
Loughborough University
Institutional Repository

Object-oriented hyperbolic
solver on 2D-unstructured

meshes applied to the
shallow water equations

This item was submitted to Loughborough University's Institutional Repository
by the/an author.

Additional Information:

• This thesis was submitted for the degree of Doctor of Philosophy at Lough-
borough University.

Metadata Record: https://dspace.lboro.ac.uk/2134/2709

Please cite the published version.

https://dspace.lboro.ac.uk/2134/2709

This item was submitted to Loughborough’s Institutional Repository by the
author and is made available under the following Creative Commons Licence

conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Object-Oriented Hyperbolic Solver on

2D-Unstructured Meshes Applied to

the Shallow Water Equations

Atmanand Jha

Department of Civil and Building Engineering

Loughborough University

A Thesis Submitted for the Degree of

Doctor of Philosophy [DRAFT COPY]

April 2006

This item was submitted to Loughborough’s Institutional Repository by the
author and is made available under the following Creative Commons Licence

conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

c©2006 - Atmanand Jha

All rights reserved.

I would like to dedicate this thesis to

Contents

Contents vi

List of Tables vii

1 Introduction 1

1.1 Motivation . 1

1.2 The Vision . 2

1.3 Problem Selection . 2

1.3.1 Hyperbolic Problems . 2

1.3.2 Shallow Water Equations . 3

1.4 Thesis Presentation . 3

List of Figures 1

2 Literature Review 6

2.1 Introduction . 6

2.2 Hyperbolic Problems . 6

2.2.1 Partial Differential Equations . 6

2.2.2 Solutions of Partial Differential Equations 8

2.2.3 Hyperbolic PDEs . 9

2.3 Hyperbolic Systems . 10

2.3.1 Conservation Laws . 11

2.3.2 Numerical Methods for Hyperbolic PDEs 12

2.3.3 Selection of Method . 14

2.3.4 Finite Volume Method for Hyperbolic Problems 15

i

CONTENTS

2.4 High Resolution Methods . 18

2.4.1 High Resolution Methods for Structured Meshes 19

2.4.2 High Resolution Methods for Unstructured Meshes 20

2.4.3 Numerical Methods for High Resolution Shock Capturing 22

2.5 Shallow Water Equations . 23

2.5.1 Riemann Problem . 24

2.5.2 Source Terms . 25

2.6 Object-Oriented Modelling . 27

3 Object-Oriented Approach 31

3.1 Introduction . 31

3.2 Approaches to Software Design . 31

3.3 Object-Oriented Technique . 32

3.3.1 Object-Oriented Models . 33

3.4 Design of the Riemann2D Objects . 34

3.4.1 Object-Oriented Problem Structuring of Riemann2D 35

3.4.2 Physical Description of Riemann2D 35

3.4.3 Controlling Access to Members of a Class 39

3.5 Conclusions . 40

4 Finite Volume Methods for Hyperbolic Problems 42

4.1 Introduction . 42

4.2 Finite Volume Formulation . 43

4.2.1 The One-Dimensional Problem 44

4.2.2 The Two-Dimensional Problem 47

4.3 The Riemann Problem . 50

4.3.1 Riemann Solvers: Exact Vs Approximate 52

4.3.2 The Approximate Riemann Solvers 53

4.3.3 Roe’s Solver . 54

4.3.3.1 The Intercell Flux . 56

4.3.4 HLL (Harten-Lax-van Leer) Solver 58

4.3.5 Shu and Osher Solver . 61

4.4 Selection of Mesh and Control Volume for Riemann2D 62

4.4.1 Mesh Selection . 62

ii

CONTENTS

4.4.2 Control Volume . 63

4.4.3 Approach to Triangular Control Volume 66

4.4.4 Control Volume and Numerical Fluxes 67

4.4.5 The CFL Condition . 69

4.5 Boundary Conditions . 71

4.5.1 Flux-Type . 74

4.5.2 Reflective-Type . 75

4.5.3 State-Type . 76

4.5.4 Transmissive-Type . 77

4.6 Conclusions . 79

5 High-Resolution Methods 81

5.1 Introduction . 81

5.2 Shock Capturing . 82

5.3 Traditional Numerical Methods . 83

5.3.1 The Lax-Friedrichs Method . 83

5.3.2 The Richtmyer Two-Step Lax-Wendroff Method 84

5.4 The Lax-Wendroff Method . 85

5.5 The Beam-Warming Method . 86

5.5.1 Problems with Traditional Schemes 86

5.6 Upwind Methods . 88

5.7 Godunov’s Method . 91

5.7.1 Godunov’s Method For Linear Systems: 92

5.8 Total Variation Diminishing Method . 94

5.9 Higher-Order Methods for Riemann2D 95

5.9.1 Data Reconstruction . 95

5.9.2 Limiters . 97

5.9.2.1 No Limiters . 99

5.9.2.2 Superbee and Minmod Limiters 99

5.9.2.3 Limited Central Difference (LCD) Limiter 100

5.9.2.4 Extended vanLeer (EV) Limiter 100

5.9.2.5 Maximum Limited Gradient (MLG) Limiter 100

5.9.3 The MUSCL-Hancock Scheme 101

iii

CONTENTS

5.10 Conclusions . 102

6 Free-Surface Shallow Water Flows 104

6.1 Introduction . 104

6.2 Shallow Water Flows . 105

6.3 Water Flow with a Free Surface . 106

6.4 Two-Dimensional Depth-Average Shallow Water Equations 109

6.5 Hyperbolic Character of the Shallow Water Equations 113

6.5.0.1 Eigen Structure for Shallow Water Equations with Solute114

6.6 Approximate Riemann Solvers . 116

6.6.1 The Roe Solver . 116

6.6.2 The HLL (Harten-Lax-van Leer) Solver 118

6.6.3 Shu and Osher Solver . 121

6.7 Source Terms . 122

6.7.1 The Surface Gradient Method For Varying Bathymetry 122

6.7.2 Coriolis acceleration . 126

6.7.3 Bed Resistance . 127

6.8 Conclusions . 127

7 Object-Oriented Design and Development 129

7.1 Introduction . 129

7.2 Object-Oriented Design Using UML . 129

7.3 Riemann2D Design . 130

7.3.1 riemann2d.generic Package . 133

7.3.2 riemann2d.limiter Package . 139

7.3.3 riemann2d.shallowwater Package 146

7.3.4 riemann2d.shallowwater.erosion Package 152

7.4 Riemann2D Development . 152

7.4.1 Riemann2D Development Process 152

7.4.2 Java IDE - Borland JBuilder . 156

7.4.3 CVS & Riemann2D Development 156

7.5 Conclusions . 157

iv

CONTENTS

8 Riemann2D Applied to Shallow Water Equations 159

8.1 Introduction . 159

8.2 Model Verification and Validation . 159

8.3 One-Dimensional Dam Break Problem 162

8.3.1 Aim of Test . 164

8.3.2 Test Configuration . 165

8.3.3 Observations . 175

8.4 Two-Dimensional Circular Dam Break 176

8.4.1 Aim of the test . 177

8.4.2 Test Configuration . 177

8.4.3 Observations . 187

8.5 Two-Dimensional Partial Dam Break . 187

8.5.1 Aim of the test . 187

8.5.2 Test Configuration . 188

8.5.3 Observations . 198

8.6 Rotation Test for Shallow Water Equations 198

8.6.1 Aim of the test . 198

8.6.2 Test Configuration . 199

8.6.3 Observations . 211

8.7 Dam Break in a Converging-Diverging Channel 214

8.7.1 Aim of Test . 214

8.7.2 The Laboratory Configuration of the CADAM Project 214

8.7.3 Test Configuration . 215

8.7.4 Observations . 224

8.8 Dam Break in a Channel with 90◦ Bend 226

8.8.1 The Laboratory Configuration of the CADAM Project 227

8.8.2 Aim of Test . 227

8.8.3 Observations . 232

8.9 Two-Dimensional Dam Break Experiment of Fraccarollo and Toro . . . 233

8.9.1 Aim of Test . 233

8.9.2 The Laboratory Configuration 233

8.9.3 Observations . 234

8.10 Oblique Hydraulic Jump . 237

v

CONTENTS

8.10.1 Aim of Test . 237

8.10.2 Test Configuration . 237

8.10.3 Observations . 238

8.11 Conclusions . 239

9 Summary and Future Work 242

9.1 Attractions of the Present Work . 242

9.2 Realised New Development . 244

9.3 Recommended Further Developments . 246

A Glossary of Object-Oriented & Computing Terms 248

References 274

vi

List of Tables

2.1 Classification of PDEs based on the coefficients of the second order terms in equation

2.1. 7

3.1 Access levels used in Riemann2D development. 39

4.1 Comparison of the properties of the element-centred and node-centred control volumes. 65

4.2 Classification of boundary conditions . 73

8.1 Position of the gauging points in the 90◦ bend channel, the origin of the axes being

in the lower left corner. Note: The name of the station are same as Fraccarollo and

Toro (1995). 229

8.2 Position of the gauging points in the reservoir and flood-plain, the origin of the axes

being in the lower left corner . 234

vii

List of Figures

1.1 A sample object-oriented design comments box used in the chapters 3,4 and 5. . . . 4

2.1 Information propagation along characteristics of the wave equation(a) elliptic (b) par-

abolic (c) hyperbolic PDE [Recktenwald (2004)]. 8

2.2 Family tree of Label type objects [Kutija (1998)] 29

3.1 (a) Quadrilateral Mesh (b) Triangular Mesh . 35

3.2 Objects of Riemann2D : Node, Side, Element, Mesh and Solver 36

3.3 Level of packages in the Riemann2D model. 37

3.4 Relationship between the various classes in the Generic package and the shallow water

package. 39

4.1 Illustration of a finite volume method for updating the cell average Un
i by fluxes at

the cell edges. Shown in x− t space . 44

4.2 Illustration of the Riemann problem (a) Initial data at t = 0, consists of two constant

states separated by a discontinuity at x = 0. (b) Solution in the x − t plane for the

linear advection equation with positive characteristic speed a. 51

4.3 Approximate HLL Riemann solver. Solution in the star region consists of a single

state UHLL separated from data states by two waves of speeds SL and SR 60

4.4 (a) Cartesian grid, (b) body-fitted structured grid, (c) unstructured grid with varying

element size . 62

4.5 Types of two-dimension control volume (a) Node-Centred (b) Element-Centred . . . 63

4.6 Different possible choices of the control volumes for node centered control volume.

Dashed lines are the control volume’s faces and the solid lines are the elements (tri-

angles)[Namin et al. (2004)] . 64

viii

LIST OF FIGURES

4.7 Three domains of different shapes and with different level of mesh refinement. (a)

Circular Domain (b) Triangular Domain (c) Rectangular Domain (d) Ratio of (No.

of Elements) to (No. of Nodes) for all the three cases. It can be seen in Figure (d)

that the ratio tends to 2 as the mesh is refined. Note: The “No of Steps” in (d) is the

number of times mesh is refined for each domain. 65

4.8 Discretization of space with triangular control volume. The information propagates

normal to the element faces in three directions. 67

4.9 Conventions for the flux computation across edge AB (as seen from the shaded element) 68

4.10 Numerical domain of dependence shown in circular points at the mesh node. Two

possible characteristics are shown by lines. QP corresponds larger c and the CFL

conditions is violated. RP corresponds smaller c and the CFL condition is satisfied. . 69

4.11 Element and its neighboring elements . 70

4.12 Ghost Elements which is made as the mirror image of the element inside the domain 72

4.13 Object-oriented implementation of boundary conditions: (a) Flux-type (b) Reflective-

type (c) State-type (d) Transmissive-type zero order extrapolation 73

4.14 First-order extrapolation for 2D triangular elements: (a) Elements in plan

view. Ghost Element C is in grey shade. (b) Elements in plan and elevation view.

Ghost Element C elevation view is excluded. (c) Elements shown after the limiters are

applied. Ghost Element C is given same value (+ or -) as the boundary element O i.e.,

‖CC′‖ = ‖OO′‖. This is often know as zero-order extrapolation. (d) Ghost Element

O is given value (+ or -) based on the gradient of the triangle formed by values in the

OO’, AA’ and BB’. This is often know as first-order extrapolation. Shaded triangle

C shows that the value in the ghost element could be different from the zero-order

value, depending on the gradient of O’A’B’. (e) Object-oriented implementation of

first-order transmissive-type boundary condition. 78

5.1 Illustration of the numerical phenomenon of spurious oscillations near high gradient . 82

5.2 Test on the advection equation with different linear methods. Result at time t = 1

and t = 5 , corresponding to 1 and 10 revolutions through the domain in which the

equation qt + qx = 0 are shown with periodic boundary conditions: (a) upwind, (b)

Lax-Wendroff, (c) Beam-Warming. [LeVeque (2002)] 87

ix

LIST OF FIGURES

5.3 Two representations of the upwind method for advection. (a) If Un
i represents the

value at a point where information is available, then we can trace the characteristic

back and interpolate. (b) If Un
i represents the cell average, then the flux at the

interface is determined by the cell value on the upwind side. 89

5.4 An illustration of reconstruct-evolve-average algorithm for the case of linear acoustics

(adapted from LeVeque (2002)). The Riemann problem is solved at each cell interface,

and the wave structure is used to determine the exact solution time ∆t later. This

solution is averaged over the grid cell to determine Un+1
i 93

5.5 (a) Constant reconstruction vs (b) piecewise linear reconstruction 96

5.6 Naming convention for the Limiting Procedure defined for a triangular control volume

(left) and a piecewise constant reconstruction of the solution (right) 97

5.7 (a) Generic package with limiter package. (b) Relationship between various classes in

the limiter package. GenericLimiter is superclass of other limiter classes. 98

6.1 On December 26, 2004, an earthquake off the Indonesian island of Sumatra triggered a

tsunami that struck the coasts of Indonesia, Sri Lanka, India, Thailand, the Maldives,

Malaysia, Burma, the Seychelles, and Somalia. Giant waves devastated the coastlines,

leaving 181,516 people dead, 49,936 missing, and 1.8 million displaced [Renton and

Palmer (2005)]. 105

6.2 Coordinate convention for flow with a free surface under gravity, x− y give the hori-

zontal plane and z defines the vertical direction 107

6.3 Flow with a free surface under gravity, for a fixed section y. The depth of water above

datum, η is calculated in +ve direction above datum. Whereas, depth of bed surface

is calculated in +ve direction below datum. 107

6.4 Failure of the Roe solver when the left and right states, ul and ur, lie in particular

regions of phase space. In this example the left and right states are shallow, with

opposite velocities. The arrows are in the direction of the Roe eigenvectors, the

intersection of which is the middle state u∗, corresponding to a negative depth h

[George (2004)] . 118

6.5 Constructing a solution using conservation and estimated speeds. If the speeds s1 and

s2 are predetermined estimates, an approximate solution can be uniquely determined

by applying the conservation law to the region ω = [xl; xr] surrounding the interface

[George (2004)] . 119

x

LIST OF FIGURES

6.6 The Surface Gradient Method For Varying Bathymetry (a) Plan view of three tri-

angles. (b) Elevation view: surface gradient for water column depth at side is equal

to surface gradient of the bed depth. (c) Elevation view: surface gradient for water

column depth (split into η, free surface height and d′, depth at side) at side is equal

to surface gradient of the bed depth. (d) Elevation view: surface gradient for water

column depth (split into η, free surface height and d′, depth at side) at side is not

equal to surface gradient of the bed depth. 123

6.7 Reference pointers for implementing surface gradient within each element. 125

7.1 Notation used for the UML diagram. Note: The notations in this diagram are made

using Microsoft Paint software, where the UML diagrams in this chapter are generated

using JBuilder UML tool. Hence the shapes in this diagram are a little different than

other UML diagrams. 131

7.2 UML diagram showing inheritance and associations of all the classes in the Rie-

mann2D model. This gives a brief picture of the model. The detailed description

and UML diagrams for each package is given in sections 7.3.1 - 7.29. 132

7.3 Inheritance and associations among the classes in the riemann2d.generic package.

The detailed UML diagram for each of these classes can be found in Figure 7.5 - 7.9 . 133

7.4 Diagram shows the classes contained within riemann2d.generic package and its rela-

tion with other packages. It also shows the relationship with the Java packages. . . . 134

7.5 Class diagram for GenericNode class of the riemann2d.generic package. It shows

the relationship of GenericNode class with other classes/packages of Riemann2D and

packages of Java. This class is implemented by the Node class of a subclassed package

to inherit all the generic properties of a node as classified in GenericNode Class. . . 135

7.6 Class diagram for GenericSide class of the riemann2d.generic package. It shows

the relationship of GenericSide class with other classes/packages of Riemann2D and

packages of Java. This class is implemented by the Side class of a subclassed package

to inherit all the generic properties of a side as classified in GenericNode class. . . . 137

7.7 Class diagram for GenericElement class of the riemann2d.generic package. It shows

the relationship of GenericElement class with other classes/packages of Riemann2D

and the packages of Java. This class is implemented by the Element class of the

subclassed package to inherit all the generic properties of an element as classified in

GenericElement class. 138

xi

LIST OF FIGURES

7.8 Class diagram for GenericMesh class of the riemann2d.generic package. It shows

the relationship of GenericMesh class with other classes/packages of Riemann2D and

the packages of Java. This class is implemented by the Mesh class of the subclassed

package to inherit all the generic properties of a mesh as classified in GenericMesh class.140

7.9 Class diagram for GenericSolver class of the riemann2d.generic package. It shows the

relationship of GenericSolver class with other classes/packages of Riemann2D and the

packages of Java. This class is implemented by the Solver class of a subclassed package

to inherit all the generic properties of a solver as classified in GenericSolverClass. . . 141

7.10 Inheritance and associations among the classes in riemann2d.limiter package. The

detailed UML diagram for few of these classes can be found in Figures 7.13 - 7.17 . . 141

7.11 Diagram shows the classes contained within the riemann2d.limiter package and its

relation with other packages. It also shows the relationship with the Java packages. . 142

7.12 Class diagram for the GenericLimiter class of the riemann2d.limiter package. It

shows the relationship of the GenericLimiter class with other classes/packages of

Riemann2D and the Java packages. This class is the superclass for other classes of

different limiters in the riemann2d.limiter package. It has common properties of any

limiter class. 142

7.13 Class diagram for the SuperbeeLimiter class of the riemann2d.limiter package. It

shows the relationship of the SuperbeeLimiter class with other classes/packages of

Riemann2D and the Java packages. This class extends the GenericLimiter (see Figure

7.12) class as a superclass and hence inherits its properties. 143

7.14 Class diagram for the MinmodLimiter class of the riemann2d.limiter package. It

shows the relationship of the MinmodLimiter class with other classes/packages of

Riemann2D and the Java packages. This class extends the SuperbeeLimiter (see

Figure 7.13) class as a superclass and hence inherits its properties. 143

7.15 Class diagram for the VanleerLimiter class of the riemann2d.limiter package. It shows

the relationship of the VanleerLimiter class with other classes/packages of Riemann2D

and the Java packages. This class extends the GenericLimiter (see Figure 7.12) class

as a superclass and hence inherits its properties. 144

7.16 Class diagram for the LCDLimiter class of the riemann2d.limiter package. It shows

the relationship of the LCDLimiter class with other classes/packages of Riemann2D

and the Java packages. This class extends the GenericLimiter (see Figure 7.12) class

as a superclass and hence inherits its properties. 144

xii

LIST OF FIGURES

7.17 Class diagram for the MLGLimiter class of the riemann2d.limiter package. It shows

the relationship of the MLGLimiter class with other classes/packages of Riemann2D

and the Java packages. This class extends the GenericLimiter (see Figure 7.12) class

as a superclass and hence inherits its properties. 145

7.18 Diagram for the Limiter interface of the riemann2d.limiter package. An interface is

a contract in the form of a collection of methods and constant declarations. When a

class implements the Limiter interface, it has to implement all of the methods declared

in the Limiter interface. 145

7.19 Inheritance and associations among the classes in riemann2d.shallowwater package.

The detailed UML diagram for few of these classes can be found in Figures 7.5 - 7.25 147

7.20 Diagram shows the classes contained within the riemann2d.shallowwater package and

its relation with other packages. It also shows the relationship with the Java packages. 148

7.21 Class diagram for the Node class of the riemann2d.shallowwater package. It shows the

relationship of the Node class with other classes/packages of Riemann2D and the Java

packages. This class extends the GenericNode (see Figure 7.5) class as a superclass

and hence inherits its properties. 149

7.22 Class diagram for the Side class of the riemann2d.shallowwater package. It shows the

relationship of the Side class with other classes/packages of Riemann2D and the Java

packages. This class extends the GenericSide (see Figure 7.6) class as a superclass

and hence inherits its properties. 149

7.23 Class diagram for the Element class of the riemann2d.shallowwater package. It shows

the relationship of the Element class with other classes/packages of Riemann2D and

the Java packages. This class extends the GenericElement (see Figure 7.7) class as a

superclass and hence inherits its properties. 150

7.24 Class diagram for the Mesh class of the riemann2d.shallowwater package. It shows

the relationship of the Mesh class with other classes/packages of Riemann2D and

the Java packages. This class extends the GenericMesh (see Figure 7.8) class as a

superclass and hence inherits its properties. 151

7.25 Class Diagram for the ShallowWaterSolver class of the riemann2d.shallowwater pack-

age. It shows the relationship of the Element class with other classes/packages of

Riemann2D and the Java packages. This class extends the GenericSolver (see Figure

7.9) class as a superclass and hence inherits its properties. 153

xiii

LIST OF FIGURES

7.26 Class diagram for the DamBreakTest class of the riemann2d.shallowwater package.

It shows the relationship of the DamBreakTest class with other classes/packages of

Riemann2D and the Java packages . 153

7.27 Diagram shows the classes contained within the riemann2d.shallowwater.erosion pack-

age and its relation with other packages. It also shows the relationship with the Java

packages. 154

7.28 Class diagram for the ErosionElement class of the riemann2d.shallowwater.erosion

package. It shows the relationship of the ErosionElement class with other classes/packages

of Riemann2D and the Java packages. This class extends the Element class as a su-

perclass and hence inherits its properties. 154

7.29 Class diagram for EorsionSolver class of the riemann2d.shallowwater.erosion pack-

age. It shows the relationship of ErosionSolver class with other classes/packages of

Riemann2D and the Java packages. This class extends the GenericSolver class as a

superclass and hence inherits its properties. 155

7.30 Iterative Development Cycles used for Riemann2D development. 155

7.31 CVS & Riemann2D Development: The above figure shows the relation and interaction

between various people using the repository. 157

8.1 The validation of simulation models: The above figure shows the relationship between

modelling and reality [Schleisinger (1979)]. 160

8.2 Sample mesh diagrams. (a) and (c) shows mesh with interior boundaries before ma-

nipulation. (b) and (d) shows mesh with interior boundaries after manipulation. . . 163

8.3 Definition sketch of one-dimensional dam break problem. 163

8.4 Dam-break flow on wet bottom. (a): description of the characteristic curves C+ =

u +
√

ghs in the plane(x, t). Initially, the dam-break occurs at x = 0. A shock wave

S appears. (b): description of the characteristic curves C− = u −√ghs in the plane

(x, t). A rarefaction wave is generated between A and B. 164

8.5 Numerical mesh configuration for one-dimensional dam break problem: The above

figure shows four condition for dam break simulation. (a) Dam Break condition in

positive x− direction (b) Dam Break condition in negative x− direction (c) Dam

Break condition in positive y− direction (d) Dam Break condition in negative y−
direction. Note: All the dimensions in the above figure are in meter. 167

xiv

LIST OF FIGURES

8.6 Depth Vs Distance: One-dimensional dam break simulation (Mesh configuration:

Figure 8.5(a)) using Roe’s approximate Riemann solver. The above figure shows

the comparison between Roe’s approximate solver (used in Riemann2D) with differ-

ent limiters and one-dimensional exact solver [using Clawpack (see LeVeque (2002))].

Limiters used with Roe’s solver are: (a) No Limiter (b) Minmod (c) Superbee (d)

LCD (e) Extended VanLeer (f) MLG. Note: Plot at time = 4s after dam break. . . . 168

8.7 Momentum Vs Distance: One-dimensional dam break simulation (Mesh configura-

tion: Figure 8.5(a)) using Roe’s approximate Riemann solver. The above figure shows

the comparison between Roe’s approximate solver (used in Riemann2D) with differ-

ent limiters and one-dimensional exact solver [using Clawpack (see LeVeque (2002))].

Limiters used with Roe’s solver are: (a) No Limiter (b) Minmod (c) Superbee (d)

LCD (e) Extended VanLeer (f) MLG. Note: Plot at time = 4s after dam break. . . . 169

8.8 Depth Vs Distance: One-dimensional dam break simulation (Mesh configuration:

Figure 8.5(a)) using HLL approximate Riemann solver. The above figure shows the

comparison between HLL approximate solver (used in Riemann2D) with different

limiters and one-dimensional exact solver [using Clawpack (see LeVeque (2002))].

Limiters used with Roe’s solver are: (a) No Limiter (b) Minmod (c) Superbee (d)

LCD (e) Extended VanLeer (f) MLG. Note: Plot at time = 4s after dam break. . . . 170

8.9 Momentum Vs Distance: One-dimensional dam break simulation (Mesh configura-

tion: Figure 8.5(a)) using HLL approximate Riemann solver. The above figure shows

the comparison between Roe’s approximate solver (used in Riemann2D) with differ-

ent limiters and one-dimensional exact solver [using Clawpack (see LeVeque (2002))].

Limiters used with Roe’s solver are: (a) No Limiter (b) Minmod (c) Superbee (d)

LCD (e) Extended VanLeer (f) MLG. Note: Plot at time = 4s after dam break. . . . 171

8.10 Depth Vs Distance: One-dimensional dam break simulation (Mesh configuration:

Figure 8.5(a)) using Shu and Oshers’ (SO) approximate Riemann solver. The above

figure shows the comparison between Roe’s approximate solver (used in Riemann2D)

with different limiters and one-dimensional exact solver [using Clawpack (see LeVeque

(2002))]. Limiters used with Roe’s solver are: (a) No Limiter (b) Minmod (c) Superbee

(d) LCD (e) Extended VanLeer (f) MLG. Note: Plot at time = 4s after dam break. . 172

xv

LIST OF FIGURES

8.11 Momentum Vs Distance: One-dimensional dam break simulation (Mesh configu-

ration: Figure 8.5(a)) using Shu and Oshers’ (SO) approximate Riemann solver. The

above figure shows the comparison between Roe’s approximate solver (used in Rie-

mann2D) with different limiters and one-dimensional exact solver [using Clawpack

(see LeVeque (2002))]. Limiters used with Roe’s solver are: (a) No Limiter (b) Min-

mod (c) Superbee (d) LCD (e) Extended VanLeer (f) MLG. Note: Plot at time = 4s

after dam break. 173

8.12 One-dimensional dam break simulation. All the above case is simulated using Roe

solver without any limiter. Simulation for:

(a) mesh configuration in Figure 8.5(a);

(b) mesh configuration in Figure 8.5(b);

(c) mesh configuration in Figure 8.5(c);

(d) mesh configuration in Figure 8.5(d); and

(e) Comparison of all the four cases by rotating the axis for cases (b) and (d). Note:

Plot at time = 4s after dam break. 174

8.13 Two-dimensional circular dam break configuration: The above figure shows (a) nu-

merical mesh and plan view of the problem, (b) 3D perspective view of the initial con-

dition, (c) scatter plot of the water height in each element of the domain at t = 0.69 s

(using Roes’ approximate solver without limiter), and (d) scatter plot of the Froude

number for each element of the domain at t = 0.69 s (using Roes’ approximate solver

without limiter). It can be seen that this is problem of two-dimensional transitional

(sub-to-super and super-to-sub critical) flow condition. 179

8.14 Two-dimensional circular dam break simulation (Mesh configuration: Figure 8.13)

using Roe’s approximate Riemann solver. The above figure shows depth contour

plots for dam break situation. Limiters used with Roe’s solver are: (a) No Limiter (b)

Minmod (c) Superbee (d) LCD (e) Extended VanLeer (f) MLG. Note: Plot at time

= 0.69s after dam break. 180

8.15 Two-dimensional circular dam break simulation (Mesh configuration: Figure 8.13)

using Roe’s approximate Riemann solver. The above figure shows 3D perspective

view of the dam break situation. Limiters used with Roe’s solver are: (a) No Limiter

(b) Minmod (c) Superbee (d) LCD (e) Extended VanLeer (f) MLG. Note: Plot at

time = 0.69s after dam break. 181

xvi

LIST OF FIGURES

8.16 Two-dimensional circular dam break simulation (Mesh configuration: Figure 8.13)

using HLL approximate Riemann solver. The above figure shows depth contour plots

for dam break situation. Limiters used with HLL solver are: (a) No Limiter (b)

Minmod (c) Superbee (d) LCD (e) Extended VanLeer (f) MLG. Note: Plot at time

= 0.69s after dam break. 182

8.17 Two-dimensional circular dam break simulation (Mesh configuration: Figure 8.13)

using HLL approximate Riemann solver. The above figure shows 3D perspective view

of the dam break situation. Limiters used with HLL solver are: (a) No Limiter (b)

Minmod (c) Superbee (d) LCD (e) Extended VanLeer (f) MLG. Note: Plot at time

= 0.69s after dam break. 183

8.18 Two-dimensional circular dam break simulation (Mesh configuration: Figure 8.13)

using Shu and Osher’s (SO) approximate Riemann solver. The above figure shows

depth contour plots for dam break situation. Limiters used with Shu and Osher’s

solver are: (a) No Limiter (b) Minmod (c) Superbee (d) LCD (e) Extended VanLeer

(f) MLG. Note: Plot at time = 0.69s after dam break. 184

8.19 Two-dimensional circular dam break simulation (Mesh configuration: Figure 8.13)

using Shu and Osher’s (SO) approximate Riemann solver. The above figure shows

3D perspective view of the dam break situation. Limiters used with Shu and Osher’s

solver are: (a) No Limiter (b) Minmod (c) Superbee (d) LCD (e) Extended VanLeer

(f) MLG. Note: Plot at time = 0.69s after dam break. 185

8.20 3D surface view and water depth contour published in various literature (a) Gottardi

and Venutelli (2004) (b) Anastasiou and Chan (1997) and (c) Mohamadian et al.

(2005). Note: All the initial condition and boundary conditions are same as used in

the present test case. Time = 0.69s . 186

8.21 Two-dimensional partial dam break configuration: The above figure shows (a) numer-

ical mesh and plan view of the problem, and (b) 3D perspective view of the initial

condition . 189

8.22 Two-dimensional partial dam break simulation (Mesh configuration: Figure 8.21)

using Roe’s approximate Riemann solver. The above figure shows depth contour plots

for the dam break situation. Limiters used with Roe’s solver are: (a) No Limiter (b)

Minmod (c) Superbee (d) LCD (e) Extended VanLeer (f) MLG. Note: Plot at time

= 7.2s after dam break. 190

xvii

LIST OF FIGURES

8.23 Two-dimensional partial dam break simulation (Mesh configuration: Figure 8.21)

using Roe’s approximate Riemann solver. The above figure shows 3D perspective

view of the dam break situation. Limiters used with Roe’s solver are: (a) No Limiter

(b) Minmod (c) Superbee (d) LCD (e) Extended VanLeer (f) MLG. Note: Plot at

time = 7.2s after dam break. 191

8.24 Two-dimensional partial dam break simulation (Mesh configuration: Figure 8.21)

using HLL approximate Riemann solver. The above figure shows depth contour plots

for the dam break situation. Limiters used with HLL solver are: (a) No Limiter (b)

Minmod (c) Superbee (d) LCD (e) Extended VanLeer (f) MLG. Note: Plot at time

= 7.2s after dam break. 192

8.25 Two-dimensional partial dam break simulation (Mesh configuration: Figure 8.21)

using HLL approximate Riemann solver. The above figure shows 3D perspective view

of the dam break situation. Limiters used with HLL solver are: (a) No Limiter (b)

Minmod (c) Superbee (d) LCD (e) Extended VanLeer (f) MLG. Note: Plot at time

= 7.2s after dam break. 193

8.26 Two-dimensional partial dam break simulation (Mesh configuration: Figure 8.21)

using Shu & Osher’s approximate Riemann solver. The above figure shows depth

contour plots for the dam break situation. Limiters used with Shu & Osher’s solver

are: (a) No Limiter (b) Minmod (c) Superbee (d) LCD (e) Extended VanLeer (f)

MLG. Note: Plot at time = 7.2s after dam break. 194

8.27 Two-dimensional partial dam break simulation (Mesh configuration: Figure 8.21)

using Shu & Osher’s approximate Riemann solver. The above figure shows 3D per-

spective view of the dam break situation. Limiters used with Shu & Osher’s solver

are: (a) No Limiter (b) Minmod (c) Superbee (d) LCD (e) Extended VanLeer (f)

MLG. Note: Plot at time = 7.2s after dam break. 195

8.28 Two-dimensional partial dam break simulation (Mesh configuration: Figure 8.21)

using relaxation schemes. The above figure shows 3D perspective view of the dam

break situation and depth contour plots for the dam break situation. (a)the upwind

relaxation scheme (b) the MUSCL relaxation scheme (Minmod limiter) Note: Plot at

time = 7.2s after dam break. Results Published: Delis and Katsaounis (2005) 196

xviii

LIST OF FIGURES

8.29 Two-dimensional partial dam break simulation (Mesh configuration: Figure 8.21)

using relaxation schemes. The above figure shows 3D perspective view of the dam

break situation and depth contour plots for the dam break situation. (a)the upwind

relaxation scheme (Superbee limiter) (b) the MUSCL relaxation scheme (VanLeer

limiter) Note: Plot at time = 7.2s after dam break. Results Published: Delis and

Katsaounis (2005) . 197

8.30 Rotation test configuration: (a) Diagram showing the angular velocity applied at a

point in the domain, (b) Velocity vector constantly applied in the domain, (c) 3D

perspective view of the initial condition of the rotation test, and (d) Initial condition

of the concentration contour . 201

8.31 Rotation test mesh configuration: Test is conducted on three level of mesh for same

domain and initial condition (a) 512 elements (b) 2048 elements (c) 8192 elements . 201

8.32 Rotation test: Concentration contours diagram for domain with 512 elements mesh

(Figure 8.31). Each figure above shows the concentration contours at quarter rotation

in anti-clockwise direction. Corresponding time of travel are 15.70796 s (12’O clock),

31.41593 s (9’O clock), 47.12389 s (6’O clock) and 62.83185 s (3’O clock). Limiters

used for rotation test: (a) No Limiter (b) Minmod (c) Superbee (d) LCD (d) Extended

VanLeer (e) MLG. 202

8.33 Rotation test: 3D perspective view for domain with 512 elements mesh (Figure 8.31).

Each figure above shows the concentration surface at quarter rotation in anti-clockwise

direction. Corresponding time of travel are 15.70796 s (12’O clock), 31.41593 s (9’O

clock), 47.12389 s (6’O clock) and 62.83185 s (3’O clock). Limiters used for rotation

test: (a) No Limiter (b) Minmod (c) Superbee (d) LCD (d) Extended VanLeer (e)

MLG. 203

8.34 Rotation test: Concentration depth comparison diagram for domain with 512 elements

mesh (Figure 8.31). Each figure above shows the comparison of the concentration

depth at quarter rotation in anti-clockwise direction. Corresponding time of travel

are (a) 15.70796 s (12’O clock), (b) 31.41593 s (9’O clock), (c) 47.12389 s (6’O clock)

and (d) 62.83185 s (3’O clock). Limiters used for rotation tests are No Limiter,

Minmod, Superbee, LCD, Extended VanLeer and MLG. 204

8.35 Rotation test: Time series comparison diagram for domain with 512 elements mesh

(Figure 8.31). Limiters used for rotation tests are No Limiter, Minmod, Superbee,

LCD, Extended VanLeer and MLG. 204

xix

LIST OF FIGURES

8.36 Rotation test: Concentration contours diagram for domain with 2048 elements mesh

(Figure 8.31). Each figure above shows the concentration contours at quarter rotation

in anti-clockwise direction. Corresponding time of travel are 15.70796 s (12’O clock),

31.41593 s (9’O clock), 47.12389 s (6’O clock) and 62.83185 s (3’O clock). Limiters

used for rotation test: (a) No Limiter (b) Minmod (c) Superbee (d) LCD (d) Extended

VanLeer (e) MLG. 205

8.37 Rotation test: 3D perspective view for domain with 2048 elements mesh (Figure 8.31).

Each figure above shows the concentration surface at quarter rotation in anti-clockwise

direction. Corresponding time of travel are 15.70796 s (12’O clock), 31.41593 s (9’O

clock), 47.12389 s (6’O clock) and 62.83185 s (3’O clock). Limiters used for rotation

test: (a) No Limiter (b) Minmod (c) Superbee (d) LCD (d) Extended VanLeer (e)

MLG. 206

8.38 Rotation test: Concentration depth comparison diagram for domain with 2048 ele-

ments mesh (Figure 8.31). Each figure above shows the comparison of the concen-

tration depth at quarter rotation in anti-clockwise direction. Corresponding time of

travel are (a) 15.70796 s (12’O clock), (b) 31.41593 s (9’O clock), (c) 47.12389 s (6’O

clock) and (d) 62.83185 s (3’O clock). Limiters used for rotation tests are No Limiter,

Minmod, Superbee, LCD, Extended VanLeer and MLG. 207

8.39 Rotation test: Time series comparison diagram for domain with 2048 elements mesh

(Figure 8.31). Limiters used for rotation tests are No Limiter, Minmod, Superbee,

LCD, Extended VanLeer and MLG. 207

8.40 Rotation test: Concentration contours diagram for domain with 8192 elements mesh

(Figure 8.31). Each figure above shows the concentration contours at quarter rotation

in anti-clockwise direction. Corresponding time of travel are 15.70796 s (12’O clock),

31.41593 s (9’O clock), 47.12389 s (6’O clock) and 62.83185 s (3’O clock). Limiters

used for rotation test: (a) No Limiter (b) Minmod (c) Superbee (d) LCD (d) Extended

VanLeer (e) MLG. 208

8.41 Rotation test: 3D perspective view for domain with 8192 elements mesh (Figure 8.31).

Each figure above shows the concentration surface at quarter rotation in anti-clockwise

direction. Corresponding time of travel are 15.70796 s (12’O clock), 31.41593 s (9’O

clock), 47.12389 s (6’O clock) and 62.83185 s (3’O clock). Limiters used for rotation

test: (a) No Limiter (b) Minmod (c) Superbee (d) LCD (d) Extended VanLeer (e)

MLG. 209

xx

LIST OF FIGURES

8.42 Rotation test: Concentration depth comparison diagram for domain with 8192 ele-

ments mesh (Figure 8.31). Each figure above shows the comparison of the concen-

tration depth at quarter rotation in anti-clockwise direction. Corresponding time of

travel are (a) 15.70796 s (12’O clock), (b) 31.41593 s (9’O clock), (c) 47.12389 s (6’O

clock) and (d) 62.83185 s (3’O clock). Limiters used for rotation tests are No Limiter,

Minmod, Superbee, LCD, Extended VanLeer and MLG. 210

8.43 Rotation test: Time series comparison diagram for domain with 8192 elements mesh

(Figure 8.31). Limiters used for rotation tests are No Limiter, Minmod, Superbee,

LCD, Extended VanLeer and MLG. 210

8.44 Comparison of limiters for concentration of peak after one full rotation (a) Vs number

of elements in the mesh (b) Vs size of the elements (cm2) [assuming that the element

size in same in each mesh, see Figure 8.31 (a), (b) and (c)].

Note: Initial peak is 1 unit. The information is available only for mesh size 512, 2048

and 8192. Therefore, the line joining three point is a smooth curve passing through

these points and they do not represent true value of peak for corresponding size of

mesh (or number of elements). 212

8.45 Schematic diagram of channel with local constriction. The laboratory model consists

of a 19.30 m long rectangular channel with a removable sluice gate at 6.10 m and a

constriction at 13.8 m. The constriction is 0.1 m wide and 1.0 m long. Also shown

are the gauging stations S1 to S4. 216

8.46 Mesh diagram of channel with local constriction. The laboratory model dimensions

are given in the Figure 8.45. 216

8.47 Comparison between experimental data and numerical results using Roe’s approxi-

mate solver on the time evolution during 10s of the water depth at the gauging points

S1, S2, S3 and S4. Limiters used with Roe’s solver: (a) No Limiter (b) Minmod. . . 217

8.48 Comparison between experimental data and numerical results using Roe’s approxi-

mate solver on the time evolution during 10s of the water depth at the gauging points

S1, S2, S3 and S4. Limiters used with Roe’s solver: (a) Superbee (b) LCD. 218

8.49 Comparison between experimental data and numerical results using Roe’s approxi-

mate solver on the time evolution during 10s of the water depth at the gauging points

S1, S2, S3 and S4. Limiters used with Roe’s solver: (a) Extended VanLeer (b) MLG. 219

xxi

LIST OF FIGURES

8.50 Comparison between experimental data and numerical results using HLL approximate

solver on the time evolution during 10s of the water depth at the gauging points S1,

S2, S3 and S4. Limiters used with HLL solver: (a) No Limiter (b) Minmod. 220

8.51 Comparison between experimental data and numerical results using HLL approximate

solver on the time evolution during 10s of the water depth at the gauging points S1,

S2, S3 and S4. Limiters used with HLL solver: (a) Superbee (b) LCD. 221

8.52 Comparison between experimental data and numerical results using HLL approximate

solver on the time evolution during 10s of the water depth at the gauging points S1,

S2, S3 and S4. Limiters used with HLL solver: (a) Extended VanLeer (b) MLG. . . 222

8.53 Comparison between experimental data and numerical results using SO approximate

solver on the time evolution during 10s of the water depth at the gauging points S1,

S2, S3 and S4. Limiters used with SO solver: (a) No Limiter fails for assumption:

minimum depth = 10−6 (b) No Limiter with assumption for minimum depth = 10−4. 223

8.54 Comparison between experimental data and numerical results using SO approximate

solver and Minmod limiter on the time evolution during 10s of the water depth at the

gauging points S1, S2, S3 and S4. Minmod limiter fails for assumption: minimum

depth = 10E-4. 224

8.55 Schematic diagram of channel with 90◦ bend. The laboratory model consists of a long

rectangular channel with a removable sluice gate at the entrance. Also shown are the

gauging stations G1 to G6. Note: Dimensions are in mm. 229

8.56 Comparison between experimental data and numerical results using HLL approximate

solver on the time evolution during 10s of the water depth at the gauging points S1,

S2, S3, S4, S5 and S6. 230

8.57 Comparison between experimental data and numerical results using HLL approximate

solver on the time evolution during 10s of the water depth at the gauging points S1,

S2, S3, S4, S5 and S6. 231

8.58 (a) Schematic diagram of experimental reservoir and flood-plain, (b) Numerical mesh

for the domain. 235

8.59 Comparison between experimental data and numerical results using approximate

solver on the time evolution during 10s of the water depth at the gauging points

-5A, C, O and 9B. (a) Roes’ (b) HLL . 236

8.60 (a) Schematic diagram showing oblique shock front in supercritical flow, (b) Mesh. . 238

8.61 Contour of the water depth . 238

xxii

CHAPTER 1

Introduction

1.1 Motivation

Fluid dynamics, like other physical sciences, is divided into theoretical and experimental

branches. However, computational fluid dynamics (CFD) is third branch of Fluid

dynamics, which has aspects of both the previous two branches. CFD is a supplement

rather than a replacement to the experiment or theory. It turns a computer into a

virtual laboratory, providing insight, foresight, return on investment and cost savings1.

This work is a step toward an approach that realise a new and effective way of developing

these CFD models.

A common practice in CFD, seen over the last four decades, is to take existing

modelling codes, written in the procedural languages, and create ad hoc assemblies to

add extra features to it. This may be valuable in the short term, but it leads to great

duplication of effort and does not represent a long term solution [Harvey et al. (2002)].

In this work a framework and a model is presented to overcome this problems is by

using object-oriented technology2. This model is named Riemann2D, which is:

• simple, flexible and robust compared to the traditional models;
1Computers have, over the half century, developed to unprecedented levels of performance at an

ever decreasing cost.
2Object-oriented technology (OOT) comprises area of object-oriented approach (OOA), object-

oriented design (OOD) and object-oriented programming (OOP). [Booch (1991), Booch (1993), Gamma

et al. (1995), Dubois (1996), Larman (2004), Horstmann (2005) and Bennett et al. (2005)]

1

DRAFT COPY 1.2 The Vision

• reusable and extensible, so that the existing model can be extended without

duplicating the previous work; and

• self-explanatory to help others for an easy adoption.

1.2 The Vision

The vision which the Riemann2D development represents is a step towards developing

a generic framework to solve hyperbolic problems, which can be implemented by a new

piece of code (extended model) to solve different hyperbolic problems. The object-

oriented design of the Riemann2D is influenced by the desire to develop a model with

following features:

• Any number of developers/users should be able to implement the Riemann2D for

solving various hyperbolic problems.

• Developers should be able to overwrite, if required, the functionalities of the

Riemann2D for their individual needs, without making any change to the generic

part of the model.

• New developers/users with less knowledge of object-oriented technology or the

background of the generic model should also be able to to adopt it for their own

purpose.

• The system should facilitate multiple developers/users to simultaneously work

and contribute to the development of one model.

1.3 Problem Selection

1.3.1 Hyperbolic Problems

Hyperbolic problems have key interest in this work due to their applications in a broad

spectrum of disciplines where wave motion is important: shallow water problems, gas

dynamics, acoustics, elastodynamics, optics, geophysics, and biomechanics, to name a

few [see Toro (1999) and LeVeque (2002)].

Many single-purpose one-, two- or three-dimensional models have been developed

in the past (see Chapter 2) to solve the problems arising in the above mentioned

2

DRAFT COPY 1.4 Thesis Presentation

disciplines. However, this work uses object-oriented technology to unify the common

features required by these models and develops a generic (multi-purpose) hyperbolic

solver1.

Objective of studying and developing a generic solver is to:

1. identify the common features of various problems (as unified by the hyperbolic

theory), which will lead to better understanding of its theory and greater ap-

plicability of these techniques later to new problems; and

2. make it possible to implement the generic solver for solving a wide variety of

hyperbolic problems simply by providing the case-specific extension through ap-

propriate piece of code. These extensions will require less effort than developing

a single-purpose individual model2.

1.3.2 Shallow Water Equations

Historically, many of the fundamental ideas of hyperbolic partial differential equations

were first developed for the special case of compressible gas dynamics using the Euler’s

equations, for applications in aerodynamics, astrophysics and detonation waves. Over

the last two decades the numerical methods developed for solving Euler’s equations

have been used to study the simpler equations such as advection equation, Burger’s

equation, and the shallow water equations.

In this work shallow water equations is selected for the extension of Riemann2D ,

because:

1. it provide many challenging problems [Toro (2001)], which give an opportunity

for further development of the numerical techniques.

2. it demonstrates the implementation procedure of the generic model, which would

help in developing extensions for other hyperbolic systems.

1.4 Thesis Presentation

This work has two main components:
1Only two-dimensional models have been studied in this work
2Implementation of generic solver by shallow water model is shown in this work.

3

DRAFT COPY 1.4 Thesis Presentation

1. Theory of the Problem: It comprises of the theory of hyperbolic problems,

high-resolution methods and shallow water equations. Mathematical expressions

are an important component to these theories, which are fed to the model.

2. Computer Technology: As stated in the previous sections, the object-oriented

technology is used for the Riemann2D development. The design of the Rie-

mann2D is very much influenced by the theory of the problem.

Both of these components are inter-dependent and equally important. On one hand

studying the theory of the problem is a science, whereas, on the other hand model design

is more of an art than science. Therefore, due to the multi-disciplinary nature of this

work, organisation of thesis has been a challenging task.

The chapters in this thesis is based on the above two components. Wherein, chapters

4, 5 & 6 present the theory, and chapters 2 & 7 presents the design of the model. To

relate the theory with the object-oriented design, gray comment boxes (see sample box

in Figure 1.1) are used in the chapters 4, 5 and 6 to serves two purposes:

1. It helps to relate the theory with the object-oriented design.

2. It separate the comments from the theory, keeping the flow of the chapter.

Figure 1.1: A sample object-oriented design comments box used in the chapters 3,4 and 5.

The details of these chapters and appendices are as following:

• Chapter 1 i.e., this chapter.

• Chapter 2 presents literature review on the relevant methods of modelling

hyperbolic and shallow water problems. Initially, this chapter describes the fun-

damental of PDEs and then selection of numerical method. The sections of this

4

DRAFT COPY 1.4 Thesis Presentation

chapter provides the brief background on the chapters 4, 5, 6 and 7 i.e., the hy-

perbolic problem, high-resolution methods, shallow water equations and object-

oriented modelling.

• Chapter 3 provides description of the object-oriented approach of the Rie-

mann2D development. It also present the basics to the model design, which

helps to further understand relationship of the theory and the model design. The

detailed model design is then presented in chapter 7.

• Chapter 4 provides discussion of the hyperbolic systems. Initially it presents

the formulation of the one- and two-dimensional hyperbolic problem, followed by

discussion on Riemann problem and its solution. After this, the chapter discusses

the selection of mesh, control volume, solution for these control volumes and

stability criteria of the solution. At the end it presents a generic and efficient

approach to solve the boundary conditions.

• Chapter 5 provides discussion on the high resolution methods with theory be-

hind them. Continued from the pervious chapter on hyperbolic system, it present

the traditional numerical methods followed by the high-resolution methods used

in Riemann2D.

• Chapter 6 presents the theory of the shallow water equations. It shows the

direction for extending the generic solver. Apart from discussing the basics of

the shallow water equations, it also presents the hyperbolic characteristics of the

shallow water problems.

• Chapter 7 presents the object-oriented design and development of Rie-

mann2d. This chapter can be seen as continuation of chapter 2, where the object-

oriented approach to the model development is already given.

• Chapter 8 presents the results and discussion, when Riemann2D is applied

to the shallow water equations. A series of test cases are presented to per-

forms the model verification and validation. The tests results presented here are

compared with the numerical, analytical and experimental results.

• Chapter 9 presents summary of this work. Finally, future research possibilities

are sketched.

5

CHAPTER 2

Literature Review

2.1 Introduction

This chapter presents a review of the work done in the field of hyperbolic problems, high

resolution methods and shallow water equations followed by a brief review of various

work on object-oriented modelling.

The classification of sections in this chapter reflects the division of the chapters of

this thesis (as discussed in section 1.4). The importance of this chapter is that:

• it helps to outline the work done in the related fields; and

• separate these contents from the relevant chapters, so that the immediate prob-

lems can be addressed.

2.2 Hyperbolic Problems

This section reviews the literature to present the partial differential equations (PDEs),

hyperbolic PDEs (or problems) and their importance, numerical methods to solve hy-

perbolic problems, and how the finite volume methods have been used for solving

hyperbolic problems.

2.2.1 Partial Differential Equations

The study of partial differential equations (PDEs) started in the 18th century with

the work of Euler, d’Alembert, Lagrange and Laplace. PDEs are central tool in the

6

DRAFT COPY 2.2 Hyperbolic Problems

description of mechanics of continua and more generally, as the principal mode of

analytical study of models in the physical science [Brezis (1988)]. The analysis of

physical models has remained to the present day one of the fundamental concerns of

the development of PDEs. Beginning in the middle of the 19th century, particularly

with the work of Riemann, PDEs also became an essential tool in other branches of

mathematics. Ames (1992) identified three basic types of physical problems that lead

to PDEs, i.e., equilibrium, eigenvalue and propagation problems, which corresponds to

elliptic, parabolic and hyperbolic type PDEs respectively(see Figure 2.1 and table 2.1).

A second-order PDEs can be written as:

Auxx + 2Buxy + Cuyy + Dux + Euy + F = 0. (2.1)

Based on the matrix of coefficients of the second order terms in the above equation 2.1

i.e., Z ≡
[

A B
B C

]
, PDEs are classified as shown in the table 2.1.

Table 2.1: Classification of PDEs based on the coefficients of the second order terms in equation 2.1.

Type Condition Example

Elliptic det(Z) > 0 Laplace’s equation

Parabolic det(Z) = 0 Diffusion/Schrdinger equation

Hyperbolic det(Z) < 0 Wave equation

In the Figure 2.1 three type of PDEs based on the propagation of information are

shown, in which the domain is divided into:

• Domain of Dependence: For a point P, it is defined as the region of the solution

domain, upon which the solution at a point P, f(xp, yp) = fp depends. In other

words, fp depends on everything that has happened in domain of dependence.

• Domain of Influence: For a point P, it is defined as the region of the solution

domain in which the solution at point f(x, y) depends on the solution at P, fp

In other words, fp influences the solution at all points in the range of influence.

7

DRAFT COPY 2.2 Hyperbolic Problems

Figure 2.1: Information propagation along characteristics of the wave equation(a) elliptic (b) par-

abolic (c) hyperbolic PDE [Recktenwald (2004)].

Generally, elliptic equations have boundary conditions which are specified around a

closed boundary (Figure 2.1(a)). This has domain of influence in all the directions and

the domain of dependence is all of the the boundary. Usually all the derivatives are

with respect to spatial variables, such as in Laplace’s or Poisson’s Equation. Parabolic

(Figure 2.1(b)) and hyperbolic equations (Figure 2.1(c)), by contrast, depend on time

and have at least one open boundary. The boundary conditions for at least one variable,

usually time, are specified initially and the system is integrated indefinitely. Thus, the

diffusion equation and the wave equation contain a time variable and there is a set of

initial conditions at a particular time. These properties are, of course, related to the

fact that an ellipse is a closed object, whereas hyperbola and parabola are open.

2.2.2 Solutions of Partial Differential Equations

Generally the number of solutions satisfying a PDE are very large and the functions

may be completely different from one another. However, when applying PDEs to

model a physical system, other conditions are imposed, enabling a unique solution to

be found. For example, the solution U may assume specific values on the boundary of

the domain, and if, time dependent, have a condition specified at t = 0; these are the so

called boundary conditions and initial conditions. This system of equations consisting

of PDEs together with some initial and boundary values is properly posed[Harpham

(1997)] if it has the following properties:

8

DRAFT COPY 2.2 Hyperbolic Problems

1. Existence: For any sufficiently smooth data functions (say from the initial con-

ditions) there is a solution U of the system of equations.

2. Uniqueness: There is at most one function U satisfying the system of equations,

for given data.

3. Continuity: The solutions U corresponding to data which differ by small amounts

in the appropriate norms, also differ by small amounts. (Continuity will normally

imply uniqueness.)

2.2.3 Hyperbolic PDEs

Hyperbolic PDEs, as discussed in the above section, arise in a broad spectrum of dis-

ciplines where wave motion or advective transport is important: These areas include

gas dynamics, acoustics, elastodyanmics, optics, geophysics and biomechanics. His-

torically, many of the fundamental ideas were first developed for the special case of

compressible gas dynamics (the Euler equations), for applications in aerodynamics, as-

trophysics, detonation waves, and related fields, where shock wave arise. The study of

simpler equations such as the advective equations, Burgers’ equations and the shallow

water equations have played an important role in the development of these methods.

Often the model problem for testing methods has been the application to the Euler

equation. This is also reflected in many of the texts on these methods. Nordstro and

Gong (2006) states that these hyperbolic equations involved in modeling still remain a

computational challenge both for academia and industry.

For a one-dimensional (in space) wave equation (hyperbolic PDE)

utt = cuxx 0 ≤ x ≤ L, t ≥ 0, (2.2)

with boundary and initial conditions

u(t, 0) = u0

u(0, x) = f(x)
u(t, L) = uL

∂u
∂t

∣∣
t=0

= g(x),
(2.3)

where u = u(t, x) and
√

c is the wave speed, the solution can be represented as a field

in the semi-infinite strip, as shown in Figure 2.1. The state of the solution at time t

and position x influences the solution at all other points in the forward wedge of space

time labelled the domain of influence. This wedge is defined by two characteristics with

slope ±c.

9

DRAFT COPY 2.3 Hyperbolic Systems

2.3 Hyperbolic Systems

In the hyperbolic systems of PDEs, the problems we consider are generally time-

dependent (see section 2.2.1), so that the solution depends on time as well as one

or more spatial variables. In one space dimension, a homogeneous first order system of

PDEs in x and t has the form

ut(x, t) + Aux(x, t) = 0 (2.4)

in the simplest constant-coefficient linear case. Here u : R × R = Rm is a vector with

m components representing the unknown functions (pressure, velocity, etc.) that are

to be determined, and A is the constant m ×m real matrix. In order for this type of

problem to be hyperbolic, the matrix A must satisfy certain properties.

System 2.4 is said to be hyperbolic at a point (x,t), if matrix A has m real eigenvalues

λ1, λ2,, λm and a corresponding set of m linearly independent right eigenvectors

K(1),K(2),, K(m). The system is said to be strictly hyperbolic if the eigenvalues

λi are all distinct [Toro (1999)].

The eigenvalues λi of a matrix A are the solution of the characteristic polynomial

|A− λiI| = det (A− λiI) = 0, (2.5)

where I is the identity matrix. The eigenvalues of the coefficient matrix A of a sys-

tem of this form, equation 2.5, are also called as eigenvalues of the system. Phys-

ically these eigenvalues represent speeds of propagation of information. Whereas,

the eigenvector of a matrix A corresponding to an eigenvalue λi of A is a vector,

K(i) =
[
K

(i)
1 ,K

(i)
2 ,, K

(i)
m

]T
satisfying AK(i) = λiK

(i).

The simplest case is the constant-coefficient scalar problem, in which m = 1 and

the matrix A reduces to a scalar value. This problem is hyperbolic provided the scalar

A is real. This simple equation can model either advective transport or wave motion,

depending on the context. For more detail refer LeVeque (2002).

Since the PDEs continue to hold away from discontinuities, one possible approach

is to combine a standard finite volume method in smooth regions with some explicit

procedure for tracking the location of discontinuities. This is the numerical analogue of

10

DRAFT COPY 2.3 Hyperbolic Systems

the mathematical approach in which the PDEs are supplemented by jump conditions

across discontinuities. This approach is often called as shock tracking or front tracking.

In two-dimensions the discontinuities typically lie along curves or the surface of the

cell/element/grid and this makes it more complicated. Moreover in realistic problems

there may be many such surfaces that interact in complicated ways as time evolves.

This approach can be found in the work by Glimm et al. (1981), Davis (1992), Grove

(1994), LeVeque and Shyue (1995), and Mao (2000).

However, in this work a different approach is adopted, known as shock captur-

ing, where the goal is to capture discontinuities in the solution automatically, without

explicitly tracking them. The success of this method lies on implicitly incorporat-

ing the correct jump condition, reducing the smearing to a minimum, and no intro-

duction of the non-physical oscillation near the discontinuities. The development of

high-resolution shock-capturing schemes has a long history (see, the classical references

[Godunov (1959), Harten (1983), vanLeer (1979) and Yee (1987)] or the recent text-

books [Godlewski and Raviart (1996), Kroner (1997), LeVeque (1992), and LeVeque

(2002)]. The main reason for using shock-capturing methods is that the high-resolution

finite volume methods based on Riemann solutions often perform well and are much

simpler to implement than shock-tracking methods.

2.3.1 Conservation Laws

This work is concerned with an important class of homogeneous hyperbolic equations

called conservation laws. In physics, a conservation law states that a particular mea-

surable property of an isolated physical system does not change as the system evolves.

The simplest form of a conservation law is a one-dimension PDE

ut(x, t) + f(u(x, t))x = 0, (2.6)

where f(u) is the flux function. This form (equation 2.6) is also know as the differential

form of the conservation laws. Rewriting 2.6 in the quasi-linear form

ut + f ′(u)ux = 0 (2.7)

suggests that the equation is hyperbolic if the flux Jacobian matrix f ′(u) satisfies the

conditions previously given for the matrix A (see equation 2.4). In fact the linear

problem in equation 2.4 is a conservation law with the linear flux problem f(u) = Au.

11

DRAFT COPY 2.3 Hyperbolic Systems

but many physical problems give rise to nonlinear conservation laws in which f(u) is

a non-linear function of u.

The principal feature of nonlinear hyperbolic conservation laws, demonstrated in the

physical phenomenon of the breaking of waves, is the breakdown of classical solutions

and the development of discontinuities that propagate as shock waves (e.g., propagating

phase boundaries, fluid interfaces, gravitational waves, etc.), which play a dominant

role in multiple areas of physics: astrophysics, cosmology, dynamics of (solid-solid)

material interfaces, multiphase (liquid-vapour) flows, combustion theory, etc. In recent

years, major progress has been made in both the theoretical and numerical aspects

of the field, while the number of applications has highly increased. Dafermos et al.

(2003) states that the challenge for mathematicians is to comprehend the properties

of these non-linear waves and their relationships with the dynamics of many physical

phenomena.

2.3.2 Numerical Methods for Hyperbolic PDEs

There are many methods available to solve PDEs, of which the four commonly used

methods, applied to hyperbolic PDEs, are method of characteristics (MOC), finite

element method (FEM), finite difference method (FDM) and finite volume method

(FVM).

Method Of Characteristics (MOC) is an analysis-based method, which involves

the transformation of the PDEs to ordinary differential equations (ODEs) along the

characteristics. These transformed ODEs are then solved numerically using explicit or

implicit schemes. Classical work using these methods can be seen in the literature by

Abbott (1966), Simpson (1967), Abbott and Verwey (1970) and Edenhofer and Schmitz

(1981).

The application of MOC is limited to general cases, since spatial variability, slope,

surface roughness, and infiltration pattern cannot be adequately characterized. Most

practical applications do not have analytical solutions, therefore, analysis-based meth-

ods, like the MOC are not very useful for such problems.

Consequently, the governing equations, which are in continuous forms, are trans-

formed into discrete forms, which then result in series of algebraic equations that can be

solved with the computer. The solution of these discrete algebraic equations represents

an approximation of the continuous problem, and several methods have been developed

12

DRAFT COPY 2.3 Hyperbolic Systems

to find the most appropriate discrete representation of the actual continuous equation,

like FEM, FDM and FVM.

The Finite Element Method (FEM) involves the discretization of the system

into a series of sub-domains (usually triangular or quadrilateral), called finite elements,

connected at a discrete number of nodal points. Thereafter, each of the dependent

state variables is approximated in terms of the unknown values and the known shape

function at the nodal points. Some of the work using these methods can be seen in the

literature/books by Lee et al. (1987), Cockburn et al. (1989), Schwab (1998), Berzins

(2001) and Sheu et al. (2003). The most attractive feature of the FEM is its ability to

handle complex geometries (and boundaries) with relative ease.

A common limitation of the method is that every improvement in the predictive abil-

ity implies a corresponding increase in number of nodal points to be handled, which con-

sequently increases the number of points for solution. This always results in increased

time for efficient computations, particularly when the variable surface properties and

time-varying rainfall intended in this study are used.

One of the most frequently used methods is the finite difference method (FDM).

Some work using this method can be seen in the literature by Courant et al. (1952),

Roe (1981), Smith (1985), Carpenter et al. (1993) and Rasulov et al. (2004). There

are three basic steps in the application of this method to differential equations [Singh

(1996)]:

1. The continuous solution domain is discretized and replaced by a grid point called

the finite-difference mesh.

2. Then the continuous derivatives of the differential equation are replaced by finite

differences on the grid points, thus the solution equations, their variables and

coefficients are established at all grid points (nodes).

3. In the final step, for each node, all the equations are solved using the values of

the dependent variable given by the initial and boundary conditions. This set of

solutions is then used as initial and boundary conditions when the solution at the

next time step is desired.

The most attractive feature of FDM is that it can be very easy to implement.

However, the main problem with the FDM is that it is not flexible enough to deal with

the irregular boundaries.

13

DRAFT COPY 2.3 Hyperbolic Systems

Finite volume method (FVM) is more flexible than finite difference schemes

to treat complicated geometry and adaptivity [Xing and Shu (2006)]. It involves the

discretization of the continuous equation into a number of finite volumes. In each of

these finite volumes, the integral equations are applied to obtain the exact conserva-

tion within each element (also known as cell or grid). It is particularly useful in cases

like hydrodynamic modelling, where the equation is solved based on the principle of

conservation of momentum. By the discretization of the integral form of the conser-

vation equation, the mass and momentum remain conserved. The resulting expression

in the FVM solution appears similar to FDM depending on the techniques applied.

As such, it is often considered as a FDM applied to the differential conservative form

of the conservation law in arbitrary coordinates [Ajayi (2004)]. The method can be

applied also using an unstructured grid system as FEM, but will generally require less

computational effort than FEM.

The main advantage of FVM is that it combines the simplicity of FDM with the

geometric flexibility of FEM [Mingham and Causon (1998)]. Lomax et al. (1999) stated

that FVM have become popular in CFD as a result, primarily, of two advantages:

1. They ensure that the discretization is conservative, i.e., mass, momentum, and

energy are conserved in a discrete sense. While this property can usually be

obtained using a finite difference formulation, it is obtained naturally from a

finite volume formulation as well; and

2. Finite volume methods do not require a coordinate transformation in order to be

applied on irregular meshes. As a result, they can be applied on unstructured

meshes consisting of arbitrary polyhedra in three dimensions or arbitrary polygons

in two dimensions. This increased capability can be used to great advantage in

generating grids about arbitrary geometries.

2.3.3 Selection of Method

One of the characteristics of hyperbolic equations is that, unlike elliptic and parabolic,

they admit discontinuous solutions (See chapter 5) i.e., the dependent variables may be

discontinuous. Even if the initial and boundary conditions are smooth, a discontinuity

may develop in the solution [Liggett (1994)]. These discontinuities, often called shock

14

DRAFT COPY 2.3 Hyperbolic Systems

waves, lead to computational difficulties and one of the subjects in this work is to

develop a good understanding of such approximate solutions.

The basic characteristics that makes finite volume method (FVM) suitable for the

applications in the hyperbolic problems is that at any mesh density level transported

quantities are fully conserved. Hirsch (1990) stated that FVM are based on the integral

form of the conservation equations, thus a scheme in conservation form can easily

be constructed to capture shock waves (shock-capturing property). Classical finite

difference methods, which are very similar to the finite volume methods in 1D cases

and in which derivatives are approximated by finite differences, can be expected to

break down near discontinuities in the solution where the differential equation does not

hold [LeVeque (2002)].

2.3.4 Finite Volume Method for Hyperbolic Problems

The key problem in FVM is to estimate the normal flux through each cell interface.

There are several algorithms to estimate these fluxes. Valiani et al. (1999) stated

that hyperbolic problems have an inherent directional property of signal propagation,

therefore algorithms to estimate these fluxes should handle this property appropriately.

In FVM the mass and momentum are conserved in each cell, even in the presence

of flow discontinuities. The fluxes can be evaluated at these cell faces by solving a

Riemann problem, which accurately captures wave propagation and shocks generated

in the system. Also, numerical oscillations due to sudden jumps (shocks) in the state

parameter may be suppressed with the use of a slope limiter [Bradford and Sanders

(2002)]. Two principal ingredients in a FVM are reconstruction and flux evaluation.

• Reconstruction is the process of computing the spatial gradients of the flow vari-

ables.

• In structured methods, this is done using finite difference formulas and the (i, j,

k) grid indices. Whereas, in unstructured methods, other techniques have been

devised to compute the gradient of the flow variables.

One successful technique is the least-square reconstruction algorithm proposed by

Barth (1993), where the flow gradients in a cell are computed through a least-square

fitting procedure. Although this technique has been used quite successfully for the Euler

15

DRAFT COPY 2.3 Hyperbolic Systems

and Reynolds-averaged Navier-Stokes (RANS) simulations, it has not yet been applied

for Large Eddy Simulation (LES) or Detached Eddy Simulation (DNS) of turbulent

flows [Trong (2000)].

Generally, in FVM a flux formula is needed to compute a single flux at a cell bound-

ary given the two different flow states on the left and right sides of the cell boundary.

If the physical propagation of information of the inviscid flow is taken into account in

computing the inviscid flux, then this results in a family of numerical methods known

as upwinding [Trong (2000)]. In recent years, finite volume methods have attracted

wide attention and achieved a series of successes in the numerical simulation of hy-

perbolic problems. Using Roe’s Riemann solver, Alcrudo and Garcia-Navarro (1993)

developed a high-resolution Godunov-type MUSCL1-FVM and reported impressive re-

sults for rapidly varying inviscid flow. Zhao et al. (1994) designed a FVM on un-

structured meshes based on Osher’s scheme. Anastasiou and Chan (1997) introduced

a Roe-type second-order accurate upwind FVM on unstructured triangular meshes.

Following Harten-Lax-van Leer (HLL) Riemann solver, Hu et al. (1998) developed a

HLL-type MUSCL-FVM. Tseng (1999) proposed an explicit FVM, which takes Roe,

total variation diminishing (TVD) and essentially non-oscillatory (ENO) method as

the special case. A composite FVM on unstructured triangular meshes was advanced

by Ji-Wen and Ru-Xun (2000).

It is a very difficult to review the whole work done related to finite volume methods

and the hyperbolic problems. Therefore, a few pieces of literature given below to show

the variety of application and advances in the last decade.

are selected to show the variety of application and recent advances in this field.

Sonar (1997) developed ENO finite volume methods on conforming triangulations

for the numerical solution of hyperbolic conservation laws. Besides theoretical results

concerning the recovery of data from cell averages, they gave a description of practicable

algorithms for the stencil selection to recover polynomials of arbitrary degree. Through

extensive numerical tests, the accuracy of the methods was confirmed.

Zhang et al. (2000) proposed an a posteriori error estimation technique for hy-

perbolic conservation laws. The error distributions were obtained by solving a system

of equations for the errors which was derived from the linearized hyperbolic conserva-

tion laws. The error source term was estimated using the modified equation analysis.
1MUSCL stands for Monotone Upstream-centred Scheme for Conservation Laws

16

DRAFT COPY 2.3 Hyperbolic Systems

Numerical tests for one-dimensional linear and non-linear scalar equations and systems

of equations were also presented. The results demonstrated that the error estimation

technique can correctly predict the location and magnitude of the errors.

Ghidaglia et al. (2001) proposed a method for the discretization of non-linear

systems of PDEs occurring in the numerical simulation of two phase flows. This method

was based on a cell centered finite volume discretization on unstructured meshes. They

were able to consider conservative and non-conservative systems of equations and the

method belonged to the class of shock-capturing upwind ones. Authors put the em-

phasis on the treatment of terms involving first-order derivatives since we deal with the

change of type (hyperbolic to non-hyperbolic).

Souadnia et al. (2005) used the general multimaterial formulation of Kashiwa

and Rauenzahn (1994) to derive an hydrodynamic model for a trickle-bed reactor oper-

ating under trickling flow conditions. This kind of trickle-bed reactor has applications in

many fields e.g., bio-industry, electrochemical industry and remediation of underground

water resources other than the traditional chemical, petrochemical and petroleum in-

dustries. For the model they used the FVM and the second order Godunovs method

combined with the solution of Riemann problem.

Kroger and Lukacova-Medvid’ova (2005) proposed a finite volume evolution

Galerkin (FVEG) scheme for the shallow water magnetohydrodynamic equations. This

was one of the first attempts to apply multidimensional Evolution Galerkin (EG) tech-

niques to a magnetohydrodynamic model.

Calle et al. (2005) proposed a stabilization technique and studied for the dis-

continuous Galerkin method applied to hyperbolic equations. In order to avoid the

use of slope limiters, a streamline diffusion-like term was added to control oscillations

for arbitrary element orders. The scheme combines ideas from both the RungeKutta

discontinuous Galerkin method [Cockburn and Shu (2001)] and the streamline diffusion

method [Brooks and Hughes (1982)].

Rossmanith (2006) presented an explicit FVM for solving general hyperbolic

systems on the surface of a sphere. Applications where such systems arise include

passive tracer advection in the atmosphere, shallow water models of the ocean and

atmosphere, and shallow water magnetohydrodynamic models of the solar tachocline.

This approach used TVD wave limiters, which allowed the method to be accurate for

17

DRAFT COPY 2.4 High Resolution Methods

both smooth solutions and solutions in which large gradients or discontinuities can

occur in the form of material interfaces or shock waves.

Nordstro and Gong (2006) proposed a stable hybrid method for hyperbolic

problems that combines the unstructured finite volume method with high-order finite

difference methods. The coupling procedure was based on energy estimates and stability

was guaranteed.

2.4 High Resolution Methods

In fluid dynamics problems, discontinuities usually do not develop from smooth ini-

tial conditions; except in cases of breaking waves, such as the formation of hydraulic

jumps that evolve in the shallow-water flows from smooth initial data. For instance in

mid-latitudes, fronts can be formed in low-pressure systems, yet these fronts are not

entirely discontinuities. Atmospheric fronts (also substances such as chemical pollu-

tants) are transported from one location to another, described very well by a tracer

advection model. Due to the deformation (stretching and shearing) of the velocity

field that advects the front, discontinuous can be formed on the resolution scale of the

(computational) model [Durran (1999)]. Therefore, from a purely computational stand

point, there is a need to apply numerical schemes devised for numerical solutions of

conservation laws which support discontinuous solutions.

In recent years, a tremendous amount of research has been done in developing and

implementing modern high-resolution methods for approximating solutions of hyper-

bolic systems of conservation laws. A review of such numerical methods can be found

in the books by Godlewski and Raviart (1996) and LeVeque (2002).

Rood (1987) provided a detailed analysis and comparison of various advection

schemes on a simple linear atmospheric transport model. Lin et al. (1994) have analysed

the effect of varying the slope limiters using an atmospheric general circulation model.

Lin and Rood (1996) compared the first order upwind, central difference, PPM (mod-

ified monotonic and positive definite) and monotonic vanLeer schemes, and concluded

that their monotonic version [vanLeer (1977b)] of PPM yields the most accurate re-

sults. Towards the development of a fully operational atmospheric general circulation

model based on FV discretization, Lin and Rood (1997) implemented slope limited

vanLeer schemes and the PPM scheme on a shallow water equation model using a

18

DRAFT COPY 2.4 High Resolution Methods

semi-Lagrangian semi-implicit time integration scheme. For a discussion and applica-

tions of other popular schemes such as MPDATA of Smolarkiewicz (1984) and QUICK

of Leonard [Leonard (1979) and Leonard (1991)], see Vukicevic et al. (2001).

Some of the most popular methods in the finite volume context are Lax-Wendroff,

Lax-Friedrichs, Roes, flux corrected transport methods of Boris- Book and Zalesak,

slope limited methods of van Leer, piecewise parabolic method (PPM) of Colella and

Woodward essentially non-oscillatory schemes of Harten-Shu-Osher to name a few [see

LeVeque (2002), Laney (1998), Durran (1999)].

There are two ways of implementing the high resolution methods i.e., using struc-

tured and unstructured meshes. In the case of irregular boundaries the structured and

unstructured mesh use different techniques:

• Structured mesh algorithms employed generally involve complex iterative smooth-

ing techniques that attempt to align elements with irregular boundaries or phys-

ical domains. Where non-trivial boundaries are required, block-structured tech-

niques can be employed which allow the user to break the domain up into topo-

logical blocks.

• Unstructured mesh generation, on the other hand, relaxes the node valence

requirement, allowing any number of elements to meet at a single node. Triangle

meshes are most commonly thought of when referring to unstructured meshing,

although quadrilateral and hexahedral meshes can also be unstructured.

2.4.1 High Resolution Methods for Structured Meshes

The last two decades have witnessed a sustained effort by the CFD community to de-

velop robust high resolution methods for the simulation of advection-dominated flows

[Darwish and Moukalled (2003)]. Many of these methods have been implemented on

structured mesh/grid within the framework of finite volume methods. The main ingre-

dients common to all these methods are a high order profile for the reconstruction of

cell face values from cell averages, combined with a monotonicity criterion.

The high order reconstruction is usually based on an upwind biased, sometimes

symmetric, high order interpolation profile [Leonard (1979), Leonard (1991) and Hol-

nicki (1996)]. To satisfy monotonicity, a number of concepts have been proposed over

the years [LeVeque (2002)], most of them are within a structured mesh/grid framework.

19

DRAFT COPY 2.4 High Resolution Methods

In the Flux Corrected Transport (FCT) approach of Book et al. (1981), a first order

accurate monotone scheme was converted to a high resolution scheme by adding limited

amounts of anti-diffusive flux. In the monotonic upstream-centered scheme for conser-

vation laws (MUSCL) of vanLeer (1979), monotonicity is enforced through a limiter

function applied to a piecewise polynomial flux reconstruction procedure. Harten (1983)

expressed monotonicity as a measure of discrete variation in the solution fields, hence

the name Total Variational Diminishing (TVD). This criterion was then expressed as

a flux limiter by Sweby (1984) using the r − ψ diagram. Leonard (1991) presented his

monotonicity criterion using a relation between a normalized face value and a normal-

ized upwind value. While on the conceptual level the above-mentioned monotonicity

criteria can be shown to be related and sometimes equivalent, but implementation-

wise they are very different. However within the framework of structured grids these

differences have not translated into increased difficulties in implementation.

While there is certainly some overlap between structured and unstructured mesh

generation technologies, the main feature which distinguish the unstructured grids is

the advantage of generality in that they can be made to conform to nearly any desired

geometry.

2.4.2 High Resolution Methods for Unstructured Meshes

For unstructured meshes the situation is more complicated and high resolution methods

are not as advanced as for structured meshes [Venkatakrishnan (1996) and Fursenko

et al. (1993)]. This is specifically due to the difficulty in implementing and enforcing a

monotonicity criterion that relies on logical or directional next-neighbor information,

which is readily available in structured meshes but missing in unstructured meshes. To

overcome this difficulty a number of approaches have evolved, with varying degrees of

success, based on different monotonicity criteria, such as the FCT [LeVeque (2002),

Zalesak (1979), Boris and Book (1973) and Boris and Book (1976)], the flux difference

splitting concepts [Lohner et al. (1987) and Ferzoui and Stoufflet (1989)], or the MUSCL

approach [Venkatakrishnan and Barth (1989) and Frink (1992)].

The MUSCL-based technique developed by Barth and Jespersen (BJ) [Venkatakr-

ishnan (1994)], by modifying the Spekreijse (1987) definition of monotonicity to bound

the cell face values rather than the cell nodal value, was one of the most popular and suc-

cessful approaches for the implementation of high resolution methods in unstructured

20

DRAFT COPY 2.4 High Resolution Methods

meshes [Venkatakrishnan (1993), Anderson (1994) and Swanson et al. (1998)], partly

because of its simplicity. Unfortunately, most of the limiters developed for structured

meshes cannot be implemented using the BJ technique as it is restricted to schemes

where the base high order profile uses a cell based gradient, which is basically equiva-

lent to the FROMM scheme [vanLeer (1979)], whose bounded version is equivalent to

the MUSCL scheme. In one-dimension the BJ method can be shown to be equivalent

to the TVD-MUSCL scheme [Bruner (1996)]. Bruner (1996) suggested a more general

approach to bound convective schemes. In this approach he used the Sweby r − ψ

diagram with a modified r factor defined for unstructured grids. Unfortunately his

modification did not recover the exact r factor on structured grids.

Many limiters have been developed and used for the hyperbolic problems with

different level of success. A few of the well known limiters that are used for two-

dimensional unstructured meshes are:

• Minmod Limiter: The minmod flux limiter applies the maximum possible lim-

iting allowed within the second order TVD region. Anastasiou and Chan (1997)

stated the minmod limiter produces satisfactory results, but numerical diffusion

was evident, as is always the case with any dissipative algorithm with a limiter.

It is also used in several pieces of literature, few of them are by Sweby (1984),

Hirsch (1990), Roe and Sidilkover (1992), Wang et al. (2000), Caleffi et al. (2003)

and Lipnikov and Shashkov (2006).

• Superbee Limiter: The superbee limiter applies the minimum limiting and

maximum steepening possible to remain TVD. It is known to suffer from excessive

sharpening of slopes as a result. It is also used in several literature, few of them

are by Roe and Sidilkover (1992), Arora and Roe (1997) and Szpilka and Kolar

(2003).

• LCD Limiter: The LCD (Limited Central Difference) limiter is one of the

earliest limiters in the context of MUSCL-schemes. This limiter’s advantages lie

in its simplicity and speed. Batten et al. (1996) and Vollmer (2003) have used

the LCD limiter.

• MLG Limiter: It stands for Maximum Limited Gradient, developed by Batten

et al. (1996). Author has shown that it reduces to Roe’s superbee limiter in one

21

DRAFT COPY 2.4 High Resolution Methods

dimension. Vollmer (2003) found that it is less diffusive than the LCD limiter, but

Wang and Liu (2002) states that this advantage of minimum numerical dissipation

is expensive to compute.

2.4.3 Numerical Methods for High Resolution Shock Capturing

Modern numerical ideas of shock capturing for computational fluid dynamics can date

back as early as 1944 when von Neumann first proposed a new numerical method,

a centered difference scheme, to treat the hydrodynamical shock problems, for which

numerical calculations showed oscillations on mesh scale [Lax (1986)]. von Neumann’s

dream of capturing shocks was first realized when von Neumann and Richtmyer (1950)

had the ingenious idea of adding to the hydrodynamic equations a numerical viscous

term of the same size as the truncation error. Their numerical viscosity guarantees that

the scheme is consistent with the Clausius inequality, the entropy inequality. The shock

jump conditions i.e., the Rankine-Hugoniot jump conditions, are satisfied provided that

the equations of fluid dynamics are discretized in conservation form. Then oscillations

were eliminated by the judicious use of the artificial viscosity; solutions constructed by

this method converge uniformly except in a neighborhood of shocks, where they remain

bounded and are spread out over a few mesh intervals [Chen (2000)].

The analytical idea of shock capturing i.e., vanishing viscosity methods, is quite

old. Chen (2000) states that good numerical schemes should be numerically simple,

robust, fast, and low cost, and have sharp oscillation-free resolutions and high accuracy

in domains where the solution is smooth. It is also desirable that the schemes capture

contact discontinuities, and are coordinate invariant, among other things. For the one-

dimensional case, examples of success include the Lax-Friedrichs scheme [Lax (1954)],

the Glimm scheme [Glimm (1965)], the Godunov scheme [Godunov (1959)] and related

high order schemes e.g., vanLeer’s MUSCL [vanLeer (1979)], Colella-Wooward’s PPM

[Colella and Woodward (1984)], Harten-Engquist-Osher-Chakravarthy’s ENO [Harten

et al. (1987)], and the Lax-Wendroff scheme [Lax and Wendorff (1960)] and its two-step

version, the Richtmyer scheme [Richtmyer and Morton (1967)] and the MacCormick

scheme [MacCormack (1969)].

The most common approach to shock capturing is to first develop a one-dimensional,

total-variation-diminishing (TVD) upwind scheme for a scalar conservation law and

22

DRAFT COPY 2.5 Shallow Water Equations

then apply it to systems using one-dimensional characteristic decompositions or ap-

proximate Riemann solvers. Upwind schemes have been used very successfully for

gas dynamical calculations, where the Riemann problem can be solved exactly and

many approximate Riemann solvers are available [Tai et al. (2002)]. Tracking shocks,

especially when and where new shocks arise and interact in the motion of fluids, is

scientifically extremely important but numerically burdensome. The main motivation

in developing numerical shock capturing algorithms is to treat the shock problem in

fluids [Chen (2000)].

Some of the classical references on development of high-resolution shock-capturing

schemes are Glaz and Liu (1984), Glimm et al. (1985), Chen et al. (1993) and Canuto

et al. (1998), or the textbooks Glass (1974), Chainais-Hillairet (1999), Toro (1999), and

LeVeque (2002).

2.5 Shallow Water Equations

In recent years free-surface flow models have been increasingly developed using explicit

schemes, vis-á-vis implicit schemes [see Fennema and Chaudhry (1990), Nujic (1995)

and Chan and Anastasiou (1999)]. One of the main reasons for using the explicit scheme

is that the resulting numerical models behave better when used to simulate flows with

sharp gradient free surfaces, such as dam break flow. Several techniques have been

published in the literature concerning the use of the finite volume method to solve the

two-dimensional shallow water equations to model free surface flows. Zhao et al. (1994)

and Zhao et al. (1996) used three-types of Riemann solvers, including the flux vector

splitting, the flux difference splitting and the Riemann solver of Osher, to simulate shock

wave problems. The model was based on the finite volume method and used 4-sided

grids. Numerical tests showed that all of these three schemes were capable of predicting

both gradually and rapidly varying flows, including those with sharp surface gradients.

However, since these schemes were first order accurate, the effect of numerical damping

was observed when studying model predicted surface profiles. Anastasiou and Chan

(1997) and Chan and Anastasiou (1999) developed a finite volume scheme based on

a Godunov-type second-order upwind formulation to solve incompressible flows, both

with and without a free surface and using an unstructured triangular mesh. Mingham

and Causon (1998) developed a high resolution finite volume scheme using a MUSCL

23

DRAFT COPY 2.5 Shallow Water Equations

reconstruction and with a slope limiter to capture surface discontinuities. Their model

was applied to simulate bore wave diffraction in both internal and external hydraulic

flows.

2.5.1 Riemann Problem

Prediction of flows with discontinuities, such as hydraulic jumps, has been a great

challenge to numerical schemes for hydrodynamics [Benedict et al. (2003)]. Extensive

research has been performed in the area of shallow-water equations, and several upwind

methods originally designed to solve the Euler equations have been extended to the

shallow-water system [Mohamadian et al. (2005)]. These schemes are introduced for the

solution of the hyperbolic sets of equations in order to take into account the information

about the direction of signal propagation, enclosed in this class of equations.

One method is based on the solution of the local Riemann problem at cell inter-

faces. This approach was proposed by Godunov (1959), so the derived schemes are

called Godunov-type. In the well known work of Godunov, the exact solution of

the Riemann problem was used. Today the exact solution of the Riemann problem

is replaced with an approximate solution in order to reduce computational time; this

type of scheme is called Flux Difference Splitting (FDS) [Caleffi et al. (2003)]. In the

last twenty years, many efforts have been made by several researchers in the field of

approximate Riemann solvers. The more remarkable results are obtained in aerody-

namics, but are also easily applicable to the shallow water equations. In fact, a strong

analogy between compressible flow and free surface shallow water flow exists [Liggett

(1994)].

Many approximate Riemann solvers now exist to evaluate numerically convective

fluxes. Those are for example, vanLeer (1977b), Roe (1981), Osher and Solomon (1982),

Harten (1983), and extended later on to free surface hydraulics in several papers, in-

cluding those by Glaister (1988), Alcrudo et al. (1992), Alcrudo and Garcia-Navarro

(1993), essentially non oscillatory (ENO) schemes [Nujic (1995)], the Harten, Lax and

van Leer (HLL) solver [Mingham and Causon (1998)] and Valiani et al. (2002). Most

of these methods have the capability of shock capturing with a high level of accu-

racy in few computational cells, and the flux vector is determined based on the wave

propagation structure.

24

DRAFT COPY 2.5 Shallow Water Equations

Some of these methods perform well for particular types of flow like discontinu-

ous or transcritical flows over flat topographies, but in the case of flows over variable

topography there is room for considerable improvement. The advantages of using Rie-

mann solvers to describe rapidly varying shallow water flows became apparent in the

early 1990s. The shallow-water equations describe the conservation of mass and mo-

mentum in shallow water bodies, and are particularly amenable to solution by finite

volume Godunov-type approaches where Roe’s approximate Riemann solver can be

used to evaluate inviscid fluxes [Alcrudo and Garcia-Navarro (1993), Anastasiou and

Chan (1997) and Fujihara and Borthwick (2000)].

Although Roe’s approximate method is robust, difficulties arise in solving the Rie-

mann problem when source terms are included in the analysis [Gascon and Coberan

(2001)]. Essentially, a numerical imbalance is created by the artificial splitting of phys-

ically meaningful terms in the governing equations between flux gradients and source

terms in order to generate a mathematically hyperbolic formulation. These terms are

then evaluated by different methods at different locations within the computational

grid creating the numerical imbalance.

2.5.2 Source Terms

The imbalance problem is particularly acute for the shallow water equations where the

surface gradient term within the momentum equations is conventionally split into an

artificial flux gradient and a source term that includes the effect of the bed slope. Thus,

many numerical solvers of the shallow water equations based on the conventional formu-

lation give unphysical results for flows over physically realistic variable bathymetries,

solely because of this mathematically convenient splitting.

Bermudez and Vazquez (1994) extended the vanLeer’s Q-scheme for variable

topographies by using an upwind discretization of the source terms and they introduced

the C property, which states that the scheme should preserve the stagnant conditions.

Nujic (1995) used the water level variable instead of the depth and he extracted

the gravitational terms from flux functions. Nugic proposed a revised mathematical

formulation of the shallow water equations, by reallocating all bed-slope related flux

gradients to the source terms. Then, using the Shu and Osher (SO) scheme [Shu

and Osher (1988)], computed the flux vector and obtained good results for dam break

problems over variable topographies.

25

DRAFT COPY 2.5 Shallow Water Equations

Ambrosi (1995) noted that the effectiveness of using Roe’s approximate Riemann

solver was lost when the bottom slope varied, giving a quantitative estimation of the

error of the scheme as first-order, but accepted that the quiescent still water solution

was not computed, in favour of preserving the formal accuracy of the scheme.

LeVeque (1998) introduced a Riemann problem inside a cell for balancing the

source terms and the flux gradients, and proposed a wave propagation algorithm by

artificially introducing another discontinuity within each computational cell to account

for the propagation of source terms. The resulting method was found to preserve both

stagnant and quasi-steady state conditions. Although suitable for quasi-steady condi-

tions, LeVeque’s method is reportedly less robust when predicting steady transcritical

flows that contain shocks [Benedict et al. (2003)]. Also, LeVeque’s scheme is not directly

transportable to unstructured grids.

Vazquez-Cendon (1999) used numerical upwinding of the source terms to achieve

equilibrium between flux gradient and source terms in the shallow water equations.

Hubbard and Garcia-Navarro (2000) and Garcia-Navarro and Vazquez-Cendon (2000)

have since extended this numerical treatment to higher order total variation diminishing

(TVD) schemes.

Zhou et al. (2001) introduced the surface gradient method and showed that

interpolating the depth without considering the bed variations may lead to erroneous

results. They used the interpolated water surface elevation to calculate the depth at

the interface and showed that this approach combined with the HLL flux function

[Harten (1983)] satisfies the C property. Their scheme performs very well for variable

topographies without any extra efforts for balancing the source terms and the flux

gradients. However, the C property does not hold for unstructured grids and moreover,

the HLL flux induces a high level of numerical viscosity in recirculating flows.

Burguete and Garcia-Navarro (2001) investigated different explicit schemes

and presented conservative schemes in a non-conservative formulation of the equations

with flux-adjusted source terms discretised using either a semi-implicit or upwinding

technique. Gascon and Coberan (2001) present another approach to deal with the

balancing difficulty by transforming non-homogeneous conservation laws into homoge-

neous ones by introducing a new flux generated by the addition to the physical flux of

the primitive of the source term.

26

DRAFT COPY 2.6 Object-Oriented Modelling

Alcrudo and Benkhaldoun (2001) defined the topography such that a sudden

change in the topography occurs at the interface of two cells. They also developed a

Riemann solver at the interface with a sudden change in the bed elevation. However,

their approach leads to several cases of Riemann fan and it is numerically too expensive.

Vukovic and Sopta (2002) extended the ENO and WENO schemes to shallow-

water equations with the source terms in 1D channels.

Xu (2002) proposed a second order gas kinetic scheme for shallow-water flows over

variable topographies. The gas kinetic schemes are basically different from character-

istics based schemes.

Mohamadian et al. (2005) has presented an efficient numerical method for re-

circulating flows over variable topographies on unstructured grids. In order to fulfill

this goal, Nujic’s method [Nujic (1995)] is combined with the Roe’s scheme, and the

surface gradient method [Zhou et al. (2001)] is used for calculating the water depth at

the interface.

2.6 Object-Oriented Modelling

The idea behind object-oriented modelling is that a computer program may be seen

as composed of a collection of individual units, or objects, that act on each other,

as opposed to a traditional view in which a program may be seen as a collection of

functions or procedures, or simply as a list of instructions to the computer. Each

object is capable of receiving messages, processing data, and sending messages to other

objects. It is very broad subject and each model is different. To develop an object-

oriented model, knowledge of object-oriented technologies and self-visualization of the

problem is necessary. Therefore, this section is just an overview of some of the work

done related to the use of object-oriented modelling.

Crutchfield and Welcome (1993) have built an adaptive mesh refinement algo-

rithm model using a mixture of C++ classes for high organizational levels and Fortran

for low level numerical routines. Effectively, the C++ classes encapsulate Fortran rou-

tines and provide a hybrid solution that allows better memory management than pure

Fortran coding.

Larsen and Gavranovic (1994) reviewed the state of object-orientation within

hydroinformatics and concluded that the Dinosaur effect was taking place where even

27

DRAFT COPY 2.6 Object-Oriented Modelling

the average word processor application was getting so large that not only users failed

to understand the complexity but that development may well have also stalled due to

the ever-increasing code sizes. Deckers (1994) produced a geohydrological information

based system using an object-oriented programming approach and both spatial and

non-spatial information. The system used a proprietary Geographic Information Sys-

tems (GIS) with its own object-oriented language. This system allowed the coupling

of the user interface, GIS, tools and databases into a seamless application. Ruland

and Rouve (1994) described the integration of hydraulic models into object-oriented

GIS using relational databases. GIS data classes were defined for points, chains, area,

polygons and topographical objects, to which 1D backwater and water quality models

and 2D finite element models were coupled, also written in objects. They found that

this enabled easy operation of simulation models at reduced cost and allowed better

integration of technologies.

Perla and Ponnambalam (1994) discuss the use of object-oriented program-

ming within a multi-reservoir system simulation framework using Microsoft Founda-

tion Classes. The Microsoft Foundation Classes provide the front end and Windows

implementation and C++ classes provide the numerical algorithms. Solomatine (1994)

addresses the need for object-orientation within the hydroinformatics community and

shows an experimental hydraulic modelling system, HIS (water distribution modelling

system). He argues that object-orientation will eventually replace procedural code as

code toolboxes arrive, much like programming environments. These toolboxes will not

limit object-oriented techniques to just interfaces, GIS and databases, but will spread

into the numerical engines and artificial intelligence components and code reuse will

then be possible. Finally, the author concludes that the large amount of Fortran code

is holding back the use of object-oriented programming techniques.

Solomatine (1996) takes the original Hydraulic Modeling System (HIS) model

and adapts and broadens it. In doing so, he has built on his previous work and used

the same base classes, extending the hydraulic features and user interfaces within an

event framework. The entire system has been implemented using Pascal with objects

within a Windows, icons, menus and pointer interface.

Shane et al. (1996) have produced an object-oriented water resources manage-

ment system model (PRSYM), written in C++. The software is capable of modelling

28

DRAFT COPY 2.6 Object-Oriented Modelling

reservoir storage, different types of routing, power generation, control rules, water qual-

ity and linear programming optimization to optimise policy and economic constraints.

Kutija (1998) describes the development of an object-oriented model for the solution of

free surface flows in dendritic channel networks. The model uses the de Saint Venant

equations, solved by the Abbott-Ionescu [Abbott and Basco (1989)] implicit finite dif-

ference method. This gives alternating H (elevation) and Q (flow) calculating points

with the nodes always being H points. The model was designed to handle rectangular

crosssections and flow and elevation boundary conditions, solved by a classical den-

dritic solver [Cunge et al. (1980)]. Using this, the object hierarchy shown in Figure 2.2

[Kutija (1998)] was derived.

Figure 2.2: Family tree of Label type objects [Kutija (1998)]

Tomicic and Yde (1998) demonstrated a typical example of legacy procedural

software integration across a wide range of models. Using six models: STORMPAC

(Rainfall generation); MOUSE (Urban Sewer Modelling); STOAT (Waste water treat-

ment); MIKE 11 (River modelling); MIKE 21 (Coastal Modelling); and SIMPOL (Sim-

plified urban drainage), they progressively integrated the system of models, starting

with input/output files, to produce integrated procedures and a common user interface

on a multi-processor machine. This was carried out using procedural techniques to cou-

ple the various codes together and allow information to be passed between the various

models that became fully integrated into the whole. Thus, the modelling system be-

came fixed into a monolith of code highly suited for its task but incapable of being used

in other configurations. Alternatively, Cate et al. (1998) took a more flexible approach

29

DRAFT COPY 2.6 Object-Oriented Modelling

to model coupling within a framework so that any collection of models reaching a com-

mon standard could be coupled in a multitude of common ways. CORBA technology

was tried but was found to be not ready for the connection of these models. Whilst they

found shared memory and common files adequate for loosely coupled systems, it was

not found to be suitable for more closely coupled systems where data and information

needed to flow in many directions.

Harvey et al. (2002) promoted the use of models being broken down into smaller

components that could be arranged by a model developer into new models without the

need for constant rewriting, much like user interfaces are now designed by dragging

buttons onto a form. This would create a component framework rather than a model

framework. Alfredsen (2000) shows a good example of code wrapping. Components

were divided into river reaches, lakes, reservoirs, etc. Each component was fitted with

a standard interface that allowed flow to be taken from the upstream component and

then routed to the next component. Using these basic types of component, further sub

types were derived for different types of routing and storage. The system does not offer

any real interaction as information flow is one way and each component is fired off one

after another. Unlike other frameworks, the components can still be used individually.

Tachikawa et al. (2000) and Ichikawa et al. (2000) describe the development

of the OhyMoS object-oriented hydrological modelling system which has been applied

to Chao Phraya River basin in Thailand. The model was built around a grid system in

which channels and links (ports) to neighbouring grid boxes could be made to form a

channel network. Flow could therefore be routed through the grid boxes using a routing

equation and rainfall added using a rainfall runoff (Xinanjiang) model. The entire

model is built around the grid structure that allows different model representations to

be selected for different grid boxes, such as HEC-HMS (Hydrologic Engineering Center

- Hydrologic Modelling System, U.S. Army Corps of Engineers) where each model has

a standardised form, inputs and outputs and can be wrapped in a class.

30

CHAPTER 3

Object-Oriented Approach

3.1 Introduction

This chapter aims to provide reader with background knowledge of object-oriented

approach used for the Riemann2D development. This chapter first gives a brief outline

of various approaches to the model development followed by discussion on the basic

design of the Riemann2D model.

3.2 Approaches to Software Design

A software model is an abstract representation of a system that enables us to answer

questions about the system. These models are useful when dealing with systems that

are too large, too small, too complicated, or too expensive to experience firsthand.

Usually the model gets complex as it grows or develops in size. To remain useful the

model needs to evolve with the end users’ requirement. Traditional approaches to the

design of software have been either,

• Data-oriented methodologies: It emphasise the representation of information

and the relationships between the parts of the whole. The actions (processes)

which operate on the data are of less significance. (e.g., dBase, a relational

database access language; M ,an ANSI standard general purpose language with

specializations for database work; and SQL); or

31

DRAFT COPY 3.3 Object-Oriented Technique

• Process-oriented methodologies: It emphasise the actions performed by a

software artifact; the data are of lesser importance.

The data-oriented perspective focuses on complete and thorough data analysis

and its relationships; the process-oriented perspective focuses on analysis of func-

tions/processes of real world systems; whereas for the real-world engineering problems

require focus on both i.e., data and process.

Hence, to maintain the usefulness of the Riemann2D as it grows, a different ap-

proach is adopted, called object-oriented, in which an equal emphasis is given to both,

data and process, of the system. Preiss (1998) also justifies the use of object-oriented

design as:

“Object-oriented methodologies are more effective for managing the complexity

which arises in the design of large and complex software artefact than either data-

oriented or process-oriented methodologies. This is because data and processes are

given equal importance. Objects are used to combine data with the procedures that

operate on that data.”

3.3 Object-Oriented Technique

Objects are key to the object-oriented technique, which can be defined as a software

bundle of variables and related methods1. In essence, an object is only an object if it

is described in fundamental components or is built using other objects. It shares two

characteristics of the real world: They all have state and behaviour.

Some programming languages do have objects but cannot properly be called object-

oriented. The original “Ada” is one such. Ada-83 has what it terms packets, which

satisfy the requirements for objects but lack two very important features that must be

present to earn the label object-oriented. These are:

1. Inheritance: Each subclass shares common characteristics with the class from

which it is derived. Inheritance enables the derivation of a new class using all the

existing properties of its base classes, and derived classes can add new properties
1See http://java.sun.com/docs

32

DRAFT COPY 3.3 Object-Oriented Technique

of their own. Inheritance shortens an object-oriented program and clarifies the

relationship among model elements; and

2. Polymorphism: This technique allows functions or operators to act in different

ways, depending on the element on which they are operating. Polymorphism

simplifies code design and makes programming more efficient.

These two features give object-oriented technology much of its power compared with

conventional languages [Brown (1997)]. Inheritance and polymorphism make possible

vast potential for reuse of program code, as well as analysis of the results. Although,

in a few cases most of the advantages of object-oriented programming carry over to

object-based programming in Fortran 90, but that is at the expense of extra work and

discipline [Gray and Roberts (1997)].

3.3.1 Object-Oriented Models

Generally, the object-orientated models for the scientific purpose are developed in three

ways:

1. One way is that the models are the fundamental building blocks of objects. These

objects are normally formed from legacy code wrapped in COM, DCOM, CORBA

or ActiveX, etc. containers. These these methods offer a good way for distributed

computing across a wide range of different systems and platforms. By wrapping

the legacy codes up in the latest standards, the entire model can be labelled

object-oriented.

2. The second way is to consider that objects are for data user interfaces, graphics

and sundry items. An example of this is the EPANET model, developed by United

States Environmental Protection Agency 1. The code, which is freely available,

is split into two parts: numerical code and user interface. The numerical part is

written in C in a procedural coding style with data stored in record structures

and compiled as a Dynamic Link Library (DLL). The user interface is written

in Delphi using standard object-oriented design and visual components. The

user interface calls the numerical DLL and then during a model run uses object-

oriented techniques to animate the model results.
1http://www.epa.gov/ORD/NRMRL/wswrd/epanet.html

33

DRAFT COPY 3.4 Design of the Riemann2D Objects

3. The above two ways are not fully object-oriented. Although they are good to

wrap up the legacy codes, they often lack the full exploitation of the object-

oriented technologies to make the model simpler and more robust. An example of

a truly object-oriented model is HYPRESS [Vanecek et al. (1994)], which is built

around a MS Window based object-oriented database. The model examined water

hammer and water distribution in pipe networks. The database was designed so

that an entire windows framework was stored within the database.

In this work the last approach is adopted to develop Riemann2D as truly object-

oriented model. It can be seen in the following sections and chapters that this object-

oriented approach produces robust and more reliable code, which can easily perform

various task, and can be shared by a number of researchers and developers.

3.4 Design of the Riemann2D Objects

In Object-Oriented design (OOD) of Riemann2D , main focus is on creating objects

(a.k.a classes in programming languages). Each of these object contains data as well

as the set of functions that manipulate those data. The data components of a class

are called data members or attributes or variables and the function components of

the class are called member functions or behaviours or methods. Riemann2D’s OOD

advocates claim that Object-Oriented techniques provide a natural and intuitive view

of the programming process, by modelling the attributes and behaviours of real-world

objects.

Problem structuring is the initial activity in any object-oriented design, the success

of which is largely dependent on the correct identification and definition of the chosen

components of the problem. Problem structuring is a mixture of art1 and science which

seeks to build a formal representation, integrating the objective components of the

model and the problem. An important aspect of object-oriented problem structuring

is the degree of disaggregation, which depends on the problem to be solved [Murray

(2003)].
1Problem structuring is considered an art as there is no attempt to uncover the scientific principles

underlying the intuition and craftsmanship of the individual developer [Winterfeldt (1980)].

34

DRAFT COPY 3.4 Design of the Riemann2D Objects

3.4.1 Object-Oriented Problem Structuring of Riemann2D

Figure 3.1: (a) Quadrilateral Mesh (b) Triangular Mesh

In order to numerically solve PDEs on a surface (2D problem), it is necessary to

create a mesh (Figure 3.1) on the surface. This mesh specifies the nodes/areas where

the equation is solved as well as the relation between these nodes/areas. The derivation

of a numerical method is based on these meshes and control volumes.

These mesh are made up of elements of different shape (triangle, quadrilateral

etc.), where each element is made up of sides, which in turn are made up of two nodes.

Therefore for the Riemann2D, it is logical to build objects (or classes) using this premise:

Node, side, element, mesh and a solver.

3.4.2 Physical Description of Riemann2D

As described above, the Riemann2D has primary building blocks namely, nodes, sides,

elements, a mesh and a solver to create a model representation of the physical hyperbolic

system. It is easy to understand (see Figure 3.2) that nodes are the building blocks of

sides, which in turn are building blocks for elements and similarly elements are building

blocks for meshes.

The code in Riemann2D is organised into packages1 based on the objects’ function-

alities. The primary benefit of packages is the ability to organise many classes into a

single unit. Classes in the model often need to communicate with other classes to access

their data components i.e., variables and methods directly. However, it is important
1Packages are collections of classes and interfaces that are related to each other in some useful way.

35

DRAFT COPY 3.4 Design of the Riemann2D Objects

Figure 3.2: Objects of Riemann2D : Node, Side, Element, Mesh and Solver

to keep the data components open or closed for the access from other classes, which is

based on the requirements of the model. Riemann2D follow the open-close principle of

object-oriented design.

Open-Close Principle states that software entities like classes, modules and func-

tions should be open for extension but closed for modifications. To extend the behavior

of the system, we add new code, but we do not modify old code. [Martin (2002)]

This is achieved through abstraction, polymorphism, inheritance and interfaces.

The Open-Close principle is the heart of OOD and conformance to this principle yields

the high level of Riemann2D reusability and maintainability.

As discussed in section 1.3.1, the Riemann2D model is an attempt towards devel-

oping a generic hyperbolic solver, which is empowered by its object-oriented design. In

this work focus is on pulling all the common attributes of the various hyperbolic models

and place it in a package of classes. The distribution of the data components would

follow the object design as discussed before. This approach of pulling all the common

component is known as hierarchy system of object-oriented design, which follows the

Liskov-substitutability principle of object oriented design.

36

DRAFT COPY 3.4 Design of the Riemann2D Objects

Figure 3.3: Level of packages in the Riemann2D model.

Liskov-Substitutability Principle defines the use of hierarchy as an important

component in OOD. Hierarchy allows the use of type families, in which higher level

super-types capture the behaviour that all of their subclasses have in common. This

also explains the method of reuse in which new functionality is obtained by extending

the implementation of an existing object. [Liskov and Wing (1994)]

In the present form Riemann2D is divided into three level of packages, as shown in

Figure 3.3, which can be described as:

• Level I: It is the highest level of packages in Riemann2D. This package contains

all the common data components required1 by any model to solve a hyperbolic

problem. It is important to note that the model at this level is not a stand-alone

model i.e., it doesn’t solve any problem.

• Level II: This level contains the hyperbolic systems to be solved. The Figure

3.3 shows2 the packages including the shallow water equations, Euler equations
1The decision of the common data components should be based on the knowledge of other systems.

For Riemann2D the common data components are based on the knowledge from Toro (1999) and

LeVeque (2002). Therefore, this model can evolve as it will be used for different systems.
2It should be noted that only shallow water equations are solved in this work. However, other

system are shown in level II for the illustration purpose.

37

DRAFT COPY 3.4 Design of the Riemann2D Objects

of gas dynamics and other hyperbolic system. At this level a hyperbolic system

is solved and it uses the data components of level I.

• Level III: This is the lowest level of packages in the Riemann2D . However, more

level can be derived depending on the system properties and requirements. This

system shows the erosion problem1 of shallow water equations.

Figure 3.3 and above description of levels show the flexibility of the Riemann2D

model. Following the Liskov-substitutability principle this relationship can be further

explained as:

• Level I is the super-type (also called superclass) for level II, which is sub-type

(also called subclass) for level I.

• Level II is superclass for level III, which is subclass for level II.

• Level I is superclass of level II, which is superclass of level III, therefore, level I

is also superclass of level III.

This relationship between packages and their level is an important factor in deciding

the data components for a new package. In this work the generic hyperbolic solver of

level I and shallow water equations of level II is studied and developed (see Figure 3.3).

The Figure 3.4 shows the relationship between objects of the two packages, which is an

enhanced view of Figure 3.3 covering only generic hyperbolic solver and shallow water

equations packages.

It can be seen in Figure 3.4 that the objects (or classes) of ShallowWater pack-

age i.e., Node, Side, Element, Mesh and Solver, are subclass of the objects of Generic

package2 i.e., GenericNode, GenericSide, GenericElement, GenericMesh and Generic-

Solver respectively.
1Erosion problem is not solved in this work. However, it is included in the present object-oriented

design of the Riemann2D . Detailed UML diagram and description is given in chapter 7.
2The name of the objects or classes in the generic package has “Generic” as suffix. This is only

for the ease of representation, otherwise same object names can be given to superclass and subclass

packages.

38

DRAFT COPY 3.4 Design of the Riemann2D Objects

Figure 3.4: Relationship between the various classes in the Generic package and the shallow water

package.

3.4.3 Controlling Access to Members of a Class

One of the important properties of any model is to define the access level to the data

components. An access level determines whether other classes can use a particular mem-

ber variable or call a particular method. Different programming language has different

access specifiers. For this work Java programming language is used, which supports

four access specifiers for member variables and methods: private, protected, public,

and, if left unspecified, package private. The table 3.1 shows the access permitted by

each specifier.

Table 3.1: Access levels used in Riemann2D development.

Specifier Class Package Subclass Model

Private Y N N N

No specifier Y Y N N

Protected Y Y Y N

Public Y Y Y Y

The first column in table 3.1 indicates whether the class itself has access to the

39

DRAFT COPY 3.5 Conclusions

member defined by the access level. It can be seen that a class always has access to

its own members. The second column indicates whether classes in the same package as

the class (regardless of their parentage) have access to the member. A package groups

related classes and provides access protection and name space management. The third

column indicates whether subclasses of the class declared outside this package have

access to the member. The fourth column indicates whether all classes have access to

the member.

Access levels affect the model development in two ways:

• Firstly, when we use classes that come from another source, such as the classes in

the superclass, access levels determine which members of those classes new classes

can be used.

• Secondly, when we write a class, we need to decide what access level every member

variable and every method in the class should have.

Much effort has been giving into deciding the access level for a member. Most

important factor that helps in deciding the access level is that if other developers will

use the class, we need to ensure that errors from misuse cannot happen. The most

restrictive access level that makes sense for a particular member i.e., “private” is used

unless there is a good reason not to use it.

3.5 Conclusions

This chapter has presented an overview of the object-oriented approach to the Rie-

mann2D design. However, it should be noted that the design is based on the basics of

CFD modelling, which can easily be adopted for any other CFD model. This design

has following benefits:

• It helps to classify the code of the model into various classes. These classes (node,

sides, elements, mesh and solver) can be formed for any CFD code.

• Classification of code make the development process faster and easier to debug.

• It helps to reuse the previous work, thus reducing the effort in creating new

models.

40

DRAFT COPY 3.5 Conclusions

• The simple design helps the new developer to quickly understand the model de-

sign.

The knowledge of approach to the design, presented in this chapter, has been used

in the chapters 4, 5 and 6 to link Riemann2D design with the theory. Detailed design

of the classes is presented in chapter 7.

41

CHAPTER 4

Finite Volume Methods for

Hyperbolic Problems

4.1 Introduction

One of the tasks in developing Riemann2D is to separate the commonly used function-

alities of the hyperbolic models into a generic package (see section 3.4.2). This chapter

presents these common features, based on which the object-oriented data components

are created for generic package objects (or classes) (see Figure 3.4).

The objective of this chapter is to present:

• the numerical solution for the hyperbolic problems using finite volume methods

(one-dimensional formulation followed by the two-dimensional formulation);

• the problems due to discontinuity and its solution (the Riemann problem and

solvers for its solution);

• the procedure for mesh selection, formation of control volume, approach to solve

problems on these control volume and the CFL condition for the stable solution;

• generic boundary condition; and

• the object-oriented implementation of the theory in the Riemann2D design.

42

DRAFT COPY 4.2 Finite Volume Formulation

Few important things to note before reading this chapter:

• The gray object-oriented comment boxes, mentioned in the section 1.4, are only

for the discussion on object-oriented implementation.

• The high-resolution methods is a part of generic package, however, it is presented

separately in Chapter 5 for a detailed discussion.

4.2 Finite Volume Formulation

The finite volume method (FVM) is a discretization method which is well-suited for

the numerical simulation of various types of hyperbolic problems (see section 2.3.4).

Some of the important features of the FVM that gives Riemann2D flexibility to solve

variety of real-world problems are as follows:

• It can be used on arbitrary geometries, using high resolution methods on unstruc-

tured meshes, and leads to robust schemes.

• An additional feature is the local conservation of the numerical fluxes, that is the

numerical flux is conserved from one discretization cell to its neighbour.

• Conservation of these numerical fluxes makes it quite attractive when modelling

problems for which the flux is of importance, such as in fluid mechanics.

This conservation property of FVM is because the method is based on a balance

approach1 by the divergence formula, an integral formulation of the fluxes over the

boundary of the control volume is then obtained. The fluxes on the boundary are

discretized with respect to the discrete unknowns.

Finite volume methods are closely related to finite difference methods, and a finite

volume method can often be interpreted directly as a finite difference approximation

to the differential equations. In the next section a general formulation, adapted from

LeVeque (2002), for the one-dimensional problem is derived for completeness of the

two-dimensional formulation, presented in the following section 4.2.2.
1A local balance is written on each discretized cell which is often called control volume (discussed

in section 4.4.4)

43

DRAFT COPY 4.2 Finite Volume Formulation

4.2.1 The One-Dimensional Problem

In this section the finite volume methods for the basic solution of conservation laws

and hyperbolic systems are derived. The methods are based on subdividing the spatial

domain into intervals (the finite volumes) and keeping track of an approximation to

the integral of u over each of these volumes. In each time step these values are updated

using an approximation to the flux through the endpoints of the intervals.

Figure 4.1: Illustration of a finite volume method for updating the cell average Un
i by fluxes at the

cell edges. Shown in x− t space

For simplicity the grid is assumed to be uniform. Now, we denote the ith grid cell

by Ωi = (xi−1/2, xi+1/2) (Figure 4.1). The value in the cell, Un
i (called state variable in

this work), approximates the average value of u(x, t) over the ith interval at time tn:

Un
i ≈

1
∆x

∫ xi+1/2

xi−1/2

u (x, tn) dx ≡ 1
∆x

∫

Ωi

u(x, tn) dx, (4.1)

where ∆x = xi+1/2 − xi−1/2, i.e., the length of the cell.

If u(x, t) in equation 4.1 is a smooth function, then this integral equation agrees with

the value of u at the midpoint of the interval to second order of cell length (O(δx2)).

By working with cell averages, however, it is easier to use important properties of the

conservation law in deriving basic numerical methods. Later high-resolution methods

are used to determine the values at each side of a cell/element (discussed in Chapter

4). In particular, it can be assumed that the numerical method is conservative in

a way that mimics the true solution, and this is extremely important in accurately

calculating shock waves. This is because
∑N

i=1 Un
i ∆x approximates the integral of u

over the entire interval, say [a, b], and if we use a method that is in conservation form,

44

DRAFT COPY 4.2 Finite Volume Formulation

then this discrete sum will change only due to fluxes at the boundaries i.e., at x = a

and at x = b. Therefore, the total mass within the computational domain will be

preserved, or will vary correctly with the given boundary conditions.

The integral form of the conservation law (equation 2.6) gives:

d
dt

∫

Ωi

u(x, t)dx = f
(
u

(
xi−1/2,t

))− f
(
u

(
xi+1/2,t

))
. (4.2)

This expression can be used to develop an explicit time-marching algorithm. Given

Un
i , the cell averages at time tn, we want to approximate Un+1

i , the cell averages at the

next time tn+1 after a time step of length ∆t = tn+1 − tn. Integrating equation 4.2 in

time from tn to tn+1 yields
∫

Ωi

u (x, tn+1)dx−
∫

Ωi

u (x, tn)dx =
∫ tn+1

tn

f
(
u

(
xi−1/2, t

))
dt−

∫ tn+1

tn

f
(
u

(
xi+1/2, t

))
dt.

(4.3)

Rearranging this and dividing by ∆x gives

1
∆x

∫

Ωi

u (x, tn+1)dx =
1

∆x

∫

Ωi

u (x, tn)dx

− 1
∆x

[∫ tn+1

tn

f
(
u

(
xi+1/2, t

))
dt−

∫ tn+1

tn

f
(
u

(
xi−1/2, t

))
dt

]
.

(4.4)

In general, however, the time integrals on the right-hand side of equation 4.4 cannot

be evaluated exactly, since u(xi±1/2, t) varies with time along each edge of the cell, and

there is no exact solution to work with. Therefore, numerical methods of the form

Un+1
i = Un

i −
∆t

∆x

(
Fn

i+1/2 − Fn
i−1/2

)
, (4.5)

where Fn
i−1/2 is some approximation to the average flux along x = xi−1/2, can be

studied:

Fn
i−1/2 ≈

1
∆t

∫ tn+1

tn

f
(
u

(
xi−1/2, t

))
dt. (4.6)

If this average flux can be approximated based on the values Un, then a fully discrete

method will be obtained.

In a hyperbolic system information propagates with finite speed, so it is reasonable

to first suppose that we can obtain Fn
i−1/2 based only on the values Un

i−1 and Un
i , the

cell averages on either side of this interface. Then we might use a formula of the form

Fn
i−1/2 = f(Un

i−1, U
n
i), (4.7)

45

DRAFT COPY 4.2 Finite Volume Formulation

where f is some numerical flux function. The equation 4.5 then becomes

Un+1
i = Un

i −
∆t

∆x

[
f(Un

i , Un
i+1)− f(Un

i−1, U
n
i)

]
. (4.8)

The specific method obtained depends on how we choose the formula f , but in gen-

eral any method of this type is an explicit method with a three-point stencil, meaning

that the value Un+1
i will depend on the three values Un

i−1, U
n
i , and Un

i+1 at the previous

time level. Moreover, it is said to be in conservation form, since it mimics the property

4.4 of the exact solution. Note that if we sum ∆xUn+1
i from equation 4.5 over any set

of cells, we obtain

∆x
J∑

i=I

Un+1
i = ∆x

J∑

i=I

Un
i −

∆t

∆x

(
Fn

J+1/2 − Fn
I−1/2

)
. (4.9)

The sum of flux differences cancels out except for the fluxes at the extreme edges.

Over the full domain we have exact conservation except for fluxes at the boundaries.

The method 4.8 can be viewed as a direct difference approximation to the conservation

law ut + f(u)x = 0, since rearranging it gives

Un+1
i − Un

i

∆t
+

Fn
i+1/2 − Fn

i−1/2

∆x
= 0. (4.10)

In the above equation flux F is a function of the state variable U . Therefore, flux

can also be written as F (U) and the equation 4.10 as:

Ut + F (U)x = 0, (4.11)

where

U =

u1

u2

:
:

um

, F (U) =

f1

f2

:
:

fm

. (4.12)

In the above equation 4.11, U is known as the vector of conserved or state variables,

F = F (U) is the vector of fluxes and each of its components fi is a function of the

46

DRAFT COPY 4.2 Finite Volume Formulation

components uj of U [Toro (1999)]. The Jacobian of the flux function F (U) in the

equation 4.11 is the matrix

A(U) =
∂F

∂U
=

∂f1/∂u1 ∂f1/∂um

∂f2/∂u1 ∂f2/∂um

: : : :
: : : :

∂fm/∂u1 ∂fm/∂um

. (4.13)

Object-Oriented Design

The vectors of state variables, U and the fluxes, F (U) is equations 4.12 are required

by every hyperbolic system. However, the components uj and fi of these vectors

are different for every system, which depends on the system of governing equations.

Therefore, the vectors U and F (U) are declared in the GenericElement class and the

components uj and fi are initialised and calculated in the Element class (subclass of

GenericElement).

4.2.2 The Two-Dimensional Problem

Based on the understanding of the one-dimensional formulation it is easy to extend it for

the two-dimensional case. The equation 4.11 has flux in the x-direction, which can be

extended for two-dimensional problems by adding an addition flux term in y-direction.

Now, the differential conservation law form in two-dimensional can be written as:

Ut + F (U)x + G (U)y = S(U) (4.14)

Here S = S(U) is a source or forcing term. Terms such as body forces (e.g., gravity)

and injection of mass, momentum or energy may be represented in S. Usually, S(U) is

a prescribed algebraic function of the flow variables and does not involve derivatives of

these, but there are exceptions[Toro (1999)]. In the present case the equation 4.14 is

inhomogeneous, but when S(U) ≡ 0 the equation 4.14 is homogeneous. From now, we

would consider the homogeneous form of the equation because the source term depends

on the system1 for which the equations are applied. Therefore, rewriting equation 4.14

in the homogeneous form:

1The source term for 2D shallow water hyperbolic equations are discussed in the Chapter 6.

47

DRAFT COPY 4.2 Finite Volume Formulation

Ut + F (U)x + G (U)y = 0. (4.15)

The corresponding integral form of the above equation (4.15) can be written as:

d
dt

∫ ∫

V

UdV = −
∫

Ω

H.ndΩ, (4.16)

where V is a control volume, Ω is the boundary of V , H = (F, G) is the tensor of the

flux, n = [n1, n2] is the outward unit vector normal to the surface Ω, dΩ is an area

element and H.ndΩ is the flux component normal to the boundary Ω. The cell average

for this control volume can be defined as:

Û =
1
|V |

∫ ∫

V

UdV , (4.17)

where |V | denotes the volume of V . Substituting the values from equation 4.17 into

the equation 4.16 and rewriting the right hand flux in terms of summation, gives

d

dt
Û = − 1

|V |
N∑

s=1

Fs. (4.18)

with fluxes

Fs =
∫ As+1

As

[n1F (U) + n2G (U)] dΩ. (4.19)

where N is the number of sides of control volume1.

Expression 4.18 forms the basis of semi-discrete numerical methods, in that the

right-hand side is assumed to be discretised in space, leaving the left-hand side contin-

uous in time. Now replacing the time derivative by a forward in time approximation,

we obtain fully discrete scheme

1The expression in equation 4.19 is valid for any number of sides of a control volume. However, in

the present case the control volume is triangular in shape. Section on control volume is discussed later

in section 4.4.4

48

DRAFT COPY 4.2 Finite Volume Formulation

Un+1 = Un − ∆t

A

N=3∑

s=1

[n1F (U) + n2G (U)]. (4.20)

Object-Oriented Design

The equation 4.20 is used to update the vector of state variables (defined in equa-

tion 4.12) at every time step of the calculation. This operation is common for every

hyperbolic system, which makes it a method of the GenericElement class.

It should be noted that the fluxes F (U) and G(U) of equation 4.20 are the side fluxes

and different than the fluxes of equation 4.15, which are the property of the element.

These fluxes of equation 4.20 are properties of the sides of a control volume, therefore,

they are declared in the GenericSide class. Similar to the fluxes of the elements, these

fluxes of sides are calculated in the subclass, i.e.,Side class.

Various methods exist to define the numerical flux function of equation 4.20. For

an easy understanding we start with the equation 4.7. There are several considerations

that go into judging how good a particular flux function is for numerical computation.

One essential requirement is that the resulting method should be convergent, i.e., the

numerical solution should converge to the exact solution of the differential equation as

the grid is refined (as δx , ∆t → 0). This generally requires two conditions:

• The method must be consistent with the differential equation, meaning that it

approximates it well locally;

• The method must be stable in some appropriate sense, meaning that the small

errors made in each time step do not grow too fast in later time steps.

For a general finite volume method (see Figure 4.1) for a hyperbolic system there

are a number of ways which might be defined. The average flux at xi−1/2 is calculated

using the state variables at the left(Un
i−1) and right(Un

i) of this point. A first attempt

might be a simple arithmetic average

F
n
i−1/2 = F(Un

i−1, U
n
i) =

1
2

[
f(Un

i−1) + f(Un
i)

]
, (4.21)

49

DRAFT COPY 4.3 The Riemann Problem

using this in equation 4.5 would give,

Un+1
i = Un

i −
∆t

2∆x

[
f(Un

i+1)− f(Un
i−1)

]
. (4.22)

Unfortunately, this method is unstable for hyperbolic problems and cannot be used

even if the time step is small enough that the CFL condition is satisfied [LeVeque

(2002)]. This supports the need for the high-resolution methods to produce stable

solutions.

The application of high-resolution methods has caused a revolution in solving nu-

merical hyperbolic problems. These methods satisfy in a quite natural way the basic

properties required for any acceptable numerical method [Marti and Muller (2003)]:

• high order of accuracy,

• stable and sharp description of discontinuities, and

• convergence to the physically correct solution.

Moreover, these high resolution methods are conservative, and because of their

shock capturing property discontinuous solutions are treated both consistently and au-

tomatically whenever and wherever they appear in the flow. High resolution is usually

achieved by using monotonic polynomials in order to interpolate the approximate so-

lutions within numerical cells. A detailed discussion on high resolution methods is

presented in Chapter 4 of this thesis.

As these methods are written in conservation form, the time evolution of element

averaged state vectors is governed by some functions (the numerical fluxes) evaluated

at element interfaces separated by constant states at the two sides, also known as the

Riemann problem (discussed in next section).

4.3 The Riemann Problem

As discussed in the previous sections on finite volume formulation (section 4.2) and

on the control volume (section 4.4.4), the numerical flux is calculated at each side of

the control volume with two states separated by a discontinuity. A simplified case

of one spatial dimension is show below in which the Riemann problem is the simplest

possible initial value problem of discontinuity for hyperbolic systems. Apart from being

50

DRAFT COPY 4.3 The Riemann Problem

an important test bench, the Riemann problem is a basic building block for a large

class of modern numerical methods, called upwind or Godunov schemes [Kurganov and

Tadmor (2002)].

The Riemann problem consists of computing the breakup of a discontinuity, which

initially separates two arbitrary constant states L(left) and R (right). The solution to

this problem depends on the two constant states defining the discontinuity.

Figure 4.2: Illustration of the Riemann problem (a) Initial data at t = 0, consists of two constant

states separated by a discontinuity at x = 0. (b) Solution in the x − t plane for the linear advection

equation with positive characteristic speed a.

Mathematically, a special initial value problem (IVP) of the form:

PDE ut + aux = 0 (4.23)

IC u(x, 0) = u0(x) =
{

uL

uR

if x < 0,
if x > 0,

(4.24)

is called a Riemann problem [Toro (1999)], where uL and uR are two constant values,

as shown in Figure 4.2. The initial data has a discontinuity at x = 0. The trivial case

would result when uL = uR. The solution to this problem helps to obtain information

that is used to compute a numerical flux and update the cell averages over a time step.

For hyperbolic problems the solution to the Riemann problem is typically a similarity

solution, a function of x/t alone (see Figure 4.2(b)), and consists of a finite set of

waves that propagate away from the origin with a constant wave speed. For linear

hyperbolic systems the Riemann problem is easily solved in terms of the eigenvalues

and eigenvectors of the matrix A, (see section 6.5 and 6.6.1 for matrix A, eigenvalues

51

DRAFT COPY 4.3 The Riemann Problem

and eigenvectors of 2D shallow water equations). In a numerical method we solve these

Riemann problems using the Riemann solvers, as discussed in the next section.

Object-Oriented Design

Riemann problem is solved at every side within the mesh domain and in some cases

also solved at the boundary sides (see section 4.5). To solve a Riemann problem of a

side, left and right states are required. These left and right states are set by a method

called setStateAtSides() in GenericMesh class, which cycles through all the elements of

the mesh to set the state at the element’s sides.

4.3.1 Riemann Solvers: Exact Vs Approximate

Numerical methods for solving systems of hyperbolic conservation laws via finite volume

methods require, as the building block, a numerical flux. The choice of the building

block has a profound influence on the properties of the resulting schemes. One ap-

proach utilizes wave propagation information contained in the differential equations

[Toro and Titarev (2006)] and the solution of such problems is governed by the hy-

perbolic properties of the system. It is built from simple waves, either discontinuities,

called shock waves or rarefaction fans, which have to be assembled appropriately. This

is done through the exact or approximate solution of the Riemann problem, giving rise

to upwind methods [classical references: Courant et al. (1952), Godunov (1959), Roe

(1981) and vanLeer (1974)]. A Few recent references on these methods are Godlewski

and Raviart (1996), Toro (1999), Kulikovskii et al. (2002) and LeVeque (2002).

The exact solution of the one-dimensional Riemann problem is well-known [see

chapters 5, 6 and 7 of Toro (2001)], which consists of a combination of wave types:

shocks (S) and rarefaction waves (R). Toro (2001) states that making a choice between

exact and approximate Riemann solver is motivated by:

1. computational cost;

2. simplicity; and

3. correctness

where correctness should be the overriding criterion. Arguments of computational

cost is one of the important factors, but depends on the problem to be solved. For

52

DRAFT COPY 4.3 The Riemann Problem

instance, in the shallow water equations the arguments of computational cost is not as

strong as for the Euler equations or some other complex systems of equations. In the

study of real compressible gases, the adoption of complicated equations of states that

make use of exact Riemann solvers is prohibitively expensive. LeVeque (2002) states

that computationally, the exact Riemann solution is often too expensive to compute

for non-linear problems and approximate Riemann solvers are used in implementing

numerical methods.

Therefore, as a general solution and choice, approximate Riemann solvers are used

in this work.

4.3.2 The Approximate Riemann Solvers

To apply Godunov’s method on a system of equations we need flux Fs (equation 4.19),

based on the Riemann data ul and ur (Figure 4.2). One of the benefits of these problems

is that we do not need the entire structure of the Riemann problem. Usually, we

compute Fs across each side with the help of full wave structure and wave speeds.

LeVeque (2002) states that the process of solving the Riemann problem is often quite

expensive, even though in the end we use very little information from this solution in

defining the flux. Also, it is often true that it is not necessary to compute the exact

solution to the Riemann problem in order to obtain good results.

A wide variety of approximate Riemann solvers have been proposed that can be

applied much more cheaply than the exact Riemann solver and yet give results that in

many cases are equally good when used in the Godunov or high-resolution methods.

In the present study we have carefully selected three Riemann solvers to understand

the behaviour of the Riemann solvers for two-dimensional triangular control volumes.

A variety of other approximate Riemann solver can be found in Godlewski and Raviart

(1996), Kurganov and Tadmor (2000) and Kroner et al. (1995).

Object-Oriented Design

In this work three approximate Riemann solvers are used i.e., Roes’, HLL and Shu &

Oshers’ solver. All these solvers calculate the side fluxes and supply it to the the update

method in the GenericElement class.

53

DRAFT COPY 4.3 The Riemann Problem

4.3.3 Roe’s Solver

Perhaps the most well-known of all approximate Riemann solvers today is one due to

Roe, which was first presented in 1981 [Roe (1981)]. Since then the method has not only

been refined, but it has been applied to a variety of physical problems. Appropriate

adoption and modification to the Roe approach was introduced by Roe and Pike (1984),

Harten and Hyman (1983), Roe (1992), Dubois and Mehlman (1993) and Einfeldt

et al. (1991). Many application of the Roe scheme have been presented over the last

two decades, a few of them were by; Brio and Wu (1988) for Magneto-Hydrodynamic

equations (MDH), Clarke et al. (1993) for detonation wave in solid materials, Giraud

and Manzini (1996) for two-dimensional gas dynamics, Marx (1994) for incompressible

Navier-Strokes equations, and Sainsaulieu (1995) for multiphase flow problems.

Due to the wide application of Roe’s solver and it capability of good resolution of

the waves, it has been considered in the present study.

In this section we describe the Roe approach for a general system of m hyperbolic

conservation laws (adapted from Toro (1999)).

Roe (1981) solved the Riemann problem (equations 4.23 and 4.24) approximately.

By introducing the Jacobian matrix (see equation 4.13)

A(U) =
∂F

∂U
, (4.25)

and using the chain rule the conservation laws

Ut + FUx = 0, (4.26)

in equation 4.23 may be written as

Ut + A(U)Ux = 0. (4.27)

Roe’s approach replaces the Jacobian matrix A(U) in equation 4.27 by a constant

Jacobian matrix

Ã = Ã(UL, UR), (4.28)

which is a function of the data states UL, UR. In this way the original PDEs in equation

4.23 are replaced by

Ut + ÃUx = 0. (4.29)

54

DRAFT COPY 4.3 The Riemann Problem

This is a linear system with constant coefficients. The original Riemann problem

4.23 and 4.24 is then replaced by the approximate Riemann problem.

Ut + ÃUx = 0

Ux =
{

UL, x < 0
UR, x > 0

 , (4.30)

which is then solved exactly. The approximate problem results from replacing the

original non-linear conservation laws by a linearised system with constant coefficients

but the initial data of the exact problem is retained.

For a general hyperbolic system of m conservation laws, the Roe Jacobian matrix

is required to satisfy the following properties:

Property (A): Hyperbolicity of the system. Ã is required to have real eigenvalues

λ̃i = λ̃i(UL, UR), which are normally ordered as

λ̄1 ≤ λ̄2 ≤ ≤ λ̄m, (4.31)

and a complete set of linearly independent right eigenvectors

K̃(1), K̃(2),K̃(m). (4.32)

Property (B): Consistency with the exact Jacobian

Ã (U,U) = A (U) . (4.33)

Property (C): Conservation across discontinuities

F (UR)− F (UL) = Ã (UR − UL) . (4.34)

Property (A) on hyperbolicity is an obvious requirement; the approximate problem

should at the very least preserve the mathematical character of the original non-linear

system. Property (B) ensures consistency with the conservation laws. Property (C)

ensures conservation. It also ensures exact recognition of isolated discontinuities; that

is, if the data UL, UR are connected by single isolated discontinuities, then the approx-

imate Riemann solver recognises this wave exactly. However, this does not mean that

the corresponding approximate Godunov method with the Roe approximate numerical

flux will in general give exact solutions for isolated discontinuities.

The construction of matrices satisfying properties(A)-(C) for general hyperbolic

systems can be very complicated and thus computationally unattractive. For a specific

case of the Euler equations of gas dynamics Roe (1981) proposed a relatively simple

way of constructing a matrix Ã.

55

DRAFT COPY 4.3 The Riemann Problem

4.3.3.1 The Intercell Flux

Once the matrix Ã (UL, UR), its eigenvalues λ̃ (UL, UR) and the right eigenvector K̃(i) (UL, UR)

are available, one solves Riemann problem (equation 4.30) by direct application of vari-

ous methods like CIR scheme, Godunov’s method etc. By projecting the data difference

∆U = UR − UL (4.35)

onto the right eigenvectors we can write

∆U = UR − UL =
m∑

i=1

α̃iK̃
(i), (4.36)

from which one finds the wave strengths α̃i = α̃i (UL, UR). The solution UI+1/2(x/t)

evaluated along the t−axis, x/t = 0, is given by

Ui+1/2(0) = UL +
∑

λ̃i≤0

α̃iK̃
(i), (4.37)

or

Ui+1/2(0) = UR −
∑

λ̃i≤0

α̃iK̃
(i). (4.38)

We can now find the corresponding numerical flux. As we have replaced the original set

of conservation laws in equation 4.23 by the constant coefficient linear system (equation

4.29); this can be viewed as a modified system of conservation laws

U + F
(
U

)
x

= 0, (4.39)

with the flux function

F
(
U

)
= ÃU. (4.40)

The corresponding numerical flux is not the obvious choice,

Fi+1/2 = ÃU i+1/2(0) (4.41)

where U i+1/2(0) is given by either of equations 4.37-4.38. That this would be incor-

rect becomes obvious when, for instance, assuming right supersonic flow in 4.37 one

would compute an intercell flux. Instead, the correct expression for the corresponding

numerical flux is obtained from any of integral relations

F0L = FL − SLUL − 1
T

∫ 0

TSL

U (x, T) dx (4.42)

56

DRAFT COPY 4.3 The Riemann Problem

F0R = FR − SRUR +
1
T

∫ TSR

0
U (x, T) dx. (4.43)

Here SL, SR are the smallest and largest signal speeds in the exact solution of the

Riemann problem with data UL,UR and T is a positive time. If the integrand U(x, t) in

equation 4.42 or equation 4.43 is replaced by some approximate solution, then equality

of the fluxes F0L and F0R requires the approximate solution to satisfy a consistency

condition.

If U i+1/2(x/t) is the solution of the Riemann problem for the modified conservation

laws 4.39 with data UL, UR, then the integrals in 4.42 and 4.43 respectively, are
∫ 0

TSL

U i+1/2 (x, T) dx = T
[
F (UL)− F

(
U i+1/2(0)

)]− TSLUL (4.44)

and
∫ TSR

0
U i+1/2 (x, T) dx = T

[
F

(
U i+1/2(0)

)− F (UR)
]− TSRUR. (4.45)

Substitution of equations 4.44 and 4.45 into equations 4.42 and 4.43 gives

F0L = F
(
U i+1/2(0)

)
+ F (UL)− F (UL) (4.46)

and

F0R = F
(
U i+1/2(0)

)
+ F (UR)− F (UR) . (4.47)

Finally by using U i+1/2(0) as given by equation 4.42 or 4.43 and the definition of the

flux F = ÃU we obtain the numerical flux FRoe at the boundary of the element as:

FRoe = FL +
∑

λ̃i≤0

α̃iλ̃iK̃
(i), (4.48)

or

FRoe = FR −
∑

λ̃i≥0

α̃iλ̃iK̃
(i). (4.49)

Alternatively, we may also write

FRoe =
1
2

(FL + FR)− 1
2

m∑

i=1

α̃iλ̃iK̃
(i). (4.50)

57

DRAFT COPY 4.3 The Riemann Problem

The relations 4.44-4.50 are valid for any hyperbolic system and any linearisation

of it. In order to compute Roe’s numerical flux for a particular system of hyperbolic

conservation laws, one requires expressions for the wave strengths α̃i, the eigenvalues,

and the right eigenvectors in any flux expressions 4.48-4.50. It is important to note

that the Jacobian matrix is not explicitly required by the numerical flux. This method

is further derived for the shallow water equations and used in the present study (see

section 6.6.1).

4.3.4 HLL (Harten-Lax-van Leer) Solver

The HLL Riemann solver is another class of linear approximation methods, originally

developed for the Euler equations of gas dynamics by Harten et al. (1983), that are

extended for many other equations (see section 6.6.2 on HLL sovers for shallow water

equations). These solvers are based on estimating the speeds at which information or

waves propagate away from a Riemann problem. A linear solution with two discontinu-

ities is then constructed1, using estimates for the speeds of the propagating discontinu-

ities2. The estimates for the speeds are based on the initial data, and general properties

of exact Riemann solutions [George (2004)]. The approach produced practical schemes

after the contributions of Davis (1988) and Einfeldt (1988), who independently pro-

posed various ways of computing the wave speeds required to completely determine

the intercell flux. The resulting Riemann solver forms the basis of a very efficient and

robust approximation to Godunov-type methods. One difficulty with these schemes is

the assumption of a two-wave configuration. This is true only for a hyperbolic sys-

tems of two equations, such as the one-dimensional shallow water equations. For larger

systems, such as the Euler equations or the split two-dimensional shallow water equa-

tions for example, the two-wave assumption is incorrect [Toro (1999)]. Therefore, HLL

solvers gave rise to family of solvers for example,

• HLLE (Harten-Lax-vanLeer-Einfeldt): Keeps only largest and smallest charac-

teristics, averages intermediate states in-between [Einfeldt (1988)].
1Two speeds are used in the original HLL method even for equations with more than two charac-

teristic families.
2Contrast this to a method such as the Roe solver, where a constant estimate to the Jacobian

matrix is constructed first, and the eigenvalues of this estimate subsequently affect the approximate

Riemann solution.

58

DRAFT COPY 4.3 The Riemann Problem

• HLLC (Harten-Lax-vanLeer and ”C” denotes Contact): Adds entropy wave back

into HLLE method, giving two intermediate states [Toro et al. (1994)].

• HLLD (Harten-Lax-vanLeer and ”D” stands for Discontinuities): The HLLC-

type Riemann solvers for magnetohydrodynamic (MHD) [Miyoshi and Kusano

(2005)].

Due to the simple, efficient and robust of the HLL solver, it has been one of the

Riemann solvers considered in the present study. One other advantage is that these

solver can be easily extended to its family of solvers.

Harten et al. (1983) suggested a way of solving the Riemann problems approximately

by finding directly an approximation to the numerical intercell flux as shown below

(adapted from Miyoshi and Kusano (2005)).

Let us consider general hyperbolic conservation laws (equations 2.4), where U and

F are not specified here. The integral form of the conservation laws for a rectangle in

figure 4.3 (x1, x2)× (t1, t2) is given by

x2∫

x1

U (x, t2)−
x2∫

x1

U (x, t1) +

t2∫

t2

F (U (x, t2)) dt−
t2∫

t1

F (U (x, t2)) dt = 0. (4.51)

Harten et al. (1983) showed that the Godunov-type scheme for equation 2.4 can be

written in conservative form:

Un+1
i = Un

i −
∆t

∆x

[
F

(
R

(
0;Un

i , Un
i+1

))− F
(
R

(
0;Un

i−1, U
n
i

))]
, (4.52)

where n and i indicate a time step and a element/cell number, respectively, and

R
(
x/t; Un

i−1, U
n
i

)
is the approximate solution of the Riemann problem around the in-

terface xi+1/2. In this form, the appropriate numerical fluxes are obtained by applying

the integral conservation laws 4.51 over the rectangle (xi, xi+1/2) × (tn, tn+1) (Figure

4.1) as

Fi+1/2 = Fi − 1
∆t

xi+1/2∫

xi

R

(
x− xi+1/2

∆t
;Un

i , Un
i+1

)
dx +

xi+1/2 − xi

∆t
Un

i , (4.53)

where Fi+1/2 = F
(
R

(
0;Un

i , Un
i+1

))
, Fi = Un

i and ∆t = tn+1− tn. We note that the ex-

act solution of the Riemann problem Rexact produces the fluxes of the original Godunov

scheme. The numerical fluxes Fi+1/2 obtained by the other integral conservation laws

59

DRAFT COPY 4.3 The Riemann Problem

 t

x

S R S L

U L U R

0

U H L L

Figure 4.3: Approximate HLL Riemann solver. Solution in the star region consists of a single state

UHLL separated from data states by two waves of speeds SL and SR

over (xi+1/2, xi+1)× (tn, tn+1) must coincide with equation 4.52 due to the consistency

with the integral form of conservation laws over (xi, xi+1)× (tn, tn + 1).

The HLL Riemann solver is constructed by assuming an average intermediate state

between the fastest and slowest waves. Consider a subsonic solution of the single-state

approximate Riemann problem at the interface between the left and right states, UL

and UR, where the minimum signal speed SL and the maximum signal speed SR are

negative and positive, respectively (Figure 6.5). By applying the integral conservation

laws (equation 4.51) over the Riemann fan, (∆t.SL, ∆t.SR)× (0, ∆t), the intermediate

state is given by

U∗ =
SRUR − SLUL − FR + FL

SR − SL
. (4.54)

After that, as denoted by equation 4.52, the integral over (∆t.SL, 0)× (0,∆t) gives

the HLL fluxes,

F ∗ =
SRUL − SLUR + SRSL (SR + SL)

SR − SL
. (4.55)

If both signal speeds are of the same sign, the fluxes must be evaluated only from

the upstream side. Therefore, in general, the HLL fluxes become

FHLL =

FL if SL > 0
F ∗ if SL ≤ 0 ≤ SL

FR if SR < 0.
(4.56)

60

DRAFT COPY 4.3 The Riemann Problem

4.3.5 Shu and Osher Solver

In the computation of discontinuous solutions of hyperbolic conservation laws, TVD

(total-variation- diminishing), TVB (total-variation-bounded), and the EN0 (essentially

non-oscillatory) schemes have proven to be very useful. Shu and Osher (1988) discussed

two improvements:

1. a simple TVD Runge-Kutta type time discretization, and

2. an EN0 construction procedure based on fluxes rather than on cell averages.

These improvements simplify the schemes considerably specially for multi-dimensional

problems with forcing terms. Shu and Osher (1988) finds the solution in one- and multi-

space dimension hyperbolic problem. Conservative schemes of the form:

un+1
i = un

i − λ
(
fi+1/2 − fi−1/2

)
, λ = ∆t/∆x, (4.57)

with a consistent numerical flux

fi+1/2 = f (uj−1, ..., uj+K) , (4.58)

was considered. In order to guarantee that any convergent bounded i.e., subsequence

has as its limit a weak solution of equation 4.11. Shu and Osher (1988) constructed

the shock capturing methods. The λ = ∆t/∆x term in equation 4.57 is the CFL

condition. Therefore in a one-dimensional case it should be less than one. Whereas,

the two-dimensional schemes are stable under CFL numbers, one-half of those used for

one dimension. In two-dimensional problems, stable solutions were observed for λ = 0.4

and λ = 0.3.

This simplified method proposed by Shu and Osher (1988) (SO) is adopted in the

present study to compare its performance with others, like Roes’ and HLL Riemann

solvers. This scheme simplifies the equation 4.50 and can be written as

FSO = 0.5 {FL + FR − |a| (UR − UL)} (4.59)

where a = λ |amax|, wherein amax = maximum value of the eigenvalues of the average

Jacobean matrix (equation 4.13) and λ = a positive coefficient, with λ < 1 (usually,

set between 0.3 - 0.4 for stable solutions).

61

DRAFT COPY 4.4 Selection of Mesh and Control Volume for Riemann2D

Object-Oriented Design

The Roes’, HLL and Shu & Oshers’ solvers are generic in nature, but the left and right

element fluxes required to solve the Riemann problem is dependent on the governing

equation of a particular hyperbolic system. Therefore, the properties of Riemann solvers

(for e.g., wave speed, eigen vlaues, eigen vectors, etc.) are declared in the GenericSide

class, and the body of these solver methods are present in the Side Class (subclass of

the GenericSide).

4.4 Selection of Mesh and Control Volume for Riemann2D

In order to numerically solve PDEs on a surface (for 2D problems), it is necessary

to create a mesh on the problem domain. This mesh specifies the points where the

equation will be solved as well as the connections between these points. The derivation

of a finite volume numerical solution is based on these meshes and control volumes.

4.4.1 Mesh Selection

Figure 4.4: (a) Cartesian grid, (b) body-fitted structured grid, (c) unstructured grid with varying

element size

One category of meshes are the so-called structured meshes. The Cartesian grid

is the simplest such example (Figure 4.4a). The solution points are located at the

intersection of the grid lines, while the elements are the rectangles determined by the

intersecting lines. This type of mesh is extremely simple and quick to generate. How-

ever, if the problem to be solved has curved internal and/or external boundaries, solving

on a structured Cartesian grid requires one to modify the numerical scheme near these

boundaries. This is usually quite difficult. See, for example, Helzel et al. (2005).

62

DRAFT COPY 4.4 Selection of Mesh and Control Volume for Riemann2D

Another type of structured mesh is the body-fitted structured mesh. Here, the grid is

still essentially Cartesian, but the quadrilateral elements are shaped to fit the boundary

(Figure 4.4b). Numerical methods that were originally developed for Cartesian grids

can be modified to body-fitted grids through grid mappings that do not change the

essence of the numerical scheme [see LeVeque (2002)]. The difficulty in implementing

this method lies in generating the mesh, particularly if there are multiple objects in

the interior.

The alternative that we have considered and adapted in this work is unstructured

(triangular) meshes. Unlike a structured mesh, elements and solution points are not de-

termined by the intersection of sets of parallel lines. One advantage of an unstructured

mesh is that points can be set on the boundaries of the surface, allowing for greater

accuracy later when applying a numerical method. Further-more, unstructured meshes

allow for elements of varying sizes, permitting accurate representation of boundaries

without requiring an excessive number of points and elements (Figure 4.4c).

Object-Oriented Design

GenericMesh class reads the mesh from a user supplied mesh file. It then creates the

list of sides and elements in the domain and their neighbouring elements. Also creates

ghost nodes and ghost elements in the process to facilitate the application of boundary

conditions.

4.4.2 Control Volume

Figure 4.5: Types of two-dimension control volume (a) Node-Centred (b) Element-Centred

Two types of control volumes (CV) can be made in the two-dimensional (2D) tri-

angular mesh : node-centred and element-centred (Figure 4.5).

63

DRAFT COPY 4.4 Selection of Mesh and Control Volume for Riemann2D

In a node-centred CV the unknown variables are positioned at the nodes of a

elements and the CV is an irregular shape surrounding the corresponding vertex. In

Figure 4.6 three possible definitions of the node-centred CV are shown. The centroid

dual is created by connecting the mid-points of the elements which are joined to the

concerned vertex. The Dirichlet tesselation is formed by connecting the centres of the

circum-circles of the same elements. Finally the median dual is obtained by linking the

mid-points of the elements and edges around the vertex.

Figure 4.6: Different possible choices of the control volumes for node centered control volume. Dashed

lines are the control volume’s faces and the solid lines are the elements (triangles)[Namin et al. (2004)]

In a element centered CV, each triangular element is considered as a control

volume and the state variables are located at its mid-point, so that the number of

unknown variables is the same as the number of elements or triangles.

In an element-centred CV the Riemann problem is solved for three sides, which is

shared with another triangle. Whereas in the node-centred CV the Riemann problem is

solved as many times as the number of the mesh elements connected to that particular

node. If we assume that the number of boundary sides are negligible compared to the

interior sides of the domain, then we can say that the number of Riemann problem

solved from each triangle is 1.5 times that for the element-centred CV. Conversely, for

node-centred number of Riemann problem for each mesh element is 1. This informa-

tion is used in table 4.1 to show that total number of Riemann problems solved for a

particular domain is the same for element-centred and node-centred CV.

64

DRAFT COPY 4.4 Selection of Mesh and Control Volume for Riemann2D

(a) (b)

(c) (d)

Figure 4.7: Three domains of different shapes and with different level of mesh refinement. (a) Circular

Domain (b) Triangular Domain (c) Rectangular Domain (d) Ratio of (No. of Elements) to (No. of

Nodes) for all the three cases. It can be seen in Figure (d) that the ratio tends to 2 as the mesh is

refined. Note: The “No of Steps” in (d) is the number of times mesh is refined for each domain.

Table 4.1: Comparison of the properties of the element-centred and node-centred control volumes.

Approximate Ratio of: Element Centred Node Centred

Control Volume Control Volume

No. of Control Points 2 1

Average no. of Riemann problems 1 2

solved per CV

Total No. of Riemann problems solved 1 1

Namin et al. (2004) have used both types of grid layout and showed that both

types produce reliable predictions. In this work element-centred CV are adopted for

the following reasons:

65

DRAFT COPY 4.4 Selection of Mesh and Control Volume for Riemann2D

1. For a particular mesh, element-centred CV has approximately twice as many com-

putational points as the node-centred CV (see figure 4.7), but the computational

cost is approximately same for both the CVs (see table 4.1). Therefore, it can

be easily said that the element-centred CV is expected to give more information

than the node-centred CV.

2. In a element-centred CV, an element of mesh itself is considered to be a CV,

this save computation time compared to the node-centred CV, where an extra

computation effort is required to create CV around each node.

3. Applying boundary conditions in element-centred CV is easier than applying

them to node-centred CV. Mirror image of the boundary element are created and

called Ghost Elements (see section 4.5), which easily implements the boundary

condition to the system. Also in cases where boundary fluxes have to be specified

it can be easily done, as the boundary of the domain and the centre of the element

coincide with each other.

Object-Oriented Design

The control volumes coincide with the elements of the mesh. Therefore, the generic

properties of a control volume (i.e., state variables, fluxes, area etc.) are defined and

stored in the GenericElement class. Whereas, the system specific properties (e.g., bed

depth for a shallow water problem) are defined and stored in the Element class (subclass

of GenericElement).

4.4.3 Approach to Triangular Control Volume

The traditional approach for the development of schemes to solve numerical systems of

m hyperbolic conservation laws in several space dimensions was as follows; First one

develops a scheme for the one dimensional problem, a good introduction to a large class

of one dimensional schemes can be seen in LeVeque (1992). All these schemes use in

one way or another the fact that all the propagation speeds are finite. This is due to the

hyperbolicity of the differential equations. That is, the Jacobian of the flux function

can be diagonalized. There are m real eigenvalues and a full set of eigenvectors. In

the large class of Godunov-type schemes, propagation speeds are computed implicitly

by solving a Riemann problem exactly or approximately across a element boundary.

66

DRAFT COPY 4.4 Selection of Mesh and Control Volume for Riemann2D

This approach is then extended to several space dimensions using the one-dimensional

Godunov-type methods at each element interval. Clawpack1 is a good example of this

approach.

Figure 4.8: Discretization of space with triangular control volume. The information propagates

normal to the element faces in three directions.

In this work triangular control volume are used. To use this theory of computing

fluxes across element sides, an approach is adopted where the axis of the problem

domain is rotated along the sides and the normal fluxes are calculated. In this approach,

the numerical approximation on each side of the element is considered to be constant

and the 1D scheme is applied. Hence, information from one element of the mesh travels

normal to the element face in the three space directions given by the normal vectors of

the sides of the triangles (see Figure 4.8). The triangle T0 has only three neighbouring

triangles T1, T2 and T3 into which information travels in the next time step.

4.4.4 Control Volume and Numerical Fluxes

In this work, the control volumes coincide with the mesh element, resulting in a element-

centred scheme. Thus, ~f∗k is effectively an approximation to the flux through edge k

of ∂Ω and depends on the state (i.e., the value of the solution variable(s)) on both

sides of the edge and (possibly) on its position as well as time. This numerical flux is

usually computed as the solution to a standard Riemann problem with the two states

separated by a discontinuity (discussed in section, 4.3).

But for the resulting finite volume method to be conservative, they still have to

satisfy a number of properties:
1http://www.amath.washington.edu/∼claw/

67

DRAFT COPY 4.4 Selection of Mesh and Control Volume for Riemann2D

Figure 4.9: Conventions for the flux computation across edge AB (as seen from the shaded element)

1. Property 1: The union of all control volumes covers the whole domain i.e.,
N∑

j=0
Ωj = Ω.

2. Property 2: Adjacent volumes should not overlap the internal boundary so that

the corresponding internal fluxes cancel out.

3. Property 3: Fluxes along a volume boundary have to be computed indepen-

dently of the control volume in which they are considered.

For a numerical scheme to be conservative, the discretisation of the flux integrals

has to satisfy the above properties. Properties (1) and (2) are trivially satisfied by a

element-centred scheme and property (3) can be reduced to the requirement that for

each interior edge AB in the discretisation of Ω

fAB.n̂AB = −fBA.n̂BA, (4.60)

as n̂AB = −n̂BA,

fAB = fBA. (4.61)

Object-Oriented Design

The fluxes for each side of the element is calculated using the Riemann solvers present

in the Side class (subclass of GenericSide). Using these fluxes each element is updated

at every time step. The update method is defined in the GenericElement class.

68

DRAFT COPY 4.4 Selection of Mesh and Control Volume for Riemann2D

4.4.5 The CFL Condition

The CFL condition is a necessary condition for the stability of a difference approxi-

mation to a hyperbolic problem. The condition is named after Courant, Friedrichs,

and Lewy who published the result in 1928 [Courant et al. (1928)]. It is sometimes

referred to as the Courant condition. It is one of the (historically and practically) most

important results in numerical solutions of PDEs.

Figure 4.10: Numerical domain of dependence shown in circular points at the mesh node. Two

possible characteristics are shown by lines. QP corresponds larger c and the CFL conditions is violated.

RP corresponds smaller c and the CFL condition is satisfied.

The CFL condition is based on the concept of domain of dependence. For the

advection equation with c = constant wave speed, the domain of dependence is just the

ray x = ct + x0 which passes through P (see Figure 4.10). More generally the domain

of dependence for the advection equation is the characteristic passing through point P.

For the wave equation, there will be two characteristics passing through P.

For hyperbolic equations, consider a point P on the space-time grid. Let UP be the

numerical value of U at P, uP be the actual value of the solution to the PDE at P. Let

Q be some point in the domain of dependence of P. Now,

The CFL conditions states that a necessary condition of a numerical scheme to be

stable is that the numerical domain of dependence must contain the actual domain

of dependence for the partial differential equation.

69

DRAFT COPY 4.4 Selection of Mesh and Control Volume for Riemann2D

It is easy to see why this must hold. Consider the case in which the numerical

domain of dependence does not contain the actual domain of dependence for the PDE.

Think of Q as a point at time t = 0. uP will hence depend on initial condition at Q.

However, since Q is not in the numerical domain of dependence, the numerical value

UP cannot depend on the initial condition at Q. Consider changing the initial condition

at Q (or in some small neighborhood of Q). uP will change but UP will not. Hence

there is no possibility, in general, of UP converging to uP as the grid is refined (as

∆t, h → 0).

For the advection equation with c > 0 and any three point stencil, the CFL condition

is:
∆t

h
≤ 1

c
, (4.62)

Similarly for c < 0 the CFL condition is:

∆t

h
≤ −1

c
, (4.63)

Combining equation 4.62 and 4.63, we get:

|c| ∆t

∆x
≤ 1. (4.64)

The same condition holds for the wave equation with 2 sets of characteristics. It

should be noted that the CFL condition is necessary but not sufficient i.e.,

• Satisfying the CFL condition does not guarantee a scheme converges.

• Not satisfying the CFL condition guarantees failure.

1

2

3

1

2

3 A

 B

 C D

Figure 4.11: Element and its neighboring elements

70

DRAFT COPY 4.5 Boundary Conditions

Equation 4.64 is sufficient for a one dimensional or a two-dimensional rectangular

grid. But in the case of a 2D unstructured triangular mesh the calculation of CFL

is complicated. The problem of triangular element is that all its sides have different

lengths, also the orientation of the element poses a problem in determining the side

through which information is propagating. In finite volume explicit schemes the flux

is calculated through each side. Generally the CFL condition in such methods are

calculated through these sides based on the velocities of the waves passing through

them. To generalise the CFL condition based on Figure 4.11 an equation is developed

as shown in equation 4.65:

Max

1
2

∆t. l
side=1,2,3

.s

Min

(
Aarea, Narea

N=D,B,C

)

 ≤ 1, (4.65)

where ∆t is the time step, l is the length of the sides (1, 2, 3), Narea denotes the

corresponding area of the triangle (D, B, C), and s is the speed of the wave, which is

calculated based on the Riemann solvers. The CFL number is a dimensionless quantity.

Object-Oriented Design

The generalised formula of equation 4.65 calculates the CFL number based on the speed

of the waves across each side. This generalisation of CFL number makes it a part of

the Generic package.

CFL criteria is used to check the the convergence of the solution for the mesh.

Whereas, the formula 4.65 is operated on each side of a triangle. Therefore, the CFL

number is declared in the GenericMesh class but updated in the GenericSide class.

4.5 Boundary Conditions

For the numerical methods discussed above we need to devise a method for applying

the boundary condition. One approach is to develop special formulas for use near the

boundaries, which will depend both on what type of boundary conditions are specified

71

DRAFT COPY 4.5 Boundary Conditions

and on what sort of method we are trying to match. However, in general it is much

easier to think of expanding the computational domain to include a few additional

elements on the boundary, called ghost elements. The values of the ghost elements are

set at the beginning to each time step in some manner that depends on the boundary

conditions and perhaps the interior solution.

D o m a i n B o u n d a r y

E l e m e n t s i n s i d e t h e d o m a i n

G h o s t E l e m e n t s

Figure 4.12: Ghost Elements which is made as the mirror image of the element inside the domain

The ghost elements are made in such a way that it creates a parallelogram with the

boundary elemnet, shown in Figure 4.12. Ghost elements make it easier to implement

the boundary conditions. At the start of each time step we have the values of parameter

of the interior element obtained from the previous step (or from the initial step), and

we apply a boundary condition procedure to fill the ghost elements with values, before

applying the method to solve the problem for the next time step. These values provide

the neighbouring element values needed in updating the element near the physical

domain. The boundary conditions are usually dealt with using one or more ghost

elements, but in this work only one ghost element is used.

In many simulations there is a need to have fluid flow specified on the face of the

boundary, generally, in terms of flux. It is difficult to correctly model this type of

boundary condition by specifying the values in the ghost element. It is important to

understand that when boundary condition specified at the face of the side are extrapo-

lated to the centre of the element, it may incur unwanted error. This could result from

the application of the limiters. Therefore, to model this type of boundary condition

flux type boundary condition is used.

Before the integration step the value of the boundary condition for the side is set

in a pre-determined way, depending on the problem. Using both options of applying

72

DRAFT COPY 4.5 Boundary Conditions

boundary condition there are four possible choices, shown in table 4.2. These boundary

condition are discussed in the following subsections.

Table 4.2: Classification of boundary conditions

Boundary condition Riemann problem solved Limiters used

1 Flux-type No No

2 Reflective-type No No

3 State-type Yes Yes

4 Transmissive-type Yes Yes

(a) (b)

(c) (d)

Figure 4.13: Object-oriented implementation of boundary conditions: (a) Flux-type (b) Reflective-

type (c) State-type (d) Transmissive-type zero order extrapolation

73

DRAFT COPY 4.5 Boundary Conditions

Object-Oriented Design

For efficient handling of the boundary condition, object-oriented method pointer is

used. This allows a method to be initialised indirectly by way of a reference to the

variable, which is a once-only transfer of the appropriate reference to the left and right

states for a side. It is part of the Mesh initialisation process and done only once.

In other words, references are used to hook up the states at sides (calculated from

limiters)and the left and right state of the respective side.

Application of the limiters are discussed in the next chapter. For the time being

it can be assumed that limiters help to specify the states at three side of a triangular

control volume. These states at sides are used to set left and right states when solving

a Riemann problem at a side.

Figure 4.13 shows four type of situations where different boundary conditions (Table

4.2) are applied using appropriate reference pointers. The detail of these boundary

conditions are described in the following subsections.

4.5.1 Flux-Type

When flux (mass and momentum) values are assigned to faces of the elements, the

boundary condition are classified as flux-type boundary conditions (Figure 4.13 a).

The corresponding boundary conditions are a numerical attempt of imposing fluxes

into the system. In some cases this could be in the reserve direction i.e., the fluid

leaves the system at a defined flux rate.

There are two possible condition in which this type of boundary condition are used,

that is:

1. when the fluxes are fixed at the boundary. In this case the fluxes imposed at the

boundary will be same for every time step, and

2. when the fluxes vary with the time. In this case the state variable can be passed

through an input file and defined at every time step of the calculation.

It should be noted that in this type of boundary condition, Riemann problems are

not solved at the corresponding boundary sides. Also, the limiters are not applied to

the boundary element.

74

DRAFT COPY 4.5 Boundary Conditions

Object-Oriented Design

Figure 4.13 (a) shows the situation for the implementation of the flux-type boundary

condition. It can be seen that the flux values are specified at the boundary side of the

boundary element. Therefore, no Riemann problem is solved and the three states at

the sides of the element point to the centre of the element. This means that when state

at the sides are called for the values, they return the same values stored at the centre

of the element i.e., the vector of state variables (see equation 4.12).

State variables of elements within the domain are updated at every time step and

for this fluxes at three sides are required (see equation 4.20). In this type of boundary

condition the code directly assign the values of the fluxes for the boundary side.

4.5.2 Reflective-Type

The domain boundary, which physically consists of a fixed or reflective impermeable

wall are classified as the reflective-type boundary condition (Figure 4.13 b). The cor-

responding boundary conditions are a numerical attempt to produce boundaries that

do not allow the passage of waves and fully reflect them. There are two ways of imple-

menting this type of boundary condition:

1. One way of modelling this situation is by creating a fictitious state Un
ghost element

in the ghost element and defining the boundary Riemann problem. The fictitious

state Un
ghost element (see equation 4.12 for the vector of conserved variables) is

defined from the known state Un
boundary element inside the computational domain,

namely

un
ghost element = un

boundary element (4.66)

for all the non-momentum conserved variables. For the momentum conserved

variables the Un
ghost element is defined as

un
ghost element = −un

boundary element. (4.67)

Toro (1999) states that the exact solution of this boundary Riemann problem con-

sists of either (i) two shock waves if momentum conserved variable, un
boundary element >

0, or (ii) two rarefaction waves momentum conserved variable, un
boundary element ≤

0. In both cases uboundary = 0 along the boundary; this is the desired condition

at the solid, fixed impermeable boundary.

75

DRAFT COPY 4.5 Boundary Conditions

2. Alternatively, zero flux can be assigned at the boundary side of the boundary

elements. The benefit of using this method is:

• Firstly, it doesn’t not require to solve the Riemann problem at the boundary

side. Therefore, it save the computational cost of solving riemann problem

and then updating the parameters.

• Secondly, in this process the limiters are not applied to the boundary ele-

ment. This ensures that that depth at the sides in the boundary element

are same as the states of the element and there is no extra reflection created

due to zero-order extrapolation.

In the present study second approach is adopted. But, for those who wish to apply

the reflective type boundary condition using first approach can achieve this with little

modification in the code. The implementation of the boundary condition using first

approach would follow the principles of the state type boundary condition, explained

in the next subseciton. The only difference would be that the state variables need to

be updated at every time step, as described above.

Object-Oriented Design

Figure 4.13 (b) shows the situation for the implementation of the reflective-type bound-

ary condition. It can be seen that the situation in this case is same as the flux-type

boundary condition except that the flux is zero at the boundary side.

Therefore, Riemann problem is not solved at the boundary and limiters are not

applied to the boundary element. For the update method using equation 4.20, the code

will return zero flux.

4.5.3 State-Type

When the vector of state variables(equation 4.12) are defined at the boundary then it is

classified as the state-type boundary condition (Figure 4.13 c). The assumption made

to this type of boundary condition is that the state variables are defined in the ghost

element. There are two possible condition in which this type of boundary condition are

used:

1. when the state variables are fixed at the boundary. In this case the state variables

will be same for every time step, and

76

DRAFT COPY 4.5 Boundary Conditions

2. when the state variables vary with the time. In this case the state variable can

be passed through an input file and defined at every time step of the calculation.

Object-Oriented Design

Figure 4.13 (c) shows the situation for the implementation of the state-type boundary

condition. In this type of boundary condition the vector of state variables (see equations

4.12) is specified at the centre of the ghost element.

While creating sides in the GenericElement the code cycles (anticlockwise) through

each element to make sides and specify the left and right elements to this sides. To

solve the Riemann problem it also specify the left and right state (according to the left

and right element) at the centre of the side. During this process the ghost elements

always comes on the right of the boundary element.

In the ghost element DAC, the state at side points to the right state of the boundary

side, which in turn points to the centre of the ghost element. In other words, the state

at boundary side and right state will always return the values from the vector of state

variable. Whereas, for the boundary element ABC, left state at the boundary side

points to the state at the boundary side. This state at the boundary side is calculated

using the limiters. The limiter set the value at the sides of the boundary element ABC

by using the values in ABC and its neighbouring elements i.e.,DAC,AEB and BFC (see

section 5.9.1).

4.5.4 Transmissive-Type

Transmissive-type (Figure 4.13 c), boundary conditions are a numerical attempt to

produce boundaries that allow the passage of waves without any reflection. This is

achieved by

Un
ghost element = Un

boundary element, (4.68)

and equation produces a trivial Riemann problem. Toro (1999) states that no wave

of finite strength is produced at the boundary that might affect the flow inside the

domain. This last statement might be true for some cases, but in the present study it

has been found that this approach (also known as zero-order extrapolation) produces

reflection at the transmissive boundaries.

77

DRAFT COPY 4.5 Boundary Conditions

O

A

B

C

O

A

BC

O '

A '

B '

O

A

BC

O '

A '

B '

O

A

BC

O '

A '

B 'C '

(a) (b)

(c) (d)

(e)

Figure 4.14: First-order extrapolation for 2D triangular elements: (a) Elements in plan

view. Ghost Element C is in grey shade. (b) Elements in plan and elevation view. Ghost Element C

elevation view is excluded. (c) Elements shown after the limiters are applied. Ghost Element C is given

same value (+ or -) as the boundary element O i.e., ‖CC′‖ = ‖OO′‖. This is often know as zero-order

extrapolation. (d) Ghost Element O is given value (+ or -) based on the gradient of the triangle formed

by values in the OO’, AA’ and BB’. This is often know as first-order extrapolation. Shaded triangle C

shows that the value in the ghost element could be different from the zero-order value, depending on

the gradient of O’A’B’. (e) Object-oriented implementation of first-order transmissive-type boundary

condition.

78

DRAFT COPY 4.6 Conclusions

Object-Oriented Design

Figure 4.13 (d) shows the situation for the implementation of the transmissive-type zero

order boundary condition. It can be seen in Figure 4.13 that the centre of the ghost

element points to the centre of the boundary element. Therefore, when limiters are set

for boundary element ABC, the ghost element will always return the values from the

centre of boundary element. However, on the boundary side the state at boundary side

in the ghost element points to the right state. The right state points to the left state,

which in turn point to the state at the boundary side of the boundary element. The

value of state at the boundary side of boundary element ABC is assigned by setting up

the limiters on ABC.

To overcome the problem of reflection, a first order approach is developed. This

is based on fitting a first-order plane through the interior solutions and extrapolating

the boundary elements. The process of first-order extrapolation is described in Figure

4.14, which shows the steps followed for the implementation of this process.

Object-Oriented Design

Figure 4.14 (a)-(d) shows the process of setting up first order boundary condition.

This is done using the extrapolation of the values in the boundary element and its

neighbouring interior elemnets. The extrapolated values set the vector of state variable

in the centre of the ghost element.

Figure 4.14 (e) shows the situation for the implementation of the transmissive-type

first order boundary condition. It can be seen that the Figure 4.14 (e) is similar to the

Figure 4.13 (d). The only difference in the two process (i.e., zero-order and first-order)

is that the values in the ghost elements are the extrapolated values. Otherwise, the

process reference pointing is same.

4.6 Conclusions

This chapter has presented the common theory of hyperbolic systems and discussed the

object-oriented implementation. The theory presented in this chapter do not develop

a stand-alone model, or solve any particular hyperbolic problem. However, the model

developed using this theory can easily extended using the object-oriented model of

79

DRAFT COPY 4.6 Conclusions

Riemanns2D. The benefits of developing Riemann2D as a generic hyperbolic model

are as follows:

• It helps to identify common features of various model and thus leads to better

understanding of its theory.

• It has greater ability to apply techniques, used for one model, to solve new prob-

lems.

• It is easier to develop new model with less effort.

• It is possible to keep the model open for the future development.

Other important developments in this chapter are as follows:

• discussion on element-centered and node-centered control voulme (see section

4.4.2);

• generalised CFL criteria for 2D triangular mesh for hyperbolic problems (equation

4.65); and

• introduction of new and effictive approach to the solution of boundary conditions,

(see section 4.5).

80

CHAPTER 5

High-Resolution Methods

5.1 Introduction

In Chapter 4, the finite volume methods developed for the hyperbolic systems are only

first order accurate in time and space. In this chapter these methods are further derived

to find second order accuracy in space and time. Focus has been on providing a solution

for discontinuities and eliminating the spurious/numerical oscillations.

The objective of this chapter is to present:

• the traditional numerical methods to emphasise the need for the used high-

resolution methods;

• various methods to solve the problem due to oscillations in the vicinity of high

gradients;

• the slope limiters used in Riemann2D to limit the oscillations.

• an extended version of one-dimensional vanLeer limiter [vanLeer (1979)] for tri-

angular elements.

• the object-oriented implementation of the theory in the Riemann2D design.

Few important things to note before reading this chapter:

• The gray object-oriented comment boxes, mentioned in the section 1.4, are only

for the discussion of object-oriented implementation.

• The high-resolution methods is a part of generic package.

81

DRAFT COPY 5.2 Shock Capturing

5.2 Shock Capturing

The problem of spurious oscillations in the vicinity of high gradients (also known as

shocks1) is depicted in Figure 5.1, where the solid line denotes the exact solution and the

dotted line denotes the numerical solution obtained by some linear method of second

order or higher order of accuracy. According to Godunov’s theorem [see Toro (1999)],

spurious oscillation in the vicinity of high gradients are expected [Toro (2001)], which

is highly undesirable in any numerical scheme.

N u m e r i c a l S o l u t i o n

E x a c t S o l u t i o n

Figure 5.1: Illustration of the numerical phenomenon of spurious oscillations near high gradient

The main difficulty in calculating fluid flows with shocks is that it is very hard

to predict, even in the process of a flow calculation, when and where new shocks will

arise and interact; tracking the shocks, especially their interactions, is numerically

burdensome.

Many methods used to control (or limit) spurious oscillations and diffusion around

discontinuities by either,

• Artificial viscosity : The artificial viscosity, introducing by fictitious term, sup-

presses numerical oscillations near discontinuities, which otherwise would have

been generated; or

• Non-linear limiters: The use of non-linear limiters suppresses oscillations by con-

trolling the numerical solution in a non-linear way, so that the appearance of any

new local extremes is prohibited during the process of reconstruction of the cell

variables.
1Shock waves are discontinuous solutions of hyperbolic conservation laws obeying some precise

mathematical conditions. See Toro (2001) (page 3) for a brief introduction to shocks from the viewpoint

of numerical methods.

82

DRAFT COPY 5.3 Traditional Numerical Methods

In present work, non-linear limiters are studied and used to achieve:

1. correct speed of propagation and correct width of the shock layer;

2. second or higher order of accuracy in time and space;

3. schemes producing numerical solutions free from spurious oscillations; and

4. schemes producing high-resolution of discontinuities, i.e., the number of mesh

points in the transition zone containing the numerical wave is less in comparison

to that of first-order monotone methods.

For a two-dimensional case, one direct approach is to generalize directly the one-

dimensional methods to solve multi-dimensional problems; such an approach has led

to several useful numerical methods including semi-discrete methods and Strang’s

dimension-dimension splitting methods [Chen (2000)]. Multi-dimensional effects play

a significant role in the behaviour of the solution locally, and any approach that only

solves the one-dimensional Riemann problem in the coordinate directions is clearly not

using all the multi-dimensional information.

5.3 Traditional Numerical Methods

In this section some traditional numerical schemes are presented that are used in dif-

ferent literatures to solve hyperbolic systems of equations. The benefit of studying the

traditional methods is that it helps better understanding and usage of modern methods.

5.3.1 The Lax-Friedrichs Method

The Lax-Friedrichs (LxF) method [Strikwerda (1989), Thomas (1995) and LeVeque

(2002)] is a basic method for the solution of hyperbolic partial differential equations.

Its use is limited because its order is only one, but it is easy to program, applicable

to general PDEs, and has good qualitative properties because it is monotone. The

LxF method is often used to show the effects of dissipation, but it is not actually a

dissipative method [Strikwerda (1989)].

The classical Lax-Friedrichs (LxF) method has the form:

Un+1
i =

1
2

[
Un

i−1 + Un
i+1

]− ∆t

2∆x

[
f(Un

i+1)− f(Un
i−1)

]
, (5.1)

83

DRAFT COPY 5.3 Traditional Numerical Methods

which is very similar to the unstable method (equation 4.22), but the value of Un+1
i is

replaced by the average 1
2

[
Un

i−1 + Un
i+1

]
. For the linear hyperbolic equation this method

is stable provided the Courant number (section 4.4.5) is less then 1. The numerical

equation 5.1, alternatively, can be written in the terms of numerical flux as:

F(Un
i−1, U

n
i) =

1
2

[
f(Un

i−1) + f(Un
i)

]− ∆x

2∆t
(Un

i − Un
i−1). (5.2)

this flux look like the unstable flux (equation 4.21; also see Figure 4.1) with the addition

of another term similar to the flux of the diffusion equations. By using this flux we

appear to be modelling the advection-diffusion equation qt + f(q)x = βqxx with β =
1
2(∆x)2/∆t. But if we fix the ratio, ∆t/∆x, then this coefficient vanishes as the grid

is refined, so in the limit, the method is still consistent with the original hyperbolic

equation. This additional term can be interpreted as the numerical diffusion that

damps the instability arising in the equation 4.22 and gives a method that can be

shown to be more stable for Courant number (see section 4.4.5) up to 1. However the

Lax-Friedrichs method introduces much more diffusion than is actually required, and

gives numerical results that are typically badly smeared unless a very fine grid is used

[LeVeque (2002)].

5.3.2 The Richtmyer Two-Step Lax-Wendroff Method

The Lax-Friedruchs method is only first-order accurate and can be achieved by using a

better approximation to the integral in equation 4.5. One approach is to first approxi-

mate q at the midpoint in time, and evaluates the flux at this point. The Richtmeyer

Two-Step Lax-Wendroff method [Richtmyer and Morton (1967)] is of the form:

F
n
i−1/2 = f(Un+1/2

i−1/2), (5.3)

where

U
n+1/2
i−1/2 =

1
2

(
Un

i−1 + Un
i

)− ∆t

2∆x

[
f(Un

i)− f(Un
i−1)

]
. (5.4)

U
n+1/2
i−1/2 is obtained by applying the Lax-Friedrichs method at the cell interface with

∆x and ∆t replaced by 1
2∆x and 1

2∆t respectively.

For a linear system of equations, f(q) = Aq, the Richtmyer method reduces to the

standard Lax-Wendroff method. These methods often lead to spurious oscillations in

solutions, particularly when solving problem with discontinuous solutions. Additional

84

DRAFT COPY 5.4 The Lax-Wendroff Method

numerical diffusion (or artificial viscosity) can be added to eliminate these oscillations,

as proposed by von Neumann and Richtmyer (1950).

5.4 The Lax-Wendroff Method

A large number of second-order methods can be developed to solve the linear system

qt + Aqx = 0 by using different finite difference approximations. Most of them are

directly based on finite difference approximations of the model equations with the

exception of the Lax-Wendroff method. This method is based on the Taylor series

expansion

q(x, tn+1) = q(x, tn) + ∆tqt(x, tn) +
1
2
(∆t)2qtt(x, tn) + . . . (5.5)

Rewriting qt + Aqx = 0 as qt = −Aqx and differentiating this gives

qtt = −Aqxt = −A2qxx (5.6)

where we have used qxt = qtx = (−Aqx)x. Using these expressions for qt and qtt in

equation 5.5 gives

q(x, tn+1) = q(x, tn)−∆tAqx(x, tn) +
1
2
(∆t)2A2qxx(x, tn) + (5.7)

Keeping only the first three term on the right hand side and replacing the spatial

derivatives by central finite difference approximation gives the Lax-Wendroff method.

Qn+1
i = Qn

i −
∆t

2∆x
A(Qn

i+1 −Qn
i−1) +

1
2

(
∆t

∆x

)2

A2(Qn
i+1 − 2Qn

i + Qn
i−1). (5.8)

By matching three terms in the Taylor series and using centered approximations, we

obtain a second-order accurate method.

This derivation of the method is based on a finite difference interpolation, with Qn
i

approximation point wise value q(x, tn) . However it can be interpolated as a finite

volume method of the form of equation 4.5 with the flux function

F
n
i−1/2 =

1
2
A

(
Qn

i−1 −Qn
i

)− 1
2

∆t

∆x
A2(Qn

i −Qn
i−1). (5.9)

85

DRAFT COPY 5.5 The Beam-Warming Method

5.5 The Beam-Warming Method

The Lax-Wendroff method is a centred three point method. If three is a system for

which all the eigenvalues are positive (e.g., the scalar advection equation with u > 0),

then it might be preferable to use a one-sided formula. In place of a centred formula

for qx and qxx , we can use

qx (xi, tn) =
1

2∆x
[3q (xi, tn)− 4q (xi−1, tn) + q (xi−2, tn)] + O(∆x2) (5.10)

qxx (xi, tn) =
1

(∆x)2
[q (xi, tn)− 2q (xi−1, tn) + q (xi−2, tn)] + O(∆x). (5.11)

Using these in equation 5.7 gives a method that is again second order accurate

Qn+1
i = Qn

i −
∆t

2∆x
A(3Qn

i −4Qn
i−1 +Qn

i−2)+
1
2

(
∆t

∆x

)2

A2(Qn
i −2Qn

i−1 +Qn
i−2). (5.12)

This is know as Beam-Warming method, which can be written in the flux differencing

finite volume method with

F
n
i−1/2 = AQn

i−1 +
1
2
A(1− ∆t

∆x
A)(Qn

i−1 −Qn
i−2). (5.13)

5.5.1 Problems with Traditional Schemes

The methods discussed in the above sections (5.3.1 and 5.3.2) are centered methods

i.e., symmetric about the point where solution is updated. Pudasaini (2003) states

that the traditional central difference methods introduce dispersive effects that lead

to unphysical oscillations in the numerical solution for physical problems with large

gradients of variables. Second order accutate methods such as Lax-Wendroff or Beam-

Warming give much better accuracy on a smooth solution than the upwind methods,

as seen in Figure 5.21, but fail near discontinuities, where oscillations are generated.

Even for the smooth solutions, oscillations may appear due to the dispersive nature of

these methods.

Literature on second order central schemes in one space dimension can be found in

Nessyahu and Tadmor (1990), Jiang et al. (1998), Kurganov and Petrova (2000), Lie

and Noelle (2003) and Breuss (2005). Some third and higher order central schemes can
1Animation of these tests are available http://www.amath.washington.edu/∼claw/book/chap6/

compareadv/www/

86

DRAFT COPY 5.5 The Beam-Warming Method

Figure 5.2: Test on the advection equation with different linear methods. Result at time t = 1 and

t = 5 , corresponding to 1 and 10 revolutions through the domain in which the equation qt + qx = 0

are shown with periodic boundary conditions: (a) upwind, (b) Lax-Wendroff, (c) Beam-Warming.

[LeVeque (2002)]

87

DRAFT COPY 5.6 Upwind Methods

be found in Liu and Tadmor (1998), Kurganov and Levy (2000), Qiu and Shu (2002)

and Tadmor and Tanner (2003).

For hyperbolic equations it is often the case that the numerical oscillations are so

large that a stable simulation may not be reached. For such cases, in order to avoid

possible (emerging) instabilities or to limit numerical oscillations to an acceptable level,

certain limiting operator must be incorporated. In order to avoid the above problem

non-centered upstream difference schemes may be used. However, this introduces al-

ternative difficulties in the implicit numerical diffusion.

5.6 Upwind Methods

For hyperbolic problems, information propagates with the waves along its character-

istics. In a system of equation, several waves propagate at different speeds and in

different directions. Upwind methods [Bermudez and Vazquez (1994), Navarro et al.

(1995), LeVeque (1998), Vukovic and Sopta (2002)] provide a method to find the bet-

ter numerical flux functions, by using the knowledge of the structure of the solution in

which the information for each characteristic wave is obtained by looking in the direc-

tion from which this information should be coming. Therefore, using upwind methods

provides better results.

The upwind schemes have to solve Riemann problems on the boundaries of each

cell, which is interpreted as an upwinding procedure. However, a general scheme for the

(exact or approximate) solution of the Riemann problems is not known, and the upwind

approach may be rather complicated and costly, especially in multidimensional cases.

But with the ever increasing advances in the computer hardware the computational

cost should not be an issue over the accuracy and robustness of a scheme.

For the constant-coefficient equation

ut + cux = 0 (5.14)

where c is a real constant or the wave speed or the velocity of propagation.

Figure 5.3(b) shows the flux through the left edge is entirely determined by the

value, Un
i−1, of the left cell. This suggests defining the numerical flux as

Fn
i−1/2 = cUn

i−1. (5.15)

88

DRAFT COPY 5.6 Upwind Methods

This leads to the standard first-order upwind method for the advection equation,

Un+1
i = Un

i −
c∆t

∆x
(Un

i − Un
i−1). (5.16)

Now this can be written as

Un+1
i − Un

i

∆t
+ c

(
Un

i − Un
i−1

∆x

)
= 0, (5.17)

whereas the unstable method (see equation 4.22) applied to the advection equation is

Un+1
i − Un

i

∆t
+ c

(
Un

i+1 − Un
i−1

2∆x

)
= 0. (5.18)

The upwind method used one side approximation to the derivative uz in place of the

centered approximation.

Another interpretation of the upwind method is suggested by Figure 5.3(a). If Un+1
i

is supposed to be the value at the center of the grid points, as is standard in the finite

difference method, then u(x, t) is constant along characteristics. Therefore, we can

write

Un+1
i ≈ u(xi, tn+1) = u(xi − c∆t, tn). (5.19)

Figure 5.3: Two representations of the upwind method for advection. (a) If Un
i represents the value

at a point where information is available, then we can trace the characteristic back and interpolate.

(b) If Un
i represents the cell average, then the flux at the interface is determined by the cell value on

the upwind side.

If the value on the right side is approximated by a linear interpolation between the

grid values Un
i−1 and Un

i , we obtain the method

Un+1
i =

c∆t

∆x
Un

i−1 +
(

1− c∆t

∆x

)
Un

i . (5.20)

89

DRAFT COPY 5.6 Upwind Methods

This is the simple upwind method, it is a rearrangement of equation 5.16, but the

condition applied is

0 ≤ c∆t

∆x
≤ 1, (5.21)

in order for the characteristics to fall between the neighbouring points so that this

interpolation is sensible. In fact equation 5.21 must be satisfied in order for the upwind

method to be stable and also follows from the CFL condition [see section 4.4.5]. Also

if equation 5.21 is satisfied then equation 5.20 expresses Un+1
i as a convex combination

of Un
i and Un

i−1 (i.e., the weights are both non-negative and sum to 1).

In the above discussion we have assumed that c > 0. On the other hand if c < 0

then the upwind direction is to the right and so the numerical flux at x1−1/2 is

Fn
i−1/2 = cUn

i . (5.22)

The two formulas in equation 5.15 and 5.22 can be combined into a single upwind

formula that is valid for c of either sign, then we can write

Fn
i−1/2 = c−Un

i + c+Un
i−1, (5.23)

where

c+ = max(c, 0) and c− = min(c, 0). (5.24)

This information1 is useful in extending the methods to more general hyperbolic

problems. Not all hyperbolic equations are in conservation form; for example the

equations of acoustics in a heterogeneous medium (where the density and bulk modulus

vary with x). Such equations do not have a flux function, and so numerical methods of

the form 4.5, where Fn
i−1/2 = F(Un

i−1, U
n
i) cannot be applied. However, these hyperbolic

problems can still be solved using the finite volume approach of the model that results

from a simple generalization of the high-resolution methods developed for hyperbolic

conservation laws. The unifying feature of all hyperbolic equations is that they model

waves that travels at finite speed. In particular the Riemann problem with piecewise

constant initial data (as discussed in Chapter 3, section 4.3) consists of waves traveling

at constant speeds away from the location of the jump discontinuities in the initial

data.
1See sections 6.6 on Riemann solvers for shallow water equations where this information is used.

90

DRAFT COPY 5.7 Godunov’s Method

5.7 Godunov’s Method

Godunov-type schemes have proved to be powerful tools for simulating discontinuous

flows when they are described by systems of non-linear, hyperbolic conservation laws

[Woodward and Colella (1984), and Toro (1999)]. Guinot (2003) describes Godunov-

type schemes as a good candidates for the next generation of commercial modelling

software packages, the capability of which to handle discontinuous solutions will be a

basic requirement. Although they have gained popularity in the research area, such

schemes are rarely found in simulation packages available commercially. Such schemes

use many ad hoc techniques, such as slope limiters or wave splitting for multidimen-

sional problems. Also, because the stencil of a scheme should include the domain of

dependence of the solution for stability, a CFL [see section 4.4.5] stability constraint

is necessarily attached to fixed-stencil schemes. Therefore, in such schemes, the com-

putational time step has to be limited so the Courant number associated with each of

the eigenvalues of the hyperbolic system should often be smaller than a fixed value.

Consequently, these schemes should have the cpabilities to provide efficient solutions

when:

• large contrasts exist between the various eigenvalues, and

• the computational grid is highly irregular.

In these cases, the schemes performance is limited by the largest of the eigenvalues of the

hyperbolic system and by the size of the smallest cell, leading to a strong degradation

of the numerical solution in regions where the cell is larger.

Guinot (2002) identified various ways to overcome the stability problems, one of

them leads to a first class of numerical methods where the governing partial differential

equations (PDEs) are approximated with ordinary differential equations (ODEs), thus

breaking the dependence of the time step on the cell size. Although this allows the

computational time step to be increased, such an approach has the drawback that it

only works for smooth solutions to the PDEs.

Another possible approach consists of adapting the stencil of the scheme to the

size of the domain of dependence of the solution. The characteristics can be traced

forward or backward across several computational cells. This has been the subject of

various works in the domain of Lagrangian or semi-Lagrangian techniques [Goldberg

91

DRAFT COPY 5.7 Godunov’s Method

and Wylie (1983)] as well as flux-based (or conservative) Eulerian schemes. Originally,

the approach consisted of seeking the departure point of the characteristic lines across

several cells when needed. It was applied to problems with (almost) constant wave

speeds, such as water hammer problems. The accurate determination of the feet of

the characteristic lines is not straightforward and has been studied by a number of

authors [Savic and Holly (1993)]. Moreover, when strong non-linearity is present in the

equations, the irreversible character of the solution makes it difficult, if not impossible,

to determine accurately the extension of the domain of dependence using backward-

tracking algorithms.

A third approach consists of making the scheme implicit by solving a set of linear or

non-linear equations using the unknown variables at the next time level to be computed.

These techniques are time consuming, inasmuch as the size of the system to be solved is

equal to the number of computational cells, or to twice this number in some methods.

The fourth approach well suited to the solution of conservation laws in the presence

of shock waves, consists of using front-tracking-based methods, except that the domain

of influence and the potential merging of shocks is explored forward in time rather than

backward.

Instead we have used the shock-capturing methods, where the goal is to capture

discontinuities in the solutions automatically, without explicitly tracking them.

5.7.1 Godunov’s Method For Linear Systems:

The upwind method for the advection equation can be derived as a special case of the

following approach, which can also be applied to systems of equations. LeVeque (2002)

referred it as the REA for reconstruct-evolve-average:

1. Reconstruct a piecewise polynomial function ũn(x, tn) defined for all x, from the

cell averages Un
i . In the simple case this is a piecewise constant function that

takes the value Un
i in the grid cell, i.e.,

ũn(x, tn) = Un
i for all x ∈ Ωi. (5.25)

2. Evolve the hyperbolic equation exactly (or approximately) with this initial data

to obtain ũn(x, tn+1) at time ∆t later.

92

DRAFT COPY 5.7 Godunov’s Method

3. Average this function over each grid to obtain new cell averages

Un+1
i =

1
∆x

∫

Ωi

ũn(x, tn+1)dx. (5.26)

This whole process is repeated in the next time step. To introduce this procedure,

it must be able to solve the hyperbolic equation in step 2. Because it is starting with

piecewise constant data, this can be done using the theory of Riemann problems. When

applied to the advection this leads to upwind algorithm.

Figure 5.4: An illustration of reconstruct-evolve-average algorithm for the case of linear acoustics

(adapted from LeVeque (2002)). The Riemann problem is solved at each cell interface, and the wave

structure is used to determine the exact solution time ∆t later. This solution is averaged over the grid

cell to determine Un+1
i .

In step 1 we reconstruct a function ũn(x, tn) from the discrete cell average. In

Godunov’s original approach this is the piecewise constant function. It leads most

naturally to Riemann problems, but gives only a first order accurate method. To

obtain better accuracy, a better reconstruction can be used, for example a piecewise

linear function that is allowed to have a non-zero slope σn
i in the ith grid cell. This idea

forms the basics of the high-resolution methods.

The exact solution at time tn+1 can be constructed by piecing together the Riemann

solution, provided that the time step is short enough that the waves from two adjacent

sides in this process have not yet started to interact. Figure 5.4 shows a systematic

diagram of this process for the equation of linear acoustics with constant sound speed

c, in which case this requires that

|c|∆t ≤ 1
2
∆x, (5.27)

93

DRAFT COPY 5.8 Total Variation Diminishing Method

so that each wave goes at most halfway through though the grid cell. Rearranging gives

|c| ∆t

∆x
≤ 1

2
. (5.28)

The quantity |c| ∆t
∆x is simply the Courant number [see section 4.4.5], so it is apparent

that the condition is limited only within 1/2.

5.8 Total Variation Diminishing Method

Although first-order finite difference methods are monotonic and stable, they are also

strongly numerically diffusive, causing the solution to become smeared out. Second-

order or higher-order techniques are less dissipative, but susceptible to non-linear, nu-

merical instabilities that cause non-physical oscillations. The high-resolution meth-

ods are a compromise between the traditional first-order and higher-order difference

schemes. Their central idea is, on the one hand, to avoid the introduction of under-

and over-shoots (numerical oscillation), and on the other hand, to maintain the numer-

ical diffusion as small as possible, that is often achieved by different cell reconstruction

techniques.

It is well known that in computing discontinuous solutions, the first order method

(upwind) gives very smeared solutions while the second order method (Lax-Wendroff or

Beam-Warming) gives spurious oscillations [see figure 5.2]. In order to develop a method

that is of higher order and at the same time non-oscillatory and capable of capturing

shocks, we need to define a powerful concept called the Total Variation Diminishing

(a.k.a. TVD) method.

For a grid function it can be defined as:

TV(u) =
∞∑

i=−∞

∣∣un
i − un

i−1

∣∣. (5.29)

Any oscillation in the computed result increases the total variation (TV). The Total

Variation Diminishing condition

TV (un+1) ≤ TV (un) (5.30)

provides a method that gives a solution without spurious oscillations near the disconti-

nuities. Any numerical scheme which fulfils the TVD condition (equation 5.30) for all

94

DRAFT COPY 5.9 Higher-Order Methods for Riemann2D

grid functions Un is called a Total Variation Diminishing (TVD) method. Therefore,

any TVD method is automatically monotonicity preserving. This means, in particular,

that oscillations of the physical quantities like velocity jumps and other sharp gradients

cannot arise near an isolated propagating discontinuity. As we will see later, another

beautiful feature of the TVD requirement is that it is possible to derive higher-order

accurate methods that also satisfy equation 5.30. It can also be shown that the true

(i.e., physically relevant weak) solution to a scalar conservation law possesses this TVD

property [LeVeque (1992)].

5.9 Higher-Order Methods for Riemann2D

Much effort has been invested to achieve better than first-order accuracy with finite vol-

ume methods. The first hurdle is Godunov’s Theorem, which states that non-oscillatory

constant coefficient schemes can be at most first-order accurate [Vollmer (2003)]. This

can be overcome by the introduction of non-linear schemes such as Weighted Average

Flux (WAF) [Billett and Toro (1997)], MUSCL [vanLeer (1979)], ENO [Toro (1995)],

Flux Corrected Transport (FCT) [Boris and Book (1973)] and Piecewise Linear (PLM)

[Colella and Woodward (1984)]. One of the popular ones (also used in the present

study) is vanLeers MUSCL1 [vanLeer (1979)] approach, which belongs to the class of

Godunov-type methods, a class of non-oscillatory finite volume schemes that incorpo-

rate the exact or approximate solution to Riemann’s initial-value problem.

VanLeer [vanLeer (1977b), vanLeer (1977a), and vanLeer (1979)] introduced the

idea of modifying the piecewise constant data in the first-order Godunov method, as a

first step to achieving higher order accuracy. This approach has become known as the

MUSCL or Variable Extrapolation approach. The piecewise constant states within each

cell are modified to piecewise linear ones (figure 5.5), which are carefully constructed

from neighbouring states both to maintain conservation and not increase total variation

(section 5.8) (i.e., do not create over- or under-shoots).

5.9.1 Data Reconstruction

In all second- and higher-order schemes the application of non-linear limiters involves

the introduction of a parameter termed the limiter into the gradient terms that appear
1MUSCL stands for Monotone Upstream-centred Scheme for Conservation Laws

95

DRAFT COPY 5.9 Higher-Order Methods for Riemann2D

Figure 5.5: (a) Constant reconstruction vs (b) piecewise linear reconstruction

in the process of cell variable reconstruction. This step is necessary for higher-order

schemes in order to maintain monotonicity.

Given an initial distribution of piecewise constant values in each control volume, a

piecewise linear reconstruction of any scalar variable, u′, over an element with centroid

value as u may be expressed as

u′ = u + ~r · ~L. (5.31)

Here ~r is a vector from the centroid of the control volume and ~L is a gradient operator.

The linear reconstruction of u′ still has to be conservative over the control volume Ωj

in the sense that
1

VΩj

∫ ∫

Ωj

u′dxdy = u, (5.32)

Batten et al. (1996) recommended to construct a gradient plane through three nearby

centroids A, B and C with normal vector

~n = (PA−PB)× (PC−PB), with P i=

xi

yi

zi

 , (5.33)

and the subsequent gradient operator

~∇ (∆ABC) =

[−nx/nu

−ny/nu

]
if nu > ε

[
0
0

]
otherwise

(5.34)

96

DRAFT COPY 5.9 Higher-Order Methods for Riemann2D

Figure 5.6: Naming convention for the Limiting Procedure defined for a triangular control volume

(left) and a piecewise constant reconstruction of the solution (right)

The gradient operator defined by equation 5.34 is not yet limited and as such may

exhibit non-physical over- or under-shoots at the points where the operator is evaluated

usually at the midpoint of each edge. The limiting of the gradient operator therefore

plays an important role as it directly influences the character and accuracy of the

solution.

As a result we can write that the reconstruction of the state variables in the cell is

limited in the form:

U(x, y) = U0 + Φ∇.r, (5.35)

where Φ is a chosen limiter. When Φ is set to zero, equation 5.35 is a first-order-accurate

reconstruction.

Object-Oriented Design

The reconstruction of elements (equation 5.35) are required to set the states at the

sides of the elements. These states at the sides are used to solve Riemann problem.

This operation is done on the elements, which makes the reconstruction as the part

of the GenericElement class. In equation 5.35, Φ is supplied from the limiter package

(discussed in the next section).

5.9.2 Limiters

We have introduced shock capturing schemes that reduce the numerical diffusion at

discontinuities, sharpen the discontinuities in derivatives and avoid spurious oscillations,

improving the behaviour of non-oscillatory schemes and piecewise hyperbolic methods.

97

DRAFT COPY 5.9 Higher-Order Methods for Riemann2D

In the present work we have introduced and analysed a number of limiter functions for

the triangular meshes, based on the rank of the limiter. The term rank, which helps to

understand the behaviour of limiters (discussed in chapter 8), is introduced in this work

to identify and describe the number of limiting triangles (∆ABC, ∆AOC, ∆BOC and

∆COB; see Figure 5.6) involved in the formation of a particular limiter.

Some literature on the selected limiters are given in section 2.4.2 and the mathe-

matical expressions on these limiters is presented in the following sub-sections.

Figure 5.7: (a) Generic package with limiter package. (b) Relationship between various classes in

the limiter package. GenericLimiter is superclass of other limiter classes.

Object-Oriented Design

Five different type of limiters are used in Riemann2D. These limiters are written in

different classes and bundled into one package, called limiter (see Figure 5.7). The

limiter package is part of the generic package, but due to its presence in a separate

98

DRAFT COPY 5.9 Higher-Order Methods for Riemann2D

package it helps in better classification of the code. The GenericLimiter class in the

limiter package (see Figure 5.7 (b)) is the superclass of other limiters and Limiter class

is the interface for the limiter package. Detailed explanation is given in chapter 6.

5.9.2.1 No Limiters

“No limiter” is the case when Φ = 0. It is a rank 0 limiter. This means that the value

at the centre of the element is same as the values at the sides of the elements.

Object-Oriented Design

The GenericLimiter class in the limiter package (see Figure 5.7 (b)) provides the “No

Limiter” case. The GenericLimiter class is also superclass to other limiter classes in

this package.

Note: Limiter class is the interface for the limiter package. Detailed explanation is

given in chapter 6.

5.9.2.2 Superbee and Minmod Limiters

Superbee and Minmod limiters are rank 1 limiters because they consider only one

limiting triangle (Figure 5.6) i.e., ∆ABC.

ΦSuperbee/Minmod = min(Φj), j = k(i), (5.36)

where

Φj = max[min(βrj , 1),min(rj , β)], (5.37)

with

rj(uj) =

(umax
0 − u0)/(uj − u0) if uj − u0 > 0

(umin
0 − u0)/(uj − u0) if uj − u0 < 0

1 if uj − u0 = 0
, (5.38)

and

umin
0 = min(u0, uneighbour), umax

0 = max(u0, uneighbour). (5.39)

In the above equation (5.39) uneighbour is the value of conserved variables of elements

A, B and C. The quantity β in equation 5.37 can take any value between one and two.

In particular, β = 1 is the minmod limiter and β = 2 is Roe’s Superbee limiter [Hirsch

(1990)].

99

DRAFT COPY 5.9 Higher-Order Methods for Riemann2D

5.9.2.3 Limited Central Difference (LCD) Limiter

The LCD is also a rank 1 limiter because it considers only one limiting triangle (Figure

5.6) i.e., ∆ABC. LCD is one of the earliest (and still most widely used) limiters in

the context of MUSCL-schemes [Vollmer (2003)]. This limiter’s advantages lie in its

simplicity and speed.

1. Construct the unlimited gradient operator

~L = ~∇(∆ABC). (5.40)

2. For each edge k calculate the scalar

αk =

max(uk,u0)−u0

~r0k.~L
if(u0 + ~r0k.~L) > max(uk, u0)

max(uk,u0)−u0

~r0k.~L
if(u0 + ~r0k.~L) < min(uk, u0)

1 otherwise

, (5.41)

3. Set

ΦLCD = ~LLCD =
(

min
all k

αk

)
~L . (5.42)

5.9.2.4 Extended vanLeer (EV) Limiter

The vanLeer limiter [vanLeer (1974)] for one-dimensional problem is extended in this

work for two-dimensional triangular mesh. The Extended vanLeer is a rank 3 limiter

because it considers three limiting triangles (Figure 5.6) i.e., ∆AOC, ∆BOC and

∆COB. The gradient vectors in Figure 5.6 for ∆ABC, ∆AOC, ∆BOC and ∆COB

can be denoted as S1, S2 and S3.

ΦEV = S0= 0.8
S1. ‖S2‖ . ‖S3‖+ ‖S1‖ .S2. ‖S3‖+ ‖S1‖ . ‖S2‖ .S3

‖S2‖ . ‖S3‖+ ‖S1‖ . ‖S3‖+ ‖S1‖ . ‖S2‖ . (5.43)

5.9.2.5 Maximum Limited Gradient (MLG) Limiter

Batten et al. (1996) introduced the MLG operator in 1996 and they have shown that

it reduces to Roe’s Superbee limiter in one dimension, which is the most compressive

limiter that still lies within Sweby’s second order TVD region [Vollmer (2003)]. MLG

is a rank 4 limiter because it considers four limiting triangles (Figure 5.6) i.e., ∆ABC,

∆AOC, ∆BOC and ∆COB. The MLG limiter is based on computing various gradient

operators in an LCD fashion and then retaining the steepest one of them as follows:

100

DRAFT COPY 5.9 Higher-Order Methods for Riemann2D

1. Compute

~L0 = ~LLCD (∆ABC) , ~L1 = ~LLCD (∆ABO) ,
~L2 = ~LLCD (∆AOC) and ~L3 = ~LLCD (∆OBC) .

(5.44)

2. Set

ΦMLG = ~LMLG = ~Li such that
∣∣∣~Li

∣∣∣ = max
0<k<3

∣∣∣~Lk
∣∣∣ . (5.45)

5.9.3 The MUSCL-Hancock Scheme

vanLeer (1979) developed a method for higher-order in time and space and attributed

this method to S. Hancock. Therefore, this approach is know as MUSCL-Hancock

method. The MUSCL-Hancock scheme [Quirk (1994), Toro (1999)] is a second-order

extension of the Godunov upwind method to provide second-order accuracy in in space

and time. The MUSCL-Hancock scheme computes the intercell flux fi+1/2 in the fol-

lowing three steps.

Step I: Data Reconstruction- Given a set of constants, average states within a cell

represents the same value at any point within the corresponding cell. In the

presence of discontinuities, as shown in the Figure 5.1, some numerical methods

may generate oscillations in the results. Therefore, to tackle this problem of

discontinuity over space, MUSCL-Hancock reconstructs the data using boundary

interpolated values within each mesh cell. For the MUSCL interpolation we can

use any of the limiters shown in section 5.9.2.

Step II: Evolution of State variables at half time- An intermediate solution is

then found by advancing this reconstructed solution by half a time step. The

reconstructed data is used to calculate flux for each element.

U
n+ 1

2
k = Un

k −
∆t

2Ak

[
M∑

m=1

F(Um)n · Lm − Sn
k

]
. (5.46)

This step is entirely contained within each element as the side fluxes are evaluated

at the boundary extrapolated values obtained from step I. At each side there are

two fluxes, namely F (UR) and F (UL), which are in general distinct. This does not

really affect the conservative character of the overall method, as this step is only

an intermediate step; the side flux Fs to be used in 4.20 is yet to be evaluated.

101

DRAFT COPY 5.10 Conclusions

Step III: Solution of the piecewise constant data Riemann problem- The in-

termediate solution (from step II) defines a set of state variables in each element,

which then using a limiter sets the left- and right-hand states for a series of Rie-

mann problems solved at the sides of the mesh. The solutions to these Riemann

problems provide a set of upwinded interface fluxes which are used to integrate

the original flow solution forward by one full time step.

Un+1
k = Un

k −
∆t

Ak

[
M∑

m=1

F(UL
m,UR

m)n+ 1
2 · Lm − S

n+ 1
2

k

]
. (5.47)

Object-Oriented Design

MUSCL-Hancock scheme is a part of the GenericElement. The step I (i.e., data re-

construction) is described in section 5.9.1. Steps II and III are also part of the Gener-

icElement, where the state variables are updated for intermediate and final steps.

5.10 Conclusions

This chapter has presented the theory of high-resolution methods for hyperbolic prob-

lems and discussed its object-oriented implementation.

The slope limiters presented in this chapter is separated from other classes and

bundled into one package. The benefits of modelling limiters in a separate package are

as follows:

• All the limiters in this package subclass the GenericLimiter class and the limiters

have to provide only gradients. Therefore, new limiters requires much less effort

to introduce to be introduced.

• It helps to keep the code neat and allow more number of limiters to be introduces

without disturbing the existing code.

Other important developments in this chapter are as follows:

• introduction of rank to the limiter, in chapter 8 it can be seen that this rank

helps to predict the behaviour of the limiters.

102

DRAFT COPY 5.10 Conclusions

• an extended version of one-dimensional VanLeer limiter for unstructured trian-

gular mesh is developed (section 5.9.2.4). This limiter has shown stable and good

results compared to other limiters (see chapter 8).

103

CHAPTER 6

Free-Surface Shallow Water

Flows

6.1 Introduction

This chapter is intended to provide a brief background on the theory of the two-

dimensional depth-averaged shallow water equations. As stated in the previous chap-

ters, the shallow water equations are hyperbolic in nature and are extended in the

present study using the generic Riemann2D.

The objective of this chapter is to present:

• the hyperbolic characteristic of shallow water equations;

• the theory related to the extended shallow water model;

• the object-oriented implementation of the theory in the Riemann2D design.

The practical value of this chapter is that it helps explain the significance of the

input parameters and also highlights the reliability of the Riemann2D results as shown

in chapter 8.

Note: The gray object-oriented comment boxes, mentioned in the section 1.4, are only

for the discussion of object-oriented implementation.

104

DRAFT COPY 6.2 Shallow Water Flows

6.2 Shallow Water Flows

The shallow water problem is also referred as free surface flows. The reason for the free

designation arises from the large difference in the densities of the gas and liquid (e.g.,

the ratio of water to air is 1000). A low gas density means that its inertia can generally

be ignored compared to that of the liquid. In this sense the liquid moves independently,

or freely, with respect to the gas. The only influence of the gas is the pressure it exerts

on the liquid surface. In other words, the gas-liquid surface is not constrained, but free.

The mathematical models of the so-called free surface type governs a wide variety of

physical phenomena for scientific and practical problems of scientific interest, ranging

from conventional water wave problems to sloshing in fuel tanks in rocket technology.

An important class of problems of practical interest involve water flows with a

free surface under the influence of gravity. This class includes tides in the ocean,

tsunami waves (see Figure 6.1) breaking of waves in rivers, surges, and dam-break wave

modelling. A key assumption made in the derivation of the approximate shallow water

theory concerns the pressure distribution; which is hydrostatics. This results from the

assumption that the vertical acceleration of the water particles negligible compared to

velocity of the water particles in horizontal plane.

Figure 6.1: On December 26, 2004, an earthquake off the Indonesian island of Sumatra triggered

a tsunami that struck the coasts of Indonesia, Sri Lanka, India, Thailand, the Maldives, Malaysia,

Burma, the Seychelles, and Somalia. Giant waves devastated the coastlines, leaving 181,516 people

dead, 49,936 missing, and 1.8 million displaced [Renton and Palmer (2005)].

Depth-averaged modelling is based on the basic physical principles of conservation

of mass and momentum and on a set of constitutive laws which relate the driving and

resisting forces to fluid properties and motions. The differential equations of flow are

105

DRAFT COPY 6.3 Water Flow with a Free Surface

derived by considering a differential volume element of fluid and describing mathemat-

ically:

1. The conservation of mass of fluid entering and leaving the control volume; the

resulting mass balance is called the equation of continuity.

2. The conservation of momentum entering and leaving the control volume; called

the equation of motion.

Applications of shallow water models can be found in many day-to-day events. For

instance, modelling tidal fluctuations for those interested in capturing tidal energy for

commercial purposes; predicting tidal ranges and surges which can then be used in

the development planning of coastal areas; and, upon coupling to a transport model,

considering flow and transport phenomena. The latter application makes it possible

to study remediation options for polluted bays and estuaries, to predict the impact

of commercial projects on fisheries, to model salinity intrusion effects, and to study

the effects of wetting-induced mineral seepage into streams. Study of open channel

problems like roll waves, flood waves in rivers, surges, and dam-break wave modelling

helps the study of the inland water problems.

6.3 Water Flow with a Free Surface

Consider the flow of water with a free surface under gravity in a three-dimensional

domain. Figure 6.2 depicts the convention for spatial coordinates; x − y determining

a horizontal plane whilst z defines the vertical direction, which is associated with the

free-surface elevation.

The bottom boundary which can be called just as bottom or bed, is defined by a

function

z = d(x, y), (6.1)

and the free surface is defined by

z = s(x, y, z) ≡ d(x, y) + h(x, y, t), (6.2)

where h(x, y, t) is the depth of water, the vertical distance between the bottom and the

free surface position. Figure 6.3 depicts the geometry for a simplified situation for a

chosen value of y.

106

DRAFT COPY 6.3 Water Flow with a Free Surface

Figure 6.2: Coordinate convention for flow with a free surface under gravity, x−y give the horizontal

plane and z defines the vertical direction

Figure 6.3: Flow with a free surface under gravity, for a fixed section y. The depth of water above

datum, η is calculated in +ve direction above datum. Whereas, depth of bed surface is calculated in

+ve direction below datum.

107

DRAFT COPY 6.3 Water Flow with a Free Surface

Assuming the density of the fluid is constant, the governing equations for the shallow

water are given as:

ux + vy + wz = 0 (6.3)

ut + uux + uvy + uwz = −1
ρ
px (6.4)

vt + vux + vvy + vwz = −1
ρ
py (6.5)

wt + wux + wvy + wwz = −1
ρ
pz − g (6.6)

Here we have assumed that the body force vector is g = (0, 0,−g), where g is the

acceleration due to gravity, taken as 9.8m/s2, a constant.

In principle, given initial conditions at time t = 0 and boundary conditions on the

bottom and the free surface, the solution of the four equations 6.3 - 6.6 can be found for

the four unknowns p, u, v, w. The main difficulty in solving the full problem is associated

with the free surface, but the position of this boundary itself is unknown and therefore

the domain on which the equations are to solved is not known. Approximate theories

leading to simpler problem exist:

1. One such approximate theory assumes that the amplitude of the free-surface

disturbance from the rest position is small with respect to a characteristic length,

such as wave length. This assumption leads to linear boundary value problems

and thus to a linear theory.

2. Another approximation, which is used for the shallow water extension of Rie-

mann2D development, results from the assumption that the depth of water is

small with respect to wavelength or free-surface curvature.

Before deriving the shallow water theory the boundary conditions for the full prob-

lem (equations 6.3 - 6.6) are discussed. Assuming that a boundary is given by the

surface

Ω(x, y, z) = 0, (6.7)

then for the free surface we have

Ω(x, y, z) ≡ z − s(x, y, t) = 0, (6.8)

108

DRAFT COPY 6.4 Two-Dimensional Depth-Average Shallow Water
Equations

and for the bottom boundary we have

Ω(x, y, z) ≡ z − d(x, y) = 0. (6.9)

Two boundary conditions are imposed on the free surface s(x, y, t), given by equation

6.8, namely the kinematic condition

d
dt

Ω(x, y, z) = Ωt + uΩx + vΩy + wΩz = 0, (6.10)

and the dynamic condition

p(x, y, z, t)|z=s(x,y) = patm = 0, (6.11)

where patm is the atmospheric pressure, which for convenience is taken as zero. For the

bottom boundary (x, y), the condition in equation 6.10 also applies, with Ω given by

6.9.

6.4 Two-Dimensional Depth-Average Shallow Water Equa-

tions

The first assumption in the derivation of the shallow water equations is that the vertical

component of acceleration, given by

dw

dt
= w + uwx + vwy + wwz, (6.12)

is negligible. Insertion of this condition dw/dt = 0 into equation 6.6 gives

pz = −ρg. (6.13)

Given the dynamic condition 6.11 that the atmospheric pressure is zero on the free

surface, we obtain

p = ρg(s− z). (6.14)

Differentiation of equation 6.14 with respect to x and y gives

px = ρgsx and py = ρgsy. (6.15)

Here, px and py are both independent of z and thus the x and y components of the

acceleration of water particles du/dt and dv/dt are independent of z. hence the x and y

109

DRAFT COPY 6.4 Two-Dimensional Depth-Average Shallow Water
Equations

velocity components u and v are also independent of z, that is uz = vz = 0 . Therefore

by the virtue of the above conditions and by making use of equation 6.15 in equations

6.4 and 6.5, we have

ut + uux + vuy = −gsx, (6.16)

and

vt + uvx + vvy = −gsy. (6.17)

An important step in deriving the shallow water equations now follows. We integrate

the continuity equation 6.3 with respect to z, the vertical coordinate, between z =

d(x, y) (bottom) and z = s(s, y, t) (free surface). That is

s∫

b

(ux + vy + wz)dz = 0, (6.18)

which leads to

w|z=s − w|z=b +

s∫

b

uxdz +

s∫

b

vydz = 0. (6.19)

We now apply the boundary condition in order to determine the first two terns in

equation 6.19 above. Expanding equation 6.10 as applied to the free surface in equation

6.8 gives

(st + usx + vsy + wsz − w)|z=s = 0. (6.20)

Expanding equation 6.10 as applied to the bottom boundary in equation 6.9 gives

(ub− vb− w)|z=d = 0. (6.21)

From equation 6.20 we obtain

w|z=s = (st + usx + vsy)|z=s , (6.22)

and from equation 6.21 we obtain

w|z=b = (ubx + vby)|z=d . (6.23)

Substituting 6.22 and 6.23 into 6.19 gives

(st + usx + vsy)|z=s − (ubx + vby)|z=d +

s∫

b

uxdz +

s∫

b

vydz = 0. (6.24)

110

DRAFT COPY 6.4 Two-Dimensional Depth-Average Shallow Water
Equations

To simplify equation 6.24 further, we use Leibniz’s formula:

d
dα

ξ2(α)∫

ξ1(α)

f(ξ, α)dα =

ξ2(α)∫

ξ1(α)

∂f

∂α
dξ + f(ξ2, α)

dξ2

dα
− f(ξ2, α)

dξ1

dα
(6.25)

Applied to the last two integral terms in equation 6.24, we obtain

s∫

b

uxdz =
∂

∂x

s∫

b

udz − u|z=s .sx + u|z=d .dx, (6.26)

and
s∫

b

vydz =
∂

∂y

s∫

b

vdz − v|z=s .sy + u|z=d .dy. (6.27)

Substitution of equation 6.26 and 6.27 into 6.24 gives

st +
∂

∂x

s∫

b

udz +
∂

∂y

s∫

b

vdz = 0. (6.28)

Recall that both u and v are independent of z; also s = d + h and dt = 0. Equation

6.28 then simplifies to

ht + (hu)x + (hv)y = 0. (6.29)

This is the law of conservation of mass and is written in differential conservation law

form.

The momentum equations 6.4 and 6.5 can also be expressed in differential conserva-

tion law form. To this end we add equation 6.29, pre-multiplied by u, to equation 6.16,

pre-multiplied by h; we also make use of a relation that does assume differentiability

of the water depth, namely

h
∂h

∂x
=

∂

∂x

(
1
2
h2

)
, (6.30)

to obtain

(hu)t + (hu2 +
1
2
gh2)x + (huv)y = −ghdx. (6.31)

similarly, for the y momentum equation we obtain

(hv)t + (huv)x + (hv2 +
1
2
gh2)y = −ghdy. (6.32)

All three partial differential equations 6.29, 6.31 and 6.32 can be written in differential

conservation law form as the single vector equation

111

DRAFT COPY 6.4 Two-Dimensional Depth-Average Shallow Water
Equations

Ut + F (U)x + G (U)y = S (U) , (6.33)

with

U =

h
hu
hv

 , F (U) =

hu
hu2 + 1

2gh2

hv

 ,

G (U) =

hu
huv

hv2 + 1
2gh2

 and S (U) =

s1

s2

s3

 .

(6.34)

Equation 6.33 may be written in the quasi-linear form as (4.25)

Ut + A (U) Ux + B (U) Uy = 0, (6.35)

where A(U) and B(U) are the Jacobian matrices, as defined in equation 4.13, of the

fluxes F (U) and G(U) respectively.

It should be noted that equation 6.33 has the same form as the generic equation

for the hyperbolic equation, as shown in equation 4.14. In the system of equations

6.34, U is the vector of conserved variables, F (U), G(U) are flux vectors in the x and

y directions respectively, and S(U) is the source term vector. These equations can

be compared to the generic equations for hyperbolic problems in equation 4.12. This

comparison shows that hyperbolic equations follow the same behaviour and can be

modelled using the generic Riemann2D model.

Due to the generic nature of the governing equations, the overall method of solving

any hyperbolic equation would be the same. For the extension to superclass, it need

to provide the conserved variable and thus the corresponding fluxes, such as equation

6.34 for shallow water equations.

112

DRAFT COPY 6.5 Hyperbolic Character of the Shallow Water Equations

Object-Oriented Design

Equation 6.34 defines the components of the vector of state variables and vector of

fluxes in equations 4.12. These state variables and fluxes are specific to the shallow

water equations, which makes them a part of the subclasses. These state variables are

initialised in the Element class.

6.5 Hyperbolic Character of the Shallow Water Equations

It is important to note that the arguments of the flux functions, actually their compo-

nents, are the components of the vector of the conserved variables. To make this clear,

we express the flux functions in terms of the components u1, u2, u3 of U ,

q =

h
hu
hv

 =

u1

u2

u3

 (6.36)

F (u) =

hu
hu2 + 1

2gh2

huv

 =

u2

(u2)2/u1 + 1
2g(u1)2

u2u3/u1

 (6.37)

G(u) =

hv
huv

hv2 + 1
2gh2

 =

u3

u2u3/u1

(u3)2/u1 + 1
2g(u1)2

 . (6.38)

The variables in the quasi-linear form (equation 6.70) are conserved variables, the for-

mulation of the equation is non conservative. Next we calculate the Jacobian matrices

(see equation 4.13) and express them in terms of the non-conservative variables u, v, c,

where c is the speed of the wave defined as c =
√

gh.

A =

0 1 0
−(u2/u1)2 + gu1 2u2/u1 0
−u2u3/(u1)2 u3/u1 u2/u1

 =

0 1 0
−u2 + c2 2u 0
−uv v u

 . (6.39)

Similarly,

B =

0 0 1
−uv v u

−v2 + c2 0 2u

 . (6.40)

Now consider a matrix C that is a linear combination of the two Jacobian matrices A

and B, namely

C = ω1A + ω2B, (6.41)

113

DRAFT COPY 6.5 Hyperbolic Character of the Shallow Water Equations

where the coefficients ω1 and ω1 are two real parameters that define a non-zero vector

ω = [ω1 + ω2]

ω =
√

ω2
1 + ω2

2 > 0. (6.42)

The matrix C is given by

C(U) =

0 ω1 ω2

(−u2 + c2)ω1 − uvω2 2uω1 + vω2 uω2

−uvω1 + (−v2 + c2)ω2 vω1 uω1 + 2vω2

 . (6.43)

The eigenvalues of C can be given as

λ1 = uω1 + vω2 − c |ω|
λ2 = uω1 + vω2

λ3 = uω1 + vω2 + c |ω| .
(6.44)

The time-dependent two-dimensional shallow water equations 6.33 - 6.34 are hyperbolic

[Toro (2001)]. For a wet bed they are strictly hyperbolic. This is based on the fact

that the above eigenvalues in equation 6.44 are all real and, for h > 0, distinct.

6.5.0.1 Eigen Structure for Shallow Water Equations with Solute

To model the rotation test1 in the present work. Following derivation gives the eigen-

values and eigenvectors for the shallow water equations with solute.

Assume that there are I particles, whose concentration is given by φ. The vector

of state variable can be given as,

q = [h, hu, hv, hφ1, hφ2, , hφI]T

= [u1, u2, u3, u4, ... , u3+I]T
, (6.45)

and the vector of fluxes can be given as,

F (u) = [uh, u2h + 0.5gh2, uvh , uhφ1 , uhφ2, , uhφI]T

= [u2,
u2
2

u1
+ g

2u2
1,

u2u3
u1

, u2u4
u1

, u2u5
u1

, ... ,
u2u3+I

u1
]T

, (6.46)

G(u) = [vh , uvh , hv2 + 0.5gh2 , vhφ1 , vhφ2 , , vhφI]T

= [u3 , u2u3
u1

,
u2
3

u1
+ g

2u2
1 , u3u4

u1
, u3u5

u1
, ... ,

u3u3+I

u1
]T

, (6.47)

Next we calculate the Jacobian matrices (see equation 4.13) and express them in

terms of the non-conservative variables u, v, c, where c is the speed of the wave defined
1Rotation test for shallow water equations has been performed and presented in chapter 8

114

DRAFT COPY 6.5 Hyperbolic Character of the Shallow Water Equations

as c =
√

gh.

A=

0 1 0 0 · · · 0
−u2

2/u2
1 + c 2u2/u1 0 0 · · · 0

−u2u3/u2
1 u3/u1 u2/u1 0 · · · 0

−u2u4/u2
1 u4/u1 0 u2/u1 0

...
...

...
...

. . . 0
−u2u3+I/u2

1 u3+I/u1 0 0 · · · u2/u1

=

0 1 0 0 · · · 0
−u2 + gh 2u 0 0 · · · 0
−uv v u 0 · · · 0
−uφ1 φ1 0 u · · · 0

...
...

...
...

. . .
...

−uφI φI 0 0 · · · u

(6.48)

similarly,

B =

0 0 1 0 · · · 0
−uv v u 0 · · · 0

−v2 + gh 0 2v 0 · · · 0
−vφ1 0 φ1 v · · · 0

...
...

...
...

. . .
...

−vφI 0 φI 0 · · · v

(6.49)

The eigenvalues for Jacobian A can be given as

[u− c, u, u + c, u, u, ..., u]

and corresponding eigenvectors as

[1 , u− c , v , φ1 , φ2 , ... , φI]T

[0 , 0 , 1 , 0 , 0 , , 0]T

[1 , u + c , v , φ1 , φ2 , ... , φI]T

[0 , 0 , 0 , 1 , 0 , , 0]T

[0 , 0 , 0 , 0 , 1 , 0 , , 0]T

continuing until

[0 , 0 , 0 , , 0 , 0 , 0 , 1]T

Similarly, The eigenvalues for Jacobian B can be given as

[v − c, v, v + c, v, v, ..., v]

and corresponding eigenvectors as

[1 , u , v − c , φ1 , φ2 , ... , φI]T

115

DRAFT COPY 6.6 Approximate Riemann Solvers

[0 , -1 , 0 , 0 , 0 , , 0]T

[1 , u , v + c , φ1 , φ2 , ... , φI]T

[0 , 0 , 0 , 1 , 0 , , 0]T

[0 , 0 , 0 , 0 , 1 , 0 , , 0]T

[0 , 0 , 0 , 0 , 0 , 1 , 0 , , 0]T

[0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , , 0]T

continuing until

[0 , 0 , 0 , , 0 , 0 , 0 , 1]T

6.6 Approximate Riemann Solvers

6.6.1 The Roe Solver

Roe’s approximate Riemann solver is discussed in section 4.3.3 for the generic approach.

Due to dependence of the conserved variables on the type of the problem, the Riemann

problem implementation is done here. The first approach of Roe’s approximate Rie-

mann solver to the shallow water equations can be found in the literature by Glaister

(1988). Glaister followed the Roe-Pike approach [Roe and Pike (1984)] to derive the av-

erages at the cell boundaries. Therefore, following Roe’s approach from section 4.3.3,

we can can write the Roe averages for shallow water equations using the parameter

vectors z = h−1/2q i.e.,

z1

z2

z2

 =

√
h√
hu√
hv

 . (6.50)

The Roe averages can be found as:

ũ =
z2

z1 =
√

hLuR +
√

hLuR√
hL +

√
hR

(6.51)

ṽ =
z3

z1 =
√

hLvL +
√

hRvR√
hL +

√
hR

(6.52)

h̃ =
1
2

(hL + hR) (6.53)

c̃ =
√

gh̃. (6.54)

116

DRAFT COPY 6.6 Approximate Riemann Solvers

The average eigenvalues are:

λ̃1 = ũ− c̃ λ̃2 = ũ λ̃3 = ũ + c̃, (6.55)

and the corresponding eigenvectors are:

K̃(1) =

1
ũ− c̃

ṽ

 K̃(2) =

0
0
1

 K̃(1) =

1
ũ + c̃

ṽ

 . (6.56)

The wave strength α̃j , in terms of the averages, are

α̃1 =
∆h(ũ + c)−∆(hu)

2c
α̃2 = −v∆(h) + ∆(hv)

α̃3 =
−∆h(ũ− c) + ∆(hu)

2c
.

(6.57)

Now the values from equations 6.55, 6.56 and 6.57 can be used to find the FRoe in

equation 4.50.

Object-Oriented Design

Equations 6.55, 6.56 and 6.57 defines the essential components (eigenvalues, eigenvec-

tors and wave strength) of Roe’s approximate Riemann solver. These components are

derived according the generic rule of Roe’s approximate Riemann solver. But their

derivation require the state variables of the subclass, which make these components a

part of Side class (subclass of GenericSide).

The Roe solver works well for shallow water flow problems but in certain situations

it can produce negative depths. In addition to being physically incorrect, these negative

depths usually pose computational difficulties introducing errors. Consider the solution

to a linear Riemann problem (see section 4.3 for detailed description) with a Roe matrix

Ã.
ut + Aux = 0

u(x, 0) =
{

ul x < 0
ur x > 0

(6.58)

The solution’s middle state, u∗, is connected to the state on the left, ul, by a jump

in the first eigenvector of Ã and is connected to the state on the right, ur, by a jump

in the second eigenvector. The left and right states are therefore joined in phase space

by the two eigenvectors, the middle state, u∗, being the intersection of the two vectors.

117

DRAFT COPY 6.6 Approximate Riemann Solvers

Figure 6.4: Failure of the Roe solver when the left and right states, ul and ur, lie in particular regions

of phase space. In this example the left and right states are shallow, with opposite velocities. The

arrows are in the direction of the Roe eigenvectors, the intersection of which is the middle state u∗,

corresponding to a negative depth h [George (2004)]

This intersection corresponds to a negative depth when the left and right states lie in

particular regions of phase space; see Figure 6.4. For instance, if the velocity on the

right is much greater than the velocity on the left and the flow is already very shallow,

the intersection often corresponds to a negative depth. For applications where the flow

is very shallow in parts of the domain, or in fact becomes dry in regions, the Roe solver

is almost certain to produce negative depths.

It is generally accepted that the numerical computation of dry/wet bed fronts is

very difficult [Toro (2001)]. One way to resolve this difficulty is to compute the exact

Riemann solution, which as mentioned is possible for the homogeneous shallow water

equations. However, this is computationally expensive, and it is not clear how to extend

this satisfactorily to a Riemann problem in a triangular element with a source term.

Another approach often adopted is to assign the depth to a minimum level, which

makes the water non-zero for all cases. The problem with this approach is that it has

shock front which is generally missing in a dry bed situation.

6.6.2 The HLL (Harten-Lax-van Leer) Solver

Following the description and derivation of the HLL (Harten-Lax-van Leer) approxi-

mate Riemann solvers in section 4.3.4, these equations are extended for the homoge-

118

DRAFT COPY 6.6 Approximate Riemann Solvers

neous shallow water equations. These solvers are based on estimating the speeds that

information or waves propagate away from a Riemann problem. A linear solution with

two discontinuities is then constructed, using estimates for the speeds of the propagat-

ing discontinuities. Two speeds are used in the original HLL method even for equations

with more than two characteristic families. This is in contrast to a method such as the

Roe solver, where a constant estimate to the Jacobian matrix is constructed first, and

the eigenvalues of this estimate subsequently affect the approximate Riemann solution.

The estimates for the speeds are based on the initial data, and on general proper-

ties of exact Riemann solutions. A number of different estimates for the speeds have

been used, and the particular choice of estimates gives the HLL method its particular

properties; see Toro (1999).

Figure 6.5: Constructing a solution using conservation and estimated speeds. If the speeds s1 and

s2 are predetermined estimates, an approximate solution can be uniquely determined by applying the

conservation law to the region ω = [xl; xr] surrounding the interface [George (2004)]

Only working on dry bed problems, the HLL approach highlights better behaviour,

avoiding uni-dimensionalisation effects on the flow field [Caleffi et al. (2003)]. Such a

reason leads to the choice of the HLL and its derived approximate Riemann solver (see

section 4.3.4) for the development of the model where the dry bed problem occurs.

Rewriting equation 4.56 in terms of the normal components, we have

FHLL =
SRFL.n− SRFL.n + SLSR (UR − UL)

SR − SL
, (6.59)

where n is the outward normal unit vector; FR = F (UR) and FL = F (UL); subscripts

R and L refer to the right and to the left side of the cell interface respectively. The

119

DRAFT COPY 6.6 Approximate Riemann Solvers

SL and SR symbols represent the wave speeds’ propagation and they can be estimated

through the two expansion approach [Caleffi et al. (2003)]:

SL = min
(
qL.n−√ghL, u∗ −√gh∗

)
SR = min

(
qR.n−√ghR, u∗ +

√
gh∗

)
,

(6.60)

where q = (u, v) and:

u∗ = 1
2 (qL + qR) .n +

√
ghL −

√
ghR√

gh∗ = 1
2

(√
ghL +

√
ghR

)
+ 1

4 (qL + qR) .n.
(6.61)

Substituting the values from above equations 6.60 and 6.61 into equation 6.59 (or

equation 4.56) we obtain the value of FHLL.

Object-Oriented Design

Similar to the Roe’s approximate Riemann solver, HLL is generic approximate Riemann

solver (see section 4.3.4). Same as the Roe’s, HLL’s components are based on the

governing equations of the hyperbolic system. Equations 6.60 and 6.61 defines these

components, making it a part of Side class (subclass of GenericSide)

Consider a one dimensional Riemann problem where initial data is given, for e.g.,

the left state, [hL, uL] is specified, and the right state is dry so that [hR, uR] = [0, 0].

The exact solution to this problem can been seen in chapter 6 of Toro (2001). The

solution consists of a single rarefaction associated with the left eigenvalue λ1 = u− a.

The expected right shock associated with the left eigenvalue λ2 = u + a is absent. The

wet/dry front corresponds to the tail of the left rarefaction and has exact propagation

speed SL = uL + 2
√

ghL. It is interesting to note that the speed of this front is faster

than one obtained from the usual evaluation of eigenvalues of the system.

A popular way of dealing with these kinds of problems is by artificially wetting the

dry bed, that is by setting the water depth on the right-hand side in our problem to

some small positive tolerance, namely hR = ε > 0 in the below illustration. Having

done this the solution to the Riemann problem has a different structure to that of the

exact problem for the dry bed conditions. The solution contains a relatively weak,

right-propagation shock of speed SR, which is meant to represent the wet/dry front

speed. The speed SR of this shock is considerably slower than that of the wet/dry

front, S∗L (see Figure 6.4, S∗L is the speed of the wave in the star region). In the

limit as ε tends to zero, the two speeds coincide. However, for practical values of the

artificial bed-wetting parameter ε, the errors can be significant.

120

DRAFT COPY 6.6 Approximate Riemann Solvers

The above solution assumes that there exists a finite water depth everywhere. In

the above example where the dry bed exists downstream hR = 0, the two eigenvalues

collapse into one and the system of equations is not strictly hyperbolic. Under these

circumstances no shock exists and SR represents the speed of the head of the rarefaction

wave and SL represents the speed of the toe of the rarefaction wave. Therefore, a general

expression can be written as

SL =
{

uR − 2
√

ghR if hL = 0,
usual estimate if hL > 0,

(6.62)

SR =
{

uL + 2
√

ghL if hR = 0,
usual estimate if hR > 0.

(6.63)

Object-Oriented Design

HLL and its derived (see section 4.3.4) approximate solvers are well known for solving

the dry bed problem. However, the equations 6.62 and 6.63 pose a problem when the

state variables are η, hu and hv. This is because when we need to extract velocity

components u and v from state variables, we have to divide the state variables hu and

hv by h. For h = 0 or h → 0, u and v will be ∞ or a large number. Therefore, in

Riemann2D a non zero-depth is imposed if h is less than “mindepth”. For the present

case “mindepth” and non-zero depth is assumed to be 10−6m, which is reasonably small

for shallow water problems. This assumption also makes the Roe’s solver to work for

dry bed case in one-dimensional problems. Whereas, for two-dimensional problem this

value of minimum depth needs to increased. In some test cases a value of 10−4 gives

good results (see section 8.7)

6.6.3 Shu and Osher Solver

Similar to the Roes’ and HLL approximate solvers, Shu and Osher (1988) method (SO)

is generic in nature and have been known to work for hyperbolic systems. Nujic (1995)

used the SO method with λ = 0.4 and found it attractive for solving the shallow water

problems. Namin et al. (2004) has used SO method, when applying the model to mild

gradient cases. Therefore, in this work λ = 0.4 and amax = maximum value of the

eigenvalues of the average Jacobean matrix. See equation 4.13 for Jacobian matrix and

equation 6.55 for eigenvalues of shallow water equations.

121

DRAFT COPY 6.7 Source Terms

Object-Oriented Design

Similar to the Roes’ and HLL approximate Riemann solver, SO is generic approximate

Riemann solver (see section 4.3.5). Same as the Roes’ and HLL, SO’s component

(maximum eigenvalue) is based on the governing equations of the hyperbolic system,

making it a part of Side class (subclass of GenericSide)

6.7 Source Terms

In recent years, the study of a hyperbolic system with source terms has attracted

much attention in the CFD community [Xu (2002)]. One of the main reasons is that

there exist wide engineering applications. For example, the Saint-Venant equations

are widely used in ocean and hydraulic engineering to describe bore wave propagation,

hydraulic jumps, and open-channel flow, among others. Many numerical schemes have

been developed in the past decades for the above equations (see Bermudez and Vazquez

(1994), Glaister (1988), Hubbard and Garcia-Navarro (2000), LeVeque (1998), Ghidaoui

et al. (2001), Zhou et al. (2001) and references therein).

6.7.1 The Surface Gradient Method For Varying Bathymetry

In order to calculate the numerical fluxes in equations 4.50, 4.56 and 4.59, the source

terms need to be calculated. Source terms due to varying bathymetry has been main

concern in shallow water modelling on unstructured triangular meshes. The reason for

this is shown in Figure 6.6, which can be explained as follows:

• Figure 6.6 (a): It shows the plan view of three triangles. In triangular mesh, the

depth of the bed is assigned at the node, whereas, the free surface elevation is

calculated at the centre of the triangle (i.e., the element). The height of water

column in each element is given be h = η + d, where d = (d1 + d2 + d3)/3.

For a stagnant (u = 0, v = 0) free surface and varying bathymetry, the left and

right side of equations 6.31 and 6.32 should be equal. For a triangular element

122

DRAFT COPY 6.7 Source Terms

(a) (b)

(c) (d)

Figure 6.6: The Surface Gradient Method For Varying Bathymetry (a) Plan view of three triangles.

(b) Elevation view: surface gradient for water column depth at side is equal to surface gradient of the

bed depth. (c) Elevation view: surface gradient for water column depth (split into η, free surface height

and d′, depth at side) at side is equal to surface gradient of the bed depth. (d) Elevation view: surface

gradient for water column depth (split into η, free surface height and d′, depth at side) at side is not

equal to surface gradient of the bed depth.

123

DRAFT COPY 6.7 Source Terms

this relation can be written as:

0 0 0

0
n=3∑

side n=0

∣∣0.5gh2
∣∣
x

0

0 0
n=3∑

side n=0

∣∣0.5gh2
∣∣
y

=

0
−0.5ghdx

−0.5ghdy

 (6.64)

which can be written as:

0 0 0

0
n=3∑

siden=0

0.5ghhx 0

0 0
n=3∑

siden=0

0.5ghhy

=

0
−0.5ghdx

−0.5ghdy

 (6.65)

The left hand side of the above equations, surface gradient of water column depth,

is calculated at the three sides of the triangle. Whereas, the right hand side of

the above equation, surface gradient of bed depth, is calculated at the centre of

the element. The correct solution can be obtained in the surface gradient (see

Figure 6.6 a) of water column depth, ∆ d1d2d3 is equal to surface gradient of bed

surface, ∆ d′1d′2d′3

• Figure 6.6 (b): It shows the situation when the surface gradient of the water

column depth and the surface gradient of bed surface are equal. This situation is

possible only when all the nodes lie on same plane.

• Figure 6.6 (c): It shows same situation as Figure 6.6 (b). The water column is

split into η,free surface height and d′, depth at side.

• Figure 6.6 (d): When the bottom surface is not doesnot lie on one plane, the

surface gradient (see Figure 6.6 a) of water column depth, ∆ d1d2d3 is not equal

to surface gradient of bed surface, ∆ d′1d′2d′3.

Many authors have presented ways to solve this problem, with reasonable success

(see section 2.5.2). However, in this work, the surface gradient method proposed by

Zhou et al. (2001) is adopted. In this approach the water surface elevation, η, is

interpolated at the side of the element instead of the water depth, h. The water

depth, h, at the side is then calculated using the water surface elevation and the bed

topography, d, referenced from the datum. Mathematically, h = η+d. Therefore, in the

124

DRAFT COPY 6.7 Source Terms

present study the state variables are changed to η, hu, hv. Mohamadian et al. (2005)

has shown that to satisfy the balance between the surface gradient of bed surface and

water depth, the pressure term is moved from left side of the equation to right hand

side1 and deducted from the bed source term. This reduces to surface gradient of free

surface height i.e., η.

The surface gradient method leads to ∆h = 0 at the cell faces in the case of

stagnant water conditions. Zhou et al. (2001) used this method to solve the shallow

water problem using HLL approximate Riemann solver. Mohamadian et al. (2005) used

this approach to solve shallow water problems using Roe approximate solver.

In this work an same approach is adopted for Roes’, HLL and Shu and Osher

approximate solver. However, the depth of the element in the present work is defined

at the sides of the element2, same as the states at sides. The purpose of this is to allow

the application of limiters to the bathymetry. This method can be useful for the moving

bed problems. For the shallow water problems without moving bed, this method has

given satisfactory results for the (test cases shown in chapter 7). In this work this is

tested only for “no limiter” case.

Figure 6.7: Reference pointers for implementing surface gradient within each element.

1Although pressure term is moved from left hand side of the equation to solve Riemann problem,

the eigen structure of the shallow water equation remains same.
2Zhou et al. (2001) and Mohamadian et al. (2005) used the depth at the centre of the element.

125

DRAFT COPY 6.7 Source Terms

Object-Oriented Design

Similar to the object-oriented method used for boundary condition, reference pointers

are used to set the depth at the left and right side. This allows a method to be initialise

indirectly by way of a reference to the variable, which is a once-only transfer of the

appropriate reference to the left and right states for a side. It is part of the Element

initialisation process and done only once. In other words, references are used to hook

up the depth at sides to the depth at the centre of the element. Figure 6.7 shows the

reference pointers, where depth at the sides of the triangle points to the centre depth

of the element.

Other problem with the variable bathymetry is that the bed slope term in equations

6.31 and 6.32 is included in the bed slope, and it is discretised using a centered scheme.

6.7.2 Coriolis acceleration

Because the Earth rotates, a fluid that flows along the Earth’s surface feels a coriolis

acceleration perpendicular to its velocity. In the northern hemisphere, coriolis accelera-

tion makes low pressure storm systems spin counterclockwise; however, in the southern

hemisphere, they spin clockwise because the direction of the coriolis acceleration is re-

versed. The order of magnitude of the coriolis acceleration can be estimated from size

of the Rossby number. The dimensionless ratio of inertia force to Coriolis force which

gives an indication of the importance of rotation on flow in pipes. It is given by

R0 ≡ v

2ωL sin θ
, (6.66)

where v is the speed of fluid flow, ω is the angular velocity or rotation, and θ is the

angle between the axis of rotation and the direction of fluid motion.

The coriolis parameter, f is defined as twice the vertical component of the Earth’s

angular velocity ω about the local vertical, and is given by

f = 2Ω sinφ, (6.67)

at latitude φ.

126

DRAFT COPY 6.8 Conclusions

6.7.3 Bed Resistance

Resistance to flow is typically characterized by a roughness coefficient. The most com-

monly used equation for flow resistance is the Mannings equation. There are other

resistance coefficients in use including the Darcy-Weisbach friction factor, f , and the

Chezy C. These can all be converted easily to Mannings n.

Chezy Formula: This expression has the form:

V = C (RS)1/2 (6.68)

Manning Formula: The following expression for the evaluation of the Chezy rough-

ness coefficient was suggested by Flamant (1891):

C =
R1/6

n
(6.69)

where n is a roughness parameter which depends only upon the roughness characteris-

tics of the boundary surface and which is known as the Manning roughness parameter.

In the present model the source term has forces: coriolis force, bed stress, wind

force, body force and bottom friction. The source term is given as:

S (U) =

qs

−fhv + cfu
√

u2 + v2 + gh∂η
∂x + c′fw2 sinα

fhu + cfv
√

u2 + v2 + gh∂η
∂y + c′fw2 sinα

 , (6.70)

where u andv are depth averaged velocities in the x and y directions respectively, h

is the total water column depth, q is the source (or sink) discharge per cell area, g is

the gravitational acceleration, f is the coriolis acceleration due to the Earth’s rotation

[wherein: f = 2Ω sinφ (where ω is Earth’s angular velocity and φ latitude of the

application area)], η is free surface elevation, υt is eddy viscosity, w is wind velocity,

α is wind direction with regard to x axis, c′f wind friction coefficient and cf is bed

resistant coefficient [wherein cf = g
C2 = gn2

h1/3 (where C = Chezy coefficient and n =

Manning coefficient)].

6.8 Conclusions

This chapter has presented the theory of shallow water equations and discussed its

object-oriented implementation. The theory presented in this chapter provides exten-

sion to the hyperbolic model to solve shallow water problems. The benefits of developing

extension models for the Riemann2D model are as follows:

127

DRAFT COPY 6.8 Conclusions

• It can be seen that the knowledge required to provide extension as solve shallow

water model is much less, as most of the modelling code is already present in the

generic Riemann2D model.

• Similar to shallow water model extension other models for hyperbolic problems

can be developed.

Other important developments in this chapter are as follows:

• eigen Structure for shallow water equations with Solute (see section 6.5.0.1);

• discussion on the problem of varying bathymetry (see section 6.7.1);

• introduction of reference pointers for the bed surface depth (see Figure 6.7). This

method provides an efficient tool to introduce limiters to the bed surface. Which

can lead to solve moving bed problems.

128

CHAPTER 7

Object-Oriented Design and

Development

7.1 Introduction

A prerequisite to designing a model is a clear understanding of the fundamentals (the-

ory) of the modelling system itself, which is already discussed in the previous chapters

and the basic design of the Riemann2D is described in chapter 3. Therefore, this

chapter focus only on the design of the objects of Generic and ShallowWater packages.

For better and clear representation of the model design standard Unified Modeling

Language (UML) diagrams are thoroughly used in this chapter.

The objective of this chapter is to present:

• the UML diagram of the classes of Riemann2D.

• the development process of Riemann2D.

7.2 Object-Oriented Design Using UML

The Unified Modeling Language (UML1) is a standard language, which helps to spec-

ify, visualise, and document models of software systems, including their structure and

design, in a way that meets all of its requirements. It simplifies the complex process
1See http://www.omg.org/

129

DRAFT COPY 7.3 Riemann2D Design

of model design, making a blueprint for construction. In other words, UML diagrams

enable developers to communicate their ideas more quickly and more accurately than

if only verbal descriptions or self drawn diagrams were used because the diagrams take

a standard format. Thus, to explain the underlying architecture of object-oriented de-

sign of Riemann2D, UML diagrams are used in this chapter. The notation of the UML

diagrams are shown in Figure 7.1.

The main objectives of using the UML diagrams in this thesis is to:

1. provide readers with a ready-to-use and expressive visual model of Riemann2D .

2. provide extensibility and specialisation mechanisms to extend the core concepts

of Riemann2D .

3. be independent1 of particular programming languages and development processes

to develop another generic hyperbolic solver of similar nature.

4. support higher-level framework development concepts.

7.3 Riemann2D Design

The classes in the Riemann2D model are organised in packages based on their func-

tionality. The superclass package (riemann2d.generic: see section 7.3.1) contains all

the classes based on object-oriented problem structuring (section 3.4.1) to separate

the common component (variables and methods) of hyperbolic models, based on the

theory presented in chapter 4. The subclass package (riemann2d.shallowwater : see

section 7.3.3) extends the superclass i.e., the subclasses inherits the properties from

the respective superclasses and provides the variable and methods that are necessary

to solve a particular problem (the shallow water problem in this work). Because sub-

classes extend the subclasses they do not need to supply the variable or method that

is inherited from its superclass. It is very noticeable in the Riemann2D that all the

packages and class names refer to the functionality of its respective class or package

(figure 7.2).

1The UML diagram in this chapter shows the components of Java, which can be neglected by

readers who are interested in other programming language.

130

DRAFT COPY 7.3 Riemann2D Design

Figure 7.1: Notation used for the UML diagram. Note: The notations in this diagram are made

using Microsoft Paint software, where the UML diagrams in this chapter are generated using JBuilder

UML tool. Hence the shapes in this diagram are a little different than other UML diagrams.

131

DRAFT COPY 7.3 Riemann2D Design

F
ig

ur
e

7.
2:

U
M

L
d
ia

g
ra

m
sh

ow
in

g
in

h
er

it
a
n
ce

a
n
d

a
ss

o
ci

a
ti

o
n
s

o
f
a
ll

th
e

cl
a
ss

es
in

th
e

R
ie

m
a
n
n
2
D

m
o
d
el

.
T

h
is

g
iv

es
a

b
ri

ef
p
ic

tu
re

o
f
th

e
m

o
d
el

.

T
h
e

d
et

a
il
ed

d
es

cr
ip

ti
o
n

a
n
d

U
M

L
d
ia

g
ra

m
s

fo
r

ea
ch

p
a
ck

a
g
e

is
g
iv

en
in

se
ct

io
n
s

7
.3

.1
-

7
.2

9
.

132

DRAFT COPY 7.3 Riemann2D Design

7.3.1 riemann2d.generic Package

The riemann2d.generic package contains the classes which represent the generic part of

the model. The classes in this package are GenericNode, GenericSide, GenericElement,

GenericMesh and GenericSolver. As the name suggests, these classes hold the generic

properties (variable and methods) for node, side, element and solver, respectively. The

naming convention for the variables and methods used in Riemann2D is self-descriptive.

Figure 7.3: Inheritance and associations among the classes in the riemann2d.generic package. The

detailed UML diagram for each of these classes can be found in Figure 7.5 - 7.9

A brief description of the classes and interface in the riemann2d.generic package are

as follows:

GenericNode Class : The GenericNode class contains information on the node’s

label, it’s (x,y)-coordinate location and a parameter array containing stored in-

formation read from the meshmaker input file associated with it. See Figure 7.5

for more details.

GenericSide Class : It contains the basic information related to a side of a triangle

in a two-dimensional triangular mesh such as, the nodes making this element,

label, length, slope, position within domain (i.e., if it is on the boundary or not).

The benefit of object-oriented design here is that for the information of its node,

an object of node type can be created and its available properties (variable or

methods) can be called. It also contains other properties that are generic and

required by a side to solve any hyperbolic mesh. For example, it needs to know

which solver (Roe or HLL etc.) is used, which elements are on its side, the

133

DRAFT COPY 7.3 Riemann2D Design

Figure 7.4: Diagram shows the classes contained within riemann2d.generic package and its relation

with other packages. It also shows the relationship with the Java packages.

134

DRAFT COPY 7.3 Riemann2D Design

Figure 7.5: Class diagram for GenericNode class of the riemann2d.generic package. It shows the

relationship of GenericNode class with other classes/packages of Riemann2D and packages of Java.

This class is implemented by the Node class of a subclassed package to inherit all the generic properties

of a node as classified in GenericNode Class.

135

DRAFT COPY 7.3 Riemann2D Design

difference in flux across this side, if this side is a boundary side then what type

of boundary condition is applied. For more details on the variables and methods,

see Figure 7.6.

GenericElement Class : It contains the information related to an element (trian-

gular) in the 2-dimensional mesh such as the nodes and sides that make this

element, label, area, center of the element, position within domain (i.e., if it is

on the boundary or within the domain). This element is also the control volume.

It also contains the properties (variables and methods) that are generic and re-

quired by the element to solve a hyperbolic problem. These are: the state vari-

ables of the elements, state incremental values after every computation, type of

limiter used and method to calculate the values at the sides of the triangle, the

method to write values for the output and the method for setting up the ghost

element to supply the values at the boundary. For more details on the variables

and methods, see Figure 7.7.

GenericMesh Class : This class works as an interface for the input file and the

model. It contains the code which is used to call the input file, filter and sort

its data and use it to make nodes, sides and elements. It also provides the basic

information for each of these components to its respective classes such as the x-

and y- coordinates for the node, nodes connecting the sides, nodes and elements

making the elements and mesh properties for the elements. Also, it acts as the

interface for the output data: this class calls different methods from other classes

to compile the output data. For example, to print the output of the state variables

it calls the methods for the element number (label), x- and y- coordinates of the

center of the elements, the value of the state variables from the generic element

of riemann2d.generic and the element of the riemann2d.shallowwater classes.

Solving an hyperbolic system: To solve an hyperbolic system of time-dependent

equations on an unstructured triangular mesh, we need to subclass GenericMesh

and provide proper implementations for the following four methods by overriding

the same methods found in the superclass:

1. getNewNode

2. getNewElement

136

DRAFT COPY 7.3 Riemann2D Design

Figure 7.6: Class diagram for GenericSide class of the riemann2d.generic package. It shows the

relationship of GenericSide class with other classes/packages of Riemann2D and packages of Java.

This class is implemented by the Side class of a subclassed package to inherit all the generic properties

of a side as classified in GenericNode class.

137

DRAFT COPY 7.3 Riemann2D Design

Figure 7.7: Class diagram for GenericElement class of the riemann2d.generic package. It shows

the relationship of GenericElement class with other classes/packages of Riemann2D and the packages

of Java. This class is implemented by the Element class of the subclassed package to inherit all the

generic properties of an element as classified in GenericElement class.

138

DRAFT COPY 7.3 Riemann2D Design

3. getNewSide

4. execute

The first three methods supplies GenericMesh with nodes, elements and sides

it needs to assemble the mesh. As a default, GenericMesh uses the GenericN-

ode, GenericElement and GenericSide classes, but this provides just a skeleton

without much functionality. Additional functionality is provided by subclassing

the GenericNode, GenericElement and GenericSide classes and supplying these

classes to GenericMesh via the getNewNode, getNewElement and getNewSide

methods.

The final method facilitates the solution of the time-dependent hyperbolic system

by providing a mechanism for time-stepping the solution. For more details on

variables and methods, see Figure 7.7.

GenericSolver Class : It contains the generic code for solving any Riemann problem

in the required sequence. In the outer output loop of solve method, there is an

inner loop. An implementation of the abstract GenericMesh method execute() is

required to timestep the solution in the inner loop. A printout at each timestep

occurs over the outer loop. Output occurs via mesh.writeOutput() at the end of

each loop. For more details on the variables and methods, see Figure 7.9.

7.3.2 riemann2d.limiter Package

The riemann2d.limiter package contains the classes that are used to limit the slope of

the state variables. Although this represents the generic part of the code, it is kept

separate in a package. The reason behind this is that all the limiters have a common

way of performing their calculations and hence the codes also look alike. If all the

codes of this package are kept in the generic package it will make it bulky and more

complicated.

One of the purposes of using object-oriented technology is to simplify things. Object-

oriented design is more of an art than a science. At one stage in the development it

was realised that separating the limiters in different package would not only help to

simplify the code structure, but it would also be useful for adding a number of limiters

with little effort. This also helps in better understanding of the limiters.

139

DRAFT COPY 7.3 Riemann2D Design

Figure 7.8: Class diagram for GenericMesh class of the riemann2d.generic package. It shows the

relationship of GenericMesh class with other classes/packages of Riemann2D and the packages of

Java. This class is implemented by the Mesh class of the subclassed package to inherit all the generic

properties of a mesh as classified in GenericMesh class.

140

DRAFT COPY 7.3 Riemann2D Design

Figure 7.9: Class diagram for GenericSolver class of the riemann2d.generic package. It shows the

relationship of GenericSolver class with other classes/packages of Riemann2D and the packages of

Java. This class is implemented by the Solver class of a subclassed package to inherit all the generic

properties of a solver as classified in GenericSolverClass.

Figure 7.10: Inheritance and associations among the classes in riemann2d.limiter package. The

detailed UML diagram for few of these classes can be found in Figures 7.13 - 7.17

141

DRAFT COPY 7.3 Riemann2D Design

Figure 7.11: Diagram shows the classes contained within the riemann2d.limiter package and its

relation with other packages. It also shows the relationship with the Java packages.

Figure 7.12: Class diagram for the GenericLimiter class of the riemann2d.limiter package. It shows

the relationship of the GenericLimiter class with other classes/packages of Riemann2D and the Java

packages. This class is the superclass for other classes of different limiters in the riemann2d.limiter

package. It has common properties of any limiter class.

142

DRAFT COPY 7.3 Riemann2D Design

Figure 7.13: Class diagram for the SuperbeeLimiter class of the riemann2d.limiter package. It shows

the relationship of the SuperbeeLimiter class with other classes/packages of Riemann2D and the Java

packages. This class extends the GenericLimiter (see Figure 7.12) class as a superclass and hence

inherits its properties.

Figure 7.14: Class diagram for the MinmodLimiter class of the riemann2d.limiter package. It shows

the relationship of the MinmodLimiter class with other classes/packages of Riemann2D and the Java

packages. This class extends the SuperbeeLimiter (see Figure 7.13) class as a superclass and hence

inherits its properties.

143

DRAFT COPY 7.3 Riemann2D Design

Figure 7.15: Class diagram for the VanleerLimiter class of the riemann2d.limiter package. It shows

the relationship of the VanleerLimiter class with other classes/packages of Riemann2D and the Java

packages. This class extends the GenericLimiter (see Figure 7.12) class as a superclass and hence

inherits its properties.

Figure 7.16: Class diagram for the LCDLimiter class of the riemann2d.limiter package. It shows

the relationship of the LCDLimiter class with other classes/packages of Riemann2D and the Java

packages. This class extends the GenericLimiter (see Figure 7.12) class as a superclass and hence

inherits its properties.

144

DRAFT COPY 7.3 Riemann2D Design

Figure 7.17: Class diagram for the MLGLimiter class of the riemann2d.limiter package. It shows

the relationship of the MLGLimiter class with other classes/packages of Riemann2D and the Java

packages. This class extends the GenericLimiter (see Figure 7.12) class as a superclass and hence

inherits its properties.

Figure 7.18: Diagram for the Limiter interface of the riemann2d.limiter package. An interface is a

contract in the form of a collection of methods and constant declarations. When a class implements

the Limiter interface, it has to implement all of the methods declared in the Limiter interface.

145

DRAFT COPY 7.3 Riemann2D Design

The classes in the riemann2d.limiter package are GenericLimiter, Superbee, Min-

mod, Vanleer, LCDLimiter and MLGLimiter. As the name suggests, these classes hold

the variables and methods used by these limiters. The GenericLimiter is the super-

class which is extended by other classes. The idea behind having this superclass is

to classify the common properties (variables and methods) used by all these limiters.

The mathematical expressions of the limiters can be found in Chapter 4 (section 5.9.2).

Also in this package there is an interface called Limiter, which is implemented by the

GenericElement class of the riemann2d.generic package. As the subclasses in this pack-

age have same the functionality (but a different way of calculation) it can be seen in

Figures 7.13, 7.15, 7.16 and 7.17 that the subclasses all have similar UML diagram.

The MinmodLimiter class is subclass of the SuperbeeLimiter class because the only

difference between Superbee and Minmod Limiter is a constant as described in Chap-

ter 4 (section 5.9.2). Here also the benefit of object-oriented design can be seen; the

MinmodLimiter class is a subclass of the SuperbeeLimiter class which is a subclass of

the GenericLimiter class, therefore the MinmodLimiter class inherits the properties

from both the SuperbeeLimiter class and GenericLimiter.

Most limiters subclass the GenericLimiter class. This class essentially implements

the no limiter case, so it is used when limiters are not applied. Hence, the states will

be made constant across the element.

7.3.3 riemann2d.shallowwater Package

riemann2d.shallowwater package contains the classes which are used to solve the shal-

low water problem. The classes in this package are Node, Side, Element, Mesh and

Solver. These classes are the subclass of the GenericNode, GenericSide, GenericEle-

ment, GenericMesh and GenericSolver of riemann2d.generic. This means that the

subclasses of this package inherit the properties (variables and methods) from their

superclass. This package also provides an insight for other developers to understand

the subclassing process for a particular hyperbolic problem. The codes in this package

are such that it is only useful to solve shallow water problems and the majority of

hyperbolic problems don’t need this code.

A brief description of the classes in riemann2d.shallowwater package are as follows:

146

DRAFT COPY 7.3 Riemann2D Design

Figure 7.19: Inheritance and associations among the classes in riemann2d.shallowwater package.

The detailed UML diagram for few of these classes can be found in Figures 7.5 - 7.25

Node Class : It only stores parameters supplied from the mesh file. For more details

see Figure 7.21.

Side Class : It contains the code for solving Riemann problem across the side. There

are different Riemann solvers added in this class. A few of them have been added

in this thesis (see section 6.6), whereas some others are still under development

for the future use. The main reason for having a Riemann solver in this class is

because of the state variables which are different for different hyperbolic problems.

It also calculates the maximum Courant number based on the values across the

sides. For more details see Figure 7.22.

Element Class : It contains the codes for the calculations such as bed & surface

slopes, fluxes and energy. For more details please see figure 7.23.

Mesh Class : It contains the code for executing the process of solving the shallow

water problem. It overrides the methods of the GenericMesh class as discussed

earlier (see section 7.3.1).

ShallowWaterSolver Class : It contains the code for solving the shallow water pro-

belms, where it extends and only calls the solve method of the GenericSolver

from riemann2d.generic package. For more details see Figure 7.25.

147

DRAFT COPY 7.3 Riemann2D Design

Figure 7.20: Diagram shows the classes contained within the riemann2d.shallowwater package and

its relation with other packages. It also shows the relationship with the Java packages.

148

DRAFT COPY 7.3 Riemann2D Design

Figure 7.21: Class diagram for the Node class of the riemann2d.shallowwater package. It shows the

relationship of the Node class with other classes/packages of Riemann2D and the Java packages. This

class extends the GenericNode (see Figure 7.5) class as a superclass and hence inherits its properties.

Figure 7.22: Class diagram for the Side class of the riemann2d.shallowwater package. It shows the

relationship of the Side class with other classes/packages of Riemann2D and the Java packages. This

class extends the GenericSide (see Figure 7.6) class as a superclass and hence inherits its properties.

149

DRAFT COPY 7.3 Riemann2D Design

Figure 7.23: Class diagram for the Element class of the riemann2d.shallowwater package. It shows

the relationship of the Element class with other classes/packages of Riemann2D and the Java packages.

This class extends the GenericElement (see Figure 7.7) class as a superclass and hence inherits its

properties.

150

DRAFT COPY 7.3 Riemann2D Design

Figure 7.24: Class diagram for the Mesh class of the riemann2d.shallowwater package. It shows the

relationship of the Mesh class with other classes/packages of Riemann2D and the Java packages. This

class extends the GenericMesh (see Figure 7.8) class as a superclass and hence inherits its properties.

151

DRAFT COPY 7.4 Riemann2D Development

configuration Classes These classes are used to provide the configuration for solving

different type of problems. The benefit of this is that it will avoid any manual

changes to the initialised values in the main classes by simply overriding them.

7.3.4 riemann2d.shallowwater.erosion Package

Erosion model is not a part of this work, however, it is presented here to show the

extensibility of the model and explain the benefit of object-oriented design. As discussed

earlier, different hyperbolic systems can subclass the generic superclass for solving a

variety of hyperbolic systems. Similarly, these system can be further extended by

subclassing them. This is done similar to the case where shallow water model extends

generic package. The erosion model here only subclass the Element and provide further

parameters (variables and methods) required to solve the problem. This reduces the

effort and make it much simpler to solve different problem within same system. For

more details on the design see Figures 7.28, 7.29 and 7.27.

7.4 Riemann2D Development

This section aims to give a brief introduction to the development of Riemann2D . This

section is intended to provide information for those readers who would carry forward

the development of Riemann2D or who wish to develop similar model.

7.4.1 Riemann2D Development Process

A software development process is a structure imposed on the development of a software

product [http://en.wikipedia.org/]. Synonyms include software life cycle and soft-

ware process. There are several models for such processes, each describing approaches

to a variety of tasks or activities that take place during the process.

The development process of Riemann2D followed the Iterative and Incremental

development model. The basic idea behind iterative enhancement was to develop Rie-

mann2D incrementally, to take advantage of what was learned during the development

of earlier, incremental, deliverable versions of the system. Learning came from both the

development and use of the system. Key steps in the process were to start with a simple

implementation of a subset of the software requirements and iteratively enhance the

152

DRAFT COPY 7.4 Riemann2D Development

Figure 7.25: Class Diagram for the ShallowWaterSolver class of the riemann2d.shallowwater package.

It shows the relationship of the Element class with other classes/packages of Riemann2D and the Java

packages. This class extends the GenericSolver (see Figure 7.9) class as a superclass and hence inherits

its properties.

Figure 7.26: Class diagram for the DamBreakTest class of the riemann2d.shallowwater package. It

shows the relationship of the DamBreakTest class with other classes/packages of Riemann2D and the

Java packages

.

153

DRAFT COPY 7.4 Riemann2D Development

Figure 7.27: Diagram shows the classes contained within the riemann2d.shallowwater.erosion package

and its relation with other packages. It also shows the relationship with the Java packages.

Figure 7.28: Class diagram for the ErosionElement class of the riemann2d.shallowwater.erosion pack-

age. It shows the relationship of the ErosionElement class with other classes/packages of Riemann2D

and the Java packages. This class extends the Element class as a superclass and hence inherits its

properties.

154

DRAFT COPY 7.4 Riemann2D Development

Figure 7.29: Class diagram for EorsionSolver class of the riemann2d.shallowwater.erosion package.

It shows the relationship of ErosionSolver class with other classes/packages of Riemann2D and the Java

packages. This class extends the GenericSolver class as a superclass and hence inherits its properties.

evolving sequence of versions until the full system was implemented. At each iteration,

design modifications were made and new functional capabilities were added.

Figure 7.30: Iterative Development Cycles used for Riemann2D development.

Figure 7.30 shows the development cycle for each iterative step. Many online re-

sources and books can be found on the software development process and different

models. A few of the references on iterative development are Larman (2004), Gamma

155

DRAFT COPY 7.4 Riemann2D Development

and Larman (2005), Kruchten (2004) and Bittner and Spence (2006).

7.4.2 Java IDE - Borland JBuilder

Borland JBuilder1 is one of today’s leading Java IDE2 (Integrated Development Envi-

ronment). The main features of JBuilder that helped in the development of Riemann2D

and which also provides a huge opportunity for its future growth are as follows:

1. JBuilder provided a variety of tools for fast application development: wizards for

automatically generating code, code audits for finding code problems early and

coding shortcuts and templates for creating and correcting code.

2. JBuilder uses one window to perform most of the development functions: editing,

visual designing, navigating, browsing, compiling, debugging, and other opera-

tions. This helped in easy handling of the process in the code development and

less confusion.

3. JBuilder provided local version control and many ways to compare files, view

differences between different files and between different versions of the same file,

and to manage, merge, and revert file differences.

4. Additional capabilities, such as refactoring, UML code visualization, and integra-

tion with application lifecycle management tools, allowed to effectively work from

the beginning of the project to its completion.

7.4.3 CVS & Riemann2D Development

In the early days of the Riemann2D development, a CVS (Concurrent Versions Sys-

tem) repository was set up on a departmental web server, called Civil Engineering Java

Repository (see Figure 7.31). The code was committed to this repository when sig-

nificant changes were made to the code). This ensured that the latest version of the

code was always placed on the CVS server and there was no need to make backups on

the local disk. This saved lot of development time and was a more organised approach

toward the development. CVS was extremely helpful during code reviews with the
1A range of literature is available on the official site of Borland [http://info.borland.com/

techpubs/jbuilder/].
2Java’s other well known IDEs are from IBM (Eclipse), JetBrains (IntelliJ IDEA) and NetBeans.

156

DRAFT COPY 7.5 Conclusions

Figure 7.31: CVS & Riemann2D Development: The above figure shows the relation and interaction

between various people using the repository.

supervisor. It ensured that the latest copy of the code was reviewed and then where

possible minor changes were made immediately and changes committed to the repos-

itory. In many instances, the code was reviewed by checking out the code from the

repository, making changes if necessary and immediately updating the repository for

further development. The great advantage in doing this was all these actions were per-

formed remotely, through both internet and intranet. This ascertained timely reviews,

corrections and thus saving total development time.

7.5 Conclusions

This chapter has shown that the object-oriented design is more than developing pro-

grams in modern languages, it is a new way of thinking about designing and realizing

numerical modelling for engineering and scientific applications. The advantages that

this design achieves by using object-oriented approach to model hyperbolic systems are

as follows:

157

DRAFT COPY 7.5 Conclusions

1. Reusability : A new class inherits the capabilities of the class from which it is

derived, but new features can be added. This increases model flexibility because

reusability makes it simpler and easier to modify and extend the functionality

and capabilities of the existing code. Object-oriented design (OOD) produces

software modules that can be plugged into one another, which allows creation of

new programs.

2. Faster Development :Reusing code allows lower lifecycle maintenance costs, higher-

quality design implementations and stronger development, which ultimately re-

sults in faster development.

3. Increased Quality : Increases in quality are largely a by-product of this program

reuse. If 90% of a new application consists of proven, existing components, then

only the remaining 10% of the code has to be tested from scratch. That observa-

tion implies an order-of-magnitude reduction in defects.

4. Modular Architecture: Object-oriented systems have a natural structure for mod-

ular design: objects, subsystems, framework, and so on. Thus, OOD systems are

easier to modify. OOD systems can be altered in fundamental ways without ever

breaking up since changes are neatly encapsulated.

5. Better Mapping to the Problem Domain: This is the biggest advantage of OOD,

particularly when the project maps to the real world. Whether objects represent

shallow water problem, Euler problem or any other real system, they can pro-

vide a clean, self-contained implication which fits naturally into human thought

processes.

158

CHAPTER 8

Riemann2D Applied to Shallow

Water Equations

8.1 Introduction

In this work Riemann2D is extended for solving shallow water problem and presented

in this chapter.

The objective of this chapter is to present:

• Test cases for two-dimensional shallow water problem;

• Configuration and discussion for each test case;

• Comparison of the Riemann2D results with analytical, numerical and experimen-

tal results.

8.2 Model Verification and Validation

Models are mathematical representations of mechanisms that govern natural phenom-

ena. Mathematical modelling has become an indispensable tool via computerised de-

cision support systems for policy makers and researchers to provide ways to express

the scientific knowledge, to lead to new discoveries, and/or to challenge old dogmas

159

DRAFT COPY 8.2 Model Verification and Validation

[Tedeschi (2006)]. For these models to be accepted, model validation and verification

have evolved as essential parts of the model development process. Where,

• Validation is the process of ensuring that a computer program will perform in

the manner intended by its designers and implementors.

• Verification, on the other hand, is the process of assessing the goodness of fit

to the characteristics of the models empirical referents. It is utilised in the com-

parison of the conceptual model to the computer representation that implements

that conception.

Model validation and verification can be undertaken in many different pretexts;

however, in this work it embraces the methods of assessing the following criteria: nu-

merical accuracy, capability, reproducibility and adaptability.

Figure 8.1: The validation of simulation models: The above figure shows the relationship between

modelling and reality [Schleisinger (1979)].

Figure 8.1 shows a framework for validating simulation models proposed by Schleisinger

(1979). Analysis generates a conceptual mathematical model. Model qualification de-

termines the adequacy of this model. The next step produces a computer program.

Model verification confirms that the computerised model represents the conceptual

model within specified limits of accuracy using carefully chosen test cases. The final

160

DRAFT COPY 8.2 Model Verification and Validation

stage, validation, tests the input-output transformation of the simulation by analy-

sis. The strength of this framework is that it combines three different mechanisms for

establishing confidence in a simulation.

For this work, theory given in the previous chapters provides the conceptual back-

ground of Riemann2D . Whereas, validation and verification of Riemann2D presented

in this chapter satisfies the above framework and outlines its strength.

A total of eight test specifications are prepared1 and presented as part of this

chapter. These test specifications are:

1. One-dimensional dam break problem;

2. Two-dimensional circular dam break;

3. Two-dimensional partial dam break;

4. Rotation test for shallow water equations;

5. Dam break in a converging-diverging channel;

6. Dam break in a channel with 90◦ bend;

7. Two-dimensional dam break experiment of Fraccarollo and Toro;

8. Oblique hydraulic jump; and

Above tests are aimed at assessing Riemann2D against a wide range of criteria,

which are:

1. Numerical accuracy: The numerical accuracy can be assessed if an analytical

solution exists for the physical situation/configuration that is being modelled.

Dam break modelling is one of the vital tests that is conducted for model valida-

tion. Unfortunately, analytical solutions does not exists for two-dimensional dam

break cases. However, the present model is assessed against the one-dimensional

exact Riemann solver (Test case 1: section 8.3 against CLAWPACK, LeVeque

(2002)), which is widely tested and accepted against the analytical solutions.

One advantage of assessing Riemann2D results against the exact solver is that,

exact solver gives numerical solutions for one-dimensional cases, which also pro-

vides the extent to which two-dimensional numerical models should achieve in

modelling one-dimensional problems. Test cases 4 and 8 are tested against the
1These test specifications are built upon the strengths of the previous works published in a number

of journals, articles and research work.

161

DRAFT COPY 8.3 One-Dimensional Dam Break Problem

analytical solutions and hence comes under this category (see sections 8.10 and

8.6).

2. Capability: The capability of a model can be assessed objectively by testing the

most commonly required features of a model. For this the capability of the model

has been proposed by the following “can do” tests. Test cases 2 and 3 comes

under this category (see sections 8.4 and 8.5).

3. Reproducibility: Reproducibility can be tested by a series of comparison tests

i.e. numerical results compared with experimental or real world datasets. Test

cases 5, 6 and 7 comes under this category (see sections 8.7, 8.8 and 8.9).

4. Adaptability: A model may excel at some or all of the above-mentioned tests,

however without the ability to be adaptable or to have suitable form and function

the user will potentially be hindered in its use. Any such assessment is subjective

as users have different levels of experience and technical knowledge. However, the

object-oriented design of the Riemann2D satisfies this criteria. Also, all the test

are performed only using the configuration classes of the model (see description

on classes in section 7.3.3). This shows that the adaptability of the Riemann2D

, where all the above tests are conducted without changing the main code. Ex-

tensibility of the Riemann2D (example given for erosion problem) satisfies the

criteria of easy adaptability for future research.

Note: One limitation of mesh generator (Argus MeshMaker) used in this work is that

it can not create triangles with nodes on the interior boundary. Figure 8.2 (a) and (c)

shows the typical mesh generated by the Argus MeshMaker. It is obvious that this can

introduce significant error in the simulation results. Therefore, x− and y− coordinates

of the nodes in the domain, for each test case, are manipulated to lay them on the

interior boundaries. Figure 8.2 (b) and (d), shows the results after manipulation.

8.3 One-Dimensional Dam Break Problem

The dam-break problem has been widely studied in the literature by many different

experimental, theoretical and numerical methods. Under the assumptions of isothermal

and incompressible flow, the configurations are considered as shown in Figure 8.3.

162

DRAFT COPY 8.3 One-Dimensional Dam Break Problem

(a) (b)

(c) (d)

Figure 8.2: Sample mesh diagrams. (a) and (c) shows mesh with interior boundaries before manip-

ulation. (b) and (d) shows mesh with interior boundaries after manipulation.

Figure 8.3: Definition sketch of one-dimensional dam break problem.

163

DRAFT COPY 8.3 One-Dimensional Dam Break Problem

(a) (b)

Figure 8.4: Dam-break flow on wet bottom. (a): description of the characteristic curves C+ =

u +
√

ghs in the plane(x, t). Initially, the dam-break occurs at x = 0. A shock wave S appears. (b):

description of the characteristic curves C− = u − √
ghs in the plane (x, t). A rarefaction wave is

generated between A and B.

One-dimensional dam-break test case is very interesting because it allows to vali-

date the numerical simulations compared to analytical solution, experimental data and

unsteady theoretical solutions. The problem emphasises the influence of the gravity,

the surface tension and the viscosity. Shock and rarefaction waves appear during the

wave breaking over the downstream water layer (see Figure 8.4). In certain cases, it

is observed the developmental of a water jet leading to free surface shearing, stretch-

ing and droplet ejection. The strong deformations of the interface and the unsteady

character of the flow confer on the test case a reference point of view to validate shock

capturing methods used in the present work as well as numerical approximations.

8.3.1 Aim of Test

The aim of this test is to:

1. study the ability of Riemann2D in simulating the one-dimensional dam break

problem;

2. study the numerical accuracy of different approximate Riemann solver (Roes’,

HLL and SO) with different limiters. The results are compared with the exact

solution of Riemann problem;

3. study the behaviour of the Riemann2D in different direction;

164

DRAFT COPY 8.3 One-Dimensional Dam Break Problem

4. present the particulars for developing and undertaking this test with Riemann2D

and discuss the associated results.

8.3.2 Test Configuration

Usually the test cases for one-dimensional problems have width to length much less

than 1. This doesn’t allow to see the broader picture of the problem. Therefore, for an

indepth assessment of the Riemann2D , the computational domain is chosen to be 50m

× 50m. The numerical mesh consists of 7585 nodes and 14848 triangular elements (see

Figure 8.5). Full breach of dam is considered i.e., the breach is across full width of the

channel, which is situated at the center of the channel, x = 25 m. All other boundaries

are considered as reflective type (see section 4.5.2). The bed is considered as horizontal

and the thickness of the dam wall is negligible. At the instant of breaking of the dam,

water is released through the breach, forming a positive wave propagating downstream

and a negative wave spreading upstream.

Figures 8.6 to 8.11 show the plot of height (h) and momentum (hu) versus distance

in x− direction for different approximate solvers with limiters. All the measurements

are in meters (m). The numerical mesh configuration for these cases is shown in Figure

8.5(a).

To investigate the effect of direction (x− and y−) on these solvers, simulation for

four different initial conditions were done keeping the same number of element (see

Figure 8.5). Figure 8.12 shows the comparison of these simulation results.

Note:

• Initial Condition: Upstream and downstream condition for each case is shown in

figure 8.12.

• Boundary Condition: Reflective type on all exterior boundaries.

• Riemann Solver and Limiters: Details are given in each figure captions. See

Figures 8.6 to 8.11.

• Courant Number: Desired - 0.25, Maximum - 0.5;

• Time step: Variable;

165

DRAFT COPY 8.3 One-Dimensional Dam Break Problem

• Output Time: All results are plotted 4 seconds after dam break.

• Order in Time: First;

• Exact Solution is obtained from Riemann1D1. No Limiter is used and the cell

size is 50/1200 = 0.0417.

1Riemann1D was developed in the initial stage of the research (April, 2003 to August, 2003) as

object-oriented version of CLAWPACK one-dimensional shallow water solver [see LeVeque (2002)].

Riemann1D was thoroughly tested against CLAWPACK results

166

DRAFT COPY 8.3 One-Dimensional Dam Break Problem

(a)

(d)(c)

(b)
(0 , 0) (0 , 5 0)

(5 0 , 0) (5 0 , 5 0)D a m

(0 , 5 0)(0 , 0)

(5 0 , 0) (5 0 , 5 0)D a m

(0 , 5 0)

(5 0 , 5 0)

(0 , 0)

(5 0 , 0)

D a m

(0 , 5 0)

(5 0 , 5 0)

(0 , 0)

(5 0 , 0)

D a m

Figure 8.5: Numerical mesh configuration for one-dimensional dam break problem: The above figure

shows four condition for dam break simulation. (a) Dam Break condition in positive x− direction (b)

Dam Break condition in negative x− direction (c) Dam Break condition in positive y− direction (d)

Dam Break condition in negative y− direction. Note: All the dimensions in the above figure are in

meter.

167

DRAFT COPY 8.3 One-Dimensional Dam Break Problem

(a)

(f)(e)

(d)(c)

(b)

Figure 8.6: Depth Vs Distance: One-dimensional dam break simulation (Mesh configuration: Fig-

ure 8.5(a)) using Roe’s approximate Riemann solver. The above figure shows the comparison between

Roe’s approximate solver (used in Riemann2D) with different limiters and one-dimensional exact

solver [using Clawpack (see LeVeque (2002))]. Limiters used with Roe’s solver are: (a) No Limiter (b)

Minmod (c) Superbee (d) LCD (e) Extended VanLeer (f) MLG. Note: Plot at time = 4s after dam

break.

168

DRAFT COPY 8.3 One-Dimensional Dam Break Problem

(a) (b)

(d)(c)

(f)(e)

Figure 8.7: Momentum Vs Distance: One-dimensional dam break simulation (Mesh configura-

tion: Figure 8.5(a)) using Roe’s approximate Riemann solver. The above figure shows the comparison

between Roe’s approximate solver (used in Riemann2D) with different limiters and one-dimensional

exact solver [using Clawpack (see LeVeque (2002))]. Limiters used with Roe’s solver are: (a) No Limiter

(b) Minmod (c) Superbee (d) LCD (e) Extended VanLeer (f) MLG. Note: Plot at time = 4s after dam

break.

169

DRAFT COPY 8.3 One-Dimensional Dam Break Problem

(a) (b)

(d)(c)

(f)(e)

Figure 8.8: Depth Vs Distance: One-dimensional dam break simulation (Mesh configuration:

Figure 8.5(a)) using HLL approximate Riemann solver. The above figure shows the comparison between

HLL approximate solver (used in Riemann2D) with different limiters and one-dimensional exact solver

[using Clawpack (see LeVeque (2002))]. Limiters used with Roe’s solver are: (a) No Limiter (b) Minmod

(c) Superbee (d) LCD (e) Extended VanLeer (f) MLG. Note: Plot at time = 4s after dam break.

170

DRAFT COPY 8.3 One-Dimensional Dam Break Problem

(a) (b)

(d)(c)

(f)(e)

Figure 8.9: Momentum Vs Distance: One-dimensional dam break simulation (Mesh configuration:

Figure 8.5(a)) using HLL approximate Riemann solver. The above figure shows the comparison between

Roe’s approximate solver (used in Riemann2D) with different limiters and one-dimensional exact solver

[using Clawpack (see LeVeque (2002))]. Limiters used with Roe’s solver are: (a) No Limiter (b) Minmod

(c) Superbee (d) LCD (e) Extended VanLeer (f) MLG. Note: Plot at time = 4s after dam break.

171

DRAFT COPY 8.3 One-Dimensional Dam Break Problem

(a) (b)

(d)(c)

(f)(e)

Figure 8.10: Depth Vs Distance: One-dimensional dam break simulation (Mesh configuration:

Figure 8.5(a)) using Shu and Oshers’ (SO) approximate Riemann solver. The above figure shows the

comparison between Roe’s approximate solver (used in Riemann2D) with different limiters and one-

dimensional exact solver [using Clawpack (see LeVeque (2002))]. Limiters used with Roe’s solver are:

(a) No Limiter (b) Minmod (c) Superbee (d) LCD (e) Extended VanLeer (f) MLG. Note: Plot at time

= 4s after dam break.

172

DRAFT COPY 8.3 One-Dimensional Dam Break Problem

(a) (b)

(d)(c)

(f)(e)

Figure 8.11: Momentum Vs Distance: One-dimensional dam break simulation (Mesh configura-

tion: Figure 8.5(a)) using Shu and Oshers’ (SO) approximate Riemann solver. The above figure shows

the comparison between Roe’s approximate solver (used in Riemann2D) with different limiters and

one-dimensional exact solver [using Clawpack (see LeVeque (2002))]. Limiters used with Roe’s solver

are: (a) No Limiter (b) Minmod (c) Superbee (d) LCD (e) Extended VanLeer (f) MLG. Note: Plot at

time = 4s after dam break.

173

DRAFT COPY 8.3 One-Dimensional Dam Break Problem

(a) (b)

(c) (d)

(e)
Figure 8.12: One-dimensional dam break simulation. All the above case is simulated using Roe solver

without any limiter. Simulation for:

(a) mesh configuration in Figure 8.5(a);

(b) mesh configuration in Figure 8.5(b);

(c) mesh configuration in Figure 8.5(c);

(d) mesh configuration in Figure 8.5(d); and

(e) Comparison of all the four cases by rotating the axis for cases (b) and (d). Note: Plot at time = 4s

after dam break.

174

DRAFT COPY 8.3 One-Dimensional Dam Break Problem

8.3.3 Observations

The test is an investigation of the capability of the approximate Riemann solvers with

limiters to simulate the behaviour of the hydraulic condition in one-dimensional chan-

nel. All the figures use the scatter plot (MS Excel), which helps to see properties (h

and hu) for every element present within the domain. As a result several notable differ-

ence between various combinations of approximate solution and limiters, and the exact

solution have been highlighted. These observations can be summarised as follows:

1. Roes’ approximate solver (see Figures 8.6 and 8.7):

• Without use of any limiter, as expected, the Roes’ solver fails to capture the

shock. However, it gives a smooth profile for h and hu near the shock. This

emphases the need for limiters for capturing shocks.

• The minmod, superbee and LCD limiters, which are widely used by many

researchers (see section 2.4.2), captures the shocks and gives good results

compare to the exact solution. But, these limiters show the signs of os-

cillation at the tip of the shock. However, it should be noted that these

oscillation are visible because of the width of the channel. Also, the devia-

tion of the properties (h and hu) at the tip of the shock is present only in

fewer elements compared to the total number of elements across the width

of the channel. LCD, which is of same rank (1) as minmod and superbee,

shows better shock capturing ability compared to other rank 1 limiters.

• The extended version of one-dimensional VanLeer limiter shows better shock

capturing ability compared to no limiter case. But, it is found to have

inferior shock capturing ability compared to other limiters for this test case.

However, an advantage of extended-VanLeer over other limiters is that it

keeps the solution smooth thought out the profile.

• The MLG limiter is found to capture the shock but it fails to capture the

refracted wave. It also produce small oscillation through out the profile.

From the profiles it can be seen that MLG limiter is trying to limit the slope

to greater extend, which could be the reason for these oscillations.

175

DRAFT COPY 8.4 Two-Dimensional Circular Dam Break

2. HLL approximate solver (see Figures 8.8 and 8.9):

The observations for limiters with HLL solver are not much different than those

with Roes’. There are few other important observations:

• All the limiters seems to give smooth profile with HLL approximate solver

compared to working with Roe’s approximate solver.

• But the performance of these limiters with HLL approximate solver is inferior

compared to those with Roes’.

3. SO approximate solver (see Figures 8.10 and 8.11)

• Given the performance of the SO approximate solver without any limiter;

minmod, LCD and extended-VanLeer gives decent results.

• Superbee limiter can be seen producing oscillation near the tip of the shock

as well as the original position of the Dam.

• The MLG limiter can be concluded to be a total failure. It is interesting to

note that the behaviour of MLG and superbee limiter resembles each other.

This could be because of the fact that the MLG is an extended version of

superbee limiter [Batten et al. (1996)].

4. To confirm the isotropic behaviour of the solvers, results for same problem with

different direction (see Figure 8.5) were compared. Figure 8.12 is illustrates the

perfect isotropic behaviour of Roes’ solver (without any limiter). Similar results

were obtained for other solver in combination with limiters.

8.4 Two-Dimensional Circular Dam Break

Another important benchmark example is the one presented in many literature includ-

ing, Alcrudo and Garcia-Navarro (1993), Gottardi and Venutelli (2004), and Delis and

Katsaounis (2005). It involves the breaking of a circular dam, and it is an important

test example for the analysis and performance of the presented Riemann solvers and

limiters when solving complex shallow flow problems, especially for symmetry. This is

like a two-dimensional Riemann problem for the two-dimensional shallow water equa-

tions [Delis and Katsaounis (2005)]. The circular dam-break bore waves will spread

and propagate radially and symmetrically as the water drains from the deepest region.

176

DRAFT COPY 8.4 Two-Dimensional Circular Dam Break

Then there is a transition from subcritical to supercritical flow (see Figure 8.13 (d)).

In this test case, we consider a circular dam in idealized and horizontal bottom and

study the time evolution of the shock waves associated with the breaking of the dam.

8.4.1 Aim of the test

The aim of this test is to:

1. study the ability of the Riemann2D to simulate the case of radial symmetry.

2. study the numerical ability of approximate solvers (Roes’, HLL and SO) and lim-

iters in handling transitional (sub-to-super and super-to-sub critical) flow con-

dition. In absence of analytical and experimental data results are compared to

solutions publications in a number of journals (see Figure 8.20); and

3. present the particulars for developing and undertaking the test with Riemann2D

and discuss the associated results.

8.4.2 Test Configuration

Initially, the physical model is that of two regions of still water separated by a cylindri-

cal wall (with radius 11 m) centered in a 50×50m square domain. The wall (assumed

to be of negligible thickness) is then assumed to be removed completely and no slope or

friction is considered. The numerical mesh consists of 1609 nodes and 3072 triangular

elements (see Figure 8.13 (a)). The initial conditions are u = v = 0 throughout the

domain, whereas the water depth inside and outside the dam is respectively, h0 = 10m

and h0 = 1m (see Figure 8.13 (b)). The plot of the free surface elevation at t = 0.69s

is shown in Figures 8.14 to 8.19.

Note:

• Initial Condition: Water depth in the circular dam = 10m, outside dam = 1m.

• Boundary Condition: Reflective type on all exterior boundaries.

• Riemann Solver and Limiters: Details are given in each figure captions. See

Figures 8.14 to 8.19.

177

DRAFT COPY 8.4 Two-Dimensional Circular Dam Break

• Courant Number: Desired - 0.25, Maximum - 0.5;

• Time step: Variable;

• Output Time: All results are plotted 0.69 seconds after dam break.

• Order in Time: First;

• The mesh shown in 3D perspective view (see Figures 8.15, 8.17 and 8.19) are only

for better visual effect. They are not the numerical mesh for the problem.

178

DRAFT COPY 8.4 Two-Dimensional Circular Dam Break

(a) (b)(- 2 5 , 0) (0 , 2 5)

(- 2 5 , 2 5) (2 5 , 2 5)

(c) (d)

Figure 8.13: Two-dimensional circular dam break configuration: The above figure shows (a) numeri-

cal mesh and plan view of the problem, (b) 3D perspective view of the initial condition, (c) scatter plot

of the water height in each element of the domain at t = 0.69 s (using Roes’ approximate solver without

limiter), and (d) scatter plot of the Froude number for each element of the domain at t = 0.69 s (using

Roes’ approximate solver without limiter). It can be seen that this is problem of two-dimensional

transitional (sub-to-super and super-to-sub critical) flow condition.

179

DRAFT COPY 8.4 Two-Dimensional Circular Dam Break

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

(a) (b)

(c) (d)

(e) (f)

Figure 8.14: Two-dimensional circular dam break simulation (Mesh configuration: Figure 8.13)

using Roe’s approximate Riemann solver. The above figure shows depth contour plots for dam break

situation. Limiters used with Roe’s solver are: (a) No Limiter (b) Minmod (c) Superbee (d) LCD (e)

Extended VanLeer (f) MLG. Note: Plot at time = 0.69s after dam break.

180

DRAFT COPY 8.4 Two-Dimensional Circular Dam Break

(a) (b)

(c) (d)

(e) (f)

Figure 8.15: Two-dimensional circular dam break simulation (Mesh configuration: Figure 8.13)

using Roe’s approximate Riemann solver. The above figure shows 3D perspective view of the dam

break situation. Limiters used with Roe’s solver are: (a) No Limiter (b) Minmod (c) Superbee (d)

LCD (e) Extended VanLeer (f) MLG. Note: Plot at time = 0.69s after dam break.

181

DRAFT COPY 8.4 Two-Dimensional Circular Dam Break

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

(a) (b)

(c) (d)

(e) (f)

Figure 8.16: Two-dimensional circular dam break simulation (Mesh configuration: Figure 8.13) using

HLL approximate Riemann solver. The above figure shows depth contour plots for dam break situation.

Limiters used with HLL solver are: (a) No Limiter (b) Minmod (c) Superbee (d) LCD (e) Extended

VanLeer (f) MLG. Note: Plot at time = 0.69s after dam break.

182

DRAFT COPY 8.4 Two-Dimensional Circular Dam Break

(a) (b)

(c) (d)

(e) (f)

Figure 8.17: Two-dimensional circular dam break simulation (Mesh configuration: Figure 8.13)

using HLL approximate Riemann solver. The above figure shows 3D perspective view of the dam break

situation. Limiters used with HLL solver are: (a) No Limiter (b) Minmod (c) Superbee (d) LCD (e)

Extended VanLeer (f) MLG. Note: Plot at time = 0.69s after dam break.

183

DRAFT COPY 8.4 Two-Dimensional Circular Dam Break

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0 - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

- 2 0

- 1 5

- 1 0

- 5

0

5

1 0

1 5

2 0

(a) (b)

(c) (d)

(e) (f)

Figure 8.18: Two-dimensional circular dam break simulation (Mesh configuration: Figure 8.13) using

Shu and Osher’s (SO) approximate Riemann solver. The above figure shows depth contour plots for

dam break situation. Limiters used with Shu and Osher’s solver are: (a) No Limiter (b) Minmod (c)

Superbee (d) LCD (e) Extended VanLeer (f) MLG. Note: Plot at time = 0.69s after dam break.

184

DRAFT COPY 8.4 Two-Dimensional Circular Dam Break

(a) (b)

(c) (d)

(e) (f)

Figure 8.19: Two-dimensional circular dam break simulation (Mesh configuration: Figure 8.13) using

Shu and Osher’s (SO) approximate Riemann solver. The above figure shows 3D perspective view of

the dam break situation. Limiters used with Shu and Osher’s solver are: (a) No Limiter (b) Minmod

(c) Superbee (d) LCD (e) Extended VanLeer (f) MLG. Note: Plot at time = 0.69s after dam break.

185

DRAFT COPY 8.4 Two-Dimensional Circular Dam Break

(a)

(b)

(c)

Figure 8.20: 3D surface view and water depth contour published in various literature (a) Gottardi

and Venutelli (2004) (b) Anastasiou and Chan (1997) and (c) Mohamadian et al. (2005). Note: All the

initial condition and boundary conditions are same as used in the present test case. Time = 0.69s

186

DRAFT COPY 8.5 Two-Dimensional Partial Dam Break

8.4.3 Observations

This test is an extreme investigation of the capability of the approximate Riemann

solvers with limiters to simulate the transitional flow condition.

It can be clearly seen that for all the combination of approximate Riemann solver

and limiters, the waves spread uniformly and symmetrically, with the radial symmetry

slightly distorted by the effects of the triangular elements due to the inability to rep-

resent a circle on a triangular mesh, but otherwise the solution gives very good results

and agrees very well with those shown in Figure 8.20. The results of this test can

also be seen in Delis and Katsaounis (2005), Alcrudo and Garcia-Navarro (1993) and

Mingham and Causon (1998). However, few comments can be made on the presented

results:

1. The extended-VanLeer can be seen giving very smooth results, compared to other

limiters, for all the solvers.

2. The MLG limiter gives most distorted result, of all other limiters, for all the

solvers.

3. It can be concluded that all the combination of approximate solver and limiter

gives sharp gradient at the shock. This can be noted from the Figures 8.14 to

8.19 that the contour of 2m and 1.01m is very near to each other.

8.5 Two-Dimensional Partial Dam Break

The two-dimensional hypothetical problem used here is the one presented by Fennema

and Chaudhry (1990), Anastasiou and Chan (1997) and Delis and Katsaounis (2005).

8.5.1 Aim of the test

The aim of this test is to:

1. study the ability of the Riemann2D to simulate different front wave propagations,

with particular attention to the 2D aspects of the flow;

2. study the numerical accuracy of approximate solvers (Roes’, HLL and SO) and

limiters compared to solutions produced in different publications; and

187

DRAFT COPY 8.5 Two-Dimensional Partial Dam Break

3. present the particulars for developing and undertaking the test with Riemann2D

and discuss the associated results.

8.5.2 Test Configuration

For this problem the dam, located in the center of a region, is assumed to partially

fail instantaneously. The bottom is frictionless (see Figure 8.21). The water depth

upstream of the dam is hu = 10m and downstream is assumed to be either hd = 5m.

The computational domain is a 200×200m. The numerical mesh consists of 7381 nodes

and 15232 triangular elements. The breach is 75 m in length, which has distances of

30m from the left bank and 95 m from the right. The boundary conditions at x = 0

and x = 200m are assumed to be transmissive and all other boundaries are considered

as reflective. At the instant of breaking of the dam, water is released through the

breach, forming a positive wave propagating downstream and a negative wave spreading

upstream. When hd = 5m the flow is subcritical everywhere.

Note:

• Initial Condition: Water in upstream = 10 m, and downstream = 5 m.

• Boundary Condition: Reflective type on all exterior boundaries.

• Riemann Solver and Limiters: Details are given in each figure captions. See

Figures 8.22 to 8.27.

• Courant Number: Desired - 0.25, Maximum - 0.5;

• Time step: Variable;

• Output Time: All results are plotted 7.2 seconds after dam break.

• Order in Time: First;

• The mesh shown in 3D perspective view (see Figures 8.23, 8.25 and 8.27) are only

for better visual effect. They are not numerical mesh for the problem.

188

DRAFT COPY 8.5 Two-Dimensional Partial Dam Break

(a) (b)(0 , 0) (0 , 2 0 0)

(0 , 2 0 0) (2 0 0 , 2 0 0)

(1 0 0 , 3 0) (1 0 5 , 1 0 0)

Figure 8.21: Two-dimensional partial dam break configuration: The above figure shows (a) numerical

mesh and plan view of the problem, and (b) 3D perspective view of the initial condition

189

DRAFT COPY 8.5 Two-Dimensional Partial Dam Break

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

(a) (b)

(d)(c)

(f)(e)

Figure 8.22: Two-dimensional partial dam break simulation (Mesh configuration: Figure 8.21) using

Roe’s approximate Riemann solver. The above figure shows depth contour plots for the dam break

situation. Limiters used with Roe’s solver are: (a) No Limiter (b) Minmod (c) Superbee (d) LCD (e)

Extended VanLeer (f) MLG. Note: Plot at time = 7.2s after dam break.

190

DRAFT COPY 8.5 Two-Dimensional Partial Dam Break

(a)

(f)(e)

(d)(c)

(b)

Figure 8.23: Two-dimensional partial dam break simulation (Mesh configuration: Figure 8.21) using

Roe’s approximate Riemann solver. The above figure shows 3D perspective view of the dam break

situation. Limiters used with Roe’s solver are: (a) No Limiter (b) Minmod (c) Superbee (d) LCD (e)

Extended VanLeer (f) MLG. Note: Plot at time = 7.2s after dam break.

191

DRAFT COPY 8.5 Two-Dimensional Partial Dam Break

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

(f)(e)

(d)(c)

(a) (b)

Figure 8.24: Two-dimensional partial dam break simulation (Mesh configuration: Figure 8.21) using

HLL approximate Riemann solver. The above figure shows depth contour plots for the dam break

situation. Limiters used with HLL solver are: (a) No Limiter (b) Minmod (c) Superbee (d) LCD (e)

Extended VanLeer (f) MLG. Note: Plot at time = 7.2s after dam break.

192

DRAFT COPY 8.5 Two-Dimensional Partial Dam Break

(a) (b)

(d)(c)

(f)(e)

Figure 8.25: Two-dimensional partial dam break simulation (Mesh configuration: Figure 8.21) using

HLL approximate Riemann solver. The above figure shows 3D perspective view of the dam break

situation. Limiters used with HLL solver are: (a) No Limiter (b) Minmod (c) Superbee (d) LCD (e)

Extended VanLeer (f) MLG. Note: Plot at time = 7.2s after dam break.

193

DRAFT COPY 8.5 Two-Dimensional Partial Dam Break

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

(a) (b)

(d)(c)

(f)(e)

Figure 8.26: Two-dimensional partial dam break simulation (Mesh configuration: Figure 8.21) using

Shu & Osher’s approximate Riemann solver. The above figure shows depth contour plots for the dam

break situation. Limiters used with Shu & Osher’s solver are: (a) No Limiter (b) Minmod (c) Superbee

(d) LCD (e) Extended VanLeer (f) MLG. Note: Plot at time = 7.2s after dam break.

194

DRAFT COPY 8.5 Two-Dimensional Partial Dam Break

(a) (b)

(d)(c)

(f)(e)

Figure 8.27: Two-dimensional partial dam break simulation (Mesh configuration: Figure 8.21) using

Shu & Osher’s approximate Riemann solver. The above figure shows 3D perspective view of the dam

break situation. Limiters used with Shu & Osher’s solver are: (a) No Limiter (b) Minmod (c) Superbee

(d) LCD (e) Extended VanLeer (f) MLG. Note: Plot at time = 7.2s after dam break.

195

DRAFT COPY 8.5 Two-Dimensional Partial Dam Break

(a)

(b)

Figure 8.28: Two-dimensional partial dam break simulation (Mesh configuration: Figure 8.21) using

relaxation schemes. The above figure shows 3D perspective view of the dam break situation and depth

contour plots for the dam break situation. (a)the upwind relaxation scheme (b) the MUSCL relaxation

scheme (Minmod limiter) Note: Plot at time = 7.2s after dam break. Results Published: Delis and

Katsaounis (2005)

196

DRAFT COPY 8.5 Two-Dimensional Partial Dam Break

(a)

(b)

Figure 8.29: Two-dimensional partial dam break simulation (Mesh configuration: Figure 8.21) using

relaxation schemes. The above figure shows 3D perspective view of the dam break situation and depth

contour plots for the dam break situation. (a)the upwind relaxation scheme (Superbee limiter) (b)

the MUSCL relaxation scheme (VanLeer limiter) Note: Plot at time = 7.2s after dam break. Results

Published: Delis and Katsaounis (2005)

197

DRAFT COPY 8.6 Rotation Test for Shallow Water Equations

8.5.3 Observations

This test is an investigation of the capability of the approximate Riemann solvers with

limiters to capture the effect of full two-dimensional wave development.

It can be clearly seen that for all the combination of approximate Riemann solvers

and limiters, gives very good results and agrees very well with those in Fennema and

Chaudhry (1990), Anastasiou and Chan (1997) and Delis and Katsaounis (2005). How-

ever, few comments can be made on the presented results:

1. The extended-VanLeer can be seen giving very smooth contours, compared to

other limiters, for all the solvers.

2. The MLG limiter gives most distorted result, of all other limiters, for all the

solvers.

3. It can be concluded that all the combination of approximate solver and limiter

gives sharp gradient at the shock fronts. It is interesting to note that the re-

sults presented here with limiters (No Limiter, Minmod, Superbee and extended-

VanLeer) with Roes’, HLL and SO approximate solver handles shock more effec-

tively compared to same limiters used for relaxation schemes (see Figure 8.28 and

8.29).

8.6 Rotation Test for Shallow Water Equations

This test case involves a rotating cubical-shaped scalar field in evaluation of the numer-

ical accuracy of various high-order limiters. The scaler field can be viewed as solute,

whose properties doesn’t change with water contact. The mathematical expression

eigen structure for the solutes is given in section 6.5.0.1.

8.6.1 Aim of the test

The aim of this test is to:

1. study the numerical accuracy of various limiters for the advection of a scalar field;

2. study the effect of mesh size on the behaviour of limiters; and

3. present the particulars for developing and undertaking the test with Riemann2D

and discuss the associated results.

198

DRAFT COPY 8.6 Rotation Test for Shallow Water Equations

8.6.2 Test Configuration

In this example a scalar cubical-shaped (2.5m×2.5m×1m) field is advected around by

a constant rotating velocity field in a 10m×10m square computational domain. The

angular frequency (ω) of the velocity field is set to be 0.1rotation/s and the center of

the cube is set to be 5m from the center of the computations domain. The cube has

a square top face of 2.5m×2.5m. The definition of the problem domain and the initial

condition of the scalar field are shown in Figure 8.30. For this test case three level of

numerical mesh is used. The computational domain was triangulated by 512, 2048 and

8192 elements (see Figure 8.31). Each level contains four times the elements in the

previous level.

Note:

• Initial Condition: Solute concentration 1 (see Figure 8.30;

• Boundary Condition: Reflective type on all exterior boundaries.

• Riemann Solver and Limiters: Roe’s approximate solver with different limiters as

shown in Figures 8.32 to 8.43;

• Courant Number: Desired - 0.25, Maximum - 0.5;

• Time step: Variable;

• Order in Time: First;

• The results shown in the Figures 8.32 to 8.43 are only for one complete rotation of

the scaler field. The time taken for this is: 2π/ 0.1=62.83185s. This is numerical

time and therefore presented to fifth decimal place.

• The mesh refinement is done on the initial numerical mesh of 512 elements (see

Figure 8.31 (a)) by using “automatic mesh refine tool” of ArgusMeshMaker.

• The mesh shown in 3Dperspective view (see Figures 8.33, 8.37 and 8.41) are only

for better visual effect. They are not numerical mesh for the problem.

• Figures 8.34, 8.38 and 8.42 are shown for comparision, therefore it doesn’t repre-

sent any physical quantity on x− scale.

199

DRAFT COPY 8.6 Rotation Test for Shallow Water Equations

• Other details for each figures are given in their respective captions.

200

DRAFT COPY 8.6 Rotation Test for Shallow Water Equations

s
r

q =

q

Tv
r

w =

Tv

Tv

A x i s
o f r o t a t i o n

- 1 0 - 8 - 6 - 4 - 2 0 2 4 6 8 1 0

- 1 0 - 8 - 6 - 4 - 2 0 2 4 6 8 1 0

- 1 0

- 8

- 6

- 4

- 2

0

2

4

6

8

1 0

- 1 0

- 8

- 6

- 4

- 2

0

2

4

6

8

1 0

R e f e r e n c e V e c t o r s
0
2

(a) (b)

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8

- 6

- 4

- 2

0

2

4

6

8

(c) (d)

Figure 8.30: Rotation test configuration: (a) Diagram showing the angular velocity applied at a

point in the domain, (b) Velocity vector constantly applied in the domain, (c) 3D perspective view of

the initial condition of the rotation test, and (d) Initial condition of the concentration contour

(a) (b) (c)

Figure 8.31: Rotation test mesh configuration: Test is conducted on three level of mesh for same

domain and initial condition (a) 512 elements (b) 2048 elements (c) 8192 elements

201

DRAFT COPY 8.6 Rotation Test for Shallow Water Equations

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8

- 6

- 4

- 2

0

2

4

6

8

(a) (b)

(c)
- 8 - 6 - 4 - 2 0 2 4 6 8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8

- 6

- 4

- 2

0

2

4

6

8

(d)

(e) (f)

Figure 8.32: Rotation test: Concentration contours diagram for domain with 512 elements mesh

(Figure 8.31). Each figure above shows the concentration contours at quarter rotation in anti-clockwise

direction. Corresponding time of travel are 15.70796 s (12’O clock), 31.41593 s (9’O clock), 47.12389

s (6’O clock) and 62.83185 s (3’O clock). Limiters used for rotation test: (a) No Limiter (b) Minmod

(c) Superbee (d) LCD (d) Extended VanLeer (e) MLG.

202

DRAFT COPY 8.6 Rotation Test for Shallow Water Equations

(a) (b)

(c) (d)

(e) (f)

Figure 8.33: Rotation test: 3D perspective view for domain with 512 elements mesh (Figure 8.31).

Each figure above shows the concentration surface at quarter rotation in anti-clockwise direction. Cor-

responding time of travel are 15.70796 s (12’O clock), 31.41593 s (9’O clock), 47.12389 s (6’O clock)

and 62.83185 s (3’O clock). Limiters used for rotation test: (a) No Limiter (b) Minmod (c) Superbee

(d) LCD (d) Extended VanLeer (e) MLG.

203

DRAFT COPY 8.6 Rotation Test for Shallow Water Equations

T i m e = 6 2 . 8 3 1 8 5 s e c

0
0 . 2
0 . 4
0 . 6
0 . 8
1

1 . 2

Co
nc

en
tra

tio
n

I n i t i a l V a l u e N o L i m i t e r M i n m o d L i m i t e r
S u p e r b e e L i m i t e r L C D L i m i t e r E x t e n d e d V a n L e e r L i m i t e r
M L G L i m i t e r

T i m e = 4 7 . 1 2 3 8 9 s e c

0
0 . 2
0 . 4
0 . 6
0 . 8
1

1 . 2

Co
nc

en
tra

tio
n

I n i t i a l V a l u e N o L i m i t e r M i n m o d L i m i t e r
S u p e r b e e L i m i t e r L C D L i m i t e r E x t e n d e d V a n L e e r L i m i t e r
M L G L i m i t e r

T i m e : 1 5 . 7 0 7 9 6 s e c

0
0 . 2
0 . 4
0 . 6
0 . 8
1

1 . 2

0 8 0

Co
nc

en
tra

tio
n

I n i t i a l V a l u e N o L i m i t e r M i n m o d L i m i t e r
S u p e r b e e L i m i t e r L C D L i m i t e r E x t e n d e d V a n L e e r L i m i t e r
M L G L i m i t e r

T i m e = 3 1 . 4 1 5 9 3 s e c

0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 . 2

Co
nc

en
tra

tio
n

I n i t i a l v a l u e N o L i m i t e r M i n m o d L i m i t e r
S u p e r b e e L i m i t e r L C D L i m i t e r E x t e n d e d V a n L e e r L i m i t e r
M L G L i m i t e r

(a)

(d)(c)

(b)

Figure 8.34: Rotation test: Concentration depth comparison diagram for domain with 512 elements

mesh (Figure 8.31). Each figure above shows the comparison of the concentration depth at quarter

rotation in anti-clockwise direction. Corresponding time of travel are (a) 15.70796 s (12’O clock), (b)

31.41593 s (9’O clock), (c) 47.12389 s (6’O clock) and (d) 62.83185 s (3’O clock). Limiters used for

rotation tests are No Limiter, Minmod, Superbee, LCD, Extended VanLeer and MLG.

Figure 8.35: Rotation test: Time series comparison diagram for domain with 512 elements mesh

(Figure 8.31). Limiters used for rotation tests are No Limiter, Minmod, Superbee, LCD, Extended

VanLeer and MLG.

204

DRAFT COPY 8.6 Rotation Test for Shallow Water Equations

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8

- 6

- 4

- 2

0

2

4

6

8

(a) (b)

(c) (d)

(e) (f)

Figure 8.36: Rotation test: Concentration contours diagram for domain with 2048 elements mesh

(Figure 8.31). Each figure above shows the concentration contours at quarter rotation in anti-clockwise

direction. Corresponding time of travel are 15.70796 s (12’O clock), 31.41593 s (9’O clock), 47.12389

s (6’O clock) and 62.83185 s (3’O clock). Limiters used for rotation test: (a) No Limiter (b) Minmod

(c) Superbee (d) LCD (d) Extended VanLeer (e) MLG.

205

DRAFT COPY 8.6 Rotation Test for Shallow Water Equations

(a) (b)

(c) (d)

(e) (f)

Figure 8.37: Rotation test: 3D perspective view for domain with 2048 elements mesh (Figure 8.31).

Each figure above shows the concentration surface at quarter rotation in anti-clockwise direction. Cor-

responding time of travel are 15.70796 s (12’O clock), 31.41593 s (9’O clock), 47.12389 s (6’O clock)

and 62.83185 s (3’O clock). Limiters used for rotation test: (a) No Limiter (b) Minmod (c) Superbee

(d) LCD (d) Extended VanLeer (e) MLG.

206

DRAFT COPY 8.6 Rotation Test for Shallow Water Equations

(a) (b)

(c) (d)

Figure 8.38: Rotation test: Concentration depth comparison diagram for domain with 2048 elements

mesh (Figure 8.31). Each figure above shows the comparison of the concentration depth at quarter

rotation in anti-clockwise direction. Corresponding time of travel are (a) 15.70796 s (12’O clock), (b)

31.41593 s (9’O clock), (c) 47.12389 s (6’O clock) and (d) 62.83185 s (3’O clock). Limiters used for

rotation tests are No Limiter, Minmod, Superbee, LCD, Extended VanLeer and MLG.

Figure 8.39: Rotation test: Time series comparison diagram for domain with 2048 elements mesh

(Figure 8.31). Limiters used for rotation tests are No Limiter, Minmod, Superbee, LCD, Extended

VanLeer and MLG.

207

DRAFT COPY 8.6 Rotation Test for Shallow Water Equations

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8 - 6 - 4 - 2 0 2 4 6 8

- 8

- 6

- 4

- 2

0

2

4

6

8

- 8

- 6

- 4

- 2

0

2

4

6

8

(a) (b)

(c) (d)

(e) (f)

Figure 8.40: Rotation test: Concentration contours diagram for domain with 8192 elements mesh

(Figure 8.31). Each figure above shows the concentration contours at quarter rotation in anti-clockwise

direction. Corresponding time of travel are 15.70796 s (12’O clock), 31.41593 s (9’O clock), 47.12389

s (6’O clock) and 62.83185 s (3’O clock). Limiters used for rotation test: (a) No Limiter (b) Minmod

(c) Superbee (d) LCD (d) Extended VanLeer (e) MLG.

208

DRAFT COPY 8.6 Rotation Test for Shallow Water Equations

(a) (b)

(c) (d)

(e) (f)

Figure 8.41: Rotation test: 3D perspective view for domain with 8192 elements mesh (Figure 8.31).

Each figure above shows the concentration surface at quarter rotation in anti-clockwise direction. Cor-

responding time of travel are 15.70796 s (12’O clock), 31.41593 s (9’O clock), 47.12389 s (6’O clock)

and 62.83185 s (3’O clock). Limiters used for rotation test: (a) No Limiter (b) Minmod (c) Superbee

(d) LCD (d) Extended VanLeer (e) MLG.

209

DRAFT COPY 8.6 Rotation Test for Shallow Water Equations

(a) (b)

(c) (d)

Figure 8.42: Rotation test: Concentration depth comparison diagram for domain with 8192 elements

mesh (Figure 8.31). Each figure above shows the comparison of the concentration depth at quarter

rotation in anti-clockwise direction. Corresponding time of travel are (a) 15.70796 s (12’O clock), (b)

31.41593 s (9’O clock), (c) 47.12389 s (6’O clock) and (d) 62.83185 s (3’O clock). Limiters used for

rotation tests are No Limiter, Minmod, Superbee, LCD, Extended VanLeer and MLG.

Figure 8.43: Rotation test: Time series comparison diagram for domain with 8192 elements mesh

(Figure 8.31). Limiters used for rotation tests are No Limiter, Minmod, Superbee, LCD, Extended

VanLeer and MLG.

210

DRAFT COPY 8.6 Rotation Test for Shallow Water Equations

8.6.3 Observations

This test is an investigation of the capability of the limiters for handling numerical

diffusion at different level of mesh refinement.

This test case give very interesting results for the comparison of the limiters. In

this test case each limiter should (ideally) bring the scalar field in same shape (Cube:

2.5m×2.5m×1m) after one full complete rotation. Because of numerical diffusion the

peak of the cube falls and the surface area is distorted. It should be noted that total

volume of the scaler quantity is same through out the domain. Before discussion on

the results the rank (discussed in section 5.9.2) of the limiters should be noted:

• No Limiter is rank 0;

• Minmod, superbee and LCD are rank 1;

• Extended-VanLeer is rank 3; and

• MLG is rank 4.

Based on the Figures 8.32 to 8.43 following comments can be made:

• Mesh with 512 elements (see Figures 8.31 (a), 8.32,8.33, 8.34 and 8.35):

– Because of the coarse mesh, the limiters give very poor results for the rota-

tion test.

– This shows that the numerical diffusion is more, as expected, for lower den-

sity mesh.

– However, the performance of MLG limiter outstands among others. Extended-

VanLeer and LCD gives the similar time-series curve. Whereas, superbee

and minmod time-series matches with each other.

• Mesh with 2048 elements (see Figures 8.31 (b), 8.36,8.37, 8.38 and 8.39):

– Because the mesh is refined to four times the previous case, the limiters’

performance has improved.

– This shows that the numerical diffusion decreases, as the mesh is refined.

211

DRAFT COPY 8.6 Rotation Test for Shallow Water Equations

(a)

(b)
Figure 8.44: Comparison of limiters for concentration of peak after one full rotation (a) Vs number

of elements in the mesh (b) Vs size of the elements (cm2) [assuming that the element size in same in

each mesh, see Figure 8.31 (a), (b) and (c)].

Note: Initial peak is 1 unit. The information is available only for mesh size 512, 2048 and 8192.

Therefore, the line joining three point is a smooth curve passing through these points and they do not

represent true value of peak for corresponding size of mesh (or number of elements).

212

DRAFT COPY 8.6 Rotation Test for Shallow Water Equations

– It is interesting to see that performance of MLG has improved to greatest

extend and it shows, little fall (5.69%) in the peak. However, distortion in

the shape of the contours can be seen.

– Similarly, other limiters shows sign of improvement over the previous case.

But at this level of mesh refinement, extended-VanLeer, which is rank 3,

starts showing better performance over the rank 1 limiters. Also superbee

is slightly improved than minmod.

– In general, the performance of limiters shows much improvement over the

case of “no limiter”.

• Mesh with 8192 elements (see Figures 8.31 (c), 8.40,8.41, 8.42 and 8.43):

– This is the finest mesh for this test. As expected, all the limiters shows

improvement over the previous cases.

– For this level of mesh refinement a clear demarcation can be seen between

the results (Figure 8.43) of the time-series curve.

• Performance of limiters with mesh refinement (see Figure 8.44): This finding is

based on only three level of mesh refinements, but the level of refinement is 16

times (=8192/512) the initial size. Therefore it provides enough information in

drawing few conclusions:

– The MLG limiter is found to be less diffusive among all the limiters and at

every level of mesh refinement.

– The MLG limiter produce better results at second level of mesh refinement

(2048 elements) compared to all other limiters at third level of refinement

(8192 elements).

– The performance of rank 1 limiter, i.e., minmod, superbee and LCD tends to

give results similar to each other with little difference. However, LCD shows

better performance over superbee, which in turn shown better performance

over minmod.

– The extended-VanLeer limiter being rank 3 limiter shows the performance

between rank 4 (MLG) and rank 1 limiters.

213

DRAFT COPY 8.7 Dam Break in a Converging-Diverging Channel

– Assuming that the size of the elements in each mesh of Figure 8.31, Figure

8.44 (b) give rough idea on the relation between size of element vs peak (or

numerical diffusion).

8.7 Dam Break in a Converging-Diverging Channel

This test case together with the experimental data and test specifications is supplied

on the website of Environmental Agency1. The test was conducted as a part of project

called Concerted Action on Dam-break Modelling (CADAM2).

8.7.1 Aim of Test

The aim of this test is to:

1. study the ability of Riemann2D in using different Riemann solvers and limiters

to replicate the behaviour of a surge wave, caused by the sudden collapse of a

large body of water, in a channel with a local constriction and expansion;

2. compare the numerical results against laboratory results obtained in the European

Commission’s CADAM project; and

3. present the particulars for developing and undertaking the test with Riemann2D

and discuss the associated results.

8.7.2 The Laboratory Configuration of the CADAM Project

The model comprises of a horizontal 0.5m wide channel of uniform rectangular cross-

section. The overall length of the channel was set at 19.30m, with the first 6.10m of

the channel at the upstream end specified as the reservoir. A removable sluice gate was

built into the channel to retain the water within the reservoir, the gate being removed

in approximately 0.2s to simulate the break of the dam. A constriction was located

7.70m downstream of the sluice gate. The constriction was given an overall length of

1.4m, the first and last 0.2m of which were tapered at 45◦ angles to the channel walls.
1http://environment.gov.uk/commondata/105385/w5 105 tr 1 882583.pdf
2CADAM was an EC funded Concerted Action Programme looking at dam-break modelling and ap-

plication. February 1998 - January 2000. http://www.hrwallingford.co.uk/projects/CADAM/CADAM/

index.html

214

DRAFT COPY 8.7 Dam Break in a Converging-Diverging Channel

The middle width of the constriction of 0.1m therefore remains uniform for 1.0m in

length, as illustrated in Figure 8.45.

The initial conditions for the test were set at 0.3m depth of water in the reservoir

upstream from the gate, and 0.003m in the channel downstream from the gate. The

experimental data for the test was obtained by removing the gate, and measuring the

depth and velocity of flow at the benchmarking stations S1 to S4 (see Figure 8.45). S1

is located 1.0m upstream of the dam gate, S2, 6.10m downstream of the dam gate, S3,

8.80m downstream of the dam gate, and S4, 10.50m downstream of the dam gate. The

measurements were taken every 0.04s and recorded up to a simulation time of 10.00s.

8.7.3 Test Configuration

The computational domain set same as specified in Figure 8.46. The numerical mesh

consists of 1362 nodes and 2308 triangular elements. The boundary conditions at x = 0

is considered as reflective, whereas at x = 19.3m it is assumed to be transmissive and

all other boundaries are considered as reflective. In absence of model for gate, the dam

is assumed to fail instantaneously. This is in contrast to the laboratory conditions,

where gate is removed in 0.2s. At the instant of breaking of the dam, water is released

through the breach, forming a positive wave propagating downstream and a negative

wave spreading upstream.

Note:

• Courant Number for all the cases is 0.2; and

• All the simulation results are for first order in time.

215

DRAFT COPY 8.7 Dam Break in a Converging-Diverging Channel

Figure 8.45: Schematic diagram of channel with local constriction. The laboratory model consists of

a 19.30 m long rectangular channel with a removable sluice gate at 6.10 m and a constriction at 13.8

m. The constriction is 0.1 m wide and 1.0 m long. Also shown are the gauging stations S1 to S4.

G a t e

Figure 8.46: Mesh diagram of channel with local constriction. The laboratory model dimensions are

given in the Figure 8.45.

216

DRAFT COPY 8.7 Dam Break in a Converging-Diverging Channel

(a)

(b)

Figure 8.47: Comparison between experimental data and numerical results using Roe’s approximate

solver on the time evolution during 10s of the water depth at the gauging points S1, S2, S3 and S4.

Limiters used with Roe’s solver: (a) No Limiter (b) Minmod.

217

DRAFT COPY 8.7 Dam Break in a Converging-Diverging Channel

(a)

(b)

Figure 8.48: Comparison between experimental data and numerical results using Roe’s approximate

solver on the time evolution during 10s of the water depth at the gauging points S1, S2, S3 and S4.

Limiters used with Roe’s solver: (a) Superbee (b) LCD.

218

DRAFT COPY 8.7 Dam Break in a Converging-Diverging Channel

(a)

(b)

Figure 8.49: Comparison between experimental data and numerical results using Roe’s approximate

solver on the time evolution during 10s of the water depth at the gauging points S1, S2, S3 and S4.

Limiters used with Roe’s solver: (a) Extended VanLeer (b) MLG.

219

DRAFT COPY 8.7 Dam Break in a Converging-Diverging Channel

(a)

(b)

Figure 8.50: Comparison between experimental data and numerical results using HLL approximate

solver on the time evolution during 10s of the water depth at the gauging points S1, S2, S3 and S4.

Limiters used with HLL solver: (a) No Limiter (b) Minmod.

220

DRAFT COPY 8.7 Dam Break in a Converging-Diverging Channel

(a)

(b)

Figure 8.51: Comparison between experimental data and numerical results using HLL approximate

solver on the time evolution during 10s of the water depth at the gauging points S1, S2, S3 and S4.

Limiters used with HLL solver: (a) Superbee (b) LCD.

221

DRAFT COPY 8.7 Dam Break in a Converging-Diverging Channel

(a)

(b)

Figure 8.52: Comparison between experimental data and numerical results using HLL approximate

solver on the time evolution during 10s of the water depth at the gauging points S1, S2, S3 and S4.

Limiters used with HLL solver: (a) Extended VanLeer (b) MLG.

222

DRAFT COPY 8.7 Dam Break in a Converging-Diverging Channel

(a)

(b)

Figure 8.53: Comparison between experimental data and numerical results using SO approximate

solver on the time evolution during 10s of the water depth at the gauging points S1, S2, S3 and S4.

Limiters used with SO solver: (a) No Limiter fails for assumption: minimum depth = 10−6 (b) No

Limiter with assumption for minimum depth = 10−4.

223

DRAFT COPY 8.7 Dam Break in a Converging-Diverging Channel

Figure 8.54: Comparison between experimental data and numerical results using SO approximate

solver and Minmod limiter on the time evolution during 10s of the water depth at the gauging points

S1, S2, S3 and S4. Minmod limiter fails for assumption: minimum depth = 10E-4.

8.7.4 Observations

The modelling approach required for this test has provided a true real life test for the

Riemann2D . This test has been an extreme investigation of the capabilities of the

Riemann2D and there are several notable areas, summarised as below:

• Roes’ approximate solver (see Figures 8.47 to 8.49):

– The initial depth of the water in downstream is 0.003 which is very small

compared to upstream water depth 0.3. This means, application of limiters

to the model may cause the oscillation at the tip of the shock. This oscillation

might develop a dry zone near the shock. Therefore a minimum depth of

10−6m is imposed to the domain. This depth is significantly small to cause

any inaccuracy into the solution.

– Gauging Station S1: The numerical and experimental results have perfect

match, for all the limiters, upto time evolution of 6 seconds. After this the

numerical results shows faster receding water level. This can be explained

224

DRAFT COPY 8.7 Dam Break in a Converging-Diverging Channel

by the behaviour of water profile at S3 gauging station, where water level

rises more than the experimental data.

– Gauging Station S2: For all the limiters there is good match between the nu-

merical and experimental results, except a little disagreement of the results

at time 7.5s (approximately).

– Gauging Station S3: It can be seen that there is a disagreement between

the numerical and experimental results, in spite of good agreement at other

gauging stations. Although similar results have been found in various liter-

atures, where authors have used different numerical schemes.

– Gauging Station S4: This station shows very good match of the numerical

and experimental results.

• HLL approximate solver (see Figures 8.50 to 8.52):

– The numerical results for all the limiters using HLL solver is very similar to

the behaviour to those using Roes’ approximate solver.

• SO approximate solver (see Figures 8.53 and 8.54):

– SO has shown oscillations at the tip of the shock in one-dimensional tests(see

section 8.3). Therefore, for same reason as Roes’ unstability in dry zone, a

minimum depth of 10−6m is assigned. It can be seen in Figure 8.53 (a)

that the numerical results match with the experimental results till time =

5s (approximately). It should be noted that time = 5s is the time at which

water enters the narrow section of the channel (near to gauging station S3).

It can be argued that the behaviour of the water wave till it enters the con-

verging section is one-dimensional. After this two-dimensional effect comes

into play. Therefore, due to complex (two-dimensional) behaviour of the

flow and oscillatory nature of the SO solver, it becomes unstable after time

= 5s.

– Due to the above stated reason the minimum depth of the water is increased

to 10−4m. It is found that rising the minimum water level make the SO

solver stable. The results shown in Figure 8.53 (b) is very similar to others

using Roes’ and HLL solvers.

225

DRAFT COPY 8.8 Dam Break in a Channel with 90◦ Bend

– One-dimensional tests have shown that the limiters increase the oscillation

for SO at the tip of the shock (see section 8.3). Therefore, when limiters

are applied to SO and minimum depth is set to 10−4m it give unstable

results after time = 5s, i.e., when two-dimensional behaviour is prominent

(see Figure 8.54). Any depth (minimum depth) set more than 10−4m is not

worth for this case, because the downstream depth is 0.003m.

• For all the results obtained in this test case, it is important to note that the

numerical results are similar. The only question has been, if the solver and

limiter is stable enough to produce results. Therefore, it can be said that for

stable combination of solver and limiter it doesn’t not make much difference

which solver and which limiter is used for simulation, at least for small scale

laboratory test cases).

8.8 Dam Break in a Channel with 90◦ Bend

This test case together with the test specifications is supplied on the website of HR

Wallingford1. The test was conducted as a part of project called, Concerted Action on

Dam-break Modelling (CADAM2).

When a permanent flow moves around a curve, the water level rises at the outer

bank and a corresponding lowering occurs at the inner bank. In rapidly varying flows

around a sharp bend, a bore can form and lead to important local head losses that will

affect the progression of the water downstream from the bend. In a dam-break case

especially, the water storms in the downstream valley and it is important to be able

to properly simulate the propagation of the front. The shape of the valley has a great

influence on this propagation velocity and bends can slow down the front but also cause

an increase in the water level upstream or even lead to the formation of an upstream

travelling bore [Frazao et al. (1998)].

The dam-break flow in a channel with a 90◦ bend shows important two-dimensional

features in the bend. However, besides the bend zone and out of the severe transient
1http://www.hrwallingford.co.uk/projects/CADAM/CADAM/index.html
2CADAM was an EC funded Concerted Action Programme looking at dam-break modelling and

application. February 1998 - January 2000.

226

DRAFT COPY 8.8 Dam Break in a Channel with 90◦ Bend

phase during the strong reflection process, the flow can be reasonably assumed as one-

dimensional in both upstream and downstream channel reaches. It is thus attractive to

test two-dimensional model for this test case. The bed depth is assumed to be dry in

downstream, therefore it can also be used to test the ability of the solvers in modelling

dry bed cases in one-dimensional and two-dimensional cases.

8.8.1 The Laboratory Configuration of the CADAM Project

The shape of the channel is shown in Figure 8.55. The initial water level in the upstream

reservoir is 20cm (or 0.2m) above the channel bed level. The channel downstream is

dry in a first set of measurements.

The upstream reservoir has dimensions of 2.44m×32.39m, the channel is rectan-

gular, 0.495m wide, with glass walls, the upstream reach is about 4m long and the

downstream reach, after the bend, is about 3m long. The channel bed level is 0.33m

above the upstream reservoir bed level. The downstream end of the channel is open

(free chute). The initial water level in the reservoir is 0.25m above the channel bottom.

The channel was equipped with six gauges (see Table 8.1) recording the time evo-

lution of the water level. Several set of measurement campaigns showed a very good

reproducibility in both the dry and wet bed cases.

8.8.2 Aim of Test

The aim of this test is to:

1. study the ability of Riemann2D in using different Riemann solvers to replicate

the transition flow (one- to two- and two- to one- dimensional);

2. study the ability to simulate the dry bed cases;

3. compare the numerical results against laboratory results obtained in the European

Commission’s CADAM project; and

4. present the particulars for developing and undertaking the test with Riemann2D

and discuss the associated results.

Note:

• Courant Number for all the cases is 0.2;

227

DRAFT COPY 8.8 Dam Break in a Channel with 90◦ Bend

• All the simulation results are for first order in time; and

• Test results are shown only for “No limiter” cases.

228

DRAFT COPY 8.8 Dam Break in a Channel with 90◦ Bend

Figure 8.55: Schematic diagram of channel with 90◦ bend. The laboratory model consists of a long

rectangular channel with a removable sluice gate at the entrance. Also shown are the gauging stations

G1 to G6. Note: Dimensions are in mm.

Table 8.1: Position of the gauging points in the 90◦ bend channel, the origin of the axes being in the

lower left corner. Note: The name of the station are same as Fraccarollo and Toro (1995).

Station x [m] y[m]

G1 1.19 1.20

G2 2.74 0.69

G3 4.24 0.69

G4 5.74 0.69

G5 6.56 1.51

G6 6.56 3.01

229

DRAFT COPY 8.8 Dam Break in a Channel with 90◦ Bend

Figure 8.56: Comparison between experimental data and numerical results using HLL approximate

solver on the time evolution during 10s of the water depth at the gauging points S1, S2, S3, S4, S5 and

S6.

230

DRAFT COPY 8.8 Dam Break in a Channel with 90◦ Bend

Figure 8.57: Comparison between experimental data and numerical results using HLL approximate

solver on the time evolution during 10s of the water depth at the gauging points S1, S2, S3, S4, S5 and

S6.

231

DRAFT COPY 8.8 Dam Break in a Channel with 90◦ Bend

8.8.3 Observations

In the upstream reach of the channel, the flow is mainly 1D, while it is clearly 2D in the

downstream reach. Due to the contraction at the entrance of the channel, there are some

local 2D features near the gate, but at some distance (60-70cm approx.)downstream

from the gate, these effects vanish. In the upstream reservoir, non symmetric features

can also be observed, as a consequence of the non centred position of the gate : the

circular emptying front does not reach all the walls at the same time, producing non

symmetric reflections and oscillations. However, this does not seem to have a great in-

fluence on the flow in the channel, especially during the first seconds when the strongest

phenomenon consists of the dam break wave. After 15s (approximately), the receding

bore formed by the reflection in the bend reaches the reservoir and disappears. The

flow then becomes almost permanent, i.e. the general shape of the water surface is pre-

served but the water level decreases progressively. Some notable observations related

to solvers are:

• Roes’ and HLL approximate solver (see Figures 8.56 and 8.57):

– The results from both the solvers are very similar to each other.

– Minimum depth assumption for Roes’ solver is 10−4m, because assumption

of 10−6m makes the solver unstable at the bend. This is in contrast to the

test case in the section 8.7. The possible reason for this could be compli-

cated behaviour of water flow at the bend, compared to complexity at the

converging and diverging section in the previous test case (section 8.7).

– Gauge G1 represents the emptying curve of the reservoir. The water level

evolution is correct, which means that the numerical model computes the

right discharge coming into the channel.

– The arrival times of the receding reflected front (abrupt increase of the water

level) at gauge G4, G3 and G2 can be seen. After the bore has reached

these gauges, the time evolution of the water level is similar to the one in

the reservoir, and represents the progressive emptying of the system.

– One differences between the numerical model results and the measurements

are in the arrival times of the bore, a bit late at G3 and G4, the approximate

difference being 1s.

232

DRAFT COPY 8.9 Two-Dimensional Dam Break Experiment of
Fraccarollo and Toro

– The main difference between the numerical and experimental results is at

G5, where the numerical water level is higher than the experimental water

level. This means that the numerical model does not predict the correct

height of the water at the changing angles. This may be because of physical

diffusion at the bend.

• SO approximate solver completely fails to simulate this test case.

8.9 Two-Dimensional Dam Break Experiment of Fraccarollo

and Toro

Due to some disagreement between the numerical and experimental results in the pre-

vious test cases (see sections 8.7 and 8.8), this test case is considered. This test case is

a simple two-dimensional test case with a dry flood-plane (see Figure 8.58), whereas in

the previous test cases it was transition between one- and two- dimensional flows.

8.9.1 Aim of Test

The aim of this test is to:

1. study the ability of Riemann2D to replicate the dry bed flow condition;

2. compare the numerical results against the experimental results; and

3. present the particulars for developing and undertaking the test with Riemann2D

and discuss the associated results.

8.9.2 The Laboratory Configuration

The experimental flume, shown in Figure 8.58, is 2m wide and 3m long, 1m of which is

occupied by the reservoir [see Fraccarollo and Toro (1995) and Gottardi and Venutelli

(2004)]. The width of the gate, symmetrically centred, is 0.40m. The flood-plain

boundaries are all open. In the simulation model velocities normal to closed boundary

are taken equal to zero, whereas, in the outflow open boundary longitudinal gradients

of u, v and h were assumed to zero.

233

DRAFT COPY 8.9 Two-Dimensional Dam Break Experiment of
Fraccarollo and Toro

The initial depth in the reservoir was taken 0.60 m, and the floodplain was consid-

ered dry. The position of gauging points are given in table 8.2.

Note:

• Courant Number for all the cases is 0.2;

• All the simulation results are for first order in time;

• Test results are shown only for No limiter cases; and

• Bed surface is horizontal through out the domain.

8.9.3 Observations

There is excellent agreement between the numerical and experimental results (see Fig-

ure 8.59). Only exception is at gauging station “Point O” where the depth of water,

for first 2 seconds, is less for the numerical results compared to experimental results.

It is possible that the effect of wall friction initial reduces the velocity which cause the

water level to rise and this effect disappears. It should be noted that there is no source

term for the wall friction.

Table 8.2: Position of the gauging points in the reservoir and flood-plain, the origin of the axes being

in the lower left corner

Station x [m] y [m]

-5A 0.18 1

C 0.48 0.40

O 1 1

9B 1.802 1.45

234

DRAFT COPY 8.9 Two-Dimensional Dam Break Experiment of
Fraccarollo and Toro

(0 , 2)

(0 , 0)

(3 , 2)

(3 , 0)

(a) (b)

Figure 8.58: (a) Schematic diagram of experimental reservoir and flood-plain, (b) Numerical mesh

for the domain.

235

DRAFT COPY 8.9 Two-Dimensional Dam Break Experiment of
Fraccarollo and Toro

(a)

(b)

Figure 8.59: Comparison between experimental data and numerical results using approximate solver

on the time evolution during 10s of the water depth at the gauging points -5A, C, O and 9B. (a) Roes’

(b) HLL

236

DRAFT COPY 8.10 Oblique Hydraulic Jump

8.10 Oblique Hydraulic Jump

A further inviscid flow test case is examined which corresponds to an oblique hydraulic

jump problem for which an analytical solution is available. Supercritical channel flow

subject to a sudden change in cross-section can lead to the formation of hydraulic

jumps (shocks) and negative jumps (rarefaction waves). In the present test case the

channel configurations used by Chippada et al. (1998) and Zienkiewicz and Ortiz (1995)

is adopted. For the channel flows, the inlet supercritical Froude number F , is defined

as follows:

F =
U√
gH

(8.1)

where U and H are the mean velocity and depth of the fluid at the inlet, respectively.

8.10.1 Aim of Test

The aim of this test is to:

1. study the ability of the Riemann2D simulate the hydraulic jump of correct height

and angle due to oblique angle at a section;

2. present the particulars for developing and undertaking the test with Riemann2D

and discuss the associated results.

8.10.2 Test Configuration

The problem domain and numerical mesh is shown in Figure 8.60 (b). An oblique

hydraulic jump is induced in the flow field by a supercritical flow which is deflected by

a converging wall. A schematic diagram of the induced shock front is given in Figure

8.60 (a), where α is the angle formed by the shock front with the x-axis.

The test case simulated is supercritical flow (F > 1) encountering a sudden change

of cross-section through a boundary wall constriction on one side wall of the channel.

On the other side the flow remains unbounded. The domain definition of the channel

along with the numerical mesh is shown in Figure 8.60. This type of channel geom-

etry leads to the formation of a stationary hydraulic jump originating at the point

of constriction. In the supercritical case the channel has constant bathymetric depth.

237

DRAFT COPY 8.10 Oblique Hydraulic Jump

Numerical simulations were performed with a constriction angle of 15◦ and inlet super-

critical Froude numbers F = 2.5. The numerical mesh consists of 1609 nodes and 3072

triangular elements.

The steady state water depths for the inlet Froude numbers is considered as 1 m.

(- 2 0 , 0)

(1 0 , 3 0)

(- 1 0 , 0)

(- 2 0 , 4 0) (3 0 , 4 0)

Figure 8.60: (a) Schematic diagram showing oblique shock front in supercritical flow, (b) Mesh.

(a) (b)

Figure 8.61: Contour of the water depth

8.10.3 Observations

The method is seen to be monotonic with no oscillations across the shock. The width

of the shock is seen to span only two to four cell divisions. Neglecting the viscous

238

DRAFT COPY 8.11 Conclusions

dissipation, this problem can be solved analytically [Ippen (1951) and Chippada et al.

(1998)]. The analytical angle, α is 39.58 and the numerical angle is 39.52. This can

seen as an excellent agreement of the analytical and numerical results.

8.11 Conclusions

In this chapter Riemann2D is applied to solve a wide range of shallow water test

problems. The observations made in this chapter can be summarised as follows:

• The test on one-dimensional dam break problem in section 8.3, shows that the

Roes’, HLL and SO approximate Riemann solver using different limiters (Min-

mod, Superbee, LCD ,Extended VanLeer and MLG) are capable of simulating

the dam break problem. The results vary with the use of limiters. However, SO

approximate Riemann Solver produce oscillation in the solution. In this test the

width of the dam is same as the length of the dam i.e., 50m, and the results are

plotted for each element. Therefore, this test provides more reliable comparison

compared to previously published results. Also, the scale of plot are large, which

gives closer picture of the compared results.

• The test on two-dimensional circular dam break problem in section 8.4,

shows that the Roes’, HLL and SO approximate Riemann solver using different

limiters (Minmod, Superbee, LCD ,Extended VanLeer and MLG) are capable

of simulating the circular dam break problem. The results shows that all the

combination of approximate Riemann solver and limiter produce stable and good

results. This case is a test of:

– extreme situation where the ratio of water depth on two side of the dam is

1:10;

– the symmetry of the result for radial flow; and

– the stability of solution in a trans-critical flow i.e., super- to sub- to super-

critical flow.

For all the above, Riemann2D give good results compared to other published

results.

239

DRAFT COPY 8.11 Conclusions

• Following the success of the above cases, another test case on two-dimensional

dam break (section 8.5) is done to assess the ability of the model to simulate

different front wave propagation. This test was simulated using the Roes’, HLL

and SO approximate Riemann solver in combination with different limiters (Min-

mod, Superbee, LCD, Extended VanLeer and MLG). All the results for this case

are stable and give good results compared to previously published results.

• Rotation test (section 8.6) of a pile of solute particles in a constant rotating

velocity field gives some interesting results:

– The numerical diffusion depends on the mesh density for a particular prob-

lem. For a coarse mesh, the behaviour of limiter is similar. However, when

the mesh density is increased, effect of different limiters can be clearly seen.

– The behaviour of limiters is dependent of the rank of the limiter i.e., the

number of triangles required by the limiters. Higher the rank better the

result.

– In modelling a real world shallow water problem, the source terms are cal-

ibrated against the experimental data. This calibrated source term is the

balance between actual value of source term and the loss due to numerical

diffusion. As seen in the Figure 8.44, MLG limiter produce negligible nu-

merical diffusion at certain mesh density and mesh size. Therefore, it can

be concluded that if the mesh size are known at which numerical diffusion

is zero for MLG limiter, then actual value of the source terms can be calcu-

lated for a real world problem. This could be an important contribution to

the shallow water modelling problems, however, further testing is required

to thoroughly verify the findings through more test cases.

• The results in the previous test cases were compared either with the exact solu-

tion, analytical solution or the previously published results. Therefore, to asses

the ability of Riemann2D to model the real test cases. The Riemann2D was

modelled to simulate the experimental setup of the CADAM project for a dam

break in a converging-diverging channel (section 8.7). The results from this

test case shows the ability of the Riemann2D to model experimental set-up, with

little discrepancy. Important finding in this case were:

240

DRAFT COPY 8.11 Conclusions

– due to very less depth of water (0.003m) in the downstream, some Riemann

solver with certain limiters failed to simulate the problem; and

– Combination of Riemann solver and limiters produce nearly similar results

for this test case.

• A test on a dam break in a channel with 90◦ bend (section 8.8) was done

to:

– test the model to simulate the dry bed dam break test. Roe’s and HLL

approximate solver successfully produced good results. However, SO ap-

proximate solver completely fails to simulate the problem.

– asses the ability of the model to simulate transitional flow from 1d- to 2d-

to 1d-flows.

– study the behaviour of the model due to hydraulic jump due to change in

the profile of the cross-section.

• Another experimental test case, based on work of Fraccarollo and Toro (1995), is

presented to show the ability of the Riemann2D to simulate a dam break in a

two-dimensional reservoir (section 8.9).

• At last, the model is tested for an oblique hydraulic jump in a converging channel,

for which the model give excellent result.

241

CHAPTER 9

Summary and Future Work

9.1 Attractions of the Present Work

The main attraction of the presented work lie in the fact that the development were

made in the framework of a new, generic modelling system, which makes immediate

application possible in shallow water problems. However, similar models for solving

problems in various related fields of hyperbolic systems (e.g., gas dynamics, acoustics,

elastodynamics, optics, geophysics, and biomechanics to name a few.) can be easily

developed.

Each chapter in this thesis present features that has significantly contributed to the

model development.

Object-Oriented Approach (Chapter 3): A new and different is approach pre-

sented in this chapter, which is used for developing Riemann2D. It helps to clas-

sify the code of the model into various classes, which makes the development

process faster, and easier to maintain and debug. One important aspect of this

approach is that it is generic in nature and could be adopted for developing other

CFD models as well.

Finite Volume Methods for Hyperbolic Problems (Chapter 4): This chapter

helps to identify common features of various hyperbolic model and thus leads

to generalisation and better understanding of hyperbolic theory. It can be seen

in this chapter that most of the required code for model any hyperbolic system

is present here. Key attractions of this chapter lies in the:

242

DRAFT COPY 9.1 Attractions of the Present Work

• discussion on control volume;

• generalised CFL criteria for two-dimensional hyperbolic prolems; and

• generalised implementation of the boundary condition

High-Resolution Methods (Chapter 5): Most of the text in this chapter is adopted

from previously published literatures. However, the classification of code into

various classes in a separate limiter package leads to the clarity of the limiter

implementation. This has led to categorise the limiters based on the numbers of

triangles used, called rank of the limiter. The results in section 8.6 shows the

relation of the rank of the limiter and its performance. Also, a rank 3 limiter is

developed for 2D-triangular mesh, which is based on 1D- vanLeer limiter. This

limiter fills the gap between existing rank 1 and rank 4 limiters.

Free-Surface Shallow Water Flows (Chapter 6): Here, the background and the-

ory of the shallow water problem shows the ease of solving a hyperbolic system

using the generic Riemann2D model. Main attraction of this chapter are:

• the discussion on the problem due to varying bathymetry and its solution;

• eigen structure for shallow water equations with solute;

• the discussion on the problem due to wetting and drying bed and its solution;

and

• the possible approach to applying limiters to the bed for a movable bed

problem.

Object-Oriented Design and Development (Chapter 7): The object-oriented de-

sign of the model is presented using UML diagram. The software life cycle and use

of CVS provided a new approach to CFD modelling, where learning and model

development goes hand-in-hand.

Riemann2D Applied to Shallow Water Equations (Chapter 8): The verifica-

tion of the Riemann2D which is documented in this chapter, ensure the quality

of the model. Furthermore, a broad range of verification cases cover most of the

intended extension of the application domain of the shallow water model. The

243

DRAFT COPY 9.2 Realised New Development

test cases allow critical assessment of the properties and the model is now capa-

ble of reproducing various physical phenomena. However, the section 8.6 on the

rotation test for shallow water equations provides some very interesting findings:

• Rank of the limiter and mesh density is directly related to the performance

of the limiter in terms of numerical diffusion. With the increase in the rank

of the limiter or the mesh density, the numerical diffusion is decreased.

• Figure 8.44, shows the relationship between limiter and mesh size. The

importance of this figure is that it helps to measure the effect of mesh size

and limiter on the numerical diffusion.

• In modelling a real world shallow water problem, the source terms are cal-

ibrated against the experimental data. This calibrated source term is the

balance between actual value of source term and the loss due to numerical

diffusion. As seen in the Figure 8.44, MLG limiter produce negligible nu-

merical diffusion at certain mesh density and mesh size. Therefore, it can

be concluded that if the mesh size are known at which numerical diffusion

is zero for MLG limiter, then actual value of the source terms can be calcu-

lated for a real world problem. This could be an important contribution to

the shallow water modelling problems, however, further testing is required

to thoroughly verify the findings through more test cases.

9.2 Realised New Development

In this work, a new object-oriented framework and model is presented that may serve

as a generic foundation for solving any hyperbolic problem. This object-oriented frame-

work and model represents a first step towards the development of generic model ar-

chitectures and provides modularity, flexibility, reusability, and advantages in process

evaluation previously unavailable.

The two important features that strengthen the use of object-oriented technology

for Riemann2D development are:

1. Object-oriented technology (OOT) is widely known to promote greater flexibility

and maintainability in software model development, and is widely popular in

244

DRAFT COPY 9.2 Realised New Development

large-scale software engineering. Hence, adopting OOT to research models would

be significant achievement.

2. Object-oriented programming is easier to learn for those new to computer pro-

gramming than previous approaches, and that the object-oriented approach is

often simpler to develop and to maintain, lending itself to more direct analysis,

coding, and understanding of complex situations and procedures than other pro-

gramming methods. This would encourage new researchers to adopted and reuse

the previously developed model.

The idea behind object-oriented framework and model development for Riemann2D

is the model may be seen as comprising a collection of individual units (or model) that

act on each other, as opposed to a traditional view in which a computer model (pro-

gram) may be seen as a collection of functions, or simply as a list of instructions to

the computer. Each object is capable of receiving messages, processing data, and send-

ing messages to other objects. The design of the Riemann2D has following important

features:

• Universality: From the point of view of model universality, the application

domain of the developed model is much wider than previously developed models.

Any number of developers/users should be able to implement the Riemann2D for

solving various hyperbolic problems.

• User-Friendly: The code is written in such a way that new developers should

be able to overwrite, if required, the functionalities of the Riemann2D for their

individual needs, without making any change to the generic part of the model.

Thus it will serve the purpose of every user, while safe-guarding the core model.

The naming convention in this model is so simple that the new developers/users

with less knowledge of object-oriented technology or the background of the generic

model should also be able to to adopt it for their own purpose.

• Reusability A principal goal of object-oriented design of the Riemann2D is to

make the model as reusable as possible: to have it serve many different situations

and applications so that you can avoid reimplementing, even if in only slightly

different form, something that’s already been done. Reusability is influenced by

a variety of different factors, including:

245

DRAFT COPY 9.3 Recommended Further Developments

– how reliable and bug-free the code is;

– how clear the documentation is;

– how simple and straightforward the programming interface is; and

– how efficiently the code performs its tasks

9.3 Recommended Further Developments

Further development of the model presented, Riemann2D can be categories into three

major areas:

1. Solving shallow water problems

• Integration with Geographic Information Systems (GIS): GIS is an organ-

ised collection of computer hardware, software, geographic data, and per-

sonnel designed to efficiently capture, store, update, manipulate, analyze,

and display all forms of geographically referenced information. It combine

relational databases with spatial interpretation and outputs often in form

of maps. Integrating Riemann2D with GIS would help Riemann2D to use

the GIS database to retrieve and store information. The output from the

Riemann2D, stored in GIS database, could be easily analysed for impact

assessment studies of real world problems. Few example would be: impact

assessment study of tsunami disaster, overland flooding in rivers and dam-

break.

• Movable bed problems: The approach presented in chapter 6, can be adopted

and further modelled to simulate movable bed problem. Application of lim-

iter to the moving bed could be a huge success in modelling the bed move-

ments.

• Further extension of the model: The shallow water model could be extended

for soil erosion models as shown in chapters 3 and 7.

• Further study on MLG limiter: As seen in Figure 8.44 and suggested in sec-

tion 9.1, further study can help to develop a method in which actual value

of the source terms for a real world problems can be calculated.

2. Multi-physics model development

246

DRAFT COPY 9.3 Recommended Further Developments

• Adding more hyperbolic problem models: The main objective of the design

of Riemann2D in this work has been to facilitate the development of multi-

physics model, which can be used to solve a variety of hyperbolic problems.

The implementation of shallow water model can be followed to develop sim-

ilar extension models for other hyperbolic problems.

• Further development of the generic model: The development process of Rie-

mann2D has been through studying requirements of a variety of hyperbolic

problems. However, with addition of other hyperbolic extension models, new

things can be learned and thus improvement can be made to the existing

generic code.

3. Test bed for numerical schemes

• As shown in this work, a number of Riemann solvers and limiters can be

added to the model. The generalisation of Riemann solvers and limiters

could help to test them on new hyperbolic problems. Also, new Riemann

solver and limiters could be developed based on the knowledge of the existing

Riemann solver and limiters.

247

APPENDIX A

Glossary of Object-Oriented &

Computing Terms

Abstraction: A simplified representation of something that is potentially quite com-

plex. It is often not necessary to know the exact details of how something works, is

represented or is implemented, because we can still make use of it in its simplified

form. Object-oriented design often involves finding the right level of abstraction

at which to work when modeling real-life objects. If the level is too high, then

not enough detail will be captured. If the level is too low, then a program could

be more complex and difficult to create and understand than it needs to be.

Abstract Method: A method with the abstract reserved word in its header. An

abstract method has no method body. Methods defined in an interface are always

abstract. The body of an abstract method must be defined in a sub class of an

abstract class, or the body of a class implementing an interface.

ActiveX: ActiveX is a complex technology. The term itself applies to a set of object-

oriented technologies and tools typically used to develop networking and Internet-

aware software.

Application: Often used simply as a synonym for program. However, in Java, the

term is particularly used of programs with a Graphical User Interface (GUI) that

are not applets.

248

Array: A fixed-size object that can hold zero or more items of the array’s declared

type.

Behaviour: The methods of a class implement its behavior. A particular object’s

behavior is a combination of the method definitions of its class and the current

state of the object.

Class: A programming language concept that allows data and methods to be grouped

together. The class concept is fundamental to the notion of an object-oriented

programming language. The methods of a class define the set of permitted op-

erations on the class’s data (its attributes). This close tie between data and

operations means that an instance of a class - an object - is responsible for re-

sponding to messages received via its defining class’s methods.

Code: Code written by a programmer in a high-level language and readable by people

but not computers. Source code must be converted to object code or machine

language before a computer can read or execute the program.

COM: A software architecture developed by Microsoft1 to build component-based

applications. COM objects are discrete components, each with a unique identity,

which expose interfaces that allow applications and other components to access

their features.

Commit: A commit occurs when a user copy the changes made on the local files to the

repository (the version control software takes care of knowing which files changed

since the last time the two were synchronised)

Component: A unit of code that provides a set of services through well-defined in-

terfaces and is specifically designed and packaged to be reusable. A component

acts like a ”black box” that hides or encapsulates the details of how the services

are actually implemented. Components can be mixed and matched to form larger

systems.

CORBA: Short for Common Object Request Broker Architecture, an architecture

that enables pieces of programs, called objects, to communicate with one another

regardless of what programming language they were written in or what operating
1Microsoft Corporation: http://www.microsoft.com/

249

system they’re running on. CORBA was developed by an industry consortium

known as the Object Management Group1 (OMG).

DCOM: Short for Distributed Component Object Model, an extension of the Compo-

nent Object Model (COM) that allows COM components to communicate across

network boundaries.

Delphi: An application development system for Windows from Borland2. Introduced

in 1995 and based on the object-oriented version of Pascal (Object Pascal), it in-

cludes visual programming tools and generates executable programs (.EXE files).

Dynamic Link Library (DLL): Short for Dynamic Link Library, a library of exe-

cutable functions or data that can be used by a Windows application. Typically,

a DLL provides one or more particular functions and a program accesses the

functions by creating either a static or dynamic link to the DLL.

Encapsulation: Safeguarding the state of an objects by defining its attributes as

private and channeling access to them through accessor and mutator methods.

Integrated Development Environment (IDE): A set of programs run from a sin-

gle user interface. For example, programming languages often include a text edi-

tor, compiler and debugger, which are all activated and function from a common

menu.

Inheritance: A feature of object-oriented programming languages in which a sub type

inherits methods and variables from its super type. Inheritance is most commonly

used as a synonym for class inheritance.

Instance: An object of a particular class. In programs written in the Java(TM) pro-

gramming language, an instance of a class is created using the new operator

followed by the class name.

Interface: A Java programming language keyword used to define a collection of method

definitions and constant values. It can later be implemented by classes that define

this interface with the ”implements” keyword.
1Object Management Group: http://www.omg.org/
2Borland Software Corporation: http://www.borland.com/

250

Java: A portable high level programming language released by Sun Microsystems1.

Method: The part of a class definition that implements some of the behavior of objects

of the class. The body of the method contains declarations of local variables and

statements to implement the behavior. A method receives input via its arguments,

if any, and may return a result if it has not been declared as void.

Object: An instance of a particular class. In general, any number of objects may be

constructed from a class definition (see singleton, however). The class to which

an object belongs defines the general characteristics of all instances of that class.

Within those characteristics, an object will behave according to the current state

of its attributes and environment.

Object-Oriented Language: Programming languages such as C++ and Java that

allow the solution to a problem to be expressed in terms of objects which belong

to classes.

Package: A named grouping of classes and interfaces that provides a package namespace.

Classes, interfaces and class members without an explicit public, protected or

private access modifier access!modifier have package visibility. Public classes and

interfaces may be imported into other packages via an import statement.

Polymorphism: The ability of an object reference to be used as if it referred to

an object with different forms. Polymorphism in Java results from both class

inheritance and interface inheritance. The apparently different forms often result

from the static type of the variable in which the reference is stored.

Private: A Java programming language keyword used in a method or variable dec-

laration. It signifies that the method or variable can only be accessed by other

elements of its class.

Protected: A Java programming language keyword used in a method or variable dec-

laration. It signifies that the method or variable can only be accessed by elements

residing in its class, subclasses, or classes in the same package.
1http://java.sun.com/

251

Public: A Java(TM) programming language keyword used in a method or variable

declaration. It signifies that the method or variable can be accessed by elements

residing in other classes.

Repository: The repository is where the files are stored, often on a server.

252

References

Abbott, M.B. (1966). An introduction to the method of characteristics. Elsevier, New

York. 2.3.2

Abbott, M.B. and Basco, D.R. (1989). Computational fluid dynamics an introduc-

tion for engineers. Longman, London. 2.6

Abbott, M.B. and Verwey, A. (1970). Four-point method of characteristics. Jour-

nal of the Hydraulics Division, 96, 2549–2564. 2.3.2

Ajayi, A.E. (2004). Surface runoff and infiltration processes in the volta basin, West

Africa: Observation and modeling. PhD Thesis, University of Bonn. 2.3.2

Alcrudo, F. and Benkhaldoun, F. (2001). Exact solutions to the riemann problem

of the shallow-water equations with a bottom step. Computers & Fluids, 30, 643–671.

2.5.2

Alcrudo, F. and Garcia-Navarro, P. (1993). A high-resolution godunov-type

scheme in finite volumes for the 2d shallow-water equations. International Journal

of Numerical Methods in Fluids, 16, 489–505. 2.3.4, 2.5.1, 8.4, 8.4.3

Alcrudo, F., Garcia-Navarro, P. and Saviron, J.M. (1992). Flux difference

splitting for 1d open channel flow equations. International Journal of Numerical

Methods in Fluids, 14, 1009–1018. 2.5.1

Alfredsen, K. (2000). Simulation of human impacts on flood regimes - the design of

an object-oriented integration framework. Hydroinformatics 2000, Iowa. 2.6

Ambrosi, D. (1995). Approximation of shallow water equations by roe’s approximate

riemann solver. International Journal of Numerical Methods in Fluids, 20, 157–168.

2.5.2

253

REFERENCES

Ames, W.F. (1992). Numerical methods for partial differential equations (3rd edition).

Academic Press, Inc., Boston. 2.2.1

Anastasiou, K. and Chan, C.T. (1997). Solution of the 2d shallow water equations

using the finite volume method on unstructured triangular meshes. International

Journal of Numerical Methods in Fluids, 24, 1225–1245. (document), 2.3.4, 2.4.2,

2.5, 2.5.1, 8.20, 8.5, 8.5.3

Anderson, W.K. (1994). A grid generation and flow solution method for euler equa-

tions on unstructured grids. Journal of computational Physics, 110, 23–38. 2.4.2

Arora, M. and Roe, P.L. (1997). A well-behaved tvd limiter for high-resolution

calculations of unsteady flow. Journal Of Computational Physics, 132, 3–11. 2.4.2

Barth, T.J. (1993). Recent developments in high order k-exact reconstruction on un-

structured meshes. AIAA (0668). 2.3.4

Batten, P., Lambert, C. and Causon, D.M. (1996). Positively conservative high-

resolution convection schemes for unstructured elements. International Journal for

Numerical Methods in Engineering, 39, 1821–1838. 2.4.2, 5.9.1, 5.9.2.5, 3

Benedict, D.R., Alistair, G.L.B. and Paul, H.T. (2003). Mathematical balancing

of flux gradient and source terms prior to using roe’s approximate riemann solver.

Journal of Computational Physics, 192, 422–451. 2.5.1, 2.5.2

Bennett, S., McRobb, S. and Farmer, R. (2005). Object-oriented systems analysis

and design using UML. McGraw Hill Higher Education. 2

Bermudez, A. and Vazquez, M.E. (1994). Upwind methods for hyperbolic con-

servation laws with source terms. Computers & Fluids, 23, 1049–1071. 2.5.2, 5.6,

6.7

Berzins, M. (2001). Modified mass matrices and positivity preservation for hyperbolic

and parabolic pdes. Communications in Numerical Methods in Engineering, 17, 659–

666. 2.3.2

Billett, S. and Toro, E. (1997). On waf-type schemes for multidimensional hyper-

bolic conservation laws. Journal of computational Physics, 130, 1–24. 5.9

254

REFERENCES

Bittner, K. and Spence, I. (2006). Managing iterative software development

projects. Addison Wesley. 7.4.1

Booch, G. (1991). Object oriented design with applications. Benjamin / Cummings. 2

Booch, G. (1993). Object-oriented analysis and design with applications. Addison-

Wesley. 2

Book, D.L., Boris, J.P. and Zalesak, S.T. (1981). Flux-corrected transport, in

finite difference techniques for vectofised fluid dynamics calculations. D.L. Book (ed.),

Sprlnger-Verlag, New York. 2.4.1

Boris, J.P. and Book, D.L. (1973). Flux-corrected transport i. shasta, a transport

algorithm that works. Journal of Computational Physics, 11, 38–69. 2.4.2, 5.9

Boris, J.P. and Book, D.L. (1976). Flux corrected transport iii, minimal error fct

algorithms. Journal of Computational Physics, 20, 397–431. 2.4.2

Bradford, S.F. and Sanders, B.F. (2002). Finite-volume model for shallow-water

flooding of arbitrary topography. Journal of Hydraulic Engineering, 128, 289–298.

2.3.4

Breuss, M. (2005). An analysis of the influence of data extrema on some first and

second order central approximations of hyperbolic conservation laws. Mathematical

Modelling and Numerical Analysis, 39, 965–994. 5.5.1

Brezis, H. (1988). Partial differential equations in the 20th century. Advances in Math-

ematics, 135, 76–144. 2.2.1

Brio, M. and Wu, C.C. (1988). An upwind differencing scheme for the equations of

ideal magnetohydrodynamics. Journal of Computational Physics, 75, 400–422. 4.3.3

Brooks, A. and Hughes, T. (1982). Streamline upwind/petrovgalerkin formula-

tions for convection dominated flows with particular emphasis on the incompressible

navierstokes equations. Computer Methods in Applied Mechanics and Engineering,

32, 199–259. 2.3.4

Brown, D. (1997). Introduction to object-oriented analysis: objects in plain english.

John Wiley and Sons. 3.3

255

REFERENCES

Bruner, S. (1996). Parallelization of the Euler equations on unstructured grids. Ph.D.

thesis, Virginia Polytechnic Institute and State University, Department of Aerospace

engineering. 2.4.2

Burguete, J. and Garcia-Navarro, P. (2001). Efficient construction of high-

resolution tvd conservative schemes for equations with source terms: application

to shallow water flows. International Journal for Numerical Methods in Fluids, 37,

209–248. 2.5.2

Caleffi, V., Valiani, A. and Zanni, A. (2003). Finite volume method for simulating

extreme flood events in natural channels. Journal of Hydraulic Research, 41, 167–

177. 2.4.2, 2.5.1, 6.6.2, 6.6.2

Calle, J.L.D., Devloo, P.R.B. and Gomes, S.M. (2005). Stabilized discontinuous

galerkin method for hyperbolic equations. Computer Methods in Applied Mechanics

and Engineering , 194, 1861–1874. 2.3.4

Canuto, C., Hussaini, M.Y., Quarteroni, A. and Zang, T. (1998). Spectral

methods in fluid dynamics. Springer-Verlag, New York. 2.4.3

Carpenter, M.H., Gottlieb, D. and Abarbanel, S. (1993). The stability of nu-

merical boundary treatments for compact high-order finite-difference schemes. Jour-

nal of Computational Physics, 108, 272–295. 2.3.2

Cate, T.H., Lin, H.X. and Mynett, A.E. (1998). A study on integrating software

packages. Hydroinformatics 1998, Balkema, Rotterdam, 457–464. 2.6

Chainais-Hillairet, C. (1999). Finite volume schemes for a nonlinear hyperbolic

equation: Convergence towards the entropy solution and error estimates. ESAIM:

Mathematical Modelling and Numerical Analysis, 33, 129–156. 2.4.3

Chan, C.T. and Anastasiou, K. (1999). Solution of incompressible flows with or

without a free surface using the finite volume method on unstructured triangular

meshes. International Journal for Numerical Methods in Fluids, 29, 35–57. 2.5

Chen, G.Q. (2000). Shock capturing and related numerical methods in computational

fluid dynamics. Proceedings of 15th Algorithmy, Vysoke Tatry, Slovak , 70, 51–74.

2.4.3, 5.2

256

REFERENCES

Chen, G.Q., Du, Q. and Tadmor, E. (1993). Spectral viscosity approximations to

multidimensional scalar conservation laws. Mathematics of Computation, 6, 629–643.

2.4.3

Chippada, S., Dawson, C., Martinez, M. and Wheeler, M. (1998). A godunov-

type finite volume method for water equations the system of shallow water equations.

Computer Methods in Applied Mechanics and Engineering, 151, 105–129. 8.10, 8.10.3

Clarke, J.F., Karni, S., Quirk, J.J., Simmons, L.G., Roe, P.L. and Toro,

E.F. (1993). Numerical computation of two-dimensional, unsteady detonation waves

in high energy solids. Journal of Computational Physics, 106, 215–233. 4.3.3

Cockburn, B. and Shu, C.W. (2001). Rungekutta discontinuous galerkin method

for convection-dominated problems. Journal of of Scientific Computing, 16, 173–261.

2.3.4

Cockburn, B., Lin, S.Y. and Shu, C.W. (1989). Tvb rungekutta local projection

discontinuous galerkin finite element method for conservation laws iii: one dimen-

sional systems,. Journal of Computational Physics, 84, 90–113. 2.3.2

Colella, P. and Woodward, P. (1984). The piecewise parabolic method (ppm) for

gas dynamical simulations. Journal of Computational Physics, 54, 174–201. 2.4.3,

5.9

Courant, R., Friedrichs, K. and Lewy, H. (1928). ber die partiellen differen-

zengleichungen der mathematischen physik. Mathematische Annalen, 100, 32–74.

4.4.5

Courant, R., Isaacson, E. and Rees, M. (1952). On the solution of nonlinear

hyperbolic differential equations by finite difference. Communications on Pure &

Applied Mathematics, 5, 243–255. 2.3.2, 4.3.1

Crutchfield, W.Y. and Welcome, M.L. (1993). Object-oriented implementation

of adaptive mesh refinement algorithms. Scientific Programming , 2, 145–156. 2.6

Cunge, J.A., Holly, F.M. and Verwey, A. (1980). Practical aspects of computa-

tional river hydraulics. Pitman, London. 2.6

257

REFERENCES

Dafermos, C.M., LeFloch, P.G. and Toro, E.F. (2003). Nonlinear hyperbolic

waves in phase dynamics and astrophysics, report from the organisers. Isaac Newton

Institute for Mathematical Sciences, 27 January to 11 July, URL (cited on 09

March 2006): http://www.newton.cam.ac.uk/reports/0203/npa.html. 2.3.1

Darwish, M.S. and Moukalled, F. (2003). Tvd schemes for unstructured grids.

International Journal of Heat & Mass Transfer , 46, 599–611. 2.4.1

Davis, S.F. (1988). Simplified second-order godunov-type methods. SIAM Journal on

Scientific Computing , 9, 445–473. 4.3.4

Davis, S.F. (1992). An interface tracking method for hyperbolic systems of conserva-

tion laws. Applied Numerical Mathematics, 10, 447–472. 2.3

Deckers, F. (1994). A geohydrological information system based on object-oriented

technology. Hydroinformatics 94, Balkema, Rotterdam, 253–260. 2.6

Delis, A.I. and Katsaounis, T. (2005)). Numerical solution of the two-dimensional

shallow water equations by the application of relaxation methods. Applied Mathe-

matical Modelling , 29, 754–783. (document), 8.4, 8.4.3, 8.5, 8.28, 8.29, 8.5.3

Dubois, F. and Mehlman, G. (1993). A non parametric entropy fix for roe’s method.

AIAA Journal , 31, 199–200. 4.3.3

Dubois, P. (1996). Object technology for scientific computing - object-oriented numer-

ical software in Eiffel and C . Prentice Hall. 2

Durran, D.R. (1999). Numerical methods for wave equations in geophysical fluid dy-

namics. Springer-Verlag: New-York. 2.4

Edenhofer, J. and Schmitz, G. (1981). An implicit method of characteristics for

the solution of hyperbolic initial-boundary value problems and its convergence. Com-

puting , 26, 257–264. 2.3.2

Einfeldt, B. (1988). On godunov-type method for gas dynamics. SIAM Journal on

Numerical Analysis, 25, 294–318. 4.3.4

258

REFERENCES

Einfeldt, B., D.Muntz, C., Roe, P.L. and Sjogreen, B. (1991). On godunov-

type methods near low densities. Journal of Computational Physics, 92, 273–295.

4.3.3

Fennema, R.J. and Chaudhry, M.H. (1990). Explicit methods for 2d transient

free-surface flows. Journal of Hydraulic Engineering, 116, 1003–1014. 2.5, 8.5, 8.5.3

Ferzoui, L. and Stoufflet, B. (1989). A class of implicit upwind schemes for euler

simulations with unstructured grids. Journal of Computational Physics, 84, 174–206.

2.4.2

Fraccarollo, L. and Toro, E.F. (1995). Experimental and numerical assessment

of the shallow water model for two-dimensional dam-break type problems. Journal

of Hydraulic Research, 33, 843–864. (document), 8.1, 8.9.2, 8.11

Frazao, S.S., Sillen, X. and Zech, Y. (1998). Dam-break flow through sharp bends

physical model and 2d boltzmann model validation. Proceedings of the CADAM meet-

ing Wallingford, United Kingdom, March 1998 . 8.8

Frink, N.T. (1992). Upwind schemes for solving the euler equations on unstructured

tetrahedral meshes. AIAA Journal , 3, 70–77. 2.4.2

Fujihara, M. and Borthwick, A.G.L. (2000). Godunov-type solution of curvilinear

shallow water equations. Journal of Hydraulic Engineering, 126, 827–836. 2.5.1

Fursenko, A.A., Shaov, D.M., Timofeev, E.V. and Voinovich, P.A. (1993).

High resolution schemes in unstructured grids in transient shocked flow simulation.

Proceedings of the 13th International Conference On Numerical Methods in Fluid

Dynamics,, 250–255. 2.4.2

Gamma, E. and Larman, C. (2005). Applying UML and patterns, an introduction

to object-Oriented analysis and design and iterative development . Addison-Wesley.

7.4.1

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995). Design patterns : El-

ements of reusable object-oriented software. Addison-Wesley Professional Computing

Series, Reading, MA. 2

259

REFERENCES

Garcia-Navarro, P. and Vazquez-Cendon, M.E. (2000). On numerical treatment

of the source terms in the shallow water equations. Computers & Fluids, 29, 951–979.

2.5.2

Gascon, L. and Coberan, J. (2001). Construction of second-order tvd schemes for

nonhomogeneous hyperbolic conservation laws. Journal of Computational Physics,

172, 261–297. 2.5.1, 2.5.2

George, D.L. (2004). Numerical approximation of the nonlinear shallow water equa-

tions with topography and dry beds: A Godunov-type scheme. Master of Science The-

sis. (document), 4.3.4, 6.4, 6.5

Ghidaglia, J.M., Kumbarob, A. and LeCoq, G. (2001). On the numerical solution

to two-fluid models via a cell-centered finite volume method. European journal of

mechanics. B, Fluids, 20, 841–867. 2.3.4

Ghidaoui, M.S., Deng, J.Q., Gray, W.G. and Xu, K. (2001). A boltzmann based

model for open channel flows. International Journal for Numerical Methods in Fluids,

35, 449–494. 6.7

Giraud, L. and Manzini, G. (1996). Parallel implementation of 2d explicit euler

solvers. Journal of computational Physics, 123, 111–118. 4.3.3

Glaister, P. (1988). Approximate riemann solutions of the shallow water equations.

Journal of Hydraulic. Research, 26, 293–306. 2.5.1, 6.6.1, 6.7

Glass, I.I. (1974). Shock waves and man. The University of Toronto Press, Toronto.

2.4.3

Glaz, H. and Liu, T.P. (1984). The asymptotic analysis of wave interactions and

numerical calculation of transonic nozzle flow. Advances in Applied Mathematics, 5,

111–146. 2.4.3

Glimm, J. (1965). Solutions in the large for nonlinear hyperbolic systems of equations.

Communications in Pure and Applied Mathematics, 18, 697–715. 2.4.3

Glimm, J., Isaacson, E., Marchesin, D. and McBryan, O. (1981). Front tracking

for hyperbolic systems. Advances in Applied Mathematics, 2, 173–215. 2.3

260

REFERENCES

Glimm, J., Klingenberg, C., McBryan, O., Plohr, B., Sharp, D. and Yaniv,

S. (1985). Front trackingand two-dimensional riemann problems. Advances in Applied

Mathematics, 6, 259–290. 2.4.3

Godlewski, E. and Raviart, P.A. (1996). Numerical approximation of hyperbolic

systems of conservation laws. Springer, New York. 2.3, 2.4, 4.3.1, 4.3.2

Godunov, S.K. (1959). A difference method for numerical calculation of discontinuous

solutions of the equations of hydrodynamics. (Russian) Matem. Sbornik (N.S.), 47,

271–306. 2.3, 2.4.3, 2.5.1, 4.3.1

Goldberg, D.E. and Wylie, B. (1983). Characteristic method using time-line in-

terpolations. Journal of Hydraulic Engineering, 109, 670–683. 5.7

Gottardi, G. and Venutelli, M. (2004). Central scheme for two-dimensional dam-

break flow simulation. Advances in Water Resources, 27, 259–268. (document), 8.4,

8.20, 8.9.2

Gray, M. and Roberts, R. (1997). Object-based programming in fortran 90. Com-

puter in Physics, 11, 355–361. 3.3

Grove, J.W. (1994). Applications of front tracking to the simulation of shock refrac-

tions and unstable mixing. Applied Numerical Mathematics: Transactions of IMACS ,

14, 213–237. 2.3

Guinot, V. (2002). The time-line interpolation method for large-time-step godunov-

type schemes. Journal of Computational Physics, 117, 394–417. 5.7

Guinot, V. (2003). Godunov-type schemes, An introduction for engineers. Elsevier

Science. Elsevier. 5.7

Harpham, C. (1997). Linear partial differential equations. http://www-staff.lboro.

ac.uk/∼macah/LPDE/LPDE.html. 2.2.2

Harten, A. (1983). High resolution schemes for hyperbolic conservation laws. Journal

of Computational Physics, 49, 357–393. 2.3, 2.4.1, 2.5.1, 2.5.2

261

REFERENCES

Harten, A. and Hyman, J.M. (1983). Self-adjusting grid methods for one-

dimensional hyperbolic conservation laws. Journal of Computational Physics, 50,

235–269. 4.3.3

Harten, A., Lax, P.D. and van Leer, B. (1983). On upstream differencing and

godunov-type schemes for hyperbolic conservation laws. SIAM Review , 25, 35–61.

4.3.4, 4.3.4

Harten, A., Engquist, B., Osher, S. and Chakravarthy, S. (1987). Uniformly

high order accurate non-oscillatory schemes iii. Journal of Computational Physics,

71, 231–303. 2.4.3

Harvey, D., Han, D. and Cluckie, I. (2002). A blueprint for next-generation

modelling software. Proceedings of the Fifth International Conference on Hydroin-

formatics, Cardiff, UK , 2, 1276–1281. 1.1, 2.6

Helzel, C., Berger, M.J. and LeVeque, R.J. (2005). A high-resolution rotated

grid method for conservation laws with embedded geometries. SIAM Journal on

Scientific Computing , 26, 785–809. 4.4.1

Hirsch, C. (1990). Numerical computation of internal and external flows. Wiley J.

and Sons. 2.3.3, 2.4.2, 5.9.2.2

Holnicki, P. (1996). A piecewise-quintic interpolation scheme. Journal of Computa-

tional Physics, 127, 316–329. 2.4.1

Horstmann, C. (2005). Object-oriented design and patterns. John Wiley & Sons Inc.

2

Hu, K., Mingham, C.G. and Causon, D.M. (1998). Abore-capturing finite vol-

ume method for open-channel flows. International Journal of Numerical Methods in

Fluids, 28, 1241–1261. 2.3.4

Hubbard, M. and Garcia-Navarro, P. (2000). Flux difference splitting and the

balancing of source terms and flux gradients. Journal of Computational Physics, 165,

89–125. 2.5.2, 6.7

Ichikawa, Y., Tachikawa, Y., Takara, K. and Shiiba, M. (2000). Object-oriented

hydrological modelling system. Hydroinformatics 2000, Iowa. 2.6

262

REFERENCES

Ippen, A.T. (1951). Mechanics of supercritical flow. Transactions,ASCE , 116, 268–

295. 8.10.3

Ji-Wen, W. and Ru-Xun, L. (2000). A comparative study of finite volume methods

on unstructured meshes for simulation of 2d shallow water wave problems. Mathe-

matics and Computers in Simulation, 53, 171–184. 2.3.4

Jiang, G.S., Levy, D., Lin, C.T., Osher, S. and Tadmor, E. (1998). High-

resolution non-oscillatory central schemes with non-staggered grids for hyperbolic

conservation laws. SIAM Journal on Numerical Analysis, 35, 2147–2168. 5.5.1

Kashiwa, B.A. and Rauenzahn, R.M. (1994). A multimaterial formalism. Numer-

ical Methods in Multiphase Flows, ASME , 149–157. 2.3.4

Kroger, T. and Lukacova-Medvid’ova, M. (2005). An evolution galerkin scheme

for the shallow water magnetohydrodynamic equations in two space dimensions. Jour-

nal of Computational Physics, 26, 122–149. 2.3.4

Kroner, D. (1997). Numerical schemes for conservation laws. WileyTeubner, Chich-

ester/Stuttgart. 2.3

Kroner, D., Noelle, S. and Rokyta, M. (1995). Convergence of higher order

upwind finite volume schemes on unstructured grids for scalar conservation laws in

several space dimensions. Mathematics of Computation, 71, 527–560. 4.3.2

Kruchten, P. (2004). Software architecture and iterative development . Benjamin

Cummings. 7.4.1

Kulikovskii, A.G., Pogorelov, N.V. and Semenov, A.Y. (2002). Mathematical

aspects of numerical solutions of hyperbolic systems. Monographs and Surveys in

Pure and Applied Mathematics,. 4.3.1

Kurganov, A. and Levy, D. (2000). A third-order semi-discrete central scheme

for conservation laws and convection-diffusion equation. SIAM Journal on Scientific

Computing , 22, 1461–1488. 5.5.1

Kurganov, A. and Petrova, G. (2000). Central schemes and contact discontinu-

ities. Mathematical Modelling and Numerical Analysis, 34, 1259–1275. 5.5.1

263

REFERENCES

Kurganov, A. and Tadmor, E. (2000). New high-resolution central schemes for non-

linear conservation laws and convectiondiffusion equations. Journal of Computational

Physics, 160, 241–282. 4.3.2

Kurganov, A. and Tadmor, E. (2002). Solution of two-dimensional riemann prob-

lems for gas dynamics without riemann problem solvers. Numerical Methods for Par-

tial Differential Equations, 18, 584–608. 4.3

Kutija, V. (1998). Use of object-oriented programming in modelling of flow in open

channel networks. 3rd International Conference on Hydroinformatics, Copenhagen.

(document), 2.6, 2.2

Laney, C.B. (1998). Computational gasdynamics. Cambridge University Press. 2.4

Larman, C. (2004). Applying Uml And patterns: An introduction to object-oriented

analysis and design and iterative development . Prentice Hall. 2, 7.4.1

Larsen, L. and Gavranovic, N. (1994). Hydroinformatics: further steps into object

orientation. Journal of Irrigation and Drainage Engineering, 32(Extra Issue), 195–

202. 2.6

Lax, P.D. (1954). Weak solutions of nonlinear hyperbolic equations and their numer-

ical computation. Communications in Pure and Applied Mathematics, 7, 159–193.

2.4.3

Lax, P.D. (1986). On dispersive difference schemes. PhysicaD, North-Holland, Ams-

terdam, 18, 250–254. 2.4.3

Lax, P.D. and Wendorff, B. (1960). Systems of conservation laws. Communications

on Pure and Applied Mathematics, 13, 217–237. 2.4.3

Lee, J.H.W., Peraire, J. and Zienkiewicz, O.C. (1987). The characteristic

galerkin method for advection dominated problems - an assessment. Computer Meth-

ods in Applied Mechanics and Engineering, 61, 359–369. 2.3.2

Leonard, B.P. (1979). A stable and accurate convective modeling procedure based

on quadratic upstream interpolation. Computer Methods in Applied Mechanics and

Engineering , 19, 59–98. 2.4, 2.4.1

264

REFERENCES

Leonard, B.P. (1991). The ultimate conservative difference scheme applied to un-

steady one-dimensional advection. Computer Methods in Applied Mechanics and En-

gineering , 88, 17–74. 2.4, 2.4.1

LeVeque, R. and Shyue, K.M. (1995). One-dimensional front tracking based on

high resolution wave propagation methods. SIAM Journal on Scientific Computing,

16, 348–377. 2.3

LeVeque, R.J. (1992). Numerical methods for conservation laws. Birkhauser Verlag,

Basel, Boston, New York. 2.3, 4.4.3, 5.8

LeVeque, R.J. (1998). Balancing source terms and flux gradients in high-resolution

godunov methods: the quasisteady wave-propagation algorithm. Journal of Compu-

tational Physics, 146, 346–365. 2.5.2, 5.6, 6.7

LeVeque, R.J. (2002). Finite volume method for hyperbolic problems. Cambridge

Univ. Press. (document), 1.3.1, 2.3, 2.3.3, 2.4, 2.4.1, 2.4.2, 2.4.3, 1, 4.2, 4.2.2, 4.3.1,

4.3.1, 4.3.2, 4.4.1, 5.3.1, 5.3.1, 5.2, 5.7.1, 5.4, 1, 1, 8.6, 8.7, 8.8, 8.9, 8.10, 8.11

Lie, K.A. and Noelle, S. (2003). On the artificial compression method for second-

order nonoscillatory central difference schemes for systems of conservation laws.

SIAM Journal on Scientific Computation, 24, 1157–1174. 5.5.1

Liggett, J.A. (1994). Fluid mechanics. McGraw Hill International Editions. 2.3.3,

2.5.1

Lin, S.J. and Rood, R.B. (1996). Multidimensional flux-form semi-lagrangian trans-

port schemes. Monthly Weather Review , 124, 2046–2070. 2.4

Lin, S.J. and Rood, R.B. (1997). An explicit flux-form semi- lagrangian shallow-

water model on the sphere. Q. J. R. Meteorological Society, 123, 2477–2498. 2.4

Lin, S.J., Chao, W., Sud, Y. and Walker, G. (1994). A class of the vanleer trans-

port schemes and its applications to the moisture transport in a general circulation

model. Monthly Weather Review , 122, 1575–1593. 2.4

Lipnikov, K. and Shashkov, M. (2006). The error-minimization-based strategy for

moving mesh methods. Communications In Computational Physics, 1, 53–80. 2.4.2

265

REFERENCES

Liskov, B. and Wing, J. (1994). A behavioral notion of subtyping. ACM Transac-

tions on Programming Languages and Systems, 16, 1811–1841. 3.4.2

Liu, X.D. and Tadmor, E. (1998). Third order non-oscillatory central scheme for

hyperbolic conservation laws. Numerische Mathematik 79 (1998), 79, 397–425. 5.5.1

Lohner, R., Morgan, K., Peraire, J. and Vahdati, M. (1987). Finite element

flux-corrected transport (fem-fct) for the euler and navier-stokes equations. Interna-

tional Journal for Numerical Methods in Fluids, 7, 1093–1109. 2.4.2

Lomax, H., Pulliam, T.H. and Zingg, D.W. (1999). Fundamentals of compu-

tational fluid dynamics. http://www.fm.vslib.cz/∼kmo/czech/vyuka/trp/book

cfd. 2.3.2

MacCormack, R.W. (1969). The effect of viscosity in hyperbolicity impact cratering.

AIAA Paper , 69–354. 2.4.3

Mao, D.K. (2000). Toward front tracking based on conservation in two space dimen-

sions. SIAM Journal on Scientific Computing, 22, 113–151. 2.3

Marti, J.M. and Muller, E. (2003). Numerical hydrodynamics in special relativity.

Numerical Hydrodynamics in Special Relativity, Living Reviews Relativity, 6, URL

(cited on 09 March 2006): http://www.livingreviews.org/lrr–2003–7. 4.2.2

Martin, R.C. (2002). Agile software development, principles, patterns, and practices.

Prentice Hall. 3.4.2

Marx, Y.P. (1994). Time integration for the unsteady incompressible navier-stokes

equations. Journal of Computational Physics, 112, 182–209. 4.3.3

Mingham, C.G. and Causon, D.M. (1998). Calculation of unsteady bore diffraction

using a high resultion finite volume method. Journal of Hydraulic Research, 38,

49–56. 2.3.2, 2.5, 2.5.1, 8.4.3

Miyoshi, T. and Kusano, K. (2005). A multi-state hll approximate riemann solver

for ideal magnetohydrodynamics. Journal of Computational Physics, 208, 315–344.

4.3.4

266

REFERENCES

Mohamadian, A., Roux, D.Y.L., Tajrishi, M. and Mazaheri, K. (2005). A

mass conservative scheme for simulating shallow flows over variable topographies

using unstructured grid. Advances in Water Resources, 28, 523–539. (document),

2.5.1, 2.5.2, 6.7.1, 2, 8.20

Murray, M.G. (2003). An investigation into object-oriented approaches for hydroin-

formatics tools. PhD Thesis, University of Newcastle. 3.4

Namin, M.M., Lin, B. and Falconer, R.A. (2004). Modellling estuarine and coastal

flows using an unstructured triangular finite volume algorithm. Advances in Water

Resources, 27, 1179–1197. (document), 4.6, 4.4.2, 6.6.3

Navarro, P.G., Hubbard, M.E. and Priestley, A. (1995). Genuinely multidimen-

sional upwinding for 2d shallow water equations. Journal of Computational Physics,

121, 79–93. 5.6

Nessyahu, H. and Tadmor, E. (1990). Non-oscillatory central differencing for hy-

perbolic conservation laws. Journal of Computational Physics, 87, 408–463. 5.5.1

Nordstro, J. and Gong, J. (2006). A stable hybrid method for hyperbolic problems.

Journal of Computational Physics, 212, 436–453. 2.2.3, 2.3.4

Nujic, M. (1995). Efficient implementation of non-oscillatory scheme for the compu-

tation of free-surface flows. Journal of Hydraulic Research, 33, 101–111. 2.5, 2.5.1,

2.5.2, 6.6.3

Osher, S. and Solomon, F. (1982). Upwind difference schemes for hyperbolic con-

servation laws. Mathematics of Computation, 38, 339–374. 2.5.1

Perla, J. and Ponnambalam, K. (1994). Multi-reservoir system simulation design

using c++ and object-oriented programming. Proceeding of ASCE National Confer-

ence on Hydraulic Engineering, 2, 1030–1043. 2.6

Preiss, B.R. (1998). Data structures and algorithms with object-oriented design pat-

terns in C++. John Wiley & Sons. 3.2

Pudasaini, S.P. (2003). Dynamics of flow avalanches over curved and twisted chan-

nels. PhD Thesis, TU Darmstadt. 5.5.1

267

REFERENCES

Qiu, J. and Shu, C.W. (2002). On the construction, comparison, and local character-

istic decompositions for high order central weno schemes. Journal of Computational

Physics 183 (2002), 183, 187–209. 5.5.1

Quirk, J.J. (1994). An alternative to unstructured grids for computing gas dynamic

flows around arbitrarily complex two-dimensional bodies. Computers and Fluids, 23,

125–142. 5.9.3

Rasulov, M., Karaguler, T. and Sinsoysal, B. (2004). Finite difference method

for solving boundary initial value problem of a system hyperbolic equations in a class

of discontinuous functions. Applied Mathematics and Computation, 149, 47–63. 2.3.2

Recktenwald, G.W. (2004). Classification of physical problems and partial dif-

ferential equations. http://www.me.pdx.edu/∼gerry/class/ME448/weekly/pdf/

PDEintro.pdf. (document), 2.1

Renton, A. and Palmer, R. (2005). A polace to stay, a place to live: The Oxfam

shelter report (14 December 2005). Oxfam International. (document), 6.1

Richtmyer, R.D. and Morton, K.W. (1967). Difference methods for initial-value

problems. Wiley-Interscience, New York. 2.4.3, 5.3.2

Roe, P.L. (1981). Approximate riemann solvers, parameter vectors, and difference

schemes. Journal of Computational Physics, 43, 357–372. 2.3.2, 2.5.1, 4.3.1, 4.3.3,

4.3.3

Roe, P.L. (1992). Sonic flux forumulae. SIAM Journal on Scientific Computing, 13,

611–630. 4.3.3

Roe, P.L. and Pike, J. (1984). Efficient construction and utilization of approximate

riemann solution. Computing methods in Applied Science and Engineering (North-

Holland). 4.3.3, 6.6.1

Roe, P.L. and Sidilkover, D. (1992). Optimum positive linear schemes for advection

in two- and three-dimensions. Journal on Numerical Analysis, 26, 1542–1568. 2.4.2

Rood, R.B. (1987). Numerical advection algorithms and their role in atmospheric

transport and chemistry models. Reviews of Geophysics, 25, 71–100. 2.4

268

REFERENCES

Rossmanith, J.A. (2006). A wave propagation method for hyperbolic systems on the

sphere. Journal of Computational Physics, 213, 629–658. 2.3.4

Ruland, P. and Rouve, G. (1994). Advantages of object-oriented gis for the inte-

gration of hydraulic models. Hydroinformatics 1994, Balkema, Rotterdam, 253–260.

2.6

Sainsaulieu, L. (1995). Finite volume approximation of two-phase fluid flows based

on an approximate roe-type riemann solver. Journal of computational Physics, 121,

1–28. 4.3.3

Savic, S. and Holly, F.M. (1993). Dambreak flood waves computed by modified

godunov method. Journal of Hydraulic Research, 31, 187–204. 5.7

Schleisinger, S. (1979). Terminology for model credibility. Simulation, 32, 103–104.

(document), 8.1, 8.2

Schwab, C. (1998). p- and hp- Finite Element MethodsTheory and Applications in

Solid and Fluid Mechanics. Oxford Science Publications, Clarendon Press, Oxford.

2.3.2

Shane, R.M., Zagona, E.A., McIntosh, D., Fulp, T.J. and Goranflo, H.M.

(1996). Project object. Civil Engineering, ASCE , 1, 61–63. 2.6

Sheu, T.W.H., Lee, P.H. and Lin, R.K. (2003). Development of a high resolution

hyperbolic model on quadratic elements. Computer Methods in Applied Mechanics

and Engineering , 192, 5037–5056. 2.3.2

Shu, C.W. and Osher, S. (1988). Efficient implementation of non-oscillatory shock-

capturing schemes. Journal of Computational Physics, 77, 439–471. 2.5.2, 4.3.5,

4.3.5, 4.3.5, 6.6.3

Simpson, D. (1967). A Numerical Method of Characteristics for Solving Hyperbolic

Partial Differential Equations. Michigan University Press, Ann Arbor,. 2.3.2

Singh, V.P. (1996). Kinematic wave modeling in water resources: surfacewater hy-

drology . John Wiley and Sons Ltd. 2.3.2

269

REFERENCES

Smith, G.D. (1985). Numerical solution of partial differential equations: Finite differ-

ence methods (3rd edition). Oxford University Press. 2.3.2

Smolarkiewicz, P.K. (1984). A fully multidimensional positive definite advection

algorithm with small implicit diffusion. Journal of Computational Physics, 54, 325–

362. 2.4

Solomatine, D.P. (1994). Object-orientation in hydroinformatics. Hydroinformatics

1994, Balkema, Rotterdam, 261–266. 2.6

Solomatine, D.P. (1996). Object-orientation in hydraulic modelling architectures.

Journal of Computing in Civil Engineering, 4, 125–135. 2.6

Sonar, T. (1997). On the construction of essentially non-oscillatory finite volume ap-

proximations to hyperbolic conservation laws on general triangulations: polynomial

recovery, accuracy and stencil selection. Computer Methods in Applied Mechanics

and Engineering , 140, 157–181. 2.3.4

Souadnia, A., Soltana, F., Lesage, F. and Latifi, M.A. (2005). Some computa-

tional aspects in the simulation of hydrodynamics in a trickle-bed reactor. Chemical

Engineering and Processing, 44, 847–854. 2.3.4

Spekreijse, S. (1987). Multigrid solution of monotone, second order discretization of

hyperbolic conservation laws. Mathematics of Computations, 45, 15–21. 2.4.2

Strikwerda, J.C. (1989). Finite difference schemes and partial differential equation.

Wadsworth and Brooks,California. 5.3.1

Swanson, R.C., Radespiel, R. and Turkel, E. (1998). On some numerical dissi-

pation schemes. Journal of Computational Physics, 147, 518–544. 2.4.2

Sweby, P.K. (1984). High resolution schemes using flux-limiters for hyperbolic con-

servation laws. SIAM Journal of Numerical Analysis, 21, 995–1011. 2.4.1, 2.4.2

Szpilka, C.M. and Kolar, R.L. (2003). Numerical analogs to fourier and dispersion

analysis: development, verification, and application to the shallow water equations.

Advances in Water Resources, 26, 649–662. 2.4.2

270

REFERENCES

Tachikawa, Y., Ichikawa, Y., Takara, K. and Shiiba, M. (2000). Development

of a macro scale distributed hydrological model using an object-oriented hydrological

modelling system. Hydroinformatics 2000, Iowa. 2.6

Tadmor, E. and Tanner, J. (2003). An adaptive order godunov type central scheme.

Proceedings of the 9th International Conference on Hyperbolic Problems: Theory,

Numerics, Applications (T. Hou & E. Tadmor eds.) Springer , CalTech, March

2002. 5.5.1

Tai, Y.C., Noelle, S., Gray, J.M.N.T. and Hutter, K. (2002). Shock-capturing

and front-tracking methods for granular avalanches. Journal of Computational

Physics, 175, 269–301. 2.4.3

Tedeschi, L.O. (2006). Assessment of the adequacy of mathematical models. Agri-

cultural Systems, 89, 225–247. 8.2

Thomas, J.W. (1995). Finite difference schemes and partial differential equation.

Springer, New York. 5.3.1

Tomicic, B. and Yde, L. (1998). Integrated software for an integrated management

and planning of urban drainage and wastewater systems. Hydroinformatics 1998,

Balkema, Rotterdam, 465–471. 2.6

Toro, E.F. (1995). Direct riemann solver for the time-dependent euler equations.

Shock Waves, 5, 75–80. 5.9

Toro, E.F. (1999). Riemann solvers and numerical methods for fluid dynamics.

Springer-Verlag, Berlin Heidelberg. 1.3.1, 2.3, 2.4.3, 1, 4.2.1, 4.2.2, 4.3, 4.3.1, 4.3.3,

4.3.4, 1, 4.5.4, 5.2, 5.7, 5.9.3, 6.6.2

Toro, E.F. (2001). Shock-capturing methods for free-surface shallow slows. Springer-

Verlag, Berlin Heidelberg. 1, 4.3.1, 5.2, 1, 6.5, 6.6.1, 6.6.2

Toro, E.F. and Titarev, V.A. (2006). Musta fluxes for systems of conservation

laws. Journal of Computational Physics, 216, 403–429. 4.3.1

Toro, E.F., Spruce, M. and Speares, W. (1994). Restoration of the contact surface

in the hll-riemann solver. Shock Waves, 4, 25–34. 4.3.4

271

REFERENCES

Trong, T.B. (2000). A parallel, finite-volume algorithm for large-eddy simulation of

turbulent flows. Computers & Fluids, 29, 877–915. 2.3.4

Tseng, M.S. (1999). Explicit finite volume non-oscillatory schemes for 2d transient

free-surface flows. International Journal of Numerical Methods in Fluids, 30, 831–

843. 2.3.4

Valiani, A., Caleffi, V. and Zanni, A. (1999). Finite volume scheme for 2D

shallow-water equations application To a flood event in the Toce river . CADAM.

2.3.4

Valiani, A., Caleffi, V. and Zanni, A. (2002). Case Study: Malpasset dam-break

simulation using a 2D finite volume method , vol. 128. 2.5.1

Vanecek, S., Verwey, A. and Abbott, M. (1994). An exercise in object-orientation

for water hammer and water distribution simulation in pipe networks,. Hydroinfor-

matics 94, Balkema, Rotterdam, 267–272. 3

vanLeer, B. (1974). Towards the ultimate conservative difference scheme ii.

monotonocity and conservation combined in a second order scheme. Journal of Com-

putational Physics, 14, 361–370. 4.3.1, 5.9.2.4

vanLeer, B. (1977a). Towards the ultimate conservative difference scheme iii.

upstream-centered finite-difference schemes for ideal compressible flow. Journal of

Computational Physics, 23, 263–275. 5.9

vanLeer, B. (1977b). Towards the ultimate conservative difference scheme iv. a new

approach to numerical convection. Journal of Computational Physics, 23, 276–299.

2.4, 2.5.1, 5.9

vanLeer, B. (1979). Towards the ultimate conservative difference scheme v. a second

order sequel to godunov’s method. Journal of Computational Physics, 32, 101–136.

2.3, 2.4.1, 2.4.2, 2.4.3, 5.1, 5.9, 5.9.3

Vazquez-Cendon, M. (1999). Improved treatment of source terms in upwind schemes

for the shallow water equations in channels with irregular geometry. Journal of Com-

putational Physics, 148, 497–526. 2.5.2

272

REFERENCES

Venkatakrishnan, V. (1993). Implicit solvers for unstructured meshes. Journal of

computational Physics, 105, 83–91. 2.4.2

Venkatakrishnan, V. (1994). Parallel implicit unstructured grid euler solvers. AIAA

Journal , 32, 1985–1991. 2.4.2

Venkatakrishnan, V. (1996). Perspective on unstructured grid solvers. AIAA Jour-

nal , 34, 533–547. 2.4.2

Venkatakrishnan, V. and Barth, T.J. (1989). Application of direct solvers to

unstructured meshes for the euler and navier-stokes equations using upwind schemes.

AIAA-paper , 89. 2.4.2

Vollmer, D.B. (2003). Adaptive mesh refinement using subdivision of unstructured

elements for conservation laws. Master Thesis, Department of Mathematics, Univer-

sity of Reading. 2.4.2, 5.9, 5.9.2.3, 5.9.2.5

von Neumann, J. and Richtmyer, R.D. (1950). A method for the numerical cal-

culation of hydrodynamical shocks. Journal of Applied Physics, 21, 232–237. 2.4.3,

5.3.2

Vukicevic, T., Steyskal, M. and Hecht, M. (2001). Properties of advection al-

gorithms in the context of variational data assimilation. Monthly Weather Review ,

129. 2.4

Vukovic, S. and Sopta, L. (2002). Eno and weno schemes with the exact conserva-

tion property for one-dimensional shallow-water equations. Journal of Computational

Physics, ,179, 593–621. 2.5.2, 5.6

Wang, J.S., Ni, H.G. and He, Y.S. (2000). Finite-difference tvd scheme for com-

putation of dam break problems. Journal of Hydraulic Engineering, 126, 253–262.

2.4.2

Wang, Z.J. and Liu, Y. (2002). Spectral (finite) volume method for conservation

laws on unstructured grids ii. extension to two-dimensional scalar equation. Journal

of Computational Physics, 179, 665–697. 2.4.2

Winterfeldt, D.V. (1980). Structuring decision problems for decision analysis. Acta

Psychologica, 45, 71–93. 1

273

REFERENCES

Woodward, P.R. and Colella, P. (1984). The simulation of two-dimensional fluid

flow with strong shocks. Journal of Computational Physics, 54, 115–173. 5.7

Xing, Y. and Shu, C.W. (2006). High order well-balanced finite volume weno schemes

and discontinuous galerkin methods for a class of hyperbolic systems with source

terms. Journal of Computational Physics, 214, 567–598. 2.3.2

Xu, K. (2002). A well-balanced gas-kinetic scheme for the shallow-water equations

with source terms. Journal of Computational Physics, 178, 533–562. 2.5.2, 6.7

Yee, H.C. (1987). Construction of explicit and implicit symmetric tvd schemes and

their applications. Journal of Computational Physics, 68, 151–179. 2.3

Zalesak, S.T. (1979). Fully multidimensional flux corrected transport algorithms for

fluids. Journal of Computational Physics, 31, 335–362. 2.4.2

Zhang, X.D., Trepanier, J.Y. and Camarero, R. (2000). A posteriori error esti-

mation for finite-volume solutions of hyperbolic conservation laws. Computer Methods

in Applied Mechanics and Engineering, 185, 1–19. 2.3.4

Zhao, D.H., Shen, H.W., Tabious, G.Q., Lai, J.S. and Tan, W.Y. (1994). Finite-

volume two-dimensional unsteady flow model for river basins. Journal of Hydraulic

Engineering , 120, 864–883. 2.3.4, 2.5

Zhao, D.H., Shen, H.W., Lai, J.S. and III, G.Q.T. (1996). Approximate riemann

solvers in fvm for 2d hydraulic shock modelling. Journal of Hydraulic Engineering,

122, 692–702. 2.5

Zhou, J.G., Causon, D.M., Mingham, C.G. and Ingram, D.M. (2001). The sur-

face gradient method for the treatment of source terms in the shallow water equations.

Journal of Computational Physics, 168, 1–25. 2.5.2, 6.7, 6.7.1, 2

Zienkiewicz, O.C. and Ortiz, P. (1995). A split-characteristic based finite element

model for the shallow water equations. International Journal of Numerical Methods

in Fluids, 20, 1061–1080. 8.10

274

