molecular amount 

after that reaction has occurred. An average element also contains a number of species. 

The species contain step elements that have a time unit and an average number unit. 

This represents the average number of the molecular species at a given time point. 

This standard has greatly assisted the work in this thesis on stochastic simulations. A 

tool was also developed by a student (J.Marcelino), sponsored by the Wellcome trust, that 

allowed an interface between compliant TSXML files and the plotting tool gnuplot. This 

tool allows the automatic plotting of a simulation run, via a Java interface. It is hoped that 

TSXML will become the standard for time series data. A technical report is in progress 

describing the fonnat in detail along with the Java interface to the plotting facilities. 

4.5 Summary 

This chapter is concerned with the tools that support the stochastic simulation of Petri net 

based models of biological systems. The thorough theoretical rigour provided by Gille­

spie [Oil77, GiIOl] allows researchers to pursue the stochastic simulation of biochemiCal 

systems. The field of Petri nets, specifically Stochastic Petri nets (SPNs) [MoI82, Mar89) 
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allows an appropriate fonnalism by which these simulations can be carried out. SPN's 

have been utilised in a number of studies into biochemical systems [GP98, TL02, ML97, 

SPBOl]. All these studies have been carried out with the Mobius tool [CCn+Oll. or a pre­

que 1 to this. This chapter demonstrates how the Gibson-Bruck algorithm [GBOI] and SPNs 

can be amalgamated to produced an efficient platform, both efficient and exact, within the 

Petri net framework for the simulation of biochemical systems. A Java tool, NASTY was 

developed to demonstrate this SPN framework. The tool has a number of further advan­

tages over current simulators for the work in this thesis: default use of mass action kinetics. 

complete computational access; networked simulation over multiple CPU's; and the im­

port and export of PNML. The tool has been tested on a number of small models. giving 

confidence in the tools perfonnance. NASTY allows simulations to be carried out over 

multiple CPU's. either by the distribution and allocation of jobs within NASTY. or by the 

packaging and simulation of jobs via condor. The distribution of jobs is highly important 

to the investigation of stochastic networks via the use of multiple simulations. 

Finally, in this chapter a format has been devised for the storage and interchange of the 

results of stochastic simulations. TSML (Time Series Markup Language) was developed in 

an attempt to mitigate against the need to carry out computationally expensive simulations 

every time simulation results were required. TSML allows the storage of individual runs of 

stochastic simulations. This is argued to be important as stochastic effects can show some 

non-genetic, non phylogenetic differences between an individuals of isogenic population 

[MA97]. 

The work in this chapter introduced valuable tool support for the stochastic simulation 
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of biochemical networks. NASTY, with its efficient simulation engine, inbuilt mass action 

kinetics and network distributed simulation capacity, has the potential to be of real benefit 

to the community. NASTY is available as a download on request from the author. TSML is 

under current development and is to be used and further developed in the author's ongoing 

research. 
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Chapter 5 

Parameter Estimation and Sensitivity 
Analysis 

5.1 Introduction 

In the previous chapters stochastic Petri net techniques were discussed and developed as 

a means of modelling and simulating biological networks. This work was motivated by 

the fact that stochastic Petri net simulation techniques have been shown to capture the 

fine grained behaviour and randomness of outcome of biological networks not captured by 

deterministic techniques [MA97, IBG+04]. Furthennore, stochastic simulation methods. 

such as stochastic Petri nets, have been argued to be more suitable to small (single-cell) 

[GBOO, Gil77] biochemical systems, and are at least as suitable as other techniques (Gil761. 

Thus, stochastic simulation techniques are becoming an increasingly important aspect of 

systems biology studies [ARM98, MA97]. 

While stochastic simulations provide a powerful tool for systems biology, current ef­

forts in the stochastic simulation of biological networks are hampered by two main prob-

lems: 
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1. There is a large computational cost to the stochastic simulation of these networks. A 

recent review suggested that an average personal computer would take a whole day to 

simulate 100 minutes of a 100 reaction system [EB01]. This problem is exacerbated 

since multiple repetitions of simulations are usually required. 

2. There is a lack of quantitative data relating to the molecular concentrations and ki­

netic parameters that are essential to the successful simulation of biological networks 

[MS03]. 

The first of these problems was considered in Chapter 4 where a new stochastic sim­

ulation tool NASTY for stochastic Petri nets was developed, allowing the computational 

cost of simulations to be mitigated against via a cluster of computers. In this chapter, the 

problem of incomplete kinetic parameter data for stochastic Petri net models is addressed 

by developing parameter estimation techniques [MK98, MMB03] based on a well known 

optimisation method. genetic algorithms [HoI7S]. To increase the understanding of a mod­

els dynamics in an aim to improve parameter estimation, sensitivity analysis is applied 

[GCPD05]. Knowledge gained from sensitivity analysis should be utilised in order to im­

prove parameter estimation methods. both by giving search priority to the most sensitive 

rates, and focusing on a smaller range of values for others. Both automatic parameterisa­

tion and sensitivity analysis are computationally costly [GB01], a challenge that has limited 

applications of such techniques to stochastic models of biological systems. 
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5.2 Parameter Estimation 

The ideal scenario for a systems biology study is that the model structure is composed, 

the kinetic parameters and initial conditions are well defined, and then the model is dy­

namically simulated [GBOl]. However, this is usually not possible due to the problem of 

unknown kinetic parameters [GP98, GBOl, MK98, MMB03], which is sometimes seen as 

an "insurmountable" problem for quantitative kinetic modelling [MS03]. Until there are 

accurate parameters for all the kinetic reactions in a biological system the reverse of the 

idealised modelling procedure must be carried out, that is using observed data from labora­

tory studies to infer missing parameters [MK98, MMB03, GBOI1. The kinetic parameters, 

once estimated, can hopefully be refined via the iterative systems biology process of labora­

tory studies and quantitative simulations [IWK+041, accurately measuring key parameters 

and honing the model. 

Parameter inference is far from a trivial exercise. Typically. models of biological sys­

tems have many interacting variables and an infinitely large potential parameter set of float­

ing point values, so state by state exploration is prohibitive (MK98). Due to the potentially 

infinite set of possible kinetic parameter values to be explored. parameter estimation must 

intelligently circumvent this problem, utilising other, more advanced techniques (MMB03). 

There are a number of ways of intelligently exploring the state space of a system with many 

missing parameters. For example, Linear programming is commonly utilised to explore 

systems with mUltiple missing parameters [MMB03} which is lacking in these stochastic 

systems. However these techniques cannot be applied to biochemical networks due to their 

requirement of objective function in terms of the adjustable parameters [MK98]. There are 
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also direct search methods such as the Newton method [MMB03], but these techniques are 

local minimiser, and are not suitable for biological systems with many local minima, as the 

global minima may be missed [MK98]. 

A range of parameter estimation methods are suitable for kinetic biochemical models. 

with many having been practically applied [MK98, MMB03]. First, there are a number of 

advanced mathematical methods for inferring the value of missing parameters, and indeed 

these have been investigated in the context of stochastic models of biochemical networks. 

Gibson reversed his simulation algorithm [GBOO], and with knowledge of the systems time 

trajectories a missing parameter was inferred [GibOO]. This method, while potentially im­

portant during the fine tuning of a biological model, is not well suited when there are mul­

tiple missing parameters. Bayesian inference has also been applied to the problem of miss­

ing parameters [OWOS]. Here the authors utilised a Markov Chain Monte Carlo Method to 

statistically infer a small subset of unknown parameters of a small, artificial model of a bio­

chemical system. The artificial model under investigation here was stochastic, however the 

authors utilised a stochastic differential equation approach, suggesting that while diffusion 

approximation is inappropriate for single cell model, it is satisfactory for use in a Bayesian 

inference algorithm of such models [OWOS] . This study found suitable parameters for the 

small system under study, however the technique required very detailed knowledge of the 

trajectory of all the molecules in the system, which is not typically available [EBO 1]. 

A common approach utilised for the search of missing parameters is that of proba. 

bilistic optimisation algorithms [MK98]. These techniques are designed to find a global 

minima over a search space with many local minima, and are ideally suited to the search 
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for missing global parameters [HoI92, KGjV83]. There are numerous probabilistic optimi-

sation algorithms available in the literature, such as simulated annealing [KGjV83], tabu 

searches [ZL02], and genetic algorithms [Ho175]. Probabilistic optimisation algorithms 

have been applied to the investigation of deterministic models of biochemical networks 

[MK98, MMB03], however because of the computational costs involved, they have not 

been applied to stochastic biochemical networks [GBOI]. 

The search for missing parameters in biochemical systems suffer from the curse of di­

mensionality. Here a set of parameters can combine combinatorially to produce and infinite 

search space. With stochastic reaction constants having a floating point precision, and states 

of the reactants being unbounded this problem is compounded. Thus the automatic param­

eterisation of a kinetic model of a biochemical system is thought to be an NP-complete 

problem [MMB03]. Such NP-complete optimisation problems have no known efficient al­

gorithms for finding exact solutions, due to the exponential state-spaces involved (01791. 

Probabilistic optimisation algorithms aim to locate the optima of a function which rep­

resents the requirements of the performance of the final system [KOjV83). This involves 

creating an approximate function that describes the problem and finding a set of parameters 

that maximise (or minimise) this function. In these NP complete problems there may be 

many local minima, however probabilistic optimisation algorithms are concerned with op­

timising a system to find an approximation to the global minima (or maxima). Probabilistic 

optimisation algorithms do not require an explicit function (the behaviour of the system be­

ing completely characterised by a single equation). Instead they require a cost function to 

be evaluated only at certain points in the state space, thus the results of kinetic simulations 
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form a suitable candidate for many probabilistic optimisation algorithms [MMB03]. 

Parameter estimation techniques have proved useful in a range of diverse fields. for ex­

ample in finance [DMOl]. logistics [GJ79] and the creation of putative genetic networks 

[SHSW04] and they have been studied in some detail in the field of kinetic biochemi­

cal models [MK98]. However, these studies are restricted to deterministic systems. For 

example. in a recent review [MK98] a comparison of random search. simulated anneal­

ing. genetic algorithm and evolutionary programing methods suggested that a number of 

different optimisation techniques should be utilised. maximising the possibility of finding 

suitable parameters. A follow up review [MMB03] analysed a large system with thirty-six 

parameters and utilised a number of methods. The review of three optimisation methods 

suggested that an genetic evolution based algorithm performed the most effectively, and 

was the only method able to solve their system [MMB03]. The global optimisation of 

deterministic systems has. to some extent, been well investigated. as exemplified by the 

previously mentioned review papers [MMB03, MK98]. However. there does not appear 

to have been much progress in this area for stochastic techniques, and in fact it has been 

noted as an important area for future work [GBOl]. Probabilistic optimisation a1gori~ 

by their nature, require the optimisation function to be evaluated a large number of times. 

In deterministic systems this requires a full simulation of the model, and indeed this is the 

case for stochastic systems. However stochastic simulations are far more computationaUy 

demanding than deterministic simulations and have thus proved problematic in the past 

[GBOl]. 
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5.3 Developing a Parameter Estimation Algorithm 

The NASTY simulator was utilised to mitigate against the high real-time cost of perform­

ing the necessary stochastic simulations [GibOO] required by a probabilistic optimisation 

algorithm. As described previously, NASTY allows jobs to be sent out over a cluster 

of machines, effectively parallelising the computation. With a number of probabilistic 

search algorithms available, a decision had to be made on the most suitable approach for 

this problem. The usual choices of evolutionary computation [Ho175 I, simulated anneal­

ing [KGjV83] and tabu search [ZL02] were considered. Various probabilistic probabilis­

tic search algorithms have similar performance when applied to deterministic simulations 

[MK98, MMB03]. For the problem of stochastic network parameterisation it was decided 

to utilise a genetic algorithm [Ho175], for two main reasons. First, review papers sug­

gested that evolutionary computation was slightly more suitable for problems like these 

[MMB03], if in fact any technique was preferable [MK98]. Secondly. the computational 

cost could, at present, only be alleviated by using parallel computation (that is separating 

a problem into distinct, self-contained computational units). To harness a large number 

of machines, requires the ability to send out individual, well contained simulation jobs. 

Simulated annealing, for example. carries out a large number of simulations in a sequential 

manner. This would obviously not benefit from the cluster compute facilities available via 

NASTY. Genetic algorithms however, rely on the evaluation of a population of individuals 

[HoI75]. This allows NASTY to send a population of solutions to be simulated in paral­

lel over a cluster, allowing each machine to run an individual. self contained job and thus 

effectively making use of the processing resource. 
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A genetic algorithm, based on the ideas presented in [HoI75] was developed, using 

NASTY as the job scheduler and simulation engine. The genetic algorithm approach is 

based on a simplified interpretation of Darwinian evolution [Ho175]. Here a population of 

individuals is allowed to evolve [Ho175], with fit individuals being more likely to survive 

to the next generation. Over time, this creates a population of highly fit individuals. In the 

genetic algorithm approach, individuals are represented by a single "chromosome" that en­

codes a possible solution to the optimisation problem. Each chromosome is then evaluated 

for correctness against a fitness function which determines how well the solution encoded 

in the chromosome relates to a number of desirable qualities. Thus the fitness function is 

a key component of the genetic algorithm and needs to be carefully constructed [Hol7S]. 

The fitness of the individual relative to the population is equivalent to the likelihood that 

the individual genes progress to the next generation. The idea is to allow a popUlation of 

solutions to evolve using techniques analogous to those found in real organisms, such as 

"crossovers" where the chromosomes mix, "mutations", where there is a random change on 

a gene in the chromosome and "cloning", where an individual proceeds unchanged to the 

next generation [Ho175]. The evolution of fitter individuals is favoured, but not guaranteed. 

The population remains diverse due to crossover and mutation events, which prevent the 

population tending to a local minima. 

In the resulting implementation of the genetic algorithm, each possible solution to a 

network's parameters is represented by a single "chromosome", where each kinetic Panun­

eter is representative of a "gene" [HoI75]. Each chromosome contains one copy of every 

"gene" (reaction rate parameter). The genes are ordered rei ative to the reaction number. 
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These chromosomes are simply modelled as vectors of floating point numbers (genes). The 

fitness of each individual solution (chromosome) is then calculated by the fitness function. 

To calculate the fitness of an individual its parameters are utilised to simulate a realisation 

of the system. The results obtained from the given solution are then compared those ob-

tained from the "gold-standard" parameters. The fitness function uses a combination of 

Pearson's correlation coefficient and Euclidean distance and is listed below. 

l~- (100- result; x 100) 
( 1-0 gold; + r)/2 

n x 100 
(5.1) 

Here there are n time points that are being measured. For each time point; there is both a 

result from the obtained parameters, result;, and a result from the gold standard parameters, 

gold;. The percentage distance from the gold standard is calculated for each time point, 

and summed to give a value between 0-1. Finally the Pearson correlation coefficient r is 

calculated and added. The total is then divided by 2 to give a value between 0-1. This cost 

function forms a central part of the resulting genetic algorithm, which is presented below 

in pseudo code form (Algorithm 5). 

The algorithm starts with the initialisation phase in which an initial population. Po. 

of individuals is created by randomly creating vectors of rates, where each rate. r. is in 

the range 0.0 < r < 1.0. The population is then simulated to allow the fitness of each 

individual to be assessed. This stage is typically intractable for stochastic simulations due 

to the large compute effort [EB01]. To mitigate against the real time simulation costs. the 

NASTY simulation engine, described previously in Chapter 4, is utilised. Each individual 

is simulated a number of times to obtain an average of its components time trajectories. 



Algorithm S The Genetic Algorithm 
1: Initialise Population Po 
2: for g = 0 to MAX do 
3: for Solutions S E Pg do 
4: Simulate s to calculate its fitness 
5: end for 
6: Create new empty population Pg+ 1 
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7: while Size(Pg+d < (Size(Pg) - CLONES) do 
8: Select si and s2 from Pg using fitness values 
9: Crossover si and s2 to produce s3 and s4 

10: Add s3 and s4 to Pg+l 
11: end while 
12: while Size(Pg+d < Size(Pg) do 
13: Select s from Pg using fitness values 
14: Insert s into Pg+l 
15: end while 
16: for Solutions s E Pg+ 1 do 
17: If Random 0 < MUTES then 
18: Mutate s within Pg+l 
19: end if 
20: end for 
21: end for 

This is done efficiently by NASTY by fanning out the simulation tasks to the server POOl. 

The resulting average time trajectory is then compared to a gold standard to obtain a fitness 

score for the individual. The fitness of the whole population is then calculated by sUmming 

the individual fitness scores. 

The next step is to begin the selection process for the next population. In our approach 

a random roulette wheel based technique [00189] is used to probabilistically select individ_ 

uals which are then subjected to one of three fates [00189]: crossover; cloning; and cullin8. 

During crossover two individuals are selected and these then "breed" to produce two new 

children by randomly selecting genes from the two parents (see Figure 5.1.a). These chil-

dren then pass into the new population. Individuals may also be selected to progress UD.-

changed to the next population and we refer to this as cloning (see Figure 5.1.b). Any 
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individual not selected for cloning or crossover has effectively been culled and will not ap-

pear in the new population. The number of individuals cloned is governed by the constant 

CLONES in the algorithm above (10% in the implementation used). Any individual that 

is not cloned is then subject to a crossover event. Note that using this approach the fittest 

individual may not survive and conversely, the least fit may. This is an important point 

since it helps prevent the population getting stuck in a local minima. 

Once the make up of the next generation is decided the mutation phase begins. Here 

individuals are selected randomly to be subjected to a single random gene mutation, as 

shown in Figure 5.l.c. This equates to a single parameter taking on a new random value 

between 0 and 1. The number of mutations applied is controlled by the threshold constant 

MUTES (5% in this implementation) which sets the probability of performing a mutation. 

These mutations introduce new genes into the popUlation, giving the potential for more 

varied solutions to be considered. After the mutation phase is completed a new population 

emerges. The whole process above is then repeatedly applied until a pre-defined number 

MAX (50 in this implementation) of populations have been generated. 

a) Crossover b) Clone 

c) Mutation 

Children 

Figure 5.1: Possible fates of solutions during the evolution process. a) Crossover, two 
parents producing two children. b) Cloning, an individual is passed directly to the next 
generation. c) Mutation, a single gene (kinetic rate) is changed. 
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5.4 Case Study: The E. coli General Stress Response 

In order to examine the effectiveness of our approach, a well documented stochastic model 

of the E. coli 0 32 stress response pathway was selected. This model has been published in 

detail previously by Srivastava et al. [SPBOl] providing the basis for a useful case study. 

The 0 32 stress response system of E. coli allows the organism to respond to situations 

that may jeopardise the organism's survival. The response to stress generally involves the 

coordinated regulation of genes whose products have functions such as protecting essential 

cellular machinery from damaging environmental factors, facilitating the use of alternate 

energy sources and inducing the organism to move away from the source of the stress. 

The coordination of this response is centred around a transcription factor, in this case 032. 

The idea is that increased levels of 032 are able to switch on around 30 genes that encode 

the production of other proteins that alleviate stress, termed 0 32 induced proteins. Sets 

of genes that are co-regulated in this fashion are termed regulons. Free 032 protein can 

combine with RNA polymerase (to form Eo32) to induce the 0 32 regulon. The level of 

032 in the cell is modulated in response to an input to the pathway which senses stressful 

conditions and induces the production of 032 from its parent gene (rpoB). The constant 

accumulation of cJ32 is prevented by a protein degradation pathway which is an important 

regulatory mechanism in this pathway. In E. coli this degradation of 0 32 occurs via a 

protein produced from the fisH gene. However, in order to be degraded rapidly 032 must 

be complexed with the protein products of other genes, which are themselves members of 

the 032 regulon. In this study this complex is refereed to as the J-Comp-032 complex. 
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T7 

Figure 5.2: The Petri net representation of the 0 32 stress response pathway of E. coli. 
from Srivastava et al. [SPBOl]. Initial amounts of molecules were: sig32. groEL. ftsH 
and jcomp 1; Sig-32 and J-comp 10; Sig-32-mRNA 15; E-Sig-32 25; Sig32-JComp 200; 
GroEL 270; FtsH 300. The kinetic parameters for the model are listed in [SPBOI}. 

5.4.1 Petri Net Based Modelling of the 0 32 Stress Response Pathway 

The Petri net model of the above regulatory network used to evaluate the genetic algo-

rithms approach is depicted in Figure 5.2, with the corresponding table of transition names 

in Table 5.1. This is based on the model presented in [SPBOl). subject to the alterations 

described later in this section. Typically when modelling biological systems using SPN·s. 

places represent a particular molecular species. the number of tokens on each place repre-

sent the amount of that molecular species present and transitions represent chemical and 

biological reactions [SKSW04a, SPBOl]. The external input to the model is provided by a 
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Reaction name Transition # "gold standard" value 
ojJ, transcription 1 1.4E-5 
ojJ, mRNA decay 2 1.4E-6 

03Z translation 3 0.0070 
Holoenzyme association 4 0.7 

Holoenzyme disassociation 5 0.13 
GroEL synthesis 6 0.00472423275181 

GroEL degradation 7 1.8E-8 
FtsH synthesis 8 0.00366148794999 

FtsH degradation 9 7.4E-l1 
03Z degradation 10 7.4E-11 

oj.l-J -disassociation 11 4.4E-4 
oj.l-J-association rate 12 2.7149808609E-4 

J -disassociation 13 6.4E-1O 
J-production 14 0.00366148794999 

Table 5.1: A listing of the names of the reaction names and the transitions they relate to 
in Figure 5.2. The "gold-standard" values are the parameters utilised to produce results 
against which parameter estimation is evaluated. 

mechanism that detects stressful conditions, although for clarity, the details of the complex 

signal transduction systems that act as a sensor mechanism for stress have been abstracted. 

Essentially, detection of a stressful condition is assumed to alter the rate of the transition 

T3 increasing the production of the 0 32 protein (labelled Sig-32 in Figure 5.2) through the 

translation and transcription of the 0 32 gene (labelled sig-32 in Figure 5.2). The model 

includes transitions representing the interaction of 0 32 with RNA polymerase (T4 and TS), 

induction of the protein degrading enzyme ftsH (T8), and production of the J-complex 

(T14) and association of the J-complex with 0 32 (TI2). In our model J-Comp-0 32 protein 

is degraded via transition TIO. The protein GroEL is a known member of the 0 32 regulon 

which is not involved in the direct regulation of 032• This has been included in the model 

since the level of GroEL can be used to provide an accurate indication of the induction of 

the 0 32 stress response regulon, distinct from the regUlation of the regulon. 



127 

This model of the regulation of the cr32 regulon has been employed since it is a realistic 

model that has been shown to correctly replicate the behaviour of the biological system 

[SPBOl], as determined by laboratory based studies. It is also of a sufficient size and com­

plexity to make a good case study to validate our genetic algorithm. However, in our hands 

some modifications to the model were required in order to supplement the information 

given in [SPBOl]. The initial concentrations of entities in the model were not explicitly 

listed, and thus these were estimated from indications given in the paper. In addition. we 

assume that the DNA and mRNA molecules that encode cr32 are outputs of the transcrip­

tion, T 1 and translation, T3 reactions respectively. With these modifications the behaviour 

of the model as described by Srivastava [SPBOl] could be recreated. 

Three particular experiments were selected from those described in [SPBOl] to illus­

trate our approach. These three experiments involved altering the translation rate T3. Under 

no stress T3 = 0.007, under anti-sense mediated ethanol stress T3 = 0.02 and finally under 

ethanol stress T3 = 0.15. Both cr32 and GroEL were monitored under these conditions. The 

amount of cr32 was measured to provide an indication of level of the stress inherent in the 

pathway. GroEL is a product of the cr32 pathway, but is not directly involved in cr32 reg­

ulation hence the level of GroEL gives an indication of whether the cr32 regulon has been 

induced. 

Initially a zero stress situation was simulated in the NASTY tool. The model was sim­

ulated 50 times, and the average value was used to compare the fold increase obtained 

under stress conditions. The results from our simulation under these conditions appear to 

match well with the results from [SPBOl] (data not shown). Next, the model was simulated 
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with the translation rate T3 adjusted to the levels for anti-sense mediated stress and ethanol 

stress situations. These results were compared with the results in Srivastava [SPBOl], and 

are shown in Figure 5.3. The results obtained from NASTY for our initially complete 

stochastic Petri net model are in line with those for the original Srivastava model. Dis­

parities apparent are assumed to be due to the lack of clear initial amounts of molecules 

detailed in [SPB01]. However, these disparities do not impact on our subsequent studies. 

since the simulation results obtained from NASTY using our interpretation of the model 

in [SPB01], are taken forward as the gold standard from which the success of the genetic 

algorithm is evaluated. The reaction rates representing the gold-standard parameter values 

are listed in Table 5.1. 

5.4.2 Performance With One Time Trajectory 

Initially the algorithm was investigated by utilising the input of the time trajectory of one 

protein, 0 32 . Only one time trajectory was utilised as typically data on only a handful of 

proteins is available from laboratory studies. Investigations were carried out to determine 

the performance of the genetic algorithm under three different stress conditions using the 

gold standard time trajectories obtained from the NASTY tool. Each run of the algorithm 

consisted of a population of 2000 individuals over 50 generations of the population. Each 

individual of each generation was simulated 10 times to obtain an average. This procedure 

was carried out on a 25-node cluster. with times for each generation taking from approx­

imately 1 to 30 minutes. Initially, experiments were carried out using the time trajectory 

of a single protein 0
32

, from the "gold-standard" to evaluate the fitness of solutions in the 
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Figure 5.4: A comparison of selected results obtained from the genetic algorithm. using a 
single protein's time trajectories (032) to evaluate fitness. compared against the gold stan­
dard time trajectories (pearson correlation p values included). 
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genetic algorithm for each of the three different stress situations. The results for these 

experiments are shown in Figure 5.4. The obtained parameter values are listed in Table 

5.2. When compared to the (],32 gold standards, results obtained from the genetic algorithm 

displayed a highly significant similarity. To determine how well the predicted parameters 

matched the behaviour of the system more globally, the solutions obtained from the genetic 

algorithm were compared to the "gold-standard" GroEL time trajectories. These results are 

shown in Figure 5.5. Results from these comparisons displayed a poor match between 

the genetic algorithm's solutions and the "gold-standards". This was an interesting and 

surprising result as the genetic algorithm had found solutions with extremely high fitness. 

almost maximal, for (]'32, whilst being extremely inaccurate in predicting the behaviour 

of GroEL. The parameters values obtained from the parameter estimation bore very little 

resemblance to the gold standard parameters. Both these observations indicated that the 

fitness function may need refinement. 

5.4.3 Performance With Two Time Trajectories 

In an attempt to resolve the described situation above, the genetic algorithm was pro­

grammed to utilise the "gold-standard" time trajectories for both 032 and GroEL. The gold 

standard parameter results for the three stress conditions were again used to evaluate the 

performance of the cost function for the genetic algorithm. The cost function was cal­

culated as in the previous experiment except that scores between 0-1 were calculated for 

each protein's time trajectory, then added to give a score between 0-2. This experiment 

was designed to see if the genetic algorithm could be improved by evaluation against the 
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Singular 
Transition # No Stress Anti-sense stress Full stress 

1 0.02816442236234795 0.6624223051243818 0.6567203171385764 
2 0.9892807234664744 0.79024504142124 0.9873173179265117 
3 0.1516401901192853 0.1288056454866423 0.41224234571029283 
4 0.1911945627920859 0.0486352293781453 0.006257288087781698 
5 0.09802299129054048 0.4145813268467678 0.28063691291137915 
6 0.7347793164006664 0.6106724058738197 0.43633186663800094 
7 0.43971020864520927 0.8241361178127407 0.43411367629326003 
8 0.2677126808580925 0.2401881344060749 0.7717283510745174 
9 0.31316273018555285 0.7107783097321267 0.9838060981759529 
10 0.0021503824373634 0.6510113649057571 0.3237128316843618 
11 0.851299854069143 0.5139932604354988 0.8160934955680405 
12 0.9416287663822186 0.1148711835334861 0.14277818446264234 
13 0.8187942395493835 0.738709527632975 0.8768193119448565 
14 0.39345450313963803 0.5593675038370377 0.6147938419035137 

Table 5.2: The parameter values obtained by the genetic algorithm when evaluated against 
the 0 32 gold standard results. The results are listed for all three different stress conditions: 
no stress; anti sense mediated stress and full stress 

Singular 
Transition # No Stress Anti-sense stress Full stress 

1 0.592939107894362 0.14148102364021287 0.7979292752631802 
2 0.47035445097328354 0.7471702229414248 7.5151261595452£_5 
3 0.9913308115176771 0.8009914514574279 0.5474917029181473 
4 0.924517749586191 0.12313519448723453 0.09521805298433772 
5 0.4525838205268832 0.2703442518479199 0.39532327845469295 
6 0.13267041300240534 0.4527362186430416 0.2591654996521209 
7 9.27335474708oo81E-4 4.0376999284197834E-4 0.9401478783147238 
8 0.4167693673094178 0.014119743661677675 0.7968081957347457 

I 

9 0.8969293435687336 0.934007431211675 0.014055409452780023 
10 0.13992699766334615 0.21944862306924395 0.03287876459960 182 
11 0.47908113015304343 0.5435117124294576 0.6425939057478041 
12 0.031027078558680154 0.3466938208494321 0.7787245777904724 
13 0.33487754122334934 0.443519980686628 0.5620999519189925 
14 0.3455645162146678 0.6869223882493619 0.375440856331579 

Table 5.3: The parameter values obtained by the genetic algorithm when evaluated against 
the 032 and GroEL gold standard results. The results are listed for all three different stress 
conditions: no stress; anti sense mediated stress and full stress 
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time trajectories of two proteins. While time trajectories for every species in the model are 

highly unlikely to be available from the lab, detailed information for two or three proteins 

can be more reasonably expected. The estimated parameters obtained by the genetic algo­

rithm were again used to simulate the model, with the results shown in Figure 5.6. The full 

listing of results can be seen in Table 5.3. The closeness of fit between time trajectories 

from the estimated individuals with those of the "gold-standard" for 0 32 were very high, 

both qualitatively and quantitatively, in all three stress situations. The same was true for 

the GroEL results for both no stress and anti-sense mediated stress. The exception to these 

extremely positive results was for GroEL under ethanol stress. Under these conditions the 

genetic algorithm estimated a suitable solution with regard to 0 32 in terms of both quan­

titative and qualitative behaviour. However the solution with regard to GroEL matched 

qualitatively but was not quantitatively accurate. This indicates that the algorithm is still 

unable to completely determine the necessary parameters. Techniques for reducing the 

search space, in order to improve the performance of the genetic algorithm, are required. 

Again it is noted that the parameters obtained from the genetic algorithm bore little resem­

blance to the gold standard parameters. The implications of this are discussed in Section 

5.6. 

5.5 Sensitivity Analysis 

In the previous section an attempt to estimate kinetic parameters of a model of the E. coli 

general stress response provided some promising initial results. While the algorithm was 

successful in most cases, it failed to estimate parameters for a model that reproduced the 
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behaviour of GroEL under ethanol stress, as described by the gold standard. This failure 

may be attributed, in part, to the large search space resulting from our worst case scenario 

approach which assumes no existing knowledge about parameters. Also it was assumed that 

all parameters affected the system equally. Intuitively this is most likely not the case. Thus 

it appears that further information on parameters, such as parameter bounds, is required to 

improve the parameter estimation process. 

Sensitivity analysis is a simple but powerful technique that is able to give insight into 

a model by establishing the contribution of an individual kinetic parameter to the emer­

gent behaviour of a complex system [GCPD05, CKW03, IBG+04]. Sensitivity analysis 

is carried out by varying individual parameter values in a model and observing the result­

ing behaviour. Small variations to a highly sensitive parameter can drastically change a 

system's performance and conversely, variations in parameters of low sensitivity generally 

have little affect. In systems biology, sensitivity analysis has found a number of important 

applications, see for example [FHC+04, ZGSD03, SGD04]. 

Classically, sensitivity analysis is applied to a complete model, where a full set of ki­

netic parameters is assumed to be known. However, in practise, especially early in model 

development, a fully parameterised model may not always be available. In this section 

we investigate the use of sensitivity analysis for providing information that can narrow the 

search space for parameter estimation, concentrating heuristic efforts on the more sensitive 

parameters and/or constraining parameter values. In particular, the ability of sensitivity 

analysis to fine tune parameter estimation was evaluated with respect to the following two 

important questions: 
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• Which parameters are the most appropriate to focus on? 

• What is the range over which the parameter is sensitive to change? 

The attempt to parameterise the E. coli stress response network. described in Section 

5.4. can be viewed as a worst case modelling scenario. Typically there may be some knowl-

edge of parameter values from lab based experiments [0P98. SPBO 1] which. for example. 

allows a bound to be imposed on some rates, to reduce the algorithm's search space. Hav-

ing a bound on a parameter will aid an in-depth sensitivity analysis. allowing the search 

space to be further reduced. by judging the sensitive areas within pre-placed bounds and al-

lowing a probabilistic optimisation algorithm to concentrating on an even smaller range of 

values. Thus sensitivity analysis. in combination with parameter bounding. can be utilised 

in order to direct a probabilistic optimisation algorithm. greatly reducing the search space 

beyond the initial bounds acquired from laboratory or literature based knowledge. 

Sensitivity analysis has previously been applied to continuous deterministic models of 

biochemical networks. For example. it has been applied to the analysis of the control 

of oscillatory dynamic cellular processes [OCN+02] and also to investigate the YSNFa.-

Mediated NF-KB signal transduction pathway [CKW03, IBO+04]. 

The technique can be applied to nonlinear systems, including signal transduction net-

works, by the introduction of a sensitivity function [lBO+04, GCPD051. One commonly 

used sensitivity function has the following general form [lBO+04]: 

s _ 5M/M 
p- 5P/P (5.2) 
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where P represents the parameter under investigation and M is the overall response of the 

system [lBG+04]. It describes the change in M due to the incremental change to the pa­

rameter P [CKW03, IBG+04]. This approach does not directly relate to discrete stochastic 

models, since there is no linear equation describing the overall response of the system that 

is equivalent to M. Hence approximation methods have to be utilised. The extent of the 

application of sensitivity analysis to stochastic networks has also been diminished by the 

computational costs involved [GB01]. Some early work relating to general sensitivity anal­

ysis of stochastic systems includes [FHC+04, CS81, DR84]. More recently, Gunawan and 

co-workers [GCPD05] have investigated techniques for the analysis of discrete stochastic 

systems described by chemical master equations. This work has significantly influenCed 

the approach developed here. 

5.5.1 Strategy and Implementation 

In order to carry out sensitivity analysis each rate is individually, systematically altered 

through a range of values. 

There are three main factors that must be taken into consideration: 

• Initial values for parameters not under investigation; 

• Range and interval of variation for the parameter under investigation; 

• How to deal with the compute resources required. 

This investigation sought to deduce the usefulness of sensitivity analysis in the context 

of parameter estimation for a partially described model. As a result there are two distinct 
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application of sensitivity analysis carried out here: those where all network parameters are 

known and those where parameters are know within a certain bound. The idea is to utilise 

the results from the fonner as a gauge of the effectiveness and reliability of the latter results. 

In order to facilitate the investigation of a partially described network it was decided 

that bounds should be placed upon the parameters. The bounds placed upon parameter 

values take random values in the ranges 102 * rate to rate/102. This corresponds to having 

a "reasonable" idea of the rate. Even in the unknown model, it is key that some value be 

given to each parameter. Not doing so would require a combinatorial exploration of the 

state space, this would present an enormous computational challenge. In the test case the 

rates were exactly as they are in the fully described model. 

For both fully and partially described models, each rate is investigated in turn. Each 

rate under investigation is systematically altered through a logarithmic range from 10- 14 

through to 1.0, with the increment being the current state of the rate multiplied by 1.1. 

This range fits well with the range given in the original model [SPBOl]. For each rate in 

the sensitivity analysis the network was simulated 10 times with the average time courses 

for GroEL and 0 32 being reported and evaluated against the gold-standard utilised in the 

genetic algorithm. This gives a clear metric of the system's behaviour for each parameter 

iteration. The metric is then directly utilised in the sensitivity function described by Gu-

nawan et al. [GCPD05], namely the finite difference function that directly calculates the 

change in score over a parameter range. 

Of _ f(x, Pi + Api) - f(x, Pi - Api} 
BPi - 2APi (5.3) 
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This approach clearly entails a large computational effort and while NASTY's job 

scheduler can address this to some extent, this detailed analysis would still have taken 

too long to perfonn. An important point to note is that the simulation jobs required here 

are, in contrast to the parameter estimation jobs used in the genetic algorithm, known well 

before the simulation takes place. This allows us to utilise the power of Grid computing 

in the fonn of condor [TTL05] to schedule the jobs. Condor is a specialised workload 

management system for compute-intensive jobs, allowing high throughput computing via 

the utilisation of an organisations existing compute facilities. Condor seeks to maximise 

the utilisation of free clock cycles of unused machines. Condor allows the submission and 

management of contained compute jobs. The NASTY simulation engine and appropriate 

configuration files were packaged and submitted to the Newcastle University condor pool 

which contains approximately 1600 nodes. As NASTY was implemented in pure Java. it 

was possible to utilise Linux, Windows and Mac nodes in the pool. Each stress condition 

was analysed, with the parameter of each of the 14 transitions in the model being system­

atically altered. The jobs were submitted to condor, with the jobs taking between thiny 

minutes to three days to complete. 

5.5.2 Results 

As detailed in Section 5.5.1, two distinct experimental studies were perfonned: 

1) The application of sensitivity analysis to the E. coli model where the complete gold 

standard parameter set was employed (referred to as the complete model). 

2) The application of sensitivity analysis to an E. coli model, incorporating random 
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"fuzzy" parameter rates lying between controlled bounds (referred to as the approximate 

model). 

In each study, sensitivity analysis was carried out, systematically varying each rate in 

turn, and determining the effect on the system by monitoring the production of 0 32 and 

GroEL. Each sensitivity experiment was repeated under three stress conditions: no stress; 

anti-sense mediated stress; and ethanol stress. The aim of this study was to investigate the 

usefulness of sensitivity analysis in the parameterisation of a model with an imcomplete 

parameter set, here represented by the approximate model. The study involving the use of 

a complete model was carried out in order to provide a basis for evaluating the information 

gained from performing sensitivity analysis on the approximate model. 

In this section, a subset of exemplar results are presented and discussed. To aid discus­

sion a table of the reaction names and the transition number they relate to is given in Table 

5.1. Again, these transitions all related to the model of the E. coli stress response given in 

Figure 5.2. The full set of results are presented in the appendix. 

5.5.2.1 Evaluation of the Complete Model 

To provide a benchmark as to how sensitivity analysis can given an insight into a model with 

fuzzy parameters, sensitivity analysis was carried out on the complete model. To obtain a 

quantifiable value of the sensitivity of the systems dynamics in relation to each parameter 

in the complete system, a sensitivity coefficient was evaluated for each transition. This 

coefficient was calculated using the methods from Gunawan el al [GCPD05]. and described 

previously. Sensitivity coefficients for each parameter are presented in Figure 5.7. 

The results in Figure 5.7 demonstrate that the model is highly sensitive to changes in the 
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rate of holoenzyme association (transition 4). The effect of varying this rate can be seen 

in detail by reference to the plots in Figure 5.8 which show the change in the combined 

score (the cost function utilised in the genetic algorithm) of GroEL and Sig32 (giving a 

score between 0 and 2) against the rate of translation on a logarithmic scale. Other rate 

parameters in the model were extremely insensitive when compared to rate parameter 4. 

Detailed plots for each rate parameter are found in the appendix. 

5.5.2.2 Evaluation of the Approximate Model 

To determine if sensitivity analysis can aid parameter estimation it is necessary to evaluate 

the performance with incomplete or "fuzzy" data. Again, to obtain a quantifiable value of 

the sensitivity of the systems dynamics in relation to each parameter in the approximate 

system, a sensitivity coefficient was evaluated for each transition using the methods from 

Gunawan el al [GCPD05], and described previously. The results for the approximate model 

are shown in Figure 5.9. The results presented here varied over a range of values. Some 

particularly sensitive transitions were observed: 

• The high sensitivity of a32-J-disassociation (transition 11) under anti-sense condi-

tions; 

• Very high sensitivity of J-disassociation (transition 13) and high sensitivity of holoen­

zyme disassociation (transition 5) under full stress conditions; 

• Very high sensitivity of a 32-J-disassociation (transition 11) and holoenzyme disasso­

ciation (transition 5) in no stress conditions. 
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In the complete model it was shown that the system was particularly sensitive to the 

holoenzyme association rate (reaction 4) and insensitive to other parameters. However, 

Figure 5.9 suggests that this is not the case for the approximate model. 

To investigate this further, we examined the holoenzyme association rate in detail by 

reference to graphs, presented in Figure 5.10, which show the change in score derived from 

the fitness function for both 0 32 and GroEL (calculated in the same manner as in the genetic 

algorithm presented in Section 5.3) plotted against changes in the 032 holoenzyme associa­

tion rate (transition 4) on a logarithmic scale. While this parameter appears to be sensitive, 

it is being masked by other more sensitive parameters. This would make it difficult to 

correctly direct a parameter estimation algorithm. 

The overall rationale behind this section of work was to investigate the value of sensi­

tivity analysis as a technique for enhancing parameter estimation algorithms, for partially 

described networks. It is clear from this preliminary study that using sensitivity analysis as 

a guide for parameter estimation is of limited value since inaccurate rates can lead to very 

different behaviours for partially parameterised models when compared to the behaviour of 

the complete system. In this study, the parameters for the rates in the approximate model 

were randomly assigned within fixed bounds. In future studies it would be interesting to 

investigate how narrowing these bounds impacts on the usefulness of sensitivity analysis 

for the purposes of parameter estimation. 
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5.6 Discussion 

Stochastic simulations are becoming an increasingly important tool in systems biology. 

However, the development of stochastic models is hampered by the lack of quantitative 

data relating to the kinetic parameters which are essential for constructing accurate models 

[SPBOl, GP98]. In this chapter the application of parameter estimation techniques to this 

problem in the context of stochastic Petri nets has been considered. In particular, a parame­

ter estimation algorithm based on a genetic algorithm has been developed and evaluated by 

a small case study of stress response system of E. coli. The genetic algorithm developed for 

parameter estimation utilised a simplified view of Darwinian evolution, where a number of 

solutions are "evolved", based on fitness functions, to a final popUlation, containing indi­

viduals with high fitness scores. This procedure relies on the evaluation of a large number 

of individuals fitness which, in the scope of stochastic simulations, requires the simulation 

and evaluation of the individual parameter sets in the population. 

The NASTY tool presented in Chapter 4 proved to be essential in the implementation 

of this parameter estimation algorithm. The tool is able to distribute simulation jobs Over 

a cluster of Pes, alleviating the computational cost of simulations [EBOl]. The inher­

ent parallelism of the genetic algorithm approach is ideally suited to NASTY's distributed 

processing, making it more suitable than other more linear heuristics such as simulated 

annealing [KOjV83]. Previously, the computational cost of this approach has limited its 

application to parameter estimation [OB01] and thus NASTY was a crucial resource for 

ensuring the feasibility of the approach. More work is needed to address the problem of 

the high computational cost associated with stochastic simulations. For example, the use 
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of inexact simulation approaches [GilOl] appear promising ways of reducing simulation 

times drastically while retaining value for the use in parameter estimation [GWOS). 

The genetic algorithm based parameter estimation technique was applied to a case study 

in which the kinetic rates were derived for a stochastic Petri net model of the stress re­

sponse pathway in the bacterium E. coli [SPB01]. The initial results from the case study 

were promising; using a single protein as the gold standard time trajectory resulted in a 

parameterised model that correctly replicated the known behaviour of the level of 0 32 . 

However, the parameter estimation was less effective for GroEL and results for this protein 

proved to be inaccurate. To address this problem the genetic algorithm was extended to use 

the time trajectories for two proteins as the gold-standard for parameterising the network. 

This appeared to improve the performance of the algorithm allowing the derivation of more 

accurate rates for the model's behaviour under zero stress, anti-sense mediated stress and 

ethanol stress. These results raise some important implications for the choice of training 

data for the parameter estimation algorithm. The parameter values obtained from the ge­

netic algorithm were varied and bore little resemblance to the gold standard data. However 

the obtained rates were able to reasonably recreate the performance of the gold standard 

values. This suggests that there are indeed "too many right answers" when considering 

a model of this type [Kas03]. This has important implication for both model providence 

and model combination. Combining two smaller biological models into a larger model 

is unlikely to be successful if "incorrect" parameters are utilised. The models may behave 

correctly with "incorrect" parameters in isolation, however it will cause problems in combi­

nation with other models. To prevent this problem and further aid model parametrisation it 
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is important to know the evidence for parameter values. When creating a biological model 

it is important that any rates obtained from accurate, intra cellular laboratory experiments, 

are labelled as such. These parameters should then be held constant through parameter 

estimation procedures. Holding a small number of parameters is likely to reduce the search 

space and help direct the genetic algorithm to the "correct" parameters. Hence, the spread 

of obtained parameters and the inability to fully recreate all behaviours of the system sug­

gested other techniques were required to better understand the system and guide parameter 

estimation techniques. 

While the development of the parameter estimation algorithm was promising. it high­

lighted the need for complementary approaches to this difficult problem. As a first step, 

the possibility of using sensitivity analysis [MMB03] to aid in parameter estimation was 

investigated. The idea was to apply sensitivity analysis to an approximate model and use 

the insights gained from this to help guide and fine tune the parameter estimation process. 

This approach again highlighted the inherent computational cost of performing large num­

bers of stochastic simulations. This was addressed by using a combination of the NASTY 

simulator and the Condor distributed job scheduling system [TIL05] (allowing access to a 

resource of close to 2000 processors). This work clearly highlights the significant role that 

job scheduling systems such as Condor have within stochastic simulation studies. 

This application of sensitivity analysis to an approximate model as performed here, did 

not appear to provide reliable insights which could be used to guide the parameter estima_ 

tion algorithm. It became clear in our case study that the sensitivity profile of the approxi­

mate model based on inaccurate rates contained considerable noise. This was highlighted 
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by the fact the approximate and the complete model displayed very different results. From 

the complete model it could be seen that the holoenzyme association rate was extremely 

sensitive, while all other rates were not sensitive. Information like this would greatly help 

a probabilist parameter estimation algorithm. However this sensitive rate was not found 

in the analysis of the approximate model. Therefore any indications of how to direct the 

parameter estimation algorithm would have been spurious. From this preliminary study 

it appears that care must be taken when using sensitivity analysis to provide information 

to enhance the parameter estimation process. Sensitivity analysis is however not without 

merit. Knowing the dynamics of a model may help direct future laboratory experiments by 

suggesting parameters which are more sensitive to change. 

Future work is needed in the area of the application of sensitivity analysis to incom­

plete models. Our initial study suggests the approach is useful only when dealing with a 

nearly complete model and that this technique should be applied only in the later stages of 

the parameter estimation process. However, it would beneficial to establish the degree of 

precision required in existing rate parameters in order for sensitivity analysis to be of value 

in the parameter estimation process. 

The above research on applying parameter estimation to stochastic Petri net models of 

biological systems was presented at Practical Applications of Stochastic Modelling 2005 

(PASM'05) and was published in the conferences proceedings [SSW06]. 
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Chapter 6 

A Case Study for the Petri Net 
Framework: The Bacillus subtilis 
Phosphate Stress Response 

6.1 Introduction 

In previous chapters the development of a number of Petri net [Pet62] tools and techniques 

has been described, along with their application to the modelling of small, well studied 

biological systems. These investigations have been designed to provide insight into the 

applicability of Petri nets to systems biology. Safe Petri net representations of small ge-

netic networks, presented as Boolean networks, have been used to model check reachability 

properties, thus validating the models (see Section 3.2). Pff net analysis has been applied 

to metabolic pathways obtained from the KEGG database, demonstrating the utility of Petri 

nets for validating the basic properties of the pathways through invariant analysis (see Sec-

tion 3.3). Stochastic Petri nets have been employed to investigate the detailed dynamic 

behaviour of regulatory systems, with a genetic algorithm employed to automatically pa_ 

rameterise incomplete models. 

In this chapter, the scope and limits of a range of these Petri net based techniques is 
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investigated by applying them to a complex, realistic biological modelling case study. The 

work focuses on developing a model for a novel biological system, namely the phosphate 

stress response pathway [ASHOO] of the soil dwelling bacterium B.subtilis lHeWOI]. The 

phosphate stress response pathway in B. subtilis is one of a number of regulatory systems 

that is crucial for the bacterium's survival, as phosphate is the limiting organic compound 

in the bacterium's natural environment [HuI02]. This chapter investigates the interaction 

between the different response pathways in the Pho regulon. using a previously described 

study [PH02] as a starting point. In the study. Pragai and co-workers observed hyper­

induction of the Phosphate regulon in mutant strains lacking the sigma factor. SigB. and 

conversely, a hyper-induction of the SigB operon in mutants lacking PhoR. The hypothesis 

presented in [PH02], is that sigma factor competition is a key factor leading to hyper­

induction of the aB or Pho regulons in the absence of PhoR or SigB respectively (PH02]. a 

hypothesis which has some support from previous studies [FKN98). 

Many computational models of molecular pathways are solely based on developing 

detailed kinetic models, either stochastic [ARM98], deterministic [lBO+04] or hybrid 

[MDNMOO] in nature. While such studies can provide important insights into the behaviour 

of the systems under investigation, their construction can often prove problematic due to 

incomplete knowledge of their structure and the associated kinetic parameters involved (see 

for example [MS03]). It has been argued that an alternative approach would be to first con­

struct and investigate simpler. qualitative models in order to validate our understanding of 

the system in question [HK04]. This approach is adopted here. The case study begins by 

developing a Boolean based safe Petri net model of the Pho stimulon using the methodol-
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ogy presented in Steggles et a1. [SBSW05] (see Section 3.2). This Boolean approach is 

unable to directly model the over expression of a gene (this breaks the Boolean assump­

tion that a gene is simply expressed or not [SBSW05]), so this limitation is overcome by 

modelling normal expression and over expression of a gene using two different Boolean 

entities. The resulting model was then analysed utilising the Petri net tool PEP [Gra97], al­

lowing our initial understanding of the regulatory structure and behaviour of the phosphate 

regulon to be validated before progressing to a more detailed model. 

On characterisation of the qualitative model, a preliminary, detailed, stochastic Petri net 

model of the system was then developed using NASTY (see Section 4.3). The model was 

constructed using time course data from laboratory studies alongside the insights gained 

from the Petri net based analysis of the Boolean model. The stochastic model was cre­

ated in two parts by developing separate models for the Pho regulon and the sig8 regulon. 

The kinetic parameters used in the models were tuned to allow the model to give qualita­

tively similar results to laboratory data. The resulting model, while clearly not a complete 

or definitive model, still provides a good basis for further research and also a preliminary 

insight into the system's behaviour. The preliminary model was investigated using sensi­

tivity analysis methods. This analysis suggests that the binding rates of sigma factors to 

RNA-polymerase is a key factor in the dynamic behaviour of this model. adding weight to 

the hypothesis [PH02] that sigma factor competition is a significant factor in the cross talk 

between these two regulatory networks. 
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6.2 The Phosphate Regulon and its Interaction with the 

General Stress Response Regulon. 

6.2.1 Phosphate Stress and the Phosphate Stimulon 

B. subtilis is subject to a number of stresses in its natural environment, including nutrient 

deprivation. Phosphate, or more specifically inorganic phosphate (Pi), is a critical limiting 

nutrient for B. subtilis under natural conditions and is probably the limiting nutrient for 

growth in the soil [HuI02]. The organism has evolved complex regulatory systems for 

controlling the expression of proteins designed to alleviate Pi stress. The set of genes which 

have their expression modified due to phosphate stress are referred to as the phosphate 

stimulon [PAO+04]. The proteins encoded in the phosphate stimulon alleviate stress in a 

number of ways, such as increasing phosphate uptake and regulating the production and 

phosphate content of essential cell wall compounds [HuI02]. 

B. subtilis responds to phosphate stress by controlling the expression of the phosphate 

stimulon through three pathways, that usually act in combination [PH02]: 1) the gen­

eral stress response pathway, initiating transcription under the control of the aB sigma 

factor [BVV+97]; 2) the phosphate starvation specific Pho regulon [ASHOO, QKH97, 

PAO+04]; 3) through the induction of PhoP-PhoRlaB-independent phosphate starvation 

genes [PH02]. 
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6.2.2 The Pho Regulon 

The genes of the Pho regulon are regulated by the PhoR-PhoP two component signal trans­

duction system [HuI96]. The PhoP response regulator is phosphorylated by its sensor ki­

nase, PhoR. Once phosphorylated, PhoP increases the expression of the PhoPR operon 

about three fold. Active PhoP also induces or represses other members of the Pho reg­

ulon, of which there are currently 31 recognised members [ASHOO]. The induction and 

repression of genes that are controlled by the Pho regulon is controlled by the binding of 

phosphorylated PhoP to conserved sequences called Pho Box sequences that lie upstream 

of the coding region. These Pho Box sequences are usually in the form of direct repeats of 

TCJf(Alf/C)ACA with a 3-7bp spacer [ELH99]. Genes in the Pho regulon are generally 

under the control of the sigma factor SigA, and in a small number of cases YhaX, YbbH. 

and SigE [PH02]. 

The Pho regulon is also closely interlinked with a the ResD-ResE signal transduction 

system, which is required for the Pho regulon to be fully expressed. In a resD null mutant 

the expression of the Pho phenotype is reduced by 80% [HuI02, BLZ+98]. The positive 

transcriptional regulator AbrB is essential for the remaining 20% of the Pho phenotype. 

since there is no expression of the Pho phenotype in a resDlabrB mutant [Hu102, BLZ+98]. 

If the phosphate stimulon fails to mitigate the phosphate stress, and the organism is exposed 

to increasing concentrations of Pi, then the SpoOA response regulator initiates sporulation. 

terminating the phosphate response by repressing phoPR via resD-resE and abrB [HulO2, 

BLZ+98]. The Pho regulon and its interactions is depicted in Figure 6.1. 
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( Others ... ) (PhOD ) 

Figure 6.1: A graphical representation of the Pho regulon. taken from [BLZ+98 I. X_P 
indicates that a protein X is in a phosphorylated state. 

6.2.3 The SigB Regulon 

The aB general stress response regulon has approximately 200 genes [HuI02). The gen-

eral stress response allows B. subtilis to deal with both environmental and energy stress. 

The system is closely linked with the Pho regulon. and both regulons are part of the Pho 

stimulon [PH02]. Genes encoded by the SigB regulon carry out various functions. inc1ud-

ing protecting DNA. membranes and proteins (PH02]. The activity of the aB regulon is 

controlled by the anti sigma factor RsbW. When the cell is under stress RsbV is dephos-

phorylated, resulting in it attacking the Sib-RsbW complex and releasing aB. 
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6.2.4 PhoP.PhoRlaB.independent Phosphate Starvation 

A small number of genes in the phosphate stimulon are controlled by mechanisms that lie 

outside of the Pho and OB regulons [ASHOO]. These do not form a distinct regulatory group 

and hence were not considered in this study. 

6.2.5 Interaction of the aB and Pho Regulons 

Both the aB general stress response regulon and the Pho regulon form part of the Pho stim­

ulon, as interacting subsystems. The interaction of these two regulons is still the subject 

of much research (see [ANP+04] and [PH02]]). Laboratory studies are have been carried 

out by studying the phenotypes of mutants in which regulon members and their regulatory 

components are knocked out singularly, or in combination. For example, a recent inves­

tigation aimed at uncovering novel members of the Pho stimulon [PH02], unearthed nine 

novel members of the Pho stimulon, yhaX, hobs, ykoL yttP, ywmG, yheK, ykzA, ysnF 

and yvgO. Initially the precise regulon controlling the expression of these genes was un­

known, but the study went on to decipher this further by the use of knockout experiments, 

systematically removing aB and PhoR by constructing and analysing mutants in which the 

respective genes had been deleted. The study demonstrated that yhaX, yhbH, ykoL and yttP 

were under the control of the Pho regulon and that ywmG, yheK, ykzA, ysnF and yvgO 

were under the control of the general stress regulon [PH02]. This and subsequent, similar 

studies confirmed that both the aB general stress response pathway and the Pho regulon 

are induced in response to phosphate starvation and that the regulons interact to modulate 

the level to which each is activated [ASHOO, PH02] by showing that the absence of either 
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aB or PhoR leads to increase in expression of the other regulons. These studies therefore 

provide evidence for a tight coupling of the aB general stress response and the Pho regu­

Ion [PH02], but currently the exact mechanism for the interaction remains unclear. There 

is evidence for competition between different sigma factors for the core RNA polymerase 

enzyme [PH02, FKN98], and data from laboratory studies are consistent with sigma factor 

competition being responsible for affecting the expression of genes in the Pho regulon. It 

is envisaged that under conditions where both the Pho and aB regulons are operational, 

there is a competition for the use of a limited pool of the core polymerase. The deletion 

of one sigma factor by inactivation of its regulon leads to a surplus of the core polymerase 

and a hyper-induction of the remaining regulon. In support of this hypothesis, Pragai and 

co-workers [PH02] describe a two-fold enhancement of the transcription of phoPR in a 

aB mutant and an enhancement of the aA driven phoPR transcription in ell, aF , and aE 

mutants [PH02]. Despite these studies, no direct experimental evidence for sigma factor 

competition has been forthcoming to date, and the possibility of pleitrophic effects caused 

by inactivation of alternate sigma factors cannot be discounted. 

In the following sections, a range of the Petri net based techniques investigated and 

developed in this project, are applied to modelling and analysing the complex interactions 

of the aB general stress response regulon and the Pho regulon. In particular, the evidence 

for sigma factor competition hypothesised in the literature [PH02, FKN98] is investigated, 

and the interaction between these two important pathways is characterised. This case study 

is a challenging undertaking and is intended to give insight into the scope and limits of the 

teChniques so far considered. 
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6.3 Boolean Based Petri Net Analysis of the Pho Stimulon 

In this section a Boolean based Petri net model of the phosphate stress response pathway 

for B. subtilis [PH02] is developed incrementally, utilising the methodology presented in 

Steggles et al. [SBSW05] (see Section 3.2). The aim is to construct and validate sepa­

rately intermediate models for the OB and Pho regulons. These models are then integrated 

by composing them into a third model which captures their key interactions. In this way. 

a complex Boolean based Petri net model of the Pho stimulon can hopefully be correctly 

constructed. The resulting Petri net model is then analysed using model checking tech­

niques [Kho03] allowing the complex interactions between the aB and Pho regulons to be 

investigated. 

6.3.1 ModeUlng the aB Regulon 

One of the mechanisms by which B. subtilis can respond to phosphate stress is via the 

energy stress response which forms part of the general stress response pathway [AGK+Ol]. 

The end product of this energy stress response is aB which transcribes a number of genes 

to mitigate energy stress [HV98]. 

There are two distinct stimuli which elicit the general stress response in B. suhtilis, 

namely environmental or energy stress [PH02]. In the unstressed state, the anti-sigma 

factor RsbW sequesters aB into a transcriptionally inactive complex. During a period of 

stress either RsbU (for environmental stress) or RsbP (for energy stress) phosphatases are 

activated. Both of these are able to dephosphorylate RsbV-P, allowing the product, RsbV. to 

attack the RsbW-oB complex. This results in an anti-anti-sigma factor RsbV-RsbW which 
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is able to free aB to complex with RNA polymerase and initiate transcription at least 130 

general stress response genes [DDB+04]. 

The Boolean techniques described in Section 3.2 are employed here to produce a sim-

pIe qualitative model which captures the signalling pathway based on aB by which envi-

ronmental and energy stress elicit a response from the bacterium. A Boolean network is 

depicted in Figure 6.2 which captures the essential, high level infonnation about the general 

stress response aB pathway. The truth tables relating to this model are presented in Section 

G.l. This Boolean network was assembled by extracting the relevant regulatory entities 

and their associated Boolean truth tables from the literature [AGK+Ol, HV98j. The tools 

developed in [SBSW05] can be applied to this network to derive a safe Petri net model of 

the network, based on asynchronous network semantics, which is amenable to analysis. 

En.rgy 

Str •• 

•• poD •• 

BDv1romaental 
8tr •• 

Figure 6.2: A Boolean network representation of the aB general stress regulon 
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Initial Marking 11 Reachable Marking 

EnvStress EngStress Response EnvStress EngStress OD 

.j .j .j X X .j 

.j X .j X X .j 
X .j .j X X .j 
X X X X X X 

Table 6.1: The reachability results for the Boolean Petri net model of the oB general stress 
response network analysed using PEP. 

The model was validated and analysed using the reach ability techniques provided by 

the PEP tool [Gra97]. The results, shown in Table 6.2, validated that the model behaved as 

expected under environmental and energy stress conditions. In particular, it can be observed 

that the presence of either stress condition results in the production of Rsb V which then 

attacks the RsbW-oB complex. This then releases the Sigma factor OB, which, via RNA 

polymerase, allows the expression of proteins. Once oB is released, the induced proteins 

then act to alleviate the stress condition, producing a stress response. The stress response 

then acts to reduce the cause of the stress, returning the system to a state of no stress. 

Conversely, when there is an absence of a phosphate stress condition OB is not released, 

producing no response. 

6.3.2 Modelling the Pho Regulon 

The next task was to focus on modelling the core of the Pho regulon, depicted in Figure 

6.1 (see [BLZ+98]). A Boolean network model was constructed by examining the existing 

literature [BLZ+98] on the Pho regulon. This indicated that both AbrB and ResD _P en-

hance the level of PhoP _Pt while SpoOA modulates this response by the inhibition of both 

AbrB and ResDY [BLZ+98]. This behaviour was modelled by constructing the appropri-
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ate truth table definitions for the Boolean network which is presented in Figure 6.3. The 

truth tables relating to this model are presented in Section G.2. The techniques presented 

( RedD_P J ( AbrB ) 

~~~ 
Phosphate Stress ---. 

'------' 

( Other Pho Genes) 

Figure 6.3: A Boolean network representation of the Pho regulon. X_P represents the phos­
phorylated state of X 

in [SBSW05] were then applied again to derive a safe Petri net model of the Pho regu-

Ion based on an asynchronous network semantics. This Petri net model was then analysed 

using the linear programming model checker eLP, developed by V. Khomenko IKho03J. 

From the analysis results summarised in Table 6.2, it can be seen that the qualitative Petri 

net model correctly captures the behaviour of the network and in particular, it confinns that 

phosphate stress and either of ResD_P or AbrB must be present to activate PhoP _Po When-

ever PhoP _P is present the analysis confinned that ykoL can also be expressed. This results 

in the production of YkoL and this is taken to be indicative of the activation of the Pho reg-

ulon. The model was further analysed to investigate the effect of SpoOA on PhoP _P. In all 

cases PhoP _P could be inactivated (results not shown), indicating that the model correctly 

captured the inhibitory effect of SpoOA [BLZ+98]. 
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Initial State 11 Reachable State 1 

PhoStress AbrB ResD_P SpoOA PhoP_P YkoL 
X X X X X X 

J X X X X X 
X J X X X X 

J J X X J J 
X X J X X X 

J X J X J J 
X J J X X X 

J J J X J J 
X X X J X X 

J X X J X X 
X J X J X X 

J J X J J J 
X X J J X X 
J X J J J J 
X J J J X X 

J J J J J J 
Table 6.2: Model checking results for the Boolean Petri net model of the Pho regulon. 

6.3.3 Analysing the Interactions Between the aB and Pho Regulons 

In the previous sections, intermediate models of the aB general stress regulon and the Pho 

regulon have been constructed and validated. To allow the complex interactions between 

the aB and Pho regulons to be investigated, these two intermediate models need to be 

correctly combined. To facilitate this a third model was constructed which captured the 

interactions between these two regulons. This integrated model focused on the behaviour of 

novel members of the Pho stimulon [PH02], specifically ykoL, a gene under the regulatory 

control of the Pho regulon and yheK, a gene under the control of the aB general stress 

regulon. Under phosphate stress, these genes are induced normally. However in deletion 

mutants these genes become hyper induced [PH02]. In particular, in aB knockouts, ykoL is 

hyper-induced while in PhoR knockouts, yheK is hyper-induced. A Boolean model based 
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around the regulatory interactions of these genes in the Pho stimulon is presented in Figure 

6.4. The truth tables relating to this model are presented in Section G.3. 

Figure 6.4: A Boolean representation of the conditions resulting in the hyper induction of 
members of the Pho stimulon. Here H_X represents the hyper-induction of X 

Modelling the hyper-induction of a gene requires the use of at least three different states: 

unexpressed, expressed and hyper induced. This proved to be problematic in a Boolean 

model since only two different states for each gene are allowed. To address this problem, 

both Ykol and YheK were given separate Boolean entities to indicate whether they were 

in hyper induced states. Care was then needed when constructing the model to ensure 

that biologically invalid states, such as the simultaneous hyper-induction of both YkoL and 

YkoL, were not reachable. An alternative approach would have been to use a multi-valued 

network model, an idea which is currently being pursued by a number of groups [SRTC05]. 

The resulting Boolean model for YkoL and YheK was used to construct a safe Petri net 

model [SBSW05]. This model was then analysed for coverability properties [Mur89] using 

the CLP model checking tool [Kho03]. The results are summarised in Figure 6.3. These 

results validate the behaviour of the safe Petri net model, namely that nonnal induction of 
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Current State 11 Next State 

SigB PhoP_P YkoL H_YkoL YheK H_YheK 
X X X X X X 
..; X X X X ..; 
X ..; X ..; X X 
..; ..; ..; X ..; X 

Table 6.3: Model checking results for the Boolean Petri net model ofykoL and yheK hyper 
induction 

Ykol and YheK is only possible when both the aB and Pho regulons are present, and that 

the genes may be hyper induced when either regulon is removed [PH02]. 

The above three validated models can now be combined by simply combining their truth 

table definitions. The truth tables relating to the integrated model are presented in Section 

0.4. The resulting composite Boolean network model can be processed, using methods de-

scribed previously [SBSW05] to produce a safe Petri net model of the entire Pho stimulon. 

This Petri net model was then analysed using the CLP model checking tool [Kho03] and 

the analytical results are summarised in Table 6.4. It can be seen that under conditions of 

no stress, no Pho stimulon proteins are induced, as would be expected. When both energy 

and phosphate stress are present, ykoL and yheK are both induced and hyper-induced. This 

result is initially counter intuitive. However it must be remembered that the coverability 

analysis of an asynchronous Petri net model explores all possible reachable states. For 

example, consider the hyper-induction of ykoL which, according to the literature, should 

only occur in a aB knockout mutant. However, in the Petri net model, many states can be 

explored before the induction of aB, thus resulting in the over expression reported in Table 

6.4. Hence a intermediate state can be produced that will be represented in the reachability 

results. 



167 

Current State 11 Next State 

PhoStress engStress YkoL H_YkoL YheK H_YheK SigB PhoP_P 
X X X X X X X X 

vi X X vi X X X vi 
X vi X X X vi vi X 
vi vi vi vi vi vi vi vi 

Table 6.4: Reachability results obtained from the complete Boolean model of the Pho stim­
ulon 

The hyper induction of ykoL and yheK was further investigated by conducting a range 

of in silico mutant experiments in which key genes within the Petri net model were knocked 

out. The idea here was to remove the entity in the truth table for the gene to be knocked out. 

and to then reconstruct the composite Petri net model. a simple automated task (SBSWOS). 

The knocked out gene then loses its functional behaviour and simply remains fixed in the 

state it to which it was initialised. Using this approach, the effect of knocking out OB and 

PhoP _P was investigated. The results of knock-out experiments are presented in Table 6.S 

(OB knock out) and Table 6.6 (PhoP _P knock out). In the case of the OB knockout, the 

results show that it is impossible to induce the expression of YheK in any form, while 

YkoL can only be hyper induced. The results for the Pho knockout show it is not possible 

for YkoL to be induced, while YheK can only be hyper induced. 

The behaviour of the model under these knockout experiments replicates high level 

behaviour seen in laboratory studies [AGK+Ol, HV98] and thus, further validates the com-

plete qualitative Petri net model constructed in this study. The success of the Boolean Petri 

net model in correctly replicating the Pho stimulon's behaviour provides an important level 

of confidence in our understanding of the system. This is extremely important since it 

provides a solid basis for constructing a detailed stochastic based model of Pho stimulon. 
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Current State 11 Next State 

PhoStress engStress YkoL H_YkoL YheK H_YheK SigB PhoP_P 
X X X X X X X X 

J X X J X X X J 
X J X X X X X X 

J J X J X X X J 

Table 6.5: Reachability results obtained from the full Boolean model of the Pho stimulon. 
with a aB knockout 

Current State 11 Next State 

PhoStress engStress YkoL H_YkoL YheK H_YheK SigB PhoP_P 
X X X X X X X X 

J X X X X X X X 
X J X X X J J X 
J J X X X J J X 

Table 6.6: Reachability results obtained from the full Boolean model of the Pho stimulon. 
with a Pho knockout 

6.4 Stochastic Petri Net Analysis 

Building on the experience gained from the successful Boolean based modelling study 

presented in Section 6.3, a quantitative model of the phosphate stimulon was constructed 

and analysed using stochastic Petri net techniques (see Chapters 4 and 5). The purpose of 

the model was to investigate the behaviour of the stress response proteins YheK, and YkoL 

in relation to sigma factor competition for RNA polymerase [PH02]. Such detailed kinetic 

investigations of biological systems are an important aspect of systems biology, but can be 

problematic due to the computational time required for stochastic simulations [BBO!] and 

the lack of accurate kinetic parameter data [GP98]. The problem of real time simulation is 

mitigated here by utilising the NASTY simulator (see Chapter 4). However, the problem 

of missing kinetic data remains a key problem for this study; despite a number of studies 
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ActRsbU RsbV 
ActRsbP 

Rs bP 

Figure 6.5: A stochastic Petri net representation of the Pho stimulon. Transcription of the 
aB operon is omitted for clarity 
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that have focused on the molecular binding of molecules in the aB general stress response 

pathway [DLY02], no directly usable rates were available. Thus, this kinetic study of the 

phosphate stimulon must be considered a preliminary one, in which a high level view of 

the possible interactions of the system is approximated and studied. 

Initially the Pho stimulon's structure was captured by the Petri net model shown in 

Figure 6.5, which was based on insights gained from the the literature [PH02, DLY02] and 

the Boolean modelling study undertaken in Section 6.3. The OB stress response pathway 

was modelled in some detail in the Stochastic Petri net model. However, representing 

the phosphate regulon within the model proved to be problematic due to it being closely 

interlinked with the underlying cellular machinery via cA controlled basal transcription. As 

a result the phosphate regulon was "black boxed" into a single reaction (see Figure 6.5). 

The condition of phosphate stress on the system was induced by adding source transitions. 

PhoP _P and AcCRsbU, to the model. 

In an ideal world detailed kinetic rates would be available to assist the construction of 

an accurate Stochastic Petri net model of the phosphate regulon. Unfortunately, it turns 

out that in practice there are virtually no kinetic data available to assist the modelling pro­

cedure. The aim here therefore is not to create a fully accurate model of the phosphate 

stimulon. but rather a preliminary model that can be utilised to investigate research hy­

potheses and guide future experimental studies. The situation is further compounded by a 

lack of suitable quantitative data with which to train any parameter estimation technique. In 

particular, the results reported in available laboratory studies are presented in optical den­

sity units [PH02], which are extremely difficult to accurately convert to cellular molecular 
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Simulated Expression of Ykol and YheK under no phosphate stress 
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Figure 6.6: The performance of the stochastic model under no stress 

amounts. Despite these practical problems it was still possible to manually adjust and ma-

nipulate kinetic parameters to allow a useful model to be created which could investigate 

the effect of sigma factor binding. The approximated kinetic rates appeared to be sufficient 

for the sensitivity analysis of sigma factor binding, since the model's behaviour qual ita-

tively matched the available laboratory experiments. Simulation results for the resulting 

stochastic Petri net model under no stress and phosphate stress are presented respectively 

in Figures 6.6 and 6.7. 

These results compared favourably with the results presented in the original in vivo 

study [PH02], and appear to support the approximate model developed here. We next con-

sidered analysing the effect of the relative binding rates of RNA polymerase to aA and aB. 

The aim of this analysis was to detennine if sigma factor competition can account for the 

hyper induction of that of members of the Pho regulon in a aB knockout, and members 

of the aB regulon in a PhoR knockout. To investigate this question the kinetic parameters 
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Simulated Expression of YkoL and YheK under phosphate stress 
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Figure 6.7: The performance of the stochastic model under phosphate stress 

I Condition 11 YheK I YkoL I 

SA"'lO 0.3 1.3 
SA/lO 2.3 0.5 
SB"'lO 2.2 0.6 
SB/lO 0.3 1.3 

SA"'lOSBIlO 0.1 1.5 
SA/lOSB"'lO 3.7 0.1 

Table 6.7: Comparison of the effect of RNA polymerase binding rates on the over expres­
sion of members of the Pho and aB regulons, relative to the performance of the base model 

relating to the binding of RNA polymerase to sigma factors cr4 and aB were systemati-

cally adjusted by an order of 10. The results of this analysis are presented in Table 6.7 

which shows the percentage difference of final protein product for YkoL and YheK for 

each adjustment of binding kinetics. 

The results clearly indicate that the final level of protein product for YkoL and YheK 

is highly affected by changes to the kinetic binding rates. If RNA polymerase binds more 

readily with 0"" I then the Pho regulon's expression is greatly increased. If RNA polymerase 
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binds more readily with aB then the members of the aB regulon are over expressed. These 

results support the theory of sigma factor competition developed as the result of recent 

laboratory studies. It has been proposed that strength of the binding of RNA polymerase 

to Sigma-A, and Sigma-B may depend upon the stress conditions the cell is exposed to 

[RAK+03]. An iterative set of laboratory and computational studies appears to be required 

to assist in the confirmation or otherwise of this theory. 

6.5 Conclusion 

This chapter has sought to investigate the scope and limits of the Petri net techniques pre­

sented in this thesis by modelling and analysing a realistic biological example, namely the 

phosphate stimulon in B. subtilis [PH02]. In particular, the study focused on the interactions 

of the aB [HVH05] and Pho regulons [ASHOO], with the aim of investigating the experi­

mental hypothesis that sigma factor competition is a key factor leading to hyper-induction 

of the aB or Pho regulons in the absence of PhoR or aB respectively [PH02]. 

To validate an understanding of the system obtained from the literature a Boolean Petri 

net was constructed using the tools provided in [SBSW05] to model the high level genetic 

regulatory interactions. This Boolean Petri net model was constructed incrementally by 

composing three smaller models, which were individually validated using model checking 

tools [Kho03]. Note that this model construction approach can be seen as providing a useful 

methodology to aid in the development of complex Boolean Petri net models. Since the 

initial analysis of the effect of laboratory knockouts had proven promising, the equivalent 

knockout experiments were carried out in the Boolean Petri net model. This analysis again 
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confinned that the model's behaviour replicated the high level behaviour presented in the 

literature, with the hyper-induction of members of the aB regulon in the absence of PhoR, 

and the hyper-induction of members of the Pho regulon in the absence of OB. 

The construction and validation of the Boolean Petri net model provided an important 

starting point for the creation of a stochastic Petri net model of the system. Given the lack 

of data necessary to complete a definitive model, the stochastic Petri net model presented 

was a preliminary attempt at the kinetic analysis of the Pho stimulon. The model qualita­

tively matched the behaviour present in the literature well enough to be subject to further 

investigation. Of particular interest was the effect of sigma factor competition on the ex­

pression of members of the Pho stimulon. This was investigated by the sensitivity analysis 

of the RNA polymerase binding rates. The results obtained showed that these binding 

rates greatly effected the expression of the genes of the Pho stimulon. If RNA polymerase 

bound more readily to erA, then the Pho regulon was over-expressed; conversely if RNA 

polymerase bound more readily to 0 8 then the aB regulon was over-expressed. These re­

sults matched well with results reported in laboratory studies, and the sensitivity of binding 

rates added weight to the hypothesis that sigma factor competition was the root cause of 

the observed differences in expression. 

This study has demonstrated the applicability of Petri net techniques to modelling and 

analysing a realistic biological study, with Boolean Petri net models validating understand_ 

ing of the biological system and the stochastic model adding weight to an experimental 

hypothesis presented in the literature. 
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Discussion 
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Advanced biochemical techniques have allowed studies on a genomic scale, with the ability 

to track the expression of every gene in a genome over time. The emergence of bioinfor­

matics has allowed scientists to effectively managed this vast data. In combination these 

techniques have allowed the holistic study of organisms and have lead to development of 

the field of systems biology. Systems biology studies ideally include an iterative process 

of lab experiments, data analysis, and modelling of a biological system. A number of 

supporting technologies must be utilised to analyse data and investigate models of these 

systems. 

In this project Petri nets, a mathematical formalism, have been investigated in the con-

text of computational systems biology. Petri nets have a large body of literature. tools and 

algorithms and have successfully modelled complex. concurrent networks in the field of 

computing science [Mur89], manufacturing [ZD90] and hardware design [YK98]. Petri 

net models can be analysed at a number of different levels depending on the available 

knowledge of the system to be modelled. If the interactions between genes are known on 

a simple Boolean interaction basis, then safe Petri nets can be utilised to model the state 

space of these systems. If the structure of a large biochemical network is known then Petri 
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net structural properties can be investigated. validating the model. Finally if the structure of 

a system. along with kinetic reaction rates and initial molecular amounts are known then the 

model can be dynamically simulated. either stochastically or deterministically. This project 

systematically investigated a number of these techniques in relation to their application to 

bacterial biochemical and regulatory networks. 

7.1 Summary 

The volume and variety of data about complex biological systems continues to increase. 

leading to a new era of data rich biology. In silico modelling is a crucial tool for interpreting 

these data and generating new experimentally testable hypotheses. Since the pioneering 

work of Reddy et al. [RLM96], Petri nets have been shown to be a potentially important 

tool for modelling and analysing biological systems. This project has investigated the scope 

and limits of a range of Petri net techniques applied in this area namely widening the scope 

of their application by the development of much needed new Petri net technology. The 

thesis covers a diverse number of sub topics in this area, with particular reference to data 

interchange standards, qualitative models and stochastic techniques. 

One of the advantages of the Petri net framework is the number of tools and techniques 

available to assist their investigation. Indeed, in the course of the work presented in this 

thesis, a number of useful existing tools were employed successfully, such as PEP [Gra97] 

and INA [Sta04]. However, when investigating the application of stochastic Petri nets to 

studies in systems biology it became clear that there was a deficiency in the available tool 

support for the specific needs of this research. In particular the lack of a simulator that 
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matched all the needs of the work of this thesis, was apparent. These requirements are 

summarised below: 

• PNML support; 

• efficient simulation; 

• default use of mass action kinetics; 

• computational amenability; 

• ability to distribute jobs over a cluster. 

To address this shortfall, the NASTY simulator was developed and this proved to be a 

key tool underpinning the research presented in this thesis. NASTY incorporates an effi­

cient simulation engine based on the amalgamation of the Gibson-Bruck algorithm lGBoo) 

and the underlying structure of a Petri net. NASTY had a job scheduler that allowed com­

putationally intensive simulations to be run over a cluster of machines, mitigating real-time 

simulation costs. Having full computational access to NASTY allowed the genetic algo­

rithm to be developed, and also allowed the core of NASTY to be utilised to send individual 

jobs over the condor job management system [TTL05], capturing a vast compute resource. 

The unique points of the tool mean that it has the potential to make a tangible contribu­

tion to similar studies. NASTY will shortly be released as a open source project, will be 

wrapped as a web service, and will be utilised heavily in the authors long term research 

goals. 

To further the field of systems biology, new and advanced modelling techniques will 

have to be developed and applied to the investigation of large volumes of data. In order to 
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exploit the vast volume of infonnation, data and models must be available in a computation-

ally amenable fonn. SBML [HP+03] has arguably become a de facto standard for systems 

biology studies. In order to analyse existing SBML [HP+03] based models with Petri net 

based techniques which employ the PNML [BCvH+03] standard [BCvH+03], transfer be­

tween SBML and PNML is essential. In Chapter 3 conversion between SBML and PNML 

was discussed and the development of the described mapping and supporting Java tool de­

scribed. This mapping, and the accompanying Java tool, allows models encoded in SBML 

to be automatically imported into PNML. This conversion opens a large data resource to 

Petri net analysis and thus represents an important piece of enabling work. It allowed Petri 

net techniques to be applied to the analysis of biological networks without the need for the 

laborious task of creating the models from scratch as Petri nets. To evaluate the mapping 

two metabolic networks describing glycolysis were validated [TPR+OO, HSM+02]. These 

networks contained infonnation on the topology only and as such were suitable for Petri 

net based invariant analysis. Models were imported from both the SBML model repOsitory 

and the KEGG database [KGKN02]. The ability to convert the whole KEGG database to 

Petri nets was clearly an encouraging development in Petri net modelling. 

It is important to have tools and techniques to properly manage the time series sim­

ulation data resulting from NASTY. Research into this area failed to identify an existing 

standard for stochastic time series data. To address this, a time series markup language. 

TSML. was developed. TSML, a XML based interchange fonnat, was formulated to fa­

cilitate efficient storage and analysis of these results. TSML is an efficient, loss-less. data 

format. that is amenable to computational queries and database storage. As far as the author 
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is aware, TSML is the only results fonnat of its kind currently available. A collaborating 

project student has developed a support tool for TSML, allowing results to be plotted using 

the standard UNIX application gnuplot. TSML was utilised alongside NASTY in work 

described in Chapters 5 and 6, allowing efficient storage and analysis of time series results 

It is hoped that TSML will grow as a format in its own right, or be taken forward as a sub 

set of SBML. 

The investigation into biological systems via stochastic simulation techniques holds 

much promise for systems biology studies. Unfortunately this technique suffers from the 

"perhaps insunnountable" problem of missing kinetic parameters (MS03]. To aid in the 

construction of stochastic models of biochemical networks, a genetic algorithm for param­

eter estimation was developed. The genetic algorithm approach presented in Chapter 5 

allowed the automatic parameterisation of biochemical networks from very little starting 

knowledge, namely the model structure, initial conditions and time course data for a small 

number of genes. The simulation and job distribution powers of NASTY were utilised. 

NASTY allowed these jobs to be efficiently split across a large number of CPUs, mitigat­

ing the real-time cost of this algorithm. 

This technique was applied to a previously published model of stress response in E. 

coli [SPB01] and proved successful in estimating suitable parameters. The results of this 

exercise illustrate the complexity of stochastic networks. Many "right" combinations of 

parameters [Kas03] were found. A parameter set that was suitable for one particular pro­

teins time trajectory can be completely unsuitable for an others in the same system. This 

suggests that while heuristic searches are an important tool for stochastic modelling, their 
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results should be treated with care. Parameter estimation techniques should be re-run each 

time more information arises to ensure the most suitable parameter values are found. This 

insight will be taken forward in the author's long term research, in which an automated no­

tification service and web-service based workftows will be developed to perform parameter 

estimation tasks upon the arrival of new, relevant data. 

In addition to the genetic algorithm approach, sensitivity analysis was applied to the 

the E. coli stress response network. This work sought to determine how the performance 

of a model can be apportioned to the dynamics of interacting parameters. Sensitivity anal. 

ysis was carried out both with the original parameters from an existing model [SPBOl] 

and a random set of "fuzzy" parameters (random values within two orders of magnitude 

of the original parameters) to determine the effectiveness of sensitivity analysis as a tool 

to aid parameter value discovery. Each reaction rate was systematically altered and since 

each alteration requires realisations of the system, the computational costs were high. High 

throughput computing in the fonn of condor [TTL05] was utilised, allowing a large volume 

of compute effort to be carried out over an organisation's unused compute resources. 1be 

design of the core of NASTY made this approach possible. To the author's knowledge. 

this was one of the most extensive sensitivity analysis studies perfonned on a stochastic 

system to date. However, further work is needed in order to develop practical parameter 

estimation techniques for stochastic biological modelling. In particular, the idea of con­

straining the parameter search space using heuristics based on context specific infonnation 

seems particularly promising. For example, being able to bound the values considered for a 

rate parameter by using experimental knowledge could greatly reduce the associated search 
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space. The use of qualitative constraints reflecting the known relationships between genes, 

such as that the high expression of two particular proteins is mutually exclusive, could also 

be used to penalise infeasible solutions via the fitness function. A related idea would be 

to use information about the relative kinetics of a system to fine tune the fitness function. 

For example, knowing that one reaction occurs much faster than another would again allow 

infeasible solutions to be removed. 

As previously discussed, stochastic simulations of biochemical models provides a promis­

ing tool for systems biology. However, there are a number of very real problems associ­

ated with this approach. The most pressing is the lack of quantitative data and parameters 

[MS03]. It is thus also necessary to pursue modelling approaches that do not have such 

stringent requirements on accuracy of the available data. while still giving insight from the 

modelling process [KJH05]. In addition, the composition of larger. more complex models 

from smaller models may prove to be a more effective modelling strategy than constructing 

them directly. Chapter 3 began by utilising knowledge about some gene regulatory inter­

actions. Literature based knowledge of gene regulation was captured as a series of truth ta­

bles. An existing framework allowing a Boolean reduction technique was used lSBSW05] 

to minimise the truth tables and reduce the state space of the model. The reduced model 

was then transformed into a safe Petri net via a technique presented by Steggles et al. 

[SBSW05], allowing reachability analysis to be carried out. This Boolean approach was 

utilised to create a novel model of the well known Lac operon in E. coli. Analysis of this 

model confirmed that its behaviour and construction corresponded with the understanding 

of the system as described in the literature. The model of the lac operon serves to show how 
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useful models can be created from simply qualitative relationships, demonstrating the va-

lidity of the approach for formulating and validating understanding of genetic interactions 

with a minimal amount of data. 

Chapter 6 describes an attempt to consolidate the techniques and developments of this 

research study by applying them to a novel case study. The system investigated was the 

phosphate regulatory pathway of B. subtilis, which is centred around the Pho regulon. 

Boolean, simulation, and parameter estimation techniques were applied to the development 

of a novel in silico model of the Pho regulon in B. subtilis. The Boolean based behaviour of 

the network was investigated first using Petri nets and logic reduction techniques presented 

in [SBSW05]. A number of small sub-models were constructed and validated, before being 

combined to fonn a large Boolean network. Building models via composition of smaller 

models was shown to be an effective approach, resulting in small, clear test models that 

can be individually evaluated. However, it was clear that great care must be taken to en­

sure that nomenclature is standardised to minimise conflicting infonnation. The resulting 

larger, composite, model was then investigated via reachability analysis [Kho03]. Reach­

ability analysis allows confidence to be gained in the understanding of the system that is 

captured by the model, by using the Boolean model to validate known behaviours. 1be 

Boolean model of the Pho stimulon and the derived analysis, contributed to authors under­

standing of this system, providing a sound basis for the development of the more complex 

stochastic model. A number of Boolean based modelling techniques have been described 

[SH97, AMKOO, SBSW05, CRRT04], each applying the techniques to a small case study. 

The model of the Pho stimulon builds on aspects of these studies, specifically demonstral_ 
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ing the effectiveness of composition of smaller components of the systems and of Petri net 

based reachability analysis and unfolding. 

Once a sound understanding of the Pho regulon had been derived through qualitative 

modelling, the model was extended and phosphate regulation was further investigated us­

ing kinetic modelling. As with many previously described modelling studies there was a 

problem with the lack of detailed kinetic data. This limited the study to providing a prelim­

inary model of the system. Two sub models of the system were composed, that of the Pho 

operon and that of the general stress response. These models were then merged to derive a 

larger model, which was validated and then investigated via the use of brute force sensitiv­

ity analysis. This analysis suggested that the balance of expression of different constituents 

of the Pho stimulon is caused by reactions relating to the competition for RNA polymerase 

between different sigma factors, supporting a theory put forward by laboratory biologists 

[PH02]. This case study, while providing insight into the biological system in question, 

clearly shows the limits and success of modelling at different levels of detail. The Boolean 

based system produced a reasonably complete, accurate model of the system's behaviour. 

The stochastic system, however, resulted in a preliminary model that produced results that 

qualitatively matched experimentally derived results. Sensitivity analysis of this model 

gave an insight into possible important rates and species. The results matched well with 

the experimental results described in the literature. Despite the model limitations that can 

result from a lack of quantitative data for parameter derivation, in silico experiments can 

still provided evidence for behaviour seen in the laboratory. 
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7.2 Concluding Remarks 

The work described in this thesis has demonstrated that the application of Petri nets to bio­

logical modelling has the power to form an important part of the emerging field of systems 

biology. To advance these techniques, fully integrative studies, involving advanced labo­

ratory techniques, statistical interpretation and efficient data management and integration 

must take place. Indeed this is now occurring, with the creation of a growing number of 

systems biology centres. It is encouraging to have witnessed the enthusiasm of labora­

tory biologists, statisticians and theoretical computing scientists about such studies. While 

advancing the understanding of biological systems, integrated studies clearly benefit the 

original fields of the constituent experts, both directly (for example, the creation of ad­

vanced techniques) and indirectly. For example the experience of deterministic simulation 

techniques in biologically based studies allowed complex stochastic based voting protocols 

to become genuinely tractable to analysis [Tho06]. 
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Figure A.I: Sensitivity analysis of Transition 1 from the full model of the general stress 
response of E. coli [SPBOI] under conditions of full stress. The fitness function score 
(detailed in Chapter 5) of GroEL/Sig32 is plotted against parameter value, on a logarithmic 
scale. 
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Figure A.2: Sensitivity analysis of Transition 2 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of full stress. The fitness function score 
(detailed in Chapter 5) of GroEUSig32 is plotted against parameter value, on a logarithmic 
scale. 
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Figure A.3: Sensitivity analysis of Transition 3 from the full model of the general stress 
response of E. coli [SPBO!] under conditions of full stress. The fitness function score 
(detailed in Chapter 5) of GroEUSig32 is plotted against parameter value. on a logarithmic 
scale. 
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Figure A.4: Sensitivity analysis of Transition 4 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of full stress. The fitness function score 
(detailed'in Chapter 5) of GroEUSig32 is plotted against parameter value. on a logarithmic 
scale. 
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Figure A.S: Sensitivity analysis of Transition 5 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of full stress. The fitness function score 
(detailed in Chapter 5) of GroEUSig32 is plotted against parameter value, on a logarithmic 
scale. 
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Figure A.6: Sensitivity analysis of Transition 6 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of full stress. The fitness function Score 
(detailed in Chapter 5) of GroEUSig32 is plotted against parameter value. on a logarithmic 
scale. 
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Figure A.7: Sensitivity analysis of Transition 7 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of full stress. The fitness function score 
(detailed in Chapter 5) of GroELlSig32 is plotted against parameter value, on a logarithmic 
scale. 
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Figure A.8: Sensitivity analysis of Transition 8 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of full stress. The fitness function score 
(detailed in Chapter 5) of GroEUSig32 is plotted against parameter value, on a logarithmic 
scale. 
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Figure A.9: Sensitivity analysis of Transition 9 from the full model of the general stress 
response of E. coli [SPB01] under conditions of full stress. The fitness function score 
(detailed in Chapter 5) of GroEUSig32 is plotted against parameter value, on a logarithmic 
scale. 
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Figure A.I 0: Sensitivity analysis of Transition 10 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of full stress. The fitness function score 
(detailed in Chapter S) of GroEUSig32 is plotted against parameter value, on a logarithmic 
scale. 
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Figure A.ll: Sensitivity analysis of Transition 11 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of full stress. The fitness function score 
(detailed in Chapter 5) of GroEUSig32 is plotted against parameter value. on a logarithmic 

scale. 
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Figure A.12: Sensitivity analysis of Transition 12 from the full model of the general stress 
response of E. coli [SPB01] under conditions of full stress. The fitness function score 
(detailed in Chapter 5) of GroEUSig32 is plotted against parameter value. on a logarithmic 

scale. 
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Figure A.13: Sensitivity analysis of Transition 13 from the full model of the general stress 
response of E. coli [SPB01] under conditions of full stress. The fitness function score 
(detailed in Chapter 5) of GroEUSig32 is plotted against parameter value, on a logarithmic 
scale. 
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Figure A.14: Sensitivity analysis of Transition 14 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of full stress. The fitness function SCore 
(detailed in Chapter 5) of GroEUSig32 is plotted against parameter value, on a logarithmic 
scale. 



215 

Appendix B 

Sensitivity Analysis of the Full E. coli 
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Figure B.l: Sensitivity analysis of Transition 1 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of no stress. The fitness function score (de­
tailed in Chapter 5) of GroEUSig32 is plotted against parameter value, on a logarithmic 
scale. 
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Figure B.2: Sensitivity analysis of Transition 2 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of no stress. The fitness function score (de­
tailed in Chapter 5) of GroEUSig32 is plotted against parameter value, on a logarithmic 
scale. 
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Figure B.3: Sensitivity analysis of Transition 3 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of no stress. The fitness function score (de­
tailed in Chapter 5) of GroEUSig32 is plotted against parameter value, on a logarithmic 

scale. 
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Figure B.4: Sensitivity analysis of Transition 4 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of no stress. The fitness function score (de­
tailed in Chapter 5) of GroEUSig32 is plotted against parameter value, on a logarithmic 

scale. 
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Figure B.5: Sensitivity analysis of Transition 5 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of no stress. The fitness function score (de­
tailed in Chapter 5) of GroEUSig32 is plotted against parameter value, on a logarithmic 
scale. 
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Figure B.6: Sensitivity analysis of Transition 6 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of no stress. The fitness function Score (de­
tailed in Chapter 5) of GroEUSig32 is plotted against parameter value, on a logarithmic 
scale. 
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Figure B.7: Sensitivity analysis of Transition 7 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of no stress. The fitness function score (de­
tailed in Chapter 5) of GroEUSig32 is plotted against parameter value. on a logarithmic 

scale. 
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Figure B.8: Sensitivity analysis of Transition 8 from the full model of the general stress 
response of E. coli [SPB01] under conditions of no stress. The fitness function score (de­
tailed in Chapter 5) of GroEUSig32 is plotted against parameter value. on a logarithmic 

scale. 
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Figure B.9: Sensitivity analysis of Transition 9 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of no stress. The fitness function score (de­
tailed in Chapter 5) of GroEUSig32 is plotted against parameter value, on a logarithmic 
scale. 
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Figure B.1 0: Sensitivity analysis of Transition 10 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of no stress. The fitness function score (de­
tailed in Chapter 5) of GroEUSig32 is plotted against parameter value, on a logarithmic 
scale. 
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Figure B.11: Sensitivity analysis of Transition 11 from the full model of the general stress 
response of E. coli [SPB01] under conditions of no stress. The fitness function score (de­
tailed in Chapter 5) of GroEUSig32 is plotted against parameter value, on a logarithmic 

scale. 
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Figure B.12: Sensitivity analysis of Transition 12 from the full model of the general stress 
response of E. coli [SPB01] under conditions of no stress. The fitness function score (de­
tailed in Chapter 5) of GroEUSig32 is plotted against parameter value, on a logarithmic 
scale. 
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Figure B.13: Sensitivity analysis of Transition 13 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of no stress. The fitness function score (de­
tailed in Chapter 5) of GroEUSig32 is plotted against parameter value, on a logarithmic 
scale. 
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Figure B.14: Sensitivity analysis of Transition 14 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of no stress. The fitness function score (de­
tailed in Chapter 5) of GroEUSig32 is plotted against parameter value, on a logarithmic 
scale. 
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Sensitivity Analysis of the Full E. coli 
Model Under Anti-sense Mediated Stress 
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Figure C.I: Sensitivity analysis of Transition I from the full model of the general stress 
response of E. coli [SPBOI] under conditions of anti-sense mediated stress. The fitness 
function score (detailed in Chapter 5) of GroEUSig32 is plotted against parameter value, 
on a logarithmic scale. 
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Figure C.2: Sensitivity analysis of Transition 2 from the full model of the general stress 
response of E. coli [SPBOI] under conditions of anti-sense mediated stress. The fitness 
function score (detailed in Chapter 5) of GroEUSig32 is plotted against parameter value , 
on a logarithmic scale. 
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Figure C.3: Sensitivity analysis of Transition 3 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of anti-sense mediated stress. The fitness 
function score (detailed in Chapter 5) of GroEL/Sig32 is plotted against parameter value. 
on a logarithmic scale. 
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Figure C.4: Sensitivity analysis of Transition 4 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of anti-sense mediated stress. The fitness 
function score (detailed in Chapter 5) of GroEUSig32 is plotted against parameter value. 
on a logarithmic scale. 
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Figure C.5: Sensitivity analysis of Transition 5 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of anti-sense mediated stress. The fitness 
function score (detailed in Chapter 5) of GroEUSig32 is plotted against parameter value, 
on a logarithmic scale. 
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Figure C.6: Sensitivity analysis of Transition 6 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of anti-sense mediated stress. The fitness 
function score (detailed in Chapter 5) of GroEUSig32 is plotted against parameter value, 
on a logarithmic scale. 
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Figure C.7: Sensitivity analysis of Transition 7 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of anti-sense mediated stress. The fitness 
function score (detailed in Chapter 5) of GroEUSig32 is plotted against parameter value. 
on a logarithmic scale. 
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Figure C.8: Sensitivity analysis of Transition 8 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of anti-sense mediated stress. The fitness 
function score (detailed in Chapter 5) of GroEUSig32 is plotted against parameter value, 
on a logarithmic scale. 
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Figure C.9: Sensitivity analysis of Transition 9 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of anti-sense mediated stress. The fitness 
function score (detailed in Chapter 5) of GroEUSig32 is plotted against parameter value, 
on a logarithmic scale. 
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Figure C.I0: Sensitivity analysis of Transition 10 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of anti-sense mediated stress. The fitness 
function score (detailed in Chapter 5) orGroEUSig32 is plotted against parameter value, 
on a logarithmic scale. 
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Figure C.ll: Sensitivity analysis of Transition 11 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of anti-sense mediated stress. The fitness 
function score (detailed in Chapter 5) of GroElJSig32 is plotted against parameter value. 
on a logarithmic scale. 
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Figure C.12: Sensitivity analysis of Transition 12 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of anti-sense mediated stress. The fitness 
function score (detailed in Chapter 5) of GroElJSig32 is plotted against parameter value. 
on a logarithmic scale. 
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Figure C.13: Sensitivity analysis of Transition 13 from the full model of the general stress 
response of E. coli [SPB01] under conditions of anti-sense mediated stress. The fitness 
function score (detailed in Chapter 5) of GroEUSig32 is plotted against parameter value 
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Figure C.14: Sensitivity analysis of Transition 14 from the full model of the general stress 
response of E. coli [SPBOl] under conditions of anti-sense mediated stress. The fitness 
function score (detailed in Chapter 5) of GroEUSig32 is plotted against parameter value 

• on a logarithmic scale. 
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Figure 0.1: Sensitivity analysis of Transition 1 from the approximate model of the gen­
eral stress response of E. coli [SPB01] under conditions of no stress. The fitness function 
score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter value. on a 
logarithmic scale. 
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Figure 0.2: Sensitivity analysis of Transition 2 from the approximate model of the gen­
eral stress response of E. coli [SPB01] under conditions of no stress. The fitness function 
score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter value, on a 
logarithmic scale. 
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Figure D.3: Sensitivity analysis of Transition 3 from the approximate model of the gen­
eral stress response of E. coli [SPBOl] under conditions of no stress. The fitness function 
score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter value. on a 
logarithmic scale. 
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Figure D.4: Sensitivity analysis of Transition 4 from the approximate model of the gen­
eral stress response of E. coli [SPBOl] under conditions of no stress. The fitness function 
score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter value, on a 
logarithmic scale. 
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Figure D.5: Sensitivity analysis of Transition 5 from the approximate model of the gen­
eral stress response of E. coli [SPBOl] under conditions of no stress. The fitness function 
score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter value, on a 
logarithmic scale. 
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Figure D.6: Sensitivity analysis of Transition 6 from the approximate model of the gen­
eral stress response of E. coli [SPBOl] under conditions of no stress. The fitness function 
score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter value, on a 
logarithmic scale. 
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Figure D.7: Sensitivity analysis of Transition 7 from the approximate model of the gen­
eral stress response of E. coli [SPBOl] under conditions of no stress. The fitness function 
score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter value, on a 
logarithmic scale. 
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Figure D.8: Sensitivity analysis of Transition 8 from the approximate model of the gen­
eral stress response of E. coli [SPBOl] under conditions of no stress. The fitness function 
score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter value, on a 
logarithmic scale. 
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Figure D.9: Sensitivity analysis of Transition 9 from the approximate model of the gen­
eral stress response of E. coli [SPBOl] under conditions of no stress. The fitness function 
score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter value, on a 
logarithmic scale. 
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Figure D.IO: Sensitivity analysis of Transition 10 from the approximate model of the gen­
eral stress response of E. coli [SPBOI] under conditions of no stress. The fitness function 
score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter value. on a 
logarithmic scale. 
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Figure D.11: Sensitivity analysis of Transition 11 from the approximate model of the gen­
eral stress response of E. coli [SPB01] under conditions of no stress. The fitness function 
score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter value. on a 
logarithmic scale. 
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Figure D.12: Sensitivity analysis of Transition 12 from the approximate model of the gen­
eral stress response of E. coli [SPBOl] under conditions of no stress. The fitness function 
score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter value. on a 
logarithmic scale. 
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Figure D.13: Sensitivity analysis of Transition 13 from the approximate model of the gen­
eral stress response of E. coli [SPBOl] under conditions of no stress. The fitness function 
score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter value, on a 
logarithmic scale. 
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Figure D.14: Sensitivity analysis of Transition 14 from the approximate model of the gen­
eral stress response of E. coli [SPB01] under conditions of no stress. The fitness function 
score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter value, on a 
logarithmic scale. 
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Figure E.1: Sensitivity analysis of Transition 1 from the approximate model of the general 
stress response of E. coli [SPBOl] under conditions of anti-sense mediated stress. The fit­
ness function score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter 
value, on a logarithmic scale. 
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Figure E.2: Sensitivity analysis of Transition 2 from the approximate model of the general 
stress response of E. coli [SPBOl] under conditions of anti-sense mediated stress. The fit­
ness function score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter 
value, on a logarithmic scale. 
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Figure E.3: Sensitivity analysis of Transition 3 from the approximate model of the general 
stress response of E. coli [SPBOl] under conditions of anti-sense mediated stress. The fit­
ness function score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter 
value, on a logarithmic scale. 
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Figure E.4: Sensitivity analysis of Transition 4 from the approximate model of the genera) 
stresS response of E. coli [SPB01] under conditions of anti-sense mediated stress. The fit­
ness function score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter 
value, on a logarithmic scale. 
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Figure E.5: Sensitivity analysis of Transition 5 from the approximate model of the general 
stress response of E. coli [SPBOl] under conditions of anti-sense mediated stress. The fit­
ness function score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter 
value, on a logarithmic scale. 
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Figure B.6: Sensitivity analysis of Transition 6 from the approximate model of the general 
stress response of E. coli [SPBOl] under conditions of anti-sense mediated stress. The fit­
ness function score (detailed in Chapter S) ofGroEL and Sig32 is plotted against parameter 
value, on a logarithmic scale. 
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Figure E.?: Sensitivity analysis of Transition ? from the approximate model of the general 
stress response of E. coli [SPBOl] under conditions of anti-sense mediated stress. The tit­
ness function score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter 
value, on a logarithmic scale. 
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Figure E.8: Sensitivity analysis of Transition 8 from the approximate model of the general 
streSS response of E. coli [SPBOl] under conditions of anti-sense mediated stress. The fit­
ness function score (detailed in Chapter 5) ofGroEL and Sig32 is ploned against parameter 
value, on a logarithmic scale. 
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Figure E.9: Sensitivity analysis of Transition 9 from the approximate model of the general 
stress response of E. coli [SPBOl] under conditions of anti-sense mediated stress. The fit­
ness function score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter 
value. on a logarithmic scale . 
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Figure B.lO: Sensitivity analysis of Transition 10 from the approximate model of the gen­
eral stress response of E. coli [SPBOl] under conditions of anti-sense mediated stress. 1be 
fitness function score (detailed in Chapter 5) of GroBL and Sig32 is plotted against param­
eter value. on a logarithmic scale. 
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Figure E.ll: Sensitivity analysis of Transition 11 from the approximate model of the gen­
eral stress response of E. coli [SPBOl] under conditions of anti-sense mediated stress. The 
fitness function score (detailed in Chapter 5) of GroEL and Sig32 is plotted against param­
eter value, on a logarithmic scale. 
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Figure E.12: Sensitivity analysis of Transition 12 from the approximate model of the gen­
eral stress response of E. coli [SPBOl] under conditions of anti-sense mediated stress. The 
fitness function score (detailed in Chapter 5) of GroEL and Sig32 is plotted against param­
etef value, on a logarithmic scale. 



j 

246 

IenIIMty ..... of Rat. 13 horn lhe apJMOJdmeIe model under oondIioN of am-.-. mediated IItrea 

''-~~--~----~~~--~--~~2==' •..•.•.•.•.••.•..•••••...•..•...................•...•......• - .•..••...•.•....••..•.....• El······· 

ot 

01 

07 

01 

oa 

o. 

03 

02 ,.12 ,.,0 ,.at ,.at 0000' 00' '00 _Ion ... 

Figure E.13: Sensitivity analysis of Transition 13 from the approximate model of the gen­
eral stress response of E. coli [SPB01] under conditions of anti-sense mediated stress. 1be 
fitness function score (detailed in Chapter 5) of GroEL and Sig32 is plotted against param­
eter value, on a logarithmic scale. 
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Figure E.14: Sensitivity analysis of Transition 14 from the approximate model of the gen­
eraistress response of E. coli [SPBOl] under conditions of anti-sense mediated stress. The 
fitness function score (detailed in Chapter 5) of GroEL and Sig32 is plotted against param. 
eter value, on a logarithmic scale. 
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Figure F.l: Sensitivity analysis of Transition 1 from the approximate model of the general 
stress response of E. coli [SPBOl] under conditions of full stress. The fitness function 
score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter value. on a 
logarithmic scale. 
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Figure F.2: Sensitivity analysis of Transition 2 from the approximate model of the general 
stress response of E. coli [SPBOl] under conditions of full stress. The fitness function 
score (detailed in Chapter 5) of OroEL and Sig32 is plotted against parameter value, on a 
logarithmic scale. 
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Figure F.3: Sensitivity analysis of Transition 3 from the approximate model of the general 
stress response of E. coli [SPBOl] under conditions of full stress. The fitness function 
score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter value. on a 
logarithmic scale. 
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Figure F.4: Sensitivity analysis of Transition 4 from the approximate model of the general 
stress response of E. coli [SPBOl] under conditions of full stress. The fitness function 
score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter value. on a 
logarithmic scale. 
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Figure F.5: Sensitivity analysis of Transition 5 from the approximate model of the general 
stress response of E. coli [SPBOl] under conditions of full stress. The fitness function 
score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter value. on a 
logarithmic scale. 
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Figure F.6: Sensitivity analysis of Transition 6 from the approximate model of the genera) 
stress response of E. coli [SPBOl] under conditions of full stress. The fitness function 
score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter value, on a 
logarithmic scale. 
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Figure F.7: Sensitivity analysis of Transition 7 from the approx.imate model of the general 
stress response of E. coli [SPBOl] under conditions of full stress. The fitness function 
score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter value. on a 
logarithmic scale. 
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Figure F.8: Sensitivity analysis of Transition 8 from the approximate model of the general 
stress response of E. coli [SPBOl] under conditions of full stress. The fitness function 
score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter value. on a 
logarithmic scale. 
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Figure F.9: Sensitivity analysis of Transition 9 from the approximate model of the general 
stress response of E. coli [SPB01] under conditions of full stress. The fitness function 
score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter value, on a 
logarithmic scale. 
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Figure P.IO: Sensitivity analysis of Transition 10 from the approximate model of the gen­
eral stress response of E. coli [SPB01] under conditions of full stress. The fitness function 
score (detailed in Chapter S) of GroEL and Sig32 is plotted against parameter value. on a 
logarithmic scale. 
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Figure Ell: Sensitivity analysis of Transition 11 from the approximate model of the gen­
eral stress response of E. coli [SPBOl] under conditions of full stress. The fitness function 
score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter value. on a 
logarithmic scale. 
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Figure E12: Sensitivity analysis of Transition 12 from the approximate model of the gen­
eral stress response of E. coli [SPB01] under conditions of full stress. The fitness function 
score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter value. on a 
logarithmic scale. 
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Figure F.13: Sensitivity analysis of Transition 13 from the approximate model of the gen­
eral stress response of E. coli [SPB01] under conditions of full stress. The fitness function 
score (detailed in Chapter 5) of GroEL and Sig32 is plotted against parameter value. on a 
logarithmic scale. 
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Figure F.14: Sensitivity analysis of Transition 14 from the approximate model of the gen­
eral stress response of E. coli [SPBOl] under conditions of full stress. The fitness function 
score (detailed in Chapter S) of GroEL and Sig32 is plotted against parameter value. on a 
logarithmic scale. 
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Appendix G 

Boolean Truth Tables Utilised in 
Chapter 6 

The following truth tables relate to the various Boolean models of various aspects of the 

phosphate stress response in B.subtilis. 

G.l Boolean truth tables relating to the model of the SigB 

regulon 

envStress act RsbU 
0 0 
1 1 

Table 0.1: The Boolean truth table describing the next state of active RsbU dependant upon 

the state of its nearest neighbours 

RsbV RsbW_SigB RsbV RsbW 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

Table 0.2: The Boolean truth table describing the next state of RsbV _RsbW dependant 
upon the state of its nearest neighbours 
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RsbV_P accRsbU acCRsbP RsbV 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 

Table 0.3: The Boolean truth table describing the next state of RsbV dependant upon the 
state of its nearest neighbours 

engStress accRsbP 
0 0 
1 1 

Table 0.4: The Boolean truth table describing the next state of active RsbP dependant upon 
the state of its nearest neighbours 

RsbV_RsbW RsbW SigB SigB 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 0 
1 0 0 1 
1 0 1 1 
1 1 0 1 
1 1 1 1 

Table O.S: The Boolean truth table describing the next state of SigB dependant upon the 
state of its nearest neighbours 

RsbV_RsbW RsbW SigB RsbW_SigB 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 0 
1 1 1 0 

Table 0.6: The Boolean truth table describing the next state of RsbW _SigB dependant 
upon the state of its nearest neighbours 
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RsbV_RsbW acCRsbU accRsbP RsbV_P 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 1 

1 0 1 0 
1 1 0 0 
1 1 1 0 

Table G.7: The Boolean truth table describing the next state of phosphorylated RshV de­
pendant upon the state of its nearest neighbours 

Sig8 response 
1 1 
0 0 

Table G.8: The Boolean truth table describing the next state of Sig8 stress response depen­
dant upon the state of its nearest neighbours 
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G.2 Boolean truth tables relating to the model of the Pho 

regulon 

PhoStress AbrB ResD_P PhoP_P 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 

Table G.9: The Boolean truth table describing the next state of phosphorylated PhoP de­
pendant upon the state of its nearest neighbours 

SpoOA PhoP_P ResD_P 
0 0 0 
0 1 1 
1 0 0 
1 1 0 

Table G.IO: The Boolean truth table describing the next state of phosphorylated RedO 
dependant upon the state of its nearest neighbours 

SpoOA PhoP P AbrB 
0 0 0 
0 1 1 
1 0 0 
1 1 0 

Table G.l1: The Boolean truth table describing the next state of AbrB dependant upon the 
state of its nearest neighbours 
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PhoP_P YkoL 
0 0 
1 1 

Table G.l2: The Boolean truth table describing the next state of YkoL dependant upon the 
state of its nearest neighbours 
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G.3 Boolean truth tables relating to the model of hyper-

induction in the Pho/SigB regulon 

SigB SigA PhoP_P YkoL 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 0 
1 1 1 1 

Table 0.13: The Boolean truth table describing the next state of YkoL dependant upon the 
state of its nearest neighbours 

SigB SigA PhoP_P H_YkoL 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 0 
1 1 1 0 

Table 0.14: The Boolean truth table describing the next state of hyper-induced YkoL de­
pendant upon the state of its nearest neighbours 
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SigB PhoP_P YheK 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

Table 0.15: The Boolean truth table describing the next state of YheK dependant upon the 
state of its nearest neighbours 

SigB PhoP_P H_YheK 
0 0 0 
0 1 0 
1 0 1 
1 1 0 

Table 0.16: The Boolean truth table describing the next state of hyper-induced YheK de­
pendant upon the state of its nearest neighbours 
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G.4 Boolean truth tables relating composed model of the 

phosphate stress response 

SigB SigA PhoP_P H_YkoL 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 0 
1 1 1 0 

Table G.17: The Boolean truth table describing the next state of hyper-induced YkoL de­
pendant upon the state of its nearest neighbours 

SigB PhoP_P YheK 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

Table G.18: The Boolean truth table describing the next state of YheK dependant upon the 
state of its nearest neighbours 

SigB PhoP_P H_YheK 
0 0 0 
0 1 0 
1 0 1 
1 1 0 

Table G.19: The Boolean truth table describing the next state of hyper-induced YheK de­
pendant upon the state of its nearest neighbours 
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envStress accRsbU 
0 0 
1 1 

Table 0.20: The Boolean truth table describing the next state of active RsbU dependant 
upon the state of its nearest neighbours 

RsbV RsbW_SigB RsbV_RsbW 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

Table 0.21: The Boolean truth table describing the next state of RsbV _RsbW dependant 
upon the state of its nearest neighbours 

RsbV_P accRsbU accRsbP RsbV 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 1 
1 I 0 1 
1 I 1 I 

Table 0.22: The Boolean truth table describing the next state of RsbV dependant upon the 
state of its nearest neighbours 

engStress act_RsbP 
0 0 
1 I 

Table 0.23: The Boolean truth table describing the next state of active RsbP dependant 
upon the state of its nearest neighbours 

RsbV RsbW_SigB SigB 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

Table 0.24: The Boolean truth table describing the next state of SigB dependant upon the 
state of its nearest neighbours 
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RsbV_RsbW RsbW SigB RsbW_SigB 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 0 
I 1 0 0 
1 1 1 0 

Table 0.25: The Boolean truth table describing the next state of RsbW _SigB dependant 
upon the state of its nearest neighbours 

RsbV_RsbW acCRsbU accRsbP RsbV_P 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 1 
1 0 1 0 
1 I 0 0 
1 1 1 0 

Table 0.26: The Boolean truth table describing the next state of phosphorylated Rsbv 
dependant upon the state of its nearest neighbours 

SigB response 
1 1 
0 0 

Table 0.27: The Boolean truth table describing the next state of SigB response ~ 
upon the state of its nearest neighbours 

PhoStress AbrB ResD_P PhoP_P 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 

Table 0.28: The Boolean truth table describing the next state of phosphorylated PboP 
dependant upon the state of its nearest neighbours 
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---~--. 

SpoOA PhoP_P ResD_P 
0 0 0 
0 1 1 
1 0 0 
1 1 0 

Table G.29: The Boolean truth table describing the next state of phosphorylated Rest> 
dependant upon the state of its nearest neighbours 

SpoOA PhoP_P AbrB 
0 () () 

0 1 1 
1 () () 

-- --.~-

1 1 0 

Table G.30: The Boolean truth table describing the next state of AbrH dependant upon the 
state of its nearest neighbours 

SigB SigA PhoP_P YkoL 
. - .~.~- ~-- . ~ .. --.. 

0 0 0 0 
0 0 1 0 
0 1 0 () 

0 1 1 0 
1 0 0 0 
1 0 1 () 

1 1 0 0 ---
1 1 1 I 

Table G.31: The Boolean truth table describing the next state of YkoL dependant upon the 
state of its nearest neighbours 


	438012_001
	438012_002
	438012_003
	438012_004
	438012_005
	438012_006
	438012_007
	438012_008
	438012_009
	438012_010
	438012_011
	438012_012
	438012_013
	438012_014
	438012_015
	438012_016
	438012_017
	438012_018
	438012_019
	438012_020
	438012_021
	438012_022
	438012_023
	438012_024
	438012_025
	438012_026
	438012_027
	438012_028
	438012_029
	438012_030
	438012_031
	438012_032
	438012_033
	438012_034
	438012_035
	438012_036
	438012_037
	438012_038
	438012_039
	438012_040
	438012_041
	438012_042
	438012_043
	438012_044
	438012_045
	438012_046
	438012_047
	438012_048
	438012_049
	438012_050
	438012_051
	438012_052
	438012_053
	438012_054
	438012_055
	438012_056
	438012_057
	438012_058
	438012_059
	438012_060
	438012_061
	438012_062
	438012_063
	438012_064
	438012_065
	438012_066
	438012_067
	438012_068
	438012_069
	438012_070
	438012_071
	438012_072
	438012_073
	438012_074
	438012_075
	438012_076
	438012_077
	438012_078
	438012_079
	438012_080
	438012_081
	438012_082
	438012_083
	438012_084
	438012_085
	438012_086
	438012_087
	438012_088
	438012_089
	438012_090
	438012_091
	438012_092
	438012_093
	438012_094
	438012_095
	438012_096
	438012_097
	438012_098
	438012_099
	438012_100
	438012_101
	438012_102
	438012_103
	438012_104
	438012_105
	438012_106
	438012_107
	438012_108
	438012_109
	438012_110
	438012_111
	438012_112
	438012_113
	438012_114
	438012_115
	438012_116
	438012_117
	438012_118
	438012_119
	438012_120
	438012_121
	438012_122
	438012_123
	438012_124
	438012_125
	438012_126
	438012_127
	438012_128
	438012_129
	438012_130
	438012_131
	438012_132
	438012_133
	438012_134
	438012_135
	438012_136
	438012_137
	438012_138
	438012_139
	438012_140
	438012_141
	438012_142
	438012_143
	438012_144
	438012_145
	438012_146
	438012_147
	438012_148
	438012_149
	438012_150
	438012_151
	438012_152
	438012_153
	438012_154
	438012_155
	438012_156
	438012_157
	438012_158
	438012_159
	438012_160
	438012_161
	438012_162
	438012_163
	438012_164
	438012_165
	438012_166
	438012_167
	438012_168
	438012_169
	438012_170
	438012_171
	438012_172
	438012_173
	438012_174
	438012_175
	438012_176
	438012_177
	438012_178
	438012_179
	438012_180
	438012_181
	438012_182
	438012_183
	438012_184
	438012_185
	438012_186
	438012_187
	438012_188
	438012_189
	438012_190
	438012_191
	438012_192
	438012_193
	438012_194
	438012_195
	438012_196
	438012_197
	438012_198
	438012_199
	438012_200
	438012_201
	438012_202
	438012_203
	438012_204
	438012_205
	438012_206
	438012_207
	438012_208
	438012_209
	438012_210
	438012_211
	438012_212
	438012_213
	438012_214
	438012_215
	438012_216
	438012_217
	438012_218
	438012_219
	438012_220
	438012_221
	438012_222
	438012_223
	438012_224
	438012_225
	438012_226
	438012_227
	438012_228
	438012_229
	438012_230
	438012_231
	438012_232
	438012_233
	438012_234
	438012_235
	438012_236
	438012_237
	438012_238
	438012_239
	438012_240
	438012_241
	438012_242
	438012_243
	438012_244
	438012_245
	438012_246
	438012_247
	438012_248
	438012_249
	438012_250
	438012_251
	438012_252
	438012_253
	438012_254
	438012_255
	438012_256
	438012_257
	438012_258
	438012_259
	438012_260
	438012_261
	438012_262
	438012_263
	438012_264
	438012_265
	438012_266
	438012_267
	438012_268
	438012_269
	438012_270
	438012_271
	438012_272
	438012_273
	438012_274
	438012_275

