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7...Frankly I did not consider that this would be a piece of research. The
scientist does not usually think of the writing of books or preparing of lectures
as research. Writing seems to him to be a rather tiresome labour that he
must do after the fun of laboratory research and discovery is over. I therefore
sat down to use the time available more in hope of making a summary than
a discovery. But when I began to do this I came to realize the extent to
which having to describe the results of one’s thoughts to others is a part of
the process of discovery itself...”

Written by Prof. J. Z. Young in 1951, in his Reith Lectures for the B.B.C,
titled ” Doubt and Certainty in Science: a biologist’s reflections on the brain”.
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Abstract

A new methodology was developed for flow regime identification in pipes.
The method utilizes the pattern recognition abilities of Artificial Neural Net-
works and the unprocessed time series of a system-monitoring-signal.

The methodology was tested with synthetic data from a conceptual sys-
tem, liquid level indicating Capacitance signals from a Horizontal flow system
and with a pressure difference signal from a S-shape riser.

The results showed that the signals that were generated for the conceptual
system had all their patterns identified correctly with no errors what so ever.
The patterns for the Horizontal flow system were also classified very well
with a few errors recorded due to original misclassifications of the data. The
misclassifications were mainly due to subjectivity and due to signals that
belonged to transition regions, hence a single label for them was not adequate.
Finally the results for the S-shape riser showed also good agreement with the
visual observations and the few errors that were identified were again due to
original misclassifications but also to the lack of long enough time series for
some flow cases and the availability of less flow cases for some flow regimes
than others.

In general the methodology proved to be successful and there were a
number of advantages identified for this neural network methodology in com-
parison to other ones and especially the feature extraction methods. These
advantages were: Faster identification of changes to the condition of the
system, inexpensive suitable for a variety of pipeline geometries and more
powerful on the flow regime identification, even for transitional cases.
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Chapter 1

Introduction

The problem that is considered in this research work falls in the domain of
multiphase flows in pipes. By multiphase flows it is meant, flows of fluids
that are formed by components of more than one phase. For example these
components could be of a solid, liquid or gas phase. This thesis is concerned
only with gas-liquid two-phase flows.

The issue with such fluids is to determine for a given condition and pipe
configuration, what will be the flow pattern, which is also called the flow
regime. Major influences on the flow regime in a pipe are the following:

e the number of phases in the fluid

e the density of each of the phases; for example is it air, water, oil etc.
or any combination of them.

e the configuration of the pipe; for example is it a horizontal pipe, verti-
cal, inclined or any combinations of these.

e the superficial velocity of each of the phases.

Example drawings of the main flow regimes in horizontal gas-liquid flow,
are shown in Figure 1.1.

There is a large number of publications in the literature about how im-
portant the identification of flow regimes in multiphase flows is [14]. The
three main issues are:

1. Certain flow patterns are more production efficient than others, hence
more desirable, (e.g. the bubbly flow regime).

2. Certain flow patterns can be dangerous and need to be avoided, (e.g.
the Severe Slugging [24], [35] family of flows).

1
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Figure 1.1: Examples of horizontal flow regimes.



3. When designing processing facilities for such multiphase fluids it is
important to consider the flow regime before hand as the relationships
for quantities like pressure drop, can be different depending on the flow
regime. It has been demonstrated that more accurate results can be
obtained by giving attention to specific flow patterns ([13]).

Artificial Neural Networks (ANNs) provide an alternative for either mod-
elling phenomena which are too difficult to model from fundamental prin-
ciples, or reduce the computational time for predicting expected behaviour.
Ashforth-Frost et al. [1] and Tzes and Borowiec [38] give an overview on
the type of applications ANNs have been employed for, in the area of fluid
mechanics.

In this thesis a new methodology on the use of Artificial Neural Networks
for the identification of flow regimes in pipes is being presented and tested
on horizontal flows and S-shaped riser data. The main characteristic of this
methodology is the format in which, data from a multiphase flow in a pipe,
are presented to the neural network. This format is the unprocessed, raw na-
ture of the data (RD), presented in groups of consecutive data points. Such
a way of using data with a neural network has been used before, mainly for
prediction purposes [7], [10], [40], [39], but it has not been used for classifica-
tion purposes like the identification of flow regimes, where it can introduce
a number of advantages. The use of features extracted (FE) from the time
series, reduces the dimensionality of the data, as one or two values describe
the whole signal. This is an advantage when it comes to training the neural
network, as the later does not have to be too large and the training process
becomes much faster. But it is also a disadvantage as a lot of other infor-
mation present in the signal is being hidden from the neural network. In
addition any major changes in the signal due to, for example changes in the
flow regime in a multiphase flow, become unnoticed for a significant period
of time, due to the relatively long time series sections [8] that are required for
statistical parameters like the mean and standard deviation to be calculated
accurately.

The work presented in this thesis, shows that the RD methodology can
be used to identify flow regimes in a wide range of pipe configurations. Fur-
thermore during the research it was identified that the methodology has
the potential to detect changes in the flow regime as soon as they occur in
the pipe, a single network would be adequate, less data would be sufficient
during training (compared to the FE methods) and finally a specific highly
specialised instrument is not a requirement for monitoring the system.



4 CHAPTER 1. INTRODUCTION

1.1 Objectives

The objectives for this research work were to utilise the capabilities offered by
Artificial Neural Networks to achieve flow regime identification in a variety
of pipeline geometries with simple and less expensive instrumentation. The
main concern with this work is to manage the above in a way so that such a
flow regime classifier can be used in real time on systems where multiphase
flows occur and the flow pattern is of significant concern.

For this a new methodology had to be developed which would have to con-
sider:

1. how the information obtained from the monitoring system should be
used when presented to the classifier. The feature extraction method
would not cope with an on-line application due to the reasons that were
mentioned above.

2. the neural network architecture that will need to be used to accommo-
date the above change.

3. monitoring sensors, which can be easily installed on most if not any sys-
tem but would still provide adequate information for the classification
to be achieved.

Finally as this work was carried out towards the fulfilment of the re-
quirements for the degree of Doctor of Philosophy, all the above had to be
completed in a time duration limited by these requirements.

1.2 Organisation of Thesis

In the rest of the document the research work that is the subject this thesis
was organized into the following Chapters. Chapter 2 presents the results
of the literature review. The effort for this part of the work was concen-
trated on collecting techniques which were used in the past for flow regime
identification, identify their disadvantages and determine how these could be
improved with the new methodology. Emphasis was given on the techniques
which utilize the ANN technology as they showed to be the most prominent
of all. A general conclusion from this work was that ANNs, being a rela-
tively new technology, are also very new in the area of multiphase flows with
not a lot of work being published in the literature. In Chapter 3 a descrip-
tion is given of the new methodology and its advantages and disadvantages
are identified and presented. Chapter 4 gives an account of the experimen-
tal systems that were considered for the new methodology to be tested on.
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The systems are described, together with the instrumentation that was used
for data collection and finally the data are presented and analyzed appro-
priately to be used with the new flow regime identification methodology.
Chapter 5 deals with the practical aspects of applying the new methodology
and presents the results for the tests that were carried out on all the systems.
A detailed description is given on the process of training the neural network
for the classification model to be developed and matters that arisen on the
data processing that was required for this to be achieved. In Chapter 6 a
discussion is carried out on the results that were obtained for each of the
systems and on more general matters which are related to the nature of the
new classification methodology. Finally Chapter 7 brings the work to its
conclusion by highlighting the most important details of the and suggesting
a number of areas of research that would be of interest and beneficial to be
seen carried out in the future.
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Chapter 2

Flow Regime Identification:
Literature Review

Flow regime identification is important in real world applications where mul-
tiphase flows occur. Such an application is the design of transportation
systems and processing facilities for the extraction of hydrocarbons from the
earth. In these systems the hydrocarbon production rates are affected by the
flow regime with which the fluid flows in the pipe, hence the knowledge of the
flow regime is necessary for their optimal operation. Furthermore some spe-
cific flow regimes can cause damages hence they need to be avoided. Another
reason why the identification of flow regimes, which are also know as flow
patterns, is important for the more accurate calculation of parameters such
as Pressure Drop and Liquid Volume Fraction when designing processing
facilities for hydrocarbons.

Some recommended techniques for flow pattern identification fall into
three categories:

1. Analytical methods.

2. Visualization methods, including photographic methods, X-radiography
and multibeam gamma densitometry.

3. Methods depending on the measurement of fluctuating quantities and
the statistical characterization of those in terms of flow patterns.

In the following sections a brief description of the above methods is given.
The involvement of the ANNs come under the third of the above categories.
A measurement of a fluctuating quantity is taken, this measurement is then
processed and instead of a person making a decision on the flow regime, or
some other Artificial Intelligence code, the processed signal is used to train

7
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a neural network in deciding which flow regime the signal was taken from.
One of the reasons for the involvement of the ANN is to remove as much
subjectivity as possible when deciding on the flow regime, as raw signals
or even statistical quantities do not always give clear cut indications. An
ANN can give more objective flow regime identifications by being trained
with clear cut patterns and being used to determine the flow regimes close
to boundary regions where the flows are usually more complex. This is a
potential offered by the new methodology presented in this thesis and will
be discussed in chapter 6.

2.1 Computational Methods

Analytical methods are very useful in understanding the mechanics behind
natural phenomena and could never be discarded as unnecessary. In the case
of determining the flow regime regions for multiphase flows in a variety of
pipelines, currently these are separated by thin lined boundaries and in the
process of their positioning, a number of assumptions and approximation
which add to inaccuracies in the determination of the position and shape
of these boundaries, are incorporated. Never the less they are reliable and
trusted, as the source of the errors are well known. At the moment they
are capable of identifying the main regions of the flow regimes for a variety
of pipe configurations ([31], [2], [26]), for different pipe diameters and fluid
densities and viscosities. Further improvements need to be made on the more
accurate determination of the boundary regions.

Some examples of approximations and assumptions that are used with
analytical methods can be found in the Taitel and Dukler 1976 paper [31]
where a model for predicting flow regime transitions in horizontal and near
horizontal gas-liquid flows is presented. The following examples are given
with reference to this paper:

e decision for what values to use for the Cr, Cq, m and n coefficients
which are used for the calculation of the gas and liquid friction factors.

e the estimation of the coefficient C} is speculated. This coefficient is used
for determining the transition criterion of the boundary separating the
Stratified region from the Intermittent and Annular regions, and has a
significant effect on the calculation.

e The transition between Intermittent and Annular flow is a gradual one
unlike the Stratified to Intermittent flows where the transition suggests
a sharp well-defined change. So a thin line transition boundary is not
appropriate.
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e the precise location of the transition curve between the Stratified Smooth
and Stratified Wavy regions was not considered important, so it was
approximated by using vy = ¢ and ug >> c.

2.2 Visualization methods

Visualization methods can be separated into two groups:
e the Direct visual observation and Photographic methods and

e the methods depending on the spacial distribution of radiation absorp-
tion.

Gad Hetsroni in his Handbook of multiphase systems [13] gives a brief
description of these and their problems in application.

The first of the above groups require the pipe to incorporate windows or

transparent sections, from which the flow can be observed directly or indi-
rectly with the use of mirrors and lenses. Observations can be carried out
axially (view inside the pipe) or from the side of the pipe. The need for illu-
minating the flow is often necessary, especially with photographic methods.
For high pressure flows special windows can be constructed (for example of
sapphire or calcium fluoride) for visual observations.
Problems in application for this group of visualization methods is that direct
visual observations are only applicable to low-speed flows, they are both af-
fected by complex interfacial structures which obscure the view. Such meth-
ods only work where suitable visual access can be facilitated and there is a
strong element of subjectivity in the determination of flow patterns. Also
with the photographic methods there is the element of difficulty in analyzing
and interpreting the enormous amount of information that is produced.

The second group of the above methods includes X-radiography and

multibeam densitometry. The main principle behind them is to allow an
X-ray through the medium for visualization and then determine the amount
of the ray that was absorbed in the medium. They can obtain good space
and time resolution and can be used with non transparent pipes.
Problems in application for this group is the usual problem of handling ra-
diation. Also they require as thin walls as possible to reduce the absorption
of X-rays and increase the time resolution. This introduces a conflict on de-
ciding how thick the walls can be when high pressure operation is required.
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2.3 Statistical analysis of fluctuating quanti-
ties
There are two quantities commonly monitored for the determination of flow
regimes:
1. local pressure fluctuations

2. void fraction fluctuations.

Three early examples of research that encouraged this direction of work
are those carried out by Jones and Zuber [16], Matsui [19] and Tutu [37].

The time series signals that are collected are statistically analyzed to infer
information which can aid in the desired task. Typical statistical calculations
that are carried out are:

e mean value of the signal

Standard Deviation (SD)

Coefficient of Skewness (CoS)

e power spectral density of pressure signals

probability distribution of a void fraction signal.

These methods are much more suitable for online applications as there
are no requirements for special pipeline materials where instrumentation will
be installed. This removes any limitations of operating conditions that the
previous methods had. Still they require long time series (see Figure 6.16) in
order for accurate calculations to be carried out and they do not always give
objective indications for the flow regime in the pipe. For this reason in a lot
of research work in the recent years the employment of Artificial Neural Net-
works (ANNs) was undertaken. ANNs can be trained for many different flow
cases and taught to distinguish between them even if there are small differ-
ences which would not be picked up by the naked eye. This latest addition
seems to give a solution for the subjectivity and misclassification problem
mentioned above. The long time series necessary for the calculations of the
mean, SD, CoS e.t.c. still poses the problem that important information in
the time series would be hidden for significant periods of time. For this rea-
son in the work presented in this thesis a new methodology was developed
were the measured signals are presented, to the ANN for classification, in
their raw time series nature.
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2.4 Artificial Neural Networks

The involvement of ANNs in the identification of flow regimes in pipes comes
under the third category mentioned at the beginning of this chapter (see
page 7). One or more quantities which represent the characteristic condi-
tion of a system are measured and statistically transformed. The resulting
statistical values are fed to an ANN for the flow pattern to be identified.

General Background Artificial Neural Networks (ANNs) are a relatively
new technology. Although they begun their existence in 1943 when McCul-
loch and Pitts [20] suggested the simple artificial neuron (see Figure A.2),
they only took off in 1986 when Rumelhart, McClelland [15], suggested the
Multi-Layer Perceptron and together with Williams the Backpropagation or
General Delta learning rule. At this point it was proven that they can solve
complicated linear and non-linear problems, which made them widely ap-
plicable. Hence 1986 can be considered the birth of the ANN, which is a
network of artificial neurons.
These networks usually contain three types of layers (see Appendix A):

1. an input layer
2. a hidden layer and
3. an output layer

There can be more than one hidden layers but usually there is only one
input and one output layer. Still there are architectures where there are more
than one input and output layers, such as the Time Delay Neural Networks.

Information is usually travelling from the inputs towards the outputs
through the hidden layer, with the exception of the Recurrent Networks
where there are feedbacks and information travels backwards between the
layers or even from a neuron to itself (self-feedback).

2.4.1 1In Application

The signal of a fluctuating quantity is monitored from the flow, then this
is processed and identification of the flow regime is made. The fluctuating
quantity usually is either pressure difference across or along the pipe, or void
fraction at a cross section of the pipe. The problem usually exists where
the processed signal does not always give clear cut indications of which flow
regime it belongs to. This is true for both the pressure and void fraction
signals. For this reason ANNs are employed at the identification stage by
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using the processed signal as its inputs. The reason for their involvement is
to improve the classification of less distinctive signals.

As with the statistical analysis methods mentioned in Section 2.3 a num-
ber of statistical features are extracted (FE) from the signal. These features
are consequently used as inputs to the neural network. Such parameters that
have commonly been used are:

® mean
e standard deviation

e skewness

There are a number of research works in the literature where this method
has been used on the task of flow regime identification and has been the
standard. Bishop and James [3] used the effective path lengths of oil and
water from six gamma ray beams to estimate the phase fractions for air oil
and water in the fluid. The data they used were synthetically generated for
examples of flows with no fluctuations in their phase fractions, i.e. annular,
Stratified and Homogeneous but not Slug or Bubble or even Wavy.

Mi et al. [21], [22], [23], Smith et al. [29] and Tsoukalas et al. [36]
used data obtained from an 8-electrode impedance void meter to identify a
number of flow regimes. Between them, vertical and horizontal flows, plus a
number of pipe diameters were considered and some of the parameters that
they used to train their neural networks were, mean and SD among others,
determined from the void meter signals.

Hervieu [11] used data from a 16-electrode impedance sensor which moni-
tored features evolving both in time and space. From the measured signals of
the sensor, he extracted weighted versions of mean and SD values for space
and frequency components in the measurements. The inputs to the neural
network were the average space and frequency components together with
the ratio of the standard deviation values between the space and frequency
components. This was an attempt to improve the automatic diagnostic ca-
pabilities of an earlier work by Hervieu and Seleghim Jr [12] where they
used the Gabor transform to carry out unstationarity time-frequency analy-
sis on signals obtained from a multi-electrode impedance sensor. Although
the work of the above authors showed some good results; apart from the fea-
ture extraction process involved in their methodologies, the choice of their
flow monitoring instrument, at least for industrial applications, introduces
some limitations. First of all the type of information that is collected by the
multi-electrode probe can not be obtained by any other type of instrument
due to its plethora of signals it generates simultaneously. So there is no al-
ternative. The instrument itself is not the least expensive and it is difficult
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to install as it requires for its electrodes to be electrically insulated from the
rest of the pipe. Also as Wu et al. [42] have identified, the measurements
of an impedance sensor are easily affected by temperature variations, shape
and structure of the electrodes and the variation of the dielectric coefficient
of the liquid resulting from fluid impurities.

Cai et al. [4] used absolute pressure signals from horizontal flows and ex-
tracted some amplitude and some frequency-domain features. The amplitude
domain ones were SD, Coefficient of Skewness and Coefficient of Kurtosis.

Wu et al. [42] used a piezo-resistance differential pressure transducer to
monitor a horizontal flow, and fractal theory to extract nine fractal correla-
tion dimensions. They obtained good results but only considered stratified,
intermittent and annular flows.

Probably the best flow regime identification results were given by Osman
[25], where he considered stratified smooth, stratified wavy, slug and annular
flows in a horizontal pipe. His method though, as is also the case for the work
carried out by Ternyik et al. [34], has one major drawback, which is the use
of mean values for the gas and liquid superficial velocities, among others, as
inputs to a neural network. Such information for an on-line application is
very difficult to obtain, if at all with reasonable accuracy.

There is only one piece of work where a methodology similar to the one
presented here was used. This is the work done by Seleghim Jr et al. [28].
They used a 16-electrode electrical impedance measuring probe, which has
the limitations mentioned above. Their method utilises a separate neural
network (MLPs) for each flow regime they wanted to identify, plus a SOM
(Self Organising Map) at the end to resolve any multiple classifications ob-
tained from the original MLPs for the same flow regime. Finally they do not
separate the Bubble and Slug flows but consider them as a single flow regime
the Intermittent flow. They only tested the methodology on horizontal flows,
not on an S-shape riser and are using a range of time delays (number of neural
network inputs) for each of the flow regimes they considered.
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Chapter 3

Flow Regime Identification:
New Methodology

So far applications of Artificial Neural Networks (ANNs), especially for clas-
sification purposes and when working with time series data, would require
the extraction of features from one or more time series. These features then
would be used as inputs to the neural network.

The process can be computationally intensive and the accurate calcu-
lation of the features require the use of long time series, which eventually
hide important information from the signal. Such changes could be on flow
regimes.

For example one way of extracting features from a time series is by per-
forming an amplitude domain analysis as was done by Mi et al. in 1998 ([21])
and 2001 ([22]), Smith et al. ([29]), Tsoukalas et al. ([36]) and Cai et al.
([4]). This can be achieved by calculating the following statistical moments
of the Probability Density Function (PDF) [8]:

e mean: average value of the distribution
e standard deviation: measure of the distribution about the mean
e skewness: characterises the asymmetry about the mean.

But the accurate calculation of the mean for a time series is strongly depen-
dent on the length of the time series that will be used, and the mean is part
of the calculations in the other parameters as well. The longer the series the
more accurate the calculations. Because this accuracy depends on the shape
of the series, it is very difficult to determine the minimum amount of data
that would be enough, as different time series will require different lengths.
The longer these lengths the easier it would be for important variations in

15
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the signal to be hidden for a significant length of time. Inevitably this will
reduce the classification ability of the ANN and in turn its response time.
There are applications like control systems, where response time is partic-
ularly important. In such cases the above process of feature extraction does
not favour very well as they require long with respect to time, time series
data, plus significant preprocessing of the data before they can be used.
The new methodology that is proposed here reduces these two factors
significantly and provides the grounds for a faster on-line classifier.

3.1 The Faster Responding Classifier

This new classification methodology when applied to the flow regime identi-
fication in pipelines, is formed of the following parts:

e a time series from an instrument that gives an indication of the liquid
level in a pipe.

e a Multilayer Perceptron artificial neural network in a Time Lagged
architecture, trained with a supervised learning algorithm, to identify
flow regimes that could be present in a system.

Instead of the feature extraction process that was mentioned above the
methodology that was used for this work skips this process completely and
uses the measured time series, as it is, in its raw form.

For example consider the time series shown in Figure 3.1. Starting from
the very first data point of the series the data is split into sections with
respect to the time variable. The size of these sections is dependent on the
processing window (delay window) that will be chosen. If the window for
example is of size p data points and there are n number of data points in the
series, the resulting sections will be [1,p], [2,(p+1)], [3,(p+2)], ..., [(n-p),n].

The series is presented to the neural network in the form of such sections
(delay windows). Then the neural network is trained to identify the flow
regime the currently presented time series section belongs to. This network
is of the supervised type, a Multilayer Perceptron (MLP). The number of its
inputs is equal to the size of the delay window and the number of its outputs
is equal to the number of flow regimes that it is required to identify.

So an important issue for this methodology is deciding on the delay win-
dow that should be used. This is not as straight forward as it will be shown
in the following chapters where applications of the methodology will be de-
scribed. From the ANN’s point of view it is very important that enough
part of the cycle from the time series is present with each input pattern.
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Figure 3.1: An example of a time series.

This makes it certain that the network will learn to distinguish between the
different time series. But a cycle is not always present or at least not easily
identified in order for the delay length decision to be made. Hence a few
tests have to be carried out in order to establish a suitable delay window.

For the systems that the methodology was applied on, it was experimen-
tally found that a delay window of 200 inputs (20 s) of data for the Horizontal
Pipeline and 100 inputs (100 s) of data for the S-shape riser, were sufficient
for the task of multiphase flow regime classification.

3.2 Advantages and Disadvantages

The main application of this new methodology is for the on-line monitoring
of dynamic systems. Although it has been tested on multiphase flows in
pipelines specifically, it may not be limited to these systems only.

Advantages Considering that the on-line monitoring, is the area of appli-
cation for the new methodology described above, its main advantage is that:
all the information that is collected from the system is also simultaneously
present in the ANN inputs for consideration.
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This gives the monitoring system that it will be used with, the potential
to identify important changes much faster than the existing neural network
methodologies. Thus making it more suitable for online, real time applica-
tions.

Furthermore the raw time series nature of the input data allows for the
possibility to train the neural network on clear cut, away from transition
regions, flow regime cases. This is because the inputs incorporate the dis-
tinctive pattern of each flow regime and this same patterns are also there
in the signals collected from transitional cases but mixed together. Still not
simultaneously mixed, like in the fashion of one pattern on top of the other,
but one following the other. This characteristic of the methodology also gives
it a more global nature that could make a model trained with data from one
system, suitable for another system with the same family of characteristics.
For example if the original "training” system was an S-shape riser, then the
resulting model could be suitable of all S-shape risers. Finally the notion that
a model can be built from only clear cut cases, makes the training process
much faster as less data will be required to train the network.

As it will be shown in the results and discussion chapters of this thesis
(chapters 5 and 6), the new methodology described above identifies the flow
regime correctly for cases all around the flow regime map and gives indica-
tions of where the boundaries of a transition region lie.

It is logical to deduce from the last statement that apart from using the
methodology to identify flow regimes on line it can also be used to gen-
erate more realistic flow regime maps, where the transition regions will be
portrayed as regions and not as thin lined boundaries.

Disadvantages The main disadvantages of the new methodology that was
described above are those associated with the nature of the neural network
technology, the training process.

This process requires the identification of the characteristic condition(s)
of the given system, the ability to reliably measure their physical quantities
and finally carry out the necessary experiments to collect enough data from
all the required system states.

Assuming that the characteristic conditions are known and can be mea-
sured reliably, the data collection process may not be always possible or may
be very costly. In such cases the use of simulated data can provide the means
for building the model.
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3.3 Model creation procedure

With this new methodology, where the data is used in its time series (raw)
form, one is presented with the issue of how should the data be split into the
training, testing and validation groups that are required during the classifi-
cation model development.

There is an issue here because the input data to the neural network have

to be different between the three stages. With current methods of feature
extraction and flow regime identification, this meant that the data for each
stage had to be derived from different flow cases, ie data points on the flow
regime map. This is because only one or two numbers (the features that were
chosen) were used to represent each flow case. However the new methodology
presented here uses hundred of different inputs from each flow case signal.
Hence, is it still necessary to use different flow cases for each of the stages in
the model development or would parts of the same ones be enough?
In this work the flow cases that were available were split into Training and
Model Validation cases. Fach time series from the training cases was split
into two parts: the training and the testing part. In this way it was made
sure that there were not any two input sets which contained the same data
point from a time series.

3.3.1 Data Preprocessing During Model Development

The following steps were carried out during the model development process:

1. choosing the training and validation data flow cases

2. choosing the time delay with which each flow case data signal will be
presented to the neural network. In other words deciding on the number
of inputs for the neural network that will be trained.

3. splitting the training data signals into training and testing

4. normalizing the final data files.

Choosing the training and validation data flow cases

The general guide that was followed on the choices for the training and
validation data was the following.

The training flow cases should be chosen to be the ones which have the
highest degree of confidence on their flow regime class that they have been
allocated with. They should also spread to all corners and mid areas of the
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Figure 3.2: The training o and testing b cases plotted on a flow regime
diagram for the S-shape riser.

flow regime regions. More weight should be given to the confidence of their
classification as incorrectly classified data will lead to incorrectly trained
network.

The validation cases can be the rest of the data in the total data set. It
should be made sure that in this data set, there are examples from each flow
regime the network is trained to identify.

According to the above the flow cases for the two data sets that were
chosen are shown in Figure 3.2. In this figure the training cases are labelled
with a and the test cases are labelled with b.

Although the training cases that are shown in Figure 3.2 do not cover all
the corners of the slug regime, so do not comply partially with the second part
of the above guide, the main reason why the shown training cases were chosen
is that these are the cases whose flow regime class has the most confidence.

Choosing the Time Delay window

The time delay window was chosen after a rough observation of the training
time series. It was decided that the time delay window should be large enough
to contain the largest identifiable cycle found in the training time series. But
because the longest cycles are the ones found in the Severe Slugging 1 (SS1)
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flow cases and these are very long comparing to the cycles found in the other
flow regimes, it was decided that a window half of the longest cycle would be
sufficient. This was also decided upon because the SS1 time series are also
very distinctive even with half the cycle present.

As the longest training data cycle was 230 s, the delay of 100 seconds was
chosen.

Splitting the signals into training and testing parts

It is important that the same amount of data is used from all the flow cases
data in the training data set. This is to ensure that equal amount of training
is done to the network for each flow case. Although extra training may be
needed for a specific type of data, this is because some flow cases may have
too complex shapes, or the network seems to perform worse on them, during
the first attempts to train a network it is important that there is a uniform
training for all the cases. Hence to achieve this and because not all the
signals are of the same length, the shortest signal (base signal) is found and
its length is used to establish the amount of data that will be used from all
the signals in the data set. Then each signal is split into training and testing
parts, by using a 3:1 ratio respectively, determined from the base signal. For
any signals that are longer than the base signal, after the training part is
separated, all the remaining signal was used for testing.

There is also the issue of deciding which parts of the signal should be used
for training and which for testing. The aim is to make sure that the two sets
of the signal do not share any of the signal’s data points. One way to ensure
this, is by randomly allocating the delayed blocks of the time series between
the training and the testing sets. This would certainly prove to be ideal as it
would ensure that the network will be tested with examples from every part
of the signal. However this does require a significantly large data sets for the
reason that a single delay sized data block chosen to be used for training will
make (2 x delay — 1) number of data blocks unsuitable to be used for testing.
This is because any block which has its origin within the first one will share
some of its data points with it and there are (delay — 1) data points which
can be used as origins for other delayed data blocks. For example if the delay
is 100 data points, as it was used for some of our experiments, and following
the 3-to-1 ratio between training and test data blocks there can be only one
set of training/test blocks (300 training and 100 test) from every 600 (300
training + next 100 obsolete 4+ 100 test + next 100 obsolete) data points.
If the signal was sampled at 1 Hz this would mean that there could only be
one training/test set from every 600 seconds or 10 minutes of data points.

Therefore the random selection of the test data has not been chosen to
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be used here especially when some of the data files contain less than 600 s
of recording. For this reason the signal is split into blocks whose size is at
least the size of the delay window. Then using the 3:1 ratio mentioned above
the first part of the signal is used for training and the rest of the signal for
testing.

Another issue here is that there should be at least 400 s of recording in
any of the data files to be used. The 400 s would give 100 data sets for
training and 100 data sets for testing, which is the minimum number of data
sets for training and testing that can be obtained. This does not follow the
3:1 ratio mentioned previously but still gives data sets large enough to work
with.

In general the data from the different flow regime cases were processed
following the concept shown in Figure 3.3.
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Figure 3.3: Chart of all the processing steps carried out on the data files for
each system where a flow regime identification model was attempted to be
build.
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Chapter 4

Multiphase Flow Data
Collection Experiments

Three different types of data sets were collected experimentally or synthesized
in order for the new methodology to be developed, and in turn to be also
tested.

Originally a set of synthetic time series of four well defined classes, was
generated, so that the behaviour of the artificial neural networks with respect
to inputs of time series data could be investigated. After some important
conclusions were made and a methodology was formed, a set of two experi-
mental data sets was obtained in order for the newly developed methodology
to be tested with. One of these sets was data from a horizontal multiphase
flow system and the second was from a S-shape riser system.

This chapter gives a description of the three sets of data that were ob-
tained, together with the experimental facilities that were used in the process.
Also an account on the data analysis that was carried out for each of the data
sets is given. Hence the chapter has been organized into three sections, one
for each data set, with a number of relevant sub sections.

4.1 Synthetic Data

This section describes the first system that the new methodology was ap-
plied on. This is a conceptual system which could be thought of as a more
general hypothetical dynamic system. The data used here were synthetically
generated from combinations of sine waves. The specifications which were fol-
lowed in order to decide on the type of signals that should be generated were
based on observation on pressure signals collected from real multiphase flows
in pipes. These signals, among them, had variations in shape, frequency
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and magnitude of amplitude. Hence according to these observations, the
following equations were used to generate four signals which, among them,
incorporated the above three variations. The number of signals types that
were going to be generated was chosen arbitrarily. Samples of the actual

signals are shown in Figure 4.1
a = Asin(wt) Signal No.1

a = Asin(wt) + 4sin(%t)  Signal No.2

a= Asin(wt) — 4sin(¥¢)  Signal No.3

a = Asin((t?) + sin((wt)?)) Signal No.4

where
a = signal amplitude
A = sine wave amplitude, was set equal to 4 for all the Signals
except Signal 4, for which it was set equal to 1
w = angular frequency w = 2n f
f = frequency, was set equal to 1
t = time in seconds, it was incremented every 0.25 s (sampling

frequency f;)

Because the above signals were formed from combinations of sine waves
and sine waves from their nature are periodic, this does not reflect the nature
of signals obtained from real systems. Such signals are infested with non
periodicities and noise. Hence in order to test the methodology with a more
realistic conceptual system the data that were generated with the above
equations were transformed to “noisy” versions by altering the parameter A
once every two periods (T') with 7' = 1%. The alteration value was allowed
to randomly vary within the [-0.5,0.5] interval. This random variation of the
amplitude A parameter, altered the amplitude a of the original signals by
+ 10% on average for signals 1, 2 and 3 and + 50% for signal 4. All the
alteration values that were added to the constant parameter A in the above
equations is shown in Figure 4.2.

Another reason for creating this “noisy” version of the signals was to
vary each cycle, of the original periodic signals, from the rest. This way a
better test would be performed on the abilities of a neural network to learn to
identify a signal. This is because each signal will be sectioned into a training
and a test part and the two of them will not contain any subsections which
could be common to both parts. The resulted “noisy” signals, are shown in
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Figure 4.2: All the random amplitude modification values that were used on
top of A =4 for Signals 1, 2 and 3, and A = 1 for Signal 4.

Figure 4.3, all plotted one after the other. For comparison their “clean” from
“noise” versions are also plotted in the same fashion and also the same order.
The motivation behind these experiments was:

e to develop and test the methodology against data of well known classes
where there was no issue of subjectivity.

e for familiarization purposes both with the

— ANN theory and software applications that go along with it and

— working with time series.

4.1.1 Data Analysis

Since this set of data was generated synthetically, the classes that each of the
signals belonged to was predetermined. Hence there was no need to analyze
the data in order to find out how they are clustered with respect to each
other. This was all ready known.
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Figure 4.3: The resulted “clean” and “noisy” versions of the above time series
(same order, signals 1, 2, 3, 4).

4.2 Horizontal Multiphase System

These multiphase flow experiments were required in order to collect two-
phase flow data, from a horizontal pipe, for as many flow regimes as possible,
given the existing experimental facilities.

4.2.1 Three Phase Test Facilities

A simplified description of the 3-phase test facilities that were used, together
with the test section employed to collect the data, are shown in Figure 4.4.

The main components of the test facilities that were of most importance
for the experiments are the following:

e Air compressor

e Water pump

e Air-Liquid mixer

e Data acquisition system
o Test rig

These are briefly described in the following paragraphs and a description of
the test rig is given in Section 4.2.2.

Oil and water are pumped from their reservoirs, through their metering
points and into the mixing stage. At the same time air is compressed into
a buffer vessel of 2.57 m?® to about 10 bar in order to obtain a constant,
stabilized flow. The compressed air then expands through its metering point,
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Figure 4.4: Diagram of the multiphase flow facilities incorporating the hori-
zontal test section.
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before which, its flow rate is controlled by a needle valve. The liquid and
the gas are then mixed together before entering the horizontal part of the
test rig and into the test section. From the liquid—air mixing point up to the
separator inlet, all pipes were of 4 inch diameter, unless otherwise stated.
The horizontal section before the test section was 370 cm long (36 diameters).
The test section was 342 cm long and at a distance of 333 ¢m from its end
there was a transparent section, 105 cm long and with 113 mm diameter.
The test section was formed of pipes with 102 mm diameter and the rest
of the pipeline, apart from some pipe sections on the facilities which were
made of steel, connecting the test section to the 3-phase facilities was made of
plastic pipes of 100 mm diameter. After the transparent section there was an
extra 572 cm of horizontal pipe before the fluid went down a significant length
of a gradually lowered pipeline and finally reach a riser of 167 cm height in
order to enter into the separator. At this point a primary separation of the
phases was carried out, with the air escaping into the atmosphere and the
oil and water directed into the respective coalescers for further more fine
separation. Finally from the coalescers the two fluids were flushed back into
their reservoirs and repeated their cycle.

The Air Compressor The compressor supplying the air was an Atlas
Copco reciprocating type with a maximum supply capacity of 600 m?/hr
Free Air Delivery (FAD) at 18 bar.

The Water Pump The pumps supplying the water and oil were of a
Worthington Simpson, positive displacement type. They have maximum
capacity of 35 m?®/hr and discharge pressure of 6 bar. Their output flow rate
was controlled crudely by using a by-pass line back to the pump inlet, in
order to re-circulate any excess fluid.

The Air-Liquid Mixer The air-liquid mixing was achieved by inserting
a 20 mm diameter pipe, from a T-junction into the main facilities pipe, with
an outlet parallel to the direction of the flow (see Figure 4.5).

The Data Acquisition System The Data Acquisition (DAQ) system
used an Analogue to Digital (A/D) converter card which was installed in a
800 MHz PCI computer. The card was of a PCI-MIO-16E-4 type with a
speed of 250 kS/s (250 kHz) in single channel operation.

The resolution available was 12 bit which gave 2.4 mV resolution on 10 V full
scale. The maximum sampling rate that was allowed by the DAQ software
was 1 kHz.
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Figure 4.5: Diagram of the Air-Liquid Mixer.

4.2.2 The Test Rig

A detailed diagram of the test rig is shown in Figure 4.6 including the hori-
zontal inlet and outlet sections. The instrumentation attached to the rig and
their actual order was (see picture in Figure 4.7):

1. Gamma ray density gauge

2. Capacitance measurement system 1
3. Conductance transmitter 1

4. Capacitance measurement system 2
5. Conductance transmitter 2

6. Absolute pressure transducer

7. Differential pressure transducer 1
8. Differential pressure transducer 2

9. Temperature transducer
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Figure 4.6: Diagram of the test rig that was used for the experiments.

Gamma Ray Density Gauge

The gamma ray density gauge, by Ronan Engineering Limited, comprises a
shielded source holder containing a radioactive Cesium (Cs-137) source, a
detector unit and a signal processing box. The source had a strength of 185
MBq.

The source holder and the detector are mounted directly opposite each
other across a stainless steel pipe. During operation a beam of gamma radia-
tion is directed from the source holder, through the complete cross sectional
area of the pipe and the process material inside it, onto the surface of the
detector. Some amount of radiation is absorbed by the material through
which it passes and some is transmitted to the surface of the detector. The
absorbed radiation is directly related to the density (or mass) of the material
it went through while the transmitted radiation is inversely related to that
density (or mass).

The electronics in the signal processing box scan the transmitted radiation
every 125 ms (8 Hz) and calculate an average of the signal for every 100 ms.
This characteristic of the instrument makes it unsuitable for certain flow
conditions (e.g. slug flow and bubbly flow). Hence for such flows it is more
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Figure 4.7: Picture of the horizontal test rig. The Gamma densitometer is
on the far side.
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appropriate to use the raw data from the densitometer before the processing,
which gives the radiation transmitted through the processing material onto
the detector in the form of counts or pulses, which are sampled every 1 ms (1
kHz). These counts can be converted to density values afterwards by using
the following equation

RD = Roe_“pt

Capacitance Measurement System

This measuring system was supplied by Siemens Milltronics Process Instru-
ments B.V. and combines a flow sensor assembly, model MFT300, and a flow
transmitter, model MFT200. It provides a fast signal response of up to every
1 ms (1 kHz). It responds both for water and oil, although its response for
the later is much lower in signal output.

Conductance Transmitter

The conductance transmitter, model MGT9500, was supplied by Siemens
Milltronics Process Instruments B.V. It is only suitable for products with
high conductivity, e.g. water but not oil. It lets a very small current to flow
through the product between a pair of ring electrodes. It has a fast response
time of up to 1 kHz.

Absolute Pressure Transducer

The absolute pressure transducer, model PMP 4010, was supplied by Druck
and it was of a silicon diaphragm type. It had a range of 20 bar and an output
voltage of 0 to 5 V D.C. It incorporated corrections for thermal induced errors
and Non-Linearity and Hysteresis of +/- 0.08 % maximum.

Differential Pressure Transducer

The differential pressure transducers, model PMP 4110, were supplied by
Druck and were of the silicon diaphragm type. They had a range of 0.7 bar
and output voltage of 0 to 5 V D.C. They incorporated corrections for thermal
induced errors and Non-Linearity and Hysteresis of +/- 0.08 % maximum.

They were mounted across the top and bottom of the stainless steel pipe
and measured the differential pressure between the mountings.
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Superficial Velocity range (m/s)
Test set No. of test points Air Water Oil
Air-Water 38 0.01 - 5.03 | 0.005 - 0.85 NA
Oil-Water 8 NA 0.02-0.97 | 0.14-0.28
Air-Oil-Water 27 0.03-2.97 | 0.03-1.01 | 0.03-0.29

Table 4.1: Table showing the test matrix together with the velocity ranges
used for each of the phases.

Temperature Transducer

The temperature transducer, supplied by CT Services, was a T-type thermo-
couple. It had a range of -200 to 400 °C. Its signal response was of the order
of 1 Hz.

4.2.3 Experiments

There were 2-phase (Air-Water and Oil-Water) and 3-phase (Air-Oil-Water)
experiments carried out using the three phase test facilities and test rig de-
scribed at the beginning of Section 4.2.1. The rig operating pressure was
kept between 2 and 3 bar.

The procedure for the experiments, involved:

e setting the flow rates for each of the phases involved
e allowing a 5 minutes period for the flow to settle down

e recording data for the next 5 minutes at least. For some flow regimes
with long or unrecognizable cycles (e.g. flow regimes close to transi-
tional boundaries or slug flows) the recording time was longer. Some-
times up to 20 minutes long.

The five minutes settling time was decided experimentally.

The test matrix, which shows the number of test points that were ob-

tained and the flow rate ranges for each of the phases, for all the three above
mentioned experiments is shown in Table 4.1. The limited number of Oil-
Water tests was due to the shortage of oil. Hence tests with higher oil flow
rates could not be carried out.
A more detailed description of each of the test cases is given in the following,
specific to each case sections. In this thesis only the Air-Water two-phase
flows are being presented since they were the only data that was utilized to
apply the new methodology on.
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A flow regime map that was drawn for the specific test rig and was used
as a guide to create a test matrix for each set of experiments is shown in
Figure 4.8. This flow regime map was created with the Barnea® unified
model for predicting flow pattern transitions [2].

Flow Regime Map for Air-Water, Horizontal flow (102mm pipe diam.)
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Figure 4.8: Flow regime map created using the D. Barnea unified model [2],
for the 102 mm ’test rig’ pipe diameter.

2-Phase Air-Water

There were 38 experimental points obtained on the flow regime map for this
set of experiments. They are shown superimposed on the above flow regime
map in Figure 4.9.

!Determines the flow regime in a flow given the gas and liquid velocities, pipe diameter
and fluid properties. Software was provided by Christian Omgba-Essama from Cranfield
University.
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Flow Regime Map for Air-Water, Horizontal flow (102mm pipe diam.)
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Experimental | 1 2 3 4 5 6 7 8 9 10

flow case

Flow regime | StS | StS | StS | StS | StS | StS | StS | StS | StS | StS

class

Experimental | 12 | 13 | 14 | 15 | 17 | 18 19 20 | 21 22
flow case

Flow regime | StS | StS | StS | StS | StS | StS | T(SSW) | StS | SW | T(BSW)
class

Experimental | 23 | 24 | 25 26 27 | 28 |29 30 31 | 32
flow case

Flow regime | SW |SW | B | T(BSW) |SW |SW | B | T(SW) | B | B
class

Experimental | 33 | 34 35 36 | 37 | 38

flow case

Flow regime | S | B|T(BS)| S | S| S

class

Table 4.2: Table showing a summary of all the flow cases for which data was
collected and the flow regimes they were classified with from visual observa-

tions.

4.2.4 Data Analysis

The flow regime present in each of the flow cases was determined from visual
analysis of video recordings and the time series of the collected data itself.
The results of the analysis are summarised in Table 4.2

where

= Stratified Smooth

Stratified Wavy
Bubble
Slug
Transition between Stratified Smooth and Stratified Wavy
Transition between Bubble, Slug and Stratified Wavy
Transition between Slug and Stratified Wavy

= Transition between Bubble and Slug

A flow regime map that was drawn from the observations and Table 4.2
is shown in Figure 4.10
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Figure 4.11: Examples of data from the four flow regimes (clockwise from
top left): Bubble, Slug, Stratified Smooth and Stratified Wavy, collected

from the Horizontal system.

As it can be seen from Figure 4.10 the data that was used belonged to

the following four flow regimes

1. Bubble
2. Slug
3. Stratified Smooth and

4. Stratified Wavy

Example signals from all of the four flow patterns are shown in Figure 4.11.

From observing the stratified smooth signal one wonders why there are
waves in this flow pattern. The explanation that can be given is the waves
are present due to the pipeline geometry. More specifically at the inlet of
the horizontal test section there was a small riser (see Figure 4.12), 60 cm
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Figure 4.12: The small riser found at the inlet of the test section. This could
be the cause for the small waves seen during stratified smooth flows.

in height and 70 in length, which could have caused at occasions, for the
air to be blocked before the inlet of the riser, by the water inside it. Hence
the blocked air would build up pressure until it is sufficiently high to push
a small volume of water and reach the inlet of the small riser where it can
push its way through the water. This displacement of the small volume of
water causes the small ripples seen in the signal as the water is pushed in
the horizontal section. A similar effect could be caused by the bigger riser
found at the far end of the test section were the pipeline enters the inlet of
the separator (see Figure 4.13). This riser was 167 cm in height. Due to its
bigger size, this riser could explain the occasional sightings of the slightly
bigger waves that can be seen in the time series of the stratified smooth
signals.

This phenomenon was also presented by Takenaka [32] in his review of
some problems found present in gas-liquid flows. He states that although
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Figure 4.13: The slightly larger riser found at the end of the test section,
where the pipeline enters the separator.
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trapped air always absorbs surges of pressure, Kitagawa [17] has revealed
in his 1975 paper (in Japanese) that under certain conditions, the pressure
surge was enhanced by such an air chamber or trapped air. It is believed that
such a condition is the one specified above. In more detail the trapped air
at the bottom of the larger riser preceding the separator, builds up pressure.
When this pressure becomes high enough it pushes the water in the riser
causing a pressure drop in the pipe line. This pressure drop is followed by a
sudden water level rise which is portrayed by the larger of the waves in time
series of the Stratified flows shown in Figure 4.11. In turn the movement of
the water reduces the pressure in the smaller riser on the other side of the
test rig and allows the trapped air on that side to enter the riser and push a
small amount of water into the horizontal section causing the smaller waves
that follow the larger first one.
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Separator

Figure 4.14: Simplified diagram of the S-shape riser rig used to collect the
third set of data.

4.3 S-shape Riser System

These sets of data were collected by Montgomery and a more detail descrip-
tion of the rig and the data collected is given in his thesis [24]. For conve-
nience a brief description is given here and a simplified diagram is shown in
Figure 4.14. The S-shape riser system consisted of a 50 mm (2 inch) carbon
steel flanged sections. The inlet section was inclined at -2° to the horizon-
tal and had a total length of 57.4 m. The riser was a Lazy-S configuration
and had a total height of 10 m and length of 21 m. The flow from the top
of the riser progresses around a 90° bend and exits the test section into a
0.5 m diameter separator. From the separator the fluids were metered and
recombined to be returned to the base facilities.

There was pressure and liquid hold up monitored at different positions
on the riser. From these, for the flow regime identification purposes of this
work, the pressure signals were chosen to be used since pressure is a parameter
which reflects the a state of a multiphase system in a more global manner
than the liquid hold which only shows the condition of the system at the
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point of measurement. This global representation of the system is important
for online monitoring of flow regimes since identification of any changes are
desirable well before the change in condition reaches the processing facilities.
Also this is of much greater importance in S-shape risers and risers in general
than horizontal pipes, because cycles are much longer there and the flow
regime varies at different sections of the riser. From the total number of
pressure signals that were available, P1, P2, P3 and P4 were chosen to be
investigated for their fitness to our purposes and their positions are shown in
Figure 4.14. The reasons behind these choices were the following. P1 gives
an indication of what is happening in all the riser above it, which is the area
of interest since its geometry is what causes any undesirable flow regimes
to be formed. Still P1 is located at a position which in real life systems
could be at the bottom of the ocean, hence difficult to reach and expensive
for any instruments to be installed. Hence the other three pressure signals
were also chosen for their convenience in locality and out of interest to see
if there was any significant difference between them. As it is mentioned in
more detail in the analysis of the data in Section 4.3.1 the difference between
pressure signals P1 and P4 was chosen to be used for this work due to its best
distribution and separation that it showed for each flow case signal. However
the differences in shape between all of the raw signals were quite small and
there is a strong possibility that the P2, P3 or P4 signals could have sufficed
on their own.

All the flow cases that were used are shown on a flow regime map in
Figure 4.15

As it can be seen from Figure 4.15 the data that was used belonged to the
following four flow regimes

1. Bubble
2. Oscillation
3. Slug and

4. Severe Slugging 1

Example signals from all of the four flow patterns are shown in Figure 4.16.

4.3.1 Data Analysis

For this system, although each experimental set of data was all ready ana-
lyzed and classified into a flow regime, there was a number of pressure signals
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Figure 4.15: Experimental data points for the S-shape riser rig.

available to be used with the neural network methodology presented in this
thesis. In order to choose which one would be best to use, it was highly
desirable to try and visualize them.

It is always helpful to obtain a visual observation of data which will be
attempted to be clustered, whether ANN are to be involved or not. A visual
observation is usually obtained with a plot. This means that the data vectors
can not have more than three dimensions. Some graphics applications can
go a step further and plot up to four dimensional vectors by using as a fourth
dimension on the plot, colour. Since for this set of data there were no visual
observations from the experiments to help with their classification into the
appropriate flow regimes or with the validation of their classifications, it was
desirable to try and plot the data. In the case of the current methodology,
the information used with the neural networks is formed from much higher
dimensional sets. They go as high as 200 dimensions, which makes it impos-
sible to obtain a visual image of it with the usual methods. For this reason
the Sammon Mapping method (see section B in the Appendices) was used
in order to map the high dimensional data into 2D and obtain an indication
of the clusters they are separated into.

For the observations given below, plots of shuffled input data were used.
This is because, to use all the data with the Sammon map software caused
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Figure 4.16: Examples of data from the four flow regimes (clockwise from
top left): Bubble, Oscillation, Slug and Severe Slugging 1, collected from the
S-shaped Riser.



4.3. S-SHAPE RISER SYSTEM 49

T T T
SLLC  + s2_tlsixt SLLC  + s2_tlsixt

25 SI_Ie  x 's2_t18.txt"
§ SIT7 B 27119,

's2_t18.0xt"
S2_t19.xt

ee
I

's1_t16.0xt"

ox
ee

'$2_t21.txt’

_t27.

's2_t30.txt"
's2_t3L.xt

's2_t30.txt"
's2_t3L.xt

eeccooo
eeccooo

's2_t8.txt

's2_t8.txt
s2_t9.txt’ 2

S219.txt

oo
I
o
T
oo
I

T T
SLLC  + s2_tlsixt SLLC  + s2_tlsixt

SI_I6Xt 's2_t18.txt’

S1_tI6Xt 's2_t18.txt’
SLt7.xt o S2_t19.txt

SL 7.t © S2_t19.txt

ee
ee

2 . 2 .
<y, . . Saee . .
I3 [ ﬁ a o s Xt 4 s2 ®
: o % . o 2 sl_t2lxt’  « s2_t23. o
il . v ° e sit23uxt v 52t °
1b : ey 8 1k L Hen 8
'8 ] SIBX o 'S2_ 30 © SIBX o 'S2_ 30 ©
a5 52 sITGt e S2BLXC e " sITGt e S2BLXC e
. «
o e ‘
0 i s’ S SO o 2t s | 0 2t 8|
X a0 o ] ]
r SRR I 53 Er e X
]
. . d \3’3 ‘ .
YL
L
2 2
o ad
3 3
2 1 0 1 2 3 4 2 1 0 1 2 3 4

Figure 4.17: Sammon maps drawn for pressure signals collected from four
different positions of the S-shape riser. The four positions, clockwise were
P1-P4, P1, P3, P2.

the computer to run out of memory and stop the process without completing
it. As it is mentioned in the appendices, this is a limitation of the software
and it is caused due to the large amounts of computations that it carries out.
Hence a smaller amount of less data was taken from each flow case file that
was processed for SNNS. In order to get a good representation of the full
signal from each flow case, the small number of 200 rows from each file were
taken randomly, hence the shuffled input data. It should be mentioned just
for comparison that 13 out of the 31 SNNS processed files, had 1400 rows.
The rest were a mixture between 500 and 900 rows. Also the use of less
data made the 2-D maps less cluttered, which helped in their observation.
Referring to Figure 4.14, Figure 4.17 shows the Sammon maps for neural
network input data sets generated from signals of the following pressures:
P1, P2, P3 and P1-P4.

In order to help with their analysis, the more general Sammon maps
shown in Figure 4.17 were further simplified by creating separate maps for
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Figure 4.18: Sammon Map of the Bubble (left) and Oscillation (right) cases
for the P1-P4 data.

each flow regime. Such maps are shown in the following paragraphs between
Figures 4.18 and 4.23 for the P1-P4 data. Also magnifications of regions
of the more general Sammon maps were created to help with the task. An
example of such magnifications is shown for the P2 data in Figure 4.24 at
the end of this chapter. These graphs are given with and without the SS1
cases, because as it will be shown below, the SS1 points in the Sammon maps,
overlap with many of the data points of the other flow regimes.

The conclusion from the analysis was that the P1-P4 data showed less
overlap between the different flow regime clusters than the P1, P2 and P3
data. By overlapping it is meant that parts of the signals from one flow
regime show enough similarities with parts of the signals from other flow
regimes for their vectors to fall on the same position of a two dimensional
space. Such a characteristic of the data is undesirable if a neural network is
to be trained to distinguish between them. In the following paragraph the
detailed analysis is given for the P1-P4 data as an example of the method
that was used to analyze them. For the flow case numbers refer to Figure C.1
in the appendices which follows the same labelling system as the labels in
the Sammon maps.

P1-P4 Sammon Map 2-D data analysis

e The Bubble and Oscillation data show no overlap at all (see Fig-
ure 4.18).

e Between the Bubble and Slug clusters (see Figure 4.19), there is only
partial overlapping from some of the Slug case 11 data with some of the
data from almost all but three of the Bubble cases. From examining
the time series part of case 11 does look like bubble and it is also close
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Figure 4.19: Sammon Map of the Bubble (left) and Slug (right) cases for the
P1-P4 data.
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Figure 4.20: Sammon Map of the Slug (left) and Oscillation (right) cases for
the P1-P4 data.

to the 32 and 33 bubble cases (see flow regime map in Figure 4.15).
Hence it can be considered transitional.

Between Slug and Oscillation cases (see Figure 4.20), there is only part
of the Slug case 15 that overlaps with some of the Oscillation case 21
and Oscillation case 22 data. Still case 15 is close enough to the borders
of the two flow regimes to be considered transitional. Also, case 15 was
originally classified as Oscillation flow by Montgomery in his thesis.
But a closer comparison of its time series with other Oscillation and
the Slug flows available it was decided that it was more appropriate to
classify it as Slug.

Between the Bubble and SS1(see Figure 4.21): the Bubble cases 31,
32 and 33 are completely clear from any other flow regime data. The
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Figure 4.21: Sammon Map of the Bubble (left) and Severe Slugging 1 (right)
cases for the P1-P4 data.
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Figure 4.22: Sammon Map of the Oscillation (left) and Severe Slugging 1
(right) cases for the P1-P4 data.

rest of the Bubble cases which are on top of each other in one cluster
overlap with some of the SS1 case 7 data.

e Between the Oscillation and the SS1 cases (see Figure 4.22), all the
Oscillation data overlap with the SS1 case 23 data.

e Between the Slug and the SS1 cases (see Figure 4.23), there are the
following data overlaps:

— some of the SS1 case 7 data overlap with some of Slug case 11
data.

— all of the Slug case 3 and 5 data overlap with some of the SS1 case
7 data.
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Figure 4.23: Sammon Map of the Slug (left) and Severe Slugging 1 (right)
cases for the P1-P4 data.

— all of the Slug case 17 data overlap with some of the SS1 case 23
data.

— all of the Slug case 6 data overlap with some of the SS1 case 7
data.

— of course there is also the same overlap between the SS1 and the
Slug cases, as it is mentioned above between the oscillation and
the slug data, since all the oscillation cases overlapped with the
SS1 case 7 data.
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Figure 4.24: Sammon maps of the top left corner, the middle area, all the
Sammon map without the SS1 cases (single graph), a magnification of the
centre of the middle area and finally the bottom right corner of the complete
map, which is shown in Figure 4.17 for the P2 pressure signal. Each row
shows the specified map with and without the SS1 cases. The graphs on the
left are with the SS1 cases, the ones on the right are without.
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Chapter 5

New Methodology Tests and
Results

According to the new methodology, described in Section 3, in order for a two-
phase flow regime identification model to be build there is the requirement
for the following two parts to be available:

1. A data signal which describes the characteristic condition in the pipe.
For the systems that were used in this work this condition was; for the
Horizontal system the liquid level at a cross section of the pipe; for the
S-shape riser the pressure difference between the base and the top of
the riser.

2. A Time Lagged Feedforward artificial neural network (TLFN).

In this chapter, flow regime identification models are build and described for
input data signals obtained from the three different types of systems that
were described in Chapter 4:

e An imaginary system with synthetic data
e A horizontal multiphase flow system and
e A S-shaped riser.

The performance of the resulting models is evaluated according to their abil-
ity to identify the type of signal that a given input belongs to. The main
concepts of the data processing and neural network topology construction
procedure are also described. These are common for all the neural network
experiments that were carried out, therefore they are presented separately in
the following sections.
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5.1 Data Preprocessing

All the different cases of data for each experiment were split into:
e Training and
e Validation data.

The training data were used to train a new neural network for the specific
task of identifying the flow regime the input data belong to. The Validation
data were used to test the trained network with data from new cases that
were not used during training. The training data were further split into:

e Training and
e Testing data

The training data were used to adapt the weights until the network produced
the desired response. The test data were taken from the same cases as the
training data however the actual input examples were not also present in the
former, they were new. This set of data was used to assess the performance
of the network during training. The results of this testing were used to
decide when the network was sufficiently accurate or would not improve in
performance anymore. This procedure was employed because it is of interest
to obtain a network that performs well on a wide range of cases and not
only on the ones present in the training data set. So it is important for the
network to be able to generalize. Hence by testing the trained network on
data it has not seen before, the network with the best generalization can be
decided upon.

Furthermore the time series that were collected experimentally or gen-
erated synthetically, were sampled with a specific to each methodology—
application delay window (see Section 3.1). It was found that the size of
this window is dependent on the data obtained for each case of application,
so it is identified and described separately in the following sections below,
where the methodology applications are described.

For each two files (the training and the testing file) that were to be used
during the training process were created for each of the experimental cases
described in the following sections, according to Equations 5.1 and 5.2. These
equations were used to determine how many data from each data file were
to be used for the training data file and how many for the testing data file.
The general rule was that a quarter of each data file (test fraction) was to be
used for the testing data file and the rest three quarters (training fraction)
for the training data file.
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(data points in the file) — (size of delay window)

test fraction = 1

(5.1)

training fraction = 3(testing fraction) (5.2)

Each row in these files is made of the input data together with their
corresponding output data, with the inputs preceding the outputs. These
rows of data made to be used with the neural network is called a pattern
and every such file is called a pattern file. An example of a neural network
pattern file is given in Section D.1. This is a specific pattern file to the
SNNS (Stuttgard Neural Network Simulator) software that was used for all
the neural network simulations.

5.1.1 Data normalisation

All the neural network input data before they were used with the neural
networks they were normalised between the values of -2 and 2 according to
Equation 5.3.

T — Tmin
N = r(mmm — Qfmm) s (5.3)
where
x = Amplitude value from the time series that will be used as an
input to the neural network.
r = Magnitude of the range within which the normalized data
should lie in.
S = The shift coefficient that sets the start position of the data
range specified by r.
Tmin = The smallest amplitude value present, in all the timeseries
used for the training and testing data sets.
Tmex = The largest amplitude value present, in all the timeseries used

for the training and testing data sets.

The normalization of the input to the neural network data was necessary
because of the activation function that is used with all the hidden and output
nodes of the neural network. This function is called the Logistic Sigmoidal
function and its general form is described by Equation 5.4. In this equation
0 specifies the gradient of the curve. The larger the value of 6 the steeper
the curve and the closer to the step function it reaches. For the experiments
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U(A+exp(x) ——

Figure 5.1: Plot of the activation function that was used for the input and
hidden units in the neural networks.

presented here 6 was equal to one and a plot of the specific sigmoidal function
is shown in Figure 5.1. The presence of the activation function in the neural
network is justified in Section A.1.

1

- 5.4
1+e 0= (5-4)

Y

From the plot it can be seen that for any —5 < x < 5 the output of the
function y is constant. As the inputs that are used with the neural network
are collected from real life systems, they could contain values much larger
than 5 or much smaller than -5. This means that when these values are put
through the nodes of the neural network and their activation function, they
will cause the nodes to always output zero or one. This is not desirable as it
will cause the neural network to output the wrong results. Hence the data
were normalized between -2 and 2 in order to avoid as much as possible the
regions of the Sigmoidal functions where it starts to become constant whilst
at the same time utilizing as much as possible of its linear region.
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5.2 Neural Network topology building con-
cept

The neural network architecture that was considered for the creation of the
flow regime identification model was the Multilayer Perceptron (MLP) with
only one hidden layer (see Chapter 2). As with every neural network appli-
cation there is the issue of deciding on the number of nodes to be used in
each of the layers.

For the input layer a suitable delay window had to be determined. This
would specify the number of the input units. An examination of the signals
obtained for each specific system was carried out focusing mainly on the
lengths of any obvious cycles in the data. Such lengths were usually obtained
from distances between peaks, if these were present. From these observations
and a few tests it was decided to use:

e 4 s for the synthetic data. This means there will be 16 inputs as the
data were generated with a frequency 4 Hz.

e 20 s for the horizontal flow data, i.e. there will be 200 inputs as their
sampling frequency was 10 Hz.

e 100 s for the S-riser data, i.e. there will be 100 inputs since their
sampling frequency was 1 Hz.

The outputs of the neural network were the same as the number of classes
that the data were obtained from. As there were four classes for all the
experiments the output units for all the neural network models were four.

The number of hidden units was determined following the heuristic men-
tioned by Tarassenko [33] which states that the number of training examples
(N) (i.e. the number of input vectors in the training set) that should be
used, at most, should be equal to ten times the number of weights (W) in
the network. This suggests that the network size is all ready known and the
number of data to be used is the requirement. In our methodology we have
taken the same idea in the reverse and more practical direction, where the
size of the hidden layer is the unknown and there is all ready a set of data
available which should be as large as it is reasonable, given some external
restrictions.

Since W =IH + HO = H(I + O) and

N = 10W then
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N =10H(I + 0) =

N
H=———— 5.5
10(1 +0O) (5:5)
where
I = number of input units
H = number of hidden units
O = number of output units

This rule uses the number of training examples (N) available as well as
the all ready known sizes of the input and output layers. Since the size of
the other two layers is fixed from the problem at hand, the size of the hidden
layer is mainly dependent on the available data base. Hence by applying
Equation 5.5 for the three sets of experiments, the number of hidden units
that were used for each of the neural networks were:

e 7 for the conceptual system.
e 14 for the horizontal system.

e 10 for the S-shape riser system.

These estimations for the right number of hidden units may be slightly
different in the following sections where the results are being presented. This
is because these values were used as indications of the hidden units number
that may be suitable. Extra tests were carried out in order to find the
optimum number of hidden units for which the best results were obtained.

5.2.1 Mathematical Model

Every Neural Network model that has been created and described in the
following sections, according to Figure 5.2 mathematically is represented with
Equation 5.6.

1

“Tret (56)

Y
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Figure 5.2: Example of an MLP neural network.
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u 1
k = Who—
hz::1< o1+ e—l)
I
I = Z(wihxih)
i=1
where
r = inputs
1 input units index
h = hidden units index
o = output units index
w = weight values between the units specified by the indices

The only difference between each of the models is the number of input (/) and
hidden (H) units and the number and values for their weights (w). Hence
in order for such a model to be used the above parameters are needed to be
known. With neural network applications all this is stored in the network file.
For the models mentioned later these network files are given in Appendix D.

The fraction ; L ig the activation function that was used for each of
the hidden and output units (see above Section 5.1.1 and in the Appendix
section A). The Equation 5.6 does not necessarily represent other models
that were build with a MLP or a TLFN neural network. This is because this
equation is dependent on the activation function that was chosen to be used
and the connections between the units in the networks (see Section A.1).
The networks that were used here were fully connected (all the units of the
previous layer are connected with all the units of the next layer) but this
is not always the case. Also the activation function that was used here was
the Logistic Sigmoidal (see Section 5.1.1) but it could also be some other
differentiable function.

5.2.2 The Training process

The neural networks were trained until they reached a state at which the
difference between two consecutive training errors would not exceed the value
of 0.001 for 100 consecutive training epochs. By epoch it is meant the cycle
during which the weights of the network are adjusted for all the patterns in
the training data set. The measure that was used to check the training state
of the network was the Sum of Squared Errors (SSE) shown by Equation A.3.
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All this process of training a network until the error of its outputs does
not change anymore is called a run and there were 20 such runs carried out
during the development of all the models presented later in this chapter. The
difference between each run was in the seed that was used for the random
initialization of the weights in the network. This seed had to be different
every time and to achieve this the system time was used. This time had all
its non numeric characters removed and was used as an integer made by the
hours, minutes and seconds. The weight initialization was carried out once
at the beginning of each run to ensure that each training attempt started
with a network of a different set of weights. Otherwise each training run
would lead each time to the same trained network. The idea behind starting
each training run with a different set of weights is to try and find that set of
weights for which the network will produce the smallest error possible (global
minimum). This can not be guarantied from only one run as the training
process through the gradient descent method for reducing the error can lead
to a number of local minima in the multidimensional surface of the error
against the weights set. Hence a number of such runs have to be initiated
by making sure that each time the network starts with the different set of
weight values.

There were two different data files that were used during training. One
of them (the training data file) was used to train the network, in other words
to adjust the weights of the network. The second file (the test data file) was
used only to test the trained network after each training epoch. The best
trained network was chosen to be the one which gave the smallest SSE error
for the test data.

The training phase involved the following steps:

Step 1 Present all the examples from the training data (one epoch).

Step 2 Adjust the weights.

Step 3 Test the network that is being trained with the test data.

Step 4 Check estimated outputs from the test data against the target outputs.

Step 5 Repeat from Step 1.

By testing the network during the training phase and using the results
from the test to evaluate the so far trained network’s performance helps
on monitoring if the network is over-training or not. This is achieved by
plotting the error curves for both the training data and the test data. If
the test error curve follows the training error curve then the network is over-
training. This means that the network has reached a level where it is starting
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to memorize (over-fitting) the training data and does not perform very well
for any data outside the training set. In such a case it is said that the network
can not generalize very well any more. If instead there is a point at which
the test error curve takes an upward trajectory whereas the training error
curve continues the downward motion, then the network is being trained
properly. Examples of these two cases that occur during training are shown
in Figure 5.3. The best trained network is chosen when the two error curves
do diverge and the error of the test data is at its lowest. In the event where
the network consistently shows over-training characteristics among all the
training runs, either the test data set is too similar to the training data
set or the training data are too few for the chosen network size and they
are over-fitted. A work around this problem would be to either enlarge the
training data set or reduce the size of the network by removing some of the
hidden units. If this does not change the performance of the network then
it must be a case of the training and test data sets are too similar. There
is also the possibility for the network to show hi error values for both the
training and the test data sets. This usually happens when the network is
too small and does not have enough weights in order to map the inputs to the
outputs. Hence the addition of hidden units should improve the performance.
If this does not happen then either the problem is too complex for the neural
network technology that has been chosen or the parameters of the system
that are used as inputs to the neural network are not suitable.

5.3 Results

In this section the new methodology described in Chapter 3 is applied to
three different systems. The requirement is to train an ANN on the task of
identifying which class the input data belong to. The three systems were:
a conceptual system whose data were synthetically generated, a horizontal
multiphase flow pipe and a S-shape riser.

The performance of each trained network was assessed by determining the
number of correct, incorrect and unclassified results given by each separate
network on all the three data sets. The training, the test and the validation
data sets. This assessment was carried out by analyzing the neural network
results files with a function which uses two threshold values, a lower and an
upper one, to determine whether the response of the network to an output
is: correct, wrong or unclassified. For the analysis of the results given in the
following sections the lower threshold was set to 0.49 and the upper threshold
to 0.51. For example if the expected outputs from the output units in the
network are 0 and 1, and the lower and upper thresholds are 0.49 and 0.51
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Figure 5.3: Examples of SSE error curves plotted for the training and test
patterns. The plot on the top shows an example of how the curves look if
the network is over-fitting the data, the curve for the test patterns does not
reach a point where it starts to increase. The second plot shows the same
curves for a more properly trained network, where it possible to establish
when the network stops to generalize and begins to over-fit the data.
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‘ H Output-Unit Output ‘

Target Output 0 0 0 1
Correct y1 <049 |y <049 | y3 <0.49 | y4 > 0.51
Incorrect Y1 or ys or y3 > 0.51 14 < 0.49
more than one output give > 0.51
Unclassified non gives > 0.51
one or more give 0.49 <y < 0.51

Table 5.1: Criteria used by the 402040 function for determining the correct,
incorrect and unclassified outputs, assuming that its lower and upper thresh-
olds of the function are 0.49 and 0.51 respectively and the network has 4
output units.

respectively, then a neural network output is classified as correct, incorrect
or unclassified according to the criteria specified in Table 5.1.

5.3.1 Synthetic signal identification model

The data used here were synthetically generated from combinations of sine
waves. These were described in more detail in Chapter 4, Section 4.1. In
practise they could be thought of belonging to a more general hypothetical
system. For convenience the resulted data of the “noisy” versions of the
signals is shown again in this chapter in Figure 5.4.

An ANN was trained, with part of the above data, to identify each of
the signals from sections of these time series which the network had not
seen before. For this the same number of data examples from all the four
signals were presented to the neural network in the form of time delays. This
means that not only was the current value used at each given neural network
training step but also a number of previous values (data points). The number
of these past data points is specified by the size of the delay window.

For the above mentioned time series data, a delay value of 16 data points
was used. This delay represents the period, in data points, of signal 3 (see
Figure 4.1), the largest found among the periodic signals.

This delay value was chosen because from previous experiments it was
concluded that:

e the less inputs to the neural network the better

— smaller network
— less coefficients (weights) to adjust in order to improve results.

— less data required to train it
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e a more confident way to describe a periodic signal is to use at least
enough data points to represent one cycle.

The neural network was asked to learn to identify which signal, each
currently presented example belongs to. Since there were four signals, the
network had four outputs. Each output was dedicated to only one of the
signals, for examples of which it was expected to give the value of 1, and
0 for anything else. These two values 0 and 1 are called the target output
values and are the ones the network is trained to give from each of its output
units.

The Neural Network The “delayed” data was used to train a Time
Lagged Feedforward Neural Network (TLEN) (see Section A.3) and also to
validate it after it was trained.

The network contained three layers:

e the input layer (16 units)
e a hidden layer (7 units) and

e the output layer (4 units)

A justification for the number of units used in the input and output layers
is mentioned in Section 5.2 and are related to the delay term and the number
of signals used to build the training data.

The 7 units of the hidden layer were decide by following the heuristic also
mentioned in Section 5.2 and a number of tests to find the optimum number.
The heuristic which basically says that n training examples are sufficient to
train a Neural Network that contains around n/10 weights, indicated that
20 units would be a good number to start with. Since the training examples
were 4000 (1000 from each signal see next paragraph) and the network has
all ready been decided to have 16 inputs and 4 outputs, according to the
problem at hand, the hidden layer should have around 20 units (16x20 +
20x4 = 400 or 4000/10). However a network with this many hidden units
for the set of data that was used to train it, showed that it was over-training
and memorizing the data. This was established from observing the error
curves for the training and the test data sets, recorded during the training
process. They seemed to follow each other faithfully and at the end the test
error curve would not take an upward trajectory while the train error curve
carried out dropping. Hence further training attempts were carried out with
networks of smaller hidden layers during which the optimum was found to
be a 7 hidden layered network. The large difference between the estimated



5.3. RESULTS 71

number of hidden units and the optimum suggest that the data used for
training and testing were not very different from each other, something that
is also suggested by the results below. This is probably true as there were
only four different signals used to build the whole data set. Still this is not
so important at this stage of the research as the objectives for this set of
experiments, as stated in Section 4.1 were to identify the major areas of im-
portance in working with time series and ANN for classification. These were:

e How many inputs to be used in the ANN.

e Which ANN architecture would be suitable.

e Familiarisation with relevant software packages.
e Develop any extra software necessary.

e Develop the methodology and

e Test it on simple, clear cut cases and build the confidence that it can
work.

These objectives were met. The network that managed to classify all the
data correctly is shown in Figure 5.5 and the weights associated with it are
given in Section D.2 of the Appendix.

Model Performance The training and testing data were created accord-
ing to Equations 5.1 and 5.2, by using a delay window value of 16 and number
of classes 4. The training data file contained 4000 training patterns and was
made up of 1000 patterns from each of the signals. The test data file con-
tained 2000 patterns made up from 500 patterns from each of the signals and
the validation data file contained 1940 patterns. Patterns used in one of the
data files were not used in the rest.

Finally the classification model was tested with all the three data sets, the
training, the test and the validation data set. From the results it was con-
cluded that all the examples of all the signals were classified 100% correctly
and the methodology developed and presented in this thesis could work for
real systems.

More detailed results with number of patterns for each data case and
actual test errors from the neural network are shown in Appendix E.
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Figure 5.5: Neural Network that gave the best results for the Synthetic data.

5.3.2 Flow regime identification model for a horizontal
pipe

A two-phase flow regime identification model was built in this part of the

work for a 4 inch (102.3 mm) internal diameter horizontal pipe. The specific

experimental rig is described in Section 4.2. The fluid used, was an air and

water mixture.

The measured data from the pipe were of the liquid level indicating type,
obtained from a capacitance measurement system (see Section 4.2). An ex-
ample of a signal obtained from the instrument for a slug flow case, is shown
in Figure 5.6.

The instrument was calibrated to output 1 Volt for water full pipe and
zero for gas full pipe. Hence as it can be seen in the figure, the instrument
showed 1 V or full pipe when a slug was passing through the section of the
instrument and then eventually tailing off as the slug would get distanced.

Data were obtained only for four flow regimes due to limitations of the
multiphase facilities available and the relatively large pipe diameter. These
were:

1. Stratified Smooth (SS)
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Figure 5.6: Signal example from the capacitance measuring instrument.
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Flow Regime Map for Air-Water, Horizontal flow (102mm pipe diam.)
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Figure 5.7: Experimental data points for the 4 inch horizontal pipe.

2. Stratified Wavy (SW)
3. Bubble (B) and
4. Slug (S).

The flow cases for which data were collected, are shown on a flow regime
map in Figure 5.7.

The Neural Network A neural network was trained to identify the flow
regime that a liquid indicating signal from each of the above cases belonged
to. Again the signals were presented to the neural network through a time
delay window. The size of this window was chosen to be 20 s (200 data points
sampled at 10 Hz).

Hence the neural network for this model had

e 200 input units
e 14 hidden units and
e 4 output units.

The number of the hidden units were determined by using the Equa-
tion 5.5 in Section 5.2 with N = 30000. This network is shown in Figure 5.8
and the weights associated with it are given in Section D.3 of the Appendix.
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Figure 5.8: Neural Network that gave the best results for the Horizontal
system.
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Flow Regime Map for Air-Water, Horizontal flow (102mm pipe diam.)
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Figure 5.9: The training and model validation flow cases used.

Model Performance There were 38 cases of two-phase flow. From these 2
cases were excluded completely from the experiments as the liquid levels that
were measured were very low, almost zero. These were cases 11 and 16. From
the remaining 36 cases, 20 were used for training and 12 for Validating the
finalized trained network. Their distribution into the two types of training
patterns was done by making sure that examples from all the flow cases
were present in both the groups and also an effort was made to include
examples form all corners and mid areas of each flow regime in both groups.
The remaining 4 cases were originally identified as transitional (T) and of
no specific flow regime with respect to the classes that the rest of the data
were grouped into. Hence these four cases were left outside from the model
development process, of training, testing and validation. Still they were used
to test the final model’s performance on transitional flows. These cases were
number 18, 22, 26 and 30.

The 20 training cases, which produced 50020 training patterns were split
into, 30000 training and 20020 testing patterns. These two sets of data
were generated by separating each flow case signal into two parts with no
overlapping between the two of them, to make sure that there were shared
data points. Ideally one would want to have different flow cases for each
data set but there were simply too few cases for this to be practical. The
12 validation cases gave 47603 testing patterns. The training and validation
cases are shown on the flow regime map in Figure 5.9
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Data Type | Correctly Identified | Incorrectly Identified | Unidentified
Inputs (%) Inputs (%) Inputs (%)
Training 96.35 3.24 0.41
Testing 91.19 7.30 1.51
Validation | 91.04 6.92 2.04

Table 5.2: Total results for all the training, all the testing and all the valida-
tion data, obtained from the best trained neural network for the Horizontal
flow system.

By using the training and validation cases mentioned above and process-
ing the data as it was also mentioned above and in detail in Section 3.3, a
model was created for the specific horizontal system. Its performance was
tested by determining how many examples for each of the experimental cases
shown in Figure 5.7 had their flow regime identified correctly. This was
done for both the training and for the validation data and the results are
summarized in Table 5.2. Results for the individual flow cases are shown in
Table 5.3.

The above results are an improvement on the results published by Goud-
inakis [9]. The main source of the improvement came from normalizing the
data between -2 and 2, whereas previous results were obtained from nor-
malizing the data between 0.15 and 0.85 which was common practice. More
detailed results with number of patterns for each data case and actual test
errors from the neural network are shown in Appendix E.2.



78 CHAPTER 5. NEW METHODOLOGY TESTS AND RESULTS
Flow || Flow | Correctly | Incorrectly | Unidentified | Used During
Case || Regime| Identified | Identified | Inputs (%)

Inputs (%) | Inputs (%)

1 SS 100 0.00 0.00 Training
2 SS 100 0.00 0.00 Validation
3 SS 98.93 1.00 0.07 Training
4 SS 99.54 0.39 0.07 Validation
5 SS 99.18 0.79 0.04 Training
6 SS 99.07 0.79 0.14 Training
7 SS 99.64 0.32 0.04 Validation
8 SS 99.86 0.11 0.04 Training
9 SS 97.07 2.64 0.29 Training
10 SS 100 0.00 0.00 Training
12 SS 100 0.00 0.00 Validation
13 SS 95.43 4.21 0.36 Training
14 SS 97.54 2.14 0.32 Validation
15 SS 93.65 5.86 0.50 Training
17 SS 100 0.00 0.00 Training
18 T 29.46 51.73 18.80 Test

19 SS 91.68 7.96 0.36 Validation
20 SS 93.86 5.86 0.29 Training
21 SW 59.46 39.61 0.93 Training
22 T 1.31 92.36 6.33 Test

23 SW 46.29 47.64 6.07 Validation
24 SW 74.93 24.71 0.36 Validation
25 B 100 0.00 0.00 Training
26 T 91.46 1.92 6.62 Test

27 SW 80.61 12.04 7.36 Training
28 SW 78.40 21.33 0.27 Training
29 B 99.99 0.00 0.01 Validation
30 T 65.00 27.07 7.93 Test

31 B 100 0.00 0.00 Validation
32 B 99.66 0.00 0.34 Training
33 S 87.93 3.32 8.75 Validation
34 B 100 0.00 0.00 Training
35 S 99.42 0.00 0.58 Training
36 S 98.34 0.05 1.60 Training
37 S 70.94 18.12 10.94 Validation
38 S 84.11 9.32 6.57 Training

Table 5.3: Results obtained from the best trained neural network for the
horizontal flow data. Each flow case is shown on a flow regime map in
Figure 5.9
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5.3.3 Flow regime identification model for a S-shaped
Riser

Data for these experiments were obtained from 2-phase flow experimental
work done on a S-shape riser (see Section 4.3). These multiphase flow exper-
iments were carried out by Montgomery [24].

Although a number of different parameters were measured from the riser
and for a number of flow regimes, it was the pressure difference along the
whole riser that was used for the current experiments (see Section 4.3.1).
The flow regimes that was chosen to work with, were:

e Severe Slugging 1 (SS1)
e Bubble (B)

e Slug (S) and

e Oscillation (O)

The reason behind these choices was that these were the only ones from
the 12 flow regimes in total, which contained a significant number of data
examples. These flow cases are shown on a flow regime map in Figure 5.10

Following the methodology from the previous experiments with the syn-
thetic data, i.e. use at least a whole cycle for each of the flow regime cases
and from this cycle use as little data as possible to minimize the size of the
neural network, the raw data were sampled down. The sampling frequency
was decided to be 1Hz, as a result of plotting the data and estimating a
sampling frequency as low as possible without modifying the shape of the
time series data. Examples of the sampled signals are shown in Figure 5.11.

Again the data was presented to the neural network in the form of time
delays. For this system the delay term was chosen to be 100 s (100 data points
sampled at 1 Hz). This value was decided again after plotting the data and
measuring the length of their cycles. Although some of the SS1 flow regime
data had a cycle length of more than 200 data points, the delay of 100 was
chosen to satisfy the previously mentioned methodology and because the
shape of the SS1 signals is very distinctive with respect to the other flow
regimes.

The Neural Network The sampled and delayed data were used to train
and test once more a TLFN network of three layers:

e The input layer had 100 units.
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Figure 5.10: Flow regime map for the S-shaped Riser system. It shows all
the flow cases that were used and which flow regime they belong to. Also it
shows which cases were used to train the neural network and which to test

it during the model validation stage.
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Bubble, the Oscillation, the Slug and the Severe Slugging 1 flow patterns,
collected from the S-shaped Riser.
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Figure 5.12: Neural Network that gave the best results for the S-shaped Riser
system.
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e The hidden layer had 10 units.

e The output layer had 4 units.

Again the 100 units of the input layer were due to the delay term of 100
data points (seconds) and the 4 units of the output layer due to the four flow
regime classes chosen. The 10 units of the hidden layer were chosen again by
using Equation 5.5 and carrying out a number of tests to optimize the this
number. Since the training patterns that were used were 6300, Equation 5.5
gave as a reasonable number for the hidden units to be 6. The network for
this system is shown in Figure 5.12 and the weights associated with it are
given in Section D.4 of the Appendix.

Model Performance There were 35 cases used for this system. From
these 21 were used for training the network and the remaining 14, which
generated 15233 patterns were used to validate the final model. Each of the
signals from the 21 training cases were separated again as in the previous
systems into two parts, the training and the test part. However for these
files, because they were not of the same size, the segmentation was carried



5.3. RESULTS 83

Data Type | Correctly Identified | Incorrectly Identified | Unidentified
Inputs (%) Inputs (%) Inputs (%)
Training 95.24 0.00 4.76
Testing 96.52 0.77 2.71
Validation | 81.53 11.52 6.95

Table 5.4: Total results for all the training, all the testing and all the vali-
dation data, obtained from the best trained neural network for the S-shaped
Riser system.

out in a slightly different way than in the previous two experiments. Instead
of using the 3-to-1 ratio for all the files, where 3 parts of each signal went
for training and the last part for testing, this time the smallest file would be
found, then the 3-to-1 ratio would be applied on this file only. Then the size
of this smallest signal that was calculated to be used for training according
to the 3-to-1 ratio would also be used to separate the training parts from the
rest of flow cases and the rest of the signals would be used for testing. This
was done because it is very important to use the same amount of data from
all the signals in the training set, to avoid training the network more for one
case and less for the rest, which could affect its performance. Because of
this alteration to the separation process of the signals into training and test
parts the test patterns (8567) are much more than the training ones (6300)
although, according to the 3-to-1 segmentation ratio, a bigger portion of the
signals was supposed to be used for training.

The performance of the model that was created for the specific S-shaped
Riser system was tested by determining how many examples for each of
the experimental cases shown in Figure 5.7 had their flow regime identified
correctly. This was done for both the training and for the validation data
and the results are summarized in Table 5.4. Results for the individual flow
cases are shown in Table 5.5.

More detailed results with number of patterns for each data case and
actual test SSE errors from the neural network are shown in Appendix E.3.
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Flow || Flow | Correctly | Incorrectly | Unidentified | Used During
Case || Regime| Identified | Identified | Inputs (%)

Inputs (%) | Inputs (%)
1 B 100 0.00 0.00 Validation
2 B 100 0.00 0.00 Validation
3 S 98.93 1.00 0.07 Training
4 B 99.54 0.39 0.07 Validation
5 S 99.18 0.79 0.04 Validation
6 S 99.07 0.79 0.14 Training
7 SS1 99.64 0.32 0.04 Training
8 S 99.86 0.11 0.04 Training
9 S 97.07 2.64 0.29 Training
10 B 100 0.00 0.00 Validation
11 S 100 0.00 0.00 Validation
12 S 100 0.00 0.00 Validation
13 SS1 95.43 4.21 0.36 Validation
14 SS1 97.54 2.14 0.32 Training
15 S 93.65 5.86 0.50 Training
16 S 93.65 5.86 0.50 Training
17 S 100 0.00 0.00 Training
18 SS1 29.46 51.73 18.80 Validation
19 SS1 91.68 7.96 0.36 Training
20 O 93.86 5.86 0.29 Training
21 O 59.46 39.61 0.93 Validation
22 O 1.31 92.36 6.33 Training
23 SS1 46.29 47.64 6.07 Validation
24 S 74.93 24.71 0.36 Training
25 S 100 0.00 0.00 Validation
26 S 91.46 1.92 6.62 Training
27 B 80.61 12.04 7.36 Training
28 S 78.40 21.33 0.27 Training
29 S 99.99 0.00 0.01 Validation
30 S 65.00 27.07 7.93 Training
31 B 100 0.00 0.00 Training
32 B 99.66 0.00 0.34 Validation
33 B 87.93 3.32 8.75 Training
34 SS1 100 0.00 0.00 Training
35 SS1 99.42 0.00 0.58 Training

Table 5.5: Results obtained from the best trained neural network for the
S-shaped Riser training data. Each flow case is shown on a flow regime map
in Figure 5.10
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5.4 Conclusions

The results obtained from the conceptual system gave the vote of confidence
for the new methodology described in Chapter 3. Although the data that
were generated were only for four different signals and it could be argued
that these are not enough to train and test a network properly, they were
enough to show that it is possible to train a network to identify signals
which contained differences in frequency and amplitude, from inputs that
were formed by only a section of the signal. The network that was trained
had 16 input, 7 hidden and 4 output units and managed to identify all of the
input data correctly, according to the 402040 analyzing function described in
Table 5.1. This showed that the methodology under investigation is realistic
and feasible which were the underlying objectives of this set of experiments.

Further tests were carried out with experimental data from real systems.
One of these was the more simple horizontal pipe, multiphase flow system
and the other one was the more complex and more close to real life systems
the S-shape riser multiphase flow system. The results for both of these sys-
tems were very good. The horizontal system flow regime identification model
gave more than 91% of correct identifications for more than 97 000 patterns
(see Table 5.2). These includes the training and the validation data. The
S-shape riser flow regime identification model gave more than 95% correct
identifications for the training data (14867 patterns in total) and more than
81% correct identifications (see Table 5.4) for the validation data (15233 pat-
terns). However these results have been influenced by subjectivity which was
present at the original classification of the data and against which the neural
network models’ results have been compared. This is the case especially for
the S-shape riser data where there were no visual observations of the flow
and the data were analyzed from observing a number of measured signals.

A conclusion that was made from the numerous tests that were carried
out through out the experiments mentioned in this Chapter, was of the im-
portance that the size of the delay window has. This determines how much
of the signal the neural network can see at a time and it is dependent on the
system that the network was trained on.

Each of the models that were developed for the separate systems can
be put in application by using Equation 5.6 and substituting each model’s
respective weights which are given in Appendix D and are also provided on
a CD-ROM.

More details on the analysis of the results and a discussion on the actual
abilities and inabilities of the new methodology is given in the following
Chapter.



86 CHAPTER 5. NEW METHODOLOGY TESTS AND RESULTS



Chapter 6

Discussion

In this thesis a new methodology on the use of Artificial Neural Networks
for the identification of flow regimes in pipes has been presented. The main
characteristic of this methodology is the format in which, data from a pipe
are presented to the neural network. This format is the raw, unprocessed
nature of the data, presented in groups of consecutive data points. The size
of the group is important and is specific to the system the data is collected
from. The use of raw time series with ANN has been used for prediction
purposes (7], [10], [40], [39], but it has not been used for classification tasks
like the identification of flow regimes is. So far methodologies where ANNs
were involved required for the data to be transformed into some other form
of representation by extracting features in order to reduce the dimensionality
and in turn also reduce the training time for the neural network. There is
only one piece of work where a similar methodology to the one presented
here was used. This is the work done by Seleghim et al. [28]. Still they
only tested the methodology on horizontal flows and presented it as another
method that works. They did not identify the advantages of such a method
and its extreme suitability to a specific real life application. This thesis shows
that the methodology is suitable on a wide range of pipe configurations and
identifies its major and significant advantage on its application to the control
of multiphase flow, production pipelines.

In this Chapter the results that were obtained and are presented in Chap-
ter b are discussed. Since the methodology was tested on three different types
of systems, the results from each one of them are discussed separately in the
respective Sections that follow. The flow regime identification models that
were developed for each of the systems can be further utilized from any-
one that wishes to, by using Equation 5.6 and substituting each model’s
respective weights which are given in Appendix D and are also provided on
a CD-ROM. Finally there is a general discussion where the suitability of the
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method on a number of applications is suggested and supported.

6.1 Synthetic data results

For these tests an MLP was trained with synthetically generated sine wave
data on the task of identifying which type of signal a four second long section
from each of them belonged to. These experiments are described in detail in
Section 5.3.1.

In order to fulfill the objectives stated in the above section, this exper-
iment was designed to test the new methodology on the task of identifying
a number of time series which belonged to well defined classes in order to
eliminate the possibility of any subjectivity being present and simplify the
problem. This requirement was important at this stage of the development
of the new methodology, because the presence of any subjectivity among the
classes of the data, would lead training the neural network incorrectly and
placing question marks on the results. The reason for this is the fact that a
supervised training procedure was used to train the neural network, in which
case the class of each given training input to the neural network is specified.
If this class is not definite then the network could be trained to produce the
wrong identification. The presence of subjectivity on the original classifica-
tion of the training data obtained from real systems is always an issue when a
neural network is to be used. The new methodology that has been presented
and tested in this thesis has the potential of eliminating the possibility of
incorrect classifications in the training data. This is discussed in more depth
in Section 6.2 of this Chapter.

Hence for this experiment it was important that given a section of any
of the signals it should be easy for a person to determine its class. Also, in
order to make the experiment more realistic with respect to further tests that
the new methodology would be placed under, these classes was determined
to differ from one another in three areas: shape, frequency of oscillations
in the signals and amplitude variations. These specifications were deduced
from observations of pressure signals obtained from real multiphase flows
in pipes that were published in the literature. Such a publication is the
work carried out by Weisman et al. [41]. In work number of experiments of
two phase flow were carried out in horizontal pipes, in order to investigate
the effects of fluid properties on the flow patterns. The properties they
considered were liquid viscosity, liquid density, interfacial tension and gas
density. In order to determine the flow pattern for each of their experimental
cases they used pressure difference along the pipe signals. From the study
of these signals they developed relatively simple criteria in order to classify
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Figure 6.1: Examples of time series that differ in shape.

each case into the horizontal flow regimes. These criteria involved amplitude
and frequency variations and were compared to visual observations with very
good agreement.

As it can be seen from the model performance paragraph of Section 5.3.1,
all the examples from the “noisy” signals were identified correctly. This
means that any part of the signals which has a length of 4 seconds, sam-
pled at 4 Hz (16 consecutive data points), the resultant neural network can
identify its class. The classification model can be put to practice by using
Equation 5.6 (see Section 5.2.1) with the weight values (w) given in Ap-
pendix D.2.

One of the main points that were concluded when working with raw time
series is that for a signal to be represented well, a section big enough will
have to be used so that its main features are included. The choice of this
length of time series section is used as an input to the neural network and
in the previous Chapters it was referred as the delay window or just delay.
These features are mainly related to the shape of the time series and their
amplitude variations. A clear example of two time series which differ in their
shapes and in their amplitude variations are shown in Figures 6.1 and 6.2
respectively. As it will be shown in Sections 6.2 and 6.3 below, these signals
belong to flow regimes observed in Horizontal pipes and S-shape risers, and
if enough of these features can be included in the delay window then their
identification with a neural network and a section of the signal equal to the
size of the delay window, is possible.

Over all, these tests were successful in every one of their objectives which
were:

e familiarization with neural network application software

e familiarization on working with raw time series signals
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Figure 6.2: Examples of time series that differ in amplitude variations.

e test of the new methodology on a relatively simple problem, and val-
idation of its applicability for more realistic problems, like the ones
described in the following Sections.

6.2 Horizontal Flow data results

As it was shown in Section 5.3.2 the methodology was also applied on a
horizontal multiphase flow system. The collection of the experimental data
was described in Section 4.2 where a diagram of the experimental rig is also
presented and the results are shown in Tables 5.2 and 5.3. From observing
these two Tables the majority of the errors for the training and test patterns,
as these were created from the same signals, in Table 5.2 are due mainly to the
signals of cases 21 and 28. Case 21 was identified to be 40% Stratified Smooth
(SS) and case 28 as 21% SS (see Appendix E.2), when they were originally
classified as Stratified Wavy (SW). However from comparing the time series
of case 21 with SS training cases such as 20, 13 and 17 (see Figure 6.3),
one can clearly see the similarities. This suggests that, especially case 20
and also case 15 which is very similar to case 20, are transitional and their
wavy patterns in their time series which were classified as the SS flow regime
influenced the performance of the neural network on SW cases such as case
21 and also case 28 whose main difference from case 20 was the larger amount
of slug patterns that it contained.

Another example of such is Validation case 23 which is responsible for
40% of the incorrect classifications of all the Validation patterns. This case
was classified as 46% SS flow and 1% Slug flow. As it can be seen from
Figure 6.4 this signal exhibits a few Slug patterns, with an average of about
1 Slug peak every 200 data points, 17 in total in the 3000 data point time
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Figure 6.3: Time series sections for comparison between originally classified
SS and SW cases 21, 20, 13 and 17.



92 CHAPTER 6. DISCUSSION

Water level indication (V)

L L L L L L L L
50 100 150 200 250 300 350 400 450 500
No. of Data Points

Figure 6.4: Time series section for originally classified SW flow case 23.

series.

The high percentage SS classification is probably due to Training case 20
which as it can be seen from the peak in the top left plot in Figure 6.3 it also
contained Slug patterns, seven in total in the 3000 data point signal. Such
Slug patterns are present in only one SW Training case, case 27 at twice the
frequency. The domination of the SS flow cases over the SW flow cases is
due to the fact that both groups of data as they were originally clustered,
exhibit a number of similarities but the SS cases are more in number hence
had a stronger influence on the training of the neural network. Hence an
important conclusion that is drawn from this observation is that not only
the same amount of data should be used for training from each signal but
also the same number of cases should be used from each flow regime.

Other cases that caused significant errors in the Training, Test and Val-
idation patterns were Training cases 27 and 38 and Validation case 37. SW
flow case 27 was classified as 6% SS flow and 6% Slug flow, Slug flow case
37 was classified as 17% SW flow and 1% SS flow, and Slug flow case 38 was
classified as 8% SW flow and 1% SS flow.

To all the above errors there is the addition of a much smaller number
of patterns which were identified as more than one type of flow or were not
identified at all. Such conclusions are established when more than one output
units give a value above 0.51, or non of the output units give values above
0.49 for a given pattern. See Table 5.1 for explanations on the analyzing
function that was used.

As a general conclusion from the above observations it can be said that a
large number of the incorrect errors that have been specified are due to the
global classification that is given to a signal. Because one signal is classified
as belonging to a Stratified Smooth flow does not mean that there are no
Slug patterns in the particular flow. If in the above presented results and
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more generally in the ones shown in Tables 5.2 and 5.3, the flow regime
identification model that has been developed for the Horizontal system, was
shown to be identified incorrectly, for example Slug patterns in the SW flow
cases, is not because there were not any such patterns but because these
patterns were originally classified in the model development stage, incorrectly
as SW flow patterns. A more objective test on the capabilities of the new
methodology that is presented in this thesis would be to use training, test and
validation flow cases which are carefully processed to incorporate patterns of
a single flow regime only.
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Figure 6.5: S-shape riser originally classified Slug flow cases 11 and 12 and
originally classified Bubble flow cases 32 and 33.

6.3 S-shaped Riser data results

The same type of experiment as with the previous two systems discussed
in this Chapter, was also carried out for the S-shape riser. Again a neural
network was trained on the task of identifying the flow regime that a portion
of a time series representing the pressure difference between the base and the
top of the S-shaped riser, belonged to. The data that were collected were
described in Section 4.3, the application of the new methodology on this
system was presented in Section 5.3.3 and the results are shown in Tables 5.4
and 5.5.

A quick observation of the results shows that the major contributions to
the total errors from the Training, Test and Validation patterns originate
from Training case 33 and the Validation cases 32 and 21. Cases 32 and 33
were originally classified as Bubble flow, however the model identified case
33 as 2% SS1 flow and did not identify the rest 98% as any of the four given
classes (see the results analysis in Appendix E.3.3). Since this case was used
during training the above result suggests that the patterns of this case had
no impact on the model’s development. This also suggests that this case is
different from the all the others and there were very few examples present in
order to influence the training process. As a consequence flow case 32 which
is of the same type as case 33 (see flow regime map in Figure 5.10) and not
used during training was identified as 99% Slug flow instead of Bubble. From
observing the time series for cases 32 and 33 and comparing them with their
neighboring originally classified Slug cases 11 and 12 (see Figure 6.5) it can
be concluded that these four flow cases belong to the same group.

On further comparison to other neighboring Slug cases like, 15, 17, 25
and 26 (see Figure 6.6) it is realized that cases 32, 33, 11 and 12 are less
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Figure 6.6: S-shape riser originally classified Slug flow cases 15, 17, 25 and
26.

similar to Slug flows and may be they should all be classified as Bubble flow
with cases 15 and 17 being closer to transitional between the two.

The errors in identifying Oscillation flow case 21 was the consequence of
the same reasons as for cases 32 and 33. This case also belongs to a small
flow regime group, for which there were data from only three cases available.
Although the two cases that were used for training seemed to be enough to
influence the training of the neural network, since 87% of case 20 and 95%
of case 22 was identified correctly. However they were not enough to make
sure the network generalizes well enough to give better results for case 21,
the validation case of the group. The outcome was for the model to identify
case 21 as 33% Slug flow and 24% SS1 flow. A positive observation from
these incorrect results, even though the data that were available for this
flow regime was relatively small, the Validation case for the Oscillation flow
regime was identified only as the flow regimes that are on either side of its
region. This is quite impressive as the Oscillation flow is a transition from
the Severe Slugging 1 (SS1) flow to the Slug flow. Hence if it was assumed
that there was no data used to train the network for the Oscillation cases,
which in effect is what has happened any way, and the unknown case 21 was
presented to the classification model for identification, the output would be
that this case belongs to the transition region between the SS1 and the Slug
flow, and closer to the Slug flow. This example shows the true potential of
the new methodology that has been presented and tested in this thesis.

Other major contributions to errors were due to the SS1 flow cases 13
and 23 and the Slug flow case 25. These cases had significant sections of
their time series confused with the opposite flow regime. SS1 flow case 23
was classified as 22% Slug flow and 16% as both Slug and SS1. SS1 flow case
13 was classified as 15% Slug flow and Slug flow case 25 was classified as 21%
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Figure 6.7: S-shape riser originally classified Slug flow cases 15, 17, 25 and
26.

SS1 flow and 12% unknown.

This confusion between SS1 flow cases and any other flow regime cases
was unexpected, due to the very distinctive and consistent pattern that these
signals have (see Figure 6.7).

By carrying out a more in depth analysis of the results, the patterns which
were identified incorrectly were isolated and are plotted in Figure 6.8. From
this figure it is obvious that specific patterns in the highly periodic, regular
signals of the SS1 flow cases are the ones that are misclassified. The shapes
of these patterns for the two cases are shown in Figures 6.9 and 6.10. As
it can be seen from these figures these shapes are exactly the same for each
cycle and they all involve all of the top relatively flat section of the signals.

A further investigation into the data that was used during the training
process for the SS1 flow regime showed that only flow cases 14, 19 and 35
had a significant number of cycles present in the data set (see Figure 6.11).
This is because only 300 data points (see Model Performance paragraph in
Section 5.3.3) was chosen to be used for all the Training flow cases and the
signals for cases 7 and 34 had too large cycles to fit into the 300 data points
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Figure 6.11: All the data that were used to create the Training patterns for
SS1 flow regime.

selection window. Hence Validation flow cases 13 and 18 which are closer to
cases 14, 19 and 35 in cycle length and general signal shape, were classified
much better than Validation flow case 23 which has a larger cycle length (see
Figures 6.13)

6.12

As a conclusion it can said that the errors that were reported for the
S-shape riser system were widely due to original misclassifications of training
cases, like for example flow case 11, and due to luck of data, as was the case
for the Oscillation and some of the Bubble cases (cases 32 and 33). More
over the luck of data for some of the cases had another negative impact on
the results. This luck of data refers to the lengths of time series that were
available for individual cases and not to number of flow cases for a given flow
regime. The reason why this had an significant impact to the data of all the
flow cases that were used for training is because the choice of the number of
data points that were used for training for each Training case was determined
by finding the file with the smallest number of data, then deciding how much
of this file will be used for the Training data set and how much for the Test
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data set. The size of this training section of the smallest file with in all the
Training data cases was used to separate the training section from all the
training cases. This was in accordance to the reasons specified in the Model
Performance paragraph in Section 5.3.3. Hence because of this, flow cases
with long cycles in their time series, larger than this training section selection
window, were not represented well in the training process. This lead to the
unexpected errors of the SS1 Validation cases.

6.4 Model creation process

For the experiments of the two laboratory systems mentioned in the previ-
ous sections of the Chapter, the Horizontal pipe and the S-shape riser, the
following procedure was used to train a Time Lagged Feedforward Neural
Network in order to develop a flow regime identification model.

The model creation procedure had two stages:

1. the Training stage and

2. the Test stage, in this thesis referred to as model Validation stage or
just Validation stage.

During the Training stage two data files were used. The first file was used
to adjust the weights of the network and it is called the Training data file
and the second one was used to test the network under training at different
stages. This second file is called the Test data file. During the Validation
stage there is only one data file used, and was called the Validation data file.
This file was used to test the final trained network with new data cases which
were not used in the Training data file, and validate its fitness for purpose.

For the above mentioned experiments the three types of data files (Train-
ing, Test and Validation) that were used during the model creation process
were generated from data obtained from a number of flow cases. These flow
cases were split into:

e Training and

e model Validation cases, or simply Validation cases

The Training cases were used during the network training process and the
Validation cases were used during the model validation process. Hence the
Training and the Test data files that are used during the training process,
were generated from the same set of flow cases, the training flow cases, while
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Figure 6.14: Diagram illustrating the process that was used to generate the
Training, Test and Validation data files.

the Validation data file was generated from a separate number of flow cases,
the validation cases. The data file creation is illustrated in Figures 6.14 and
6.15.

In more detail the training and test data files are generated by grouping
all the cases of each flow regime into separate files and then randomly picking
three fourths of them to be used as training data and the rest as test data.

It is reasonable for someone to suggest that by using the same flow cases
for the training and test data files, it is possible that the two types of data may
be highly correlated. Also because they are both used during the network
training process, it becomes risky that the network is trained to overfit the
data. Also as the training and test data are quite similar the training and
test error curves that one monitors during the network training process follow
very similar trajectories, almost identical and they do not reach the point of
divergence which indicates that any further training will cause the network
to over train.

This suggests that it would be necessary for the data in the two files to
be less correlated. One way for this to be achieved is to create the two files
from different flow cases instead of the same ones. Another way would be
to change the way data for the two files are chosen. Instead of picking these
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randomly the signal could be split into regions to be used for training data
and regions to be used for test data. This way no single data point of the
signal will be in both files. Due to the lack of data cases the last of the above
procedures was used for the experiments of the Conceptual, the Horizontal
and the S-shape riser systems.

6.5 Faster than Feature Extraction methods

As was mentioned in the literature review (Chapter 2) a common calculation
that needs to be carried out for the determination of a number of features
in Feature extraction methods is that of the mean of a signal. So far in this
thesis it was stated that this calculation inherently causes significant delays
to classification model, on identifying important changes in the signal. In
this section it shown why this is the case by considering examples of flow
regimes which appear in a S-shape riser.

The graph in Figure 6.16 shows the different number of data points that it
is required for a certain level of accurate calculation of the mean for a pressure
signal obtained from a Severe Slugging flow. After 10,000 seconds (2 hours
and 46 minutes) of monitoring the signal the most accurate calculation of the
mean is by a value which contains a spread of £ 0.25 bara and even after the
total length of the signal that was available, which is 14,000 s or 2 hours and
53 minutes, the mean does not converge to a more accurate value than one
with a spread of 4+ 0.02 bara. However there are cases where the mean values
for two signals representing completely different flow regimes can differ by a
value of 0.004 bara. Such an example is shown in Figure 6.17 were the mean
values are plotted for the S-shape riser flow cases 17 and 35 (see Figure 5.10)
which are of the Slug and Severe Slugging flow types. This clearly forces the
requirement of using very large time series in order to be able to separate
the two. For the specific example of the flow cases 17 and 35, a signal length
of almost 3 hours is not enough. Hence if a feature extraction methodology
was used for flow regime identification and there was the scenario where
flow case 17 was followed by flow case 35 due to some adjustments in the
operation of the pipeline, then the classifier would require more than 3 hours
of monitoring after the severe slugging flow had occurred before the incident
was identified. The new methodology that has been presented in this thesis
was shown to accomplish the task with in the time duration of 100 s (0.027
hours), which is the time series length of a single neural network input, at
most. This is 140 times faster. Still it is possible that the neural network
can identify the change even within the length of one input, although this
has not been tested.
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Figure 6.16: Example of a Severe Slugging 1 flow, pressure signal, together
with its mean, calculated for a different number of data points.
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6.6 (General Discussion and Summary

There were a number of significant results that were presented in Chapter 5
and were discussed in the sections above. These results showed that each of
the flow regimes that could be present in a time series which represents the
characteristic condition of a system will be identified with a high confidence
factor. It can be argued that the results for the Horizontal flow system
were all correct and the few errors that were found were due to original
misclassifications of the data. This was caused by subjectivity in the decisions
and the labelling of transitional cases with a single flow regime, which cases
however contained patterns of more than one flow regimes. Due to these
facts it can be concluded that a network should be trained on data cases for
which there is no question of the flow regime they belong to.

In other words, when the methodology that is presented in this thesis is
used, the training cases should not contain any major irregularities in their
shape. This is because these irregularities will be identified correctly during
training but will not agree with the general flow regime class of the specific
flow case. The result will be a contribution to the total error of the network.
As this error is the measure that is used to determine how well the network is
trained, this will lead to incorrect training because the network will be forced
to learn to classify the inputs incorrectly. For example consider a Slug flow
case, whose signal includes regions where the picks do not reach above 0.5 or
0.6 i.e. show that the pipe is only 50 or 60% full, which can be true for cases
close to the Wavy transition region. Such a signal is shown in Figure 6.18. If
such a case is used during training, the wavy regions will be labelled as slug as
each flow case is labelled according to its general flow type. Still because the
signal is presented to the network in small parts, these “Slug” labelled wavy
patterns will be used during training to teach falsely the network that such
wavy patterns also belong to slug flows. In the long run such irregularities
in the training patterns will cause confusion in determining wavy flows, with
consequence of some regions of such signals to be identified as Slug.

Due to the nature of the methodology that was developed and used for
the work in this thesis, to use only clear cut cases during training is possible
and will not affect the performance of the classification model for cases close
and within the transition regions. This is because such cases are formed by
combinations of the time series patterns that are found in clear cut cases
which are away from the transition boundaries. This fact surfaces the po-
tential of using the flow regime classification methodology of this thesis for
developing more realistic flow regime maps. In such maps transition bound-
aries will be represented with regions of transition, as it is in reality and not
with thin lines.
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The errors that were observed in the results for the S-shape riser, apart
from the reasons that were mentioned above for the Horizontal flow system,
were due to insufficient time series lengths, in comparison to some of the very
large cycle lengths that are found in the flows of such systems.

Another issue that had surfaced during the research work that was pre-
sented in this thesis was related to the grouping of the data in order to be
used for training, testing and validating the classification model. Ideally dif-
ferent flow cases should be used for the data sets used for each of the three
stages during the development of models with ANNs. However this requires
a significant amount of data cases to be available for all the flow cases present
for a given system. This amount of data was not available during the work
described in this thesis. Hence it was reasonable to cluster the different flow
cases into two groups only, the Training and the Validation groups, and use
the same cases for the training and test activities during the training stage,
by making sure that there will not be any shared data points between the
two data sets.

Considering the data and the time that were available during the work
that was carried out for this thesis it can be concluded that the new flow
regime classification methodology that was the main subject of this work
was very successful. Apart from its success in application, as it will be
concluded in the next Chapter, it also presents a number of very important
advantages and potentials, with respect to other methods, on the task of
online monitoring of dynamic systems.



Chapter 7

Conclusions and Future Work

The new methodology that has been used for this research work involves
the use of Artificial Neural Networks (ANNs) on the task of identifying the
flow regime in a two phase flow inside a pipeline of various diameters and
configurations.

The novelty of this methodology is in the way measured time series data
from a system, are presented to the neural network. Earlier work has been
carried out by extracting features from time series of one or more relevant
measured quantities from a system where the neural network model was to
be applied. Then these features were used as inputs to the neural network.
Feature extraction though, as it was shown in Section 6.5, requires relatively
large lengths of time series for accurate calculations of the features and the
single values obtained for each time series hide a lot of the signal information
from the processing model. This long duration that is required for a feature
extraction method to identify a change in the condition of a system may not
always be ignored and passed by as acceptable. Such examples are on-line
monitoring of nuclear reactors or hydrocarbon transportation pipelines. In
this work we omit the feature extraction process all together and analyze the
data as it is in its raw, time series form.

The main advantage of this idea is that any changes in the behavior of
a system which are also present in the monitoring system, will be available
for consideration by the processing model. This fact, as it has been shown,
has lead to the development of a model which is more powerful than it was
originally aimed for.

The aim of this research work was to develop a model which would be able
to determine the flow regime for an air-water flow inside a pipe which could
have the shape of various geometries. What has been actually developed is
a model that can not only do this but can also give an indication of where
transitional boundaries lie together with an estimation of where the flow is

111



112 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

50/50 (50% of the flow regime of the one side of the boundary and 50% of
the flow regime of on the other side of the boundary) or 60/40 or even where
there are three patterns at once.

In more detail a separate flow regime identification model has been ob-
tained for a horizontal 102mm internal diameter pipe and an S-shape riser
of 50mm internal diameter by training a MLP artificial neural network. The
flow regimes that were considered for each of the systems were:

e Horizontal system

— Stratified Smooth
— Stratified Wavy
— Bubble

— Slug

e S-shaped riser system

— Bubble
— Slug
— Oscillation

— Severe Slugging 1

The model managed to identify thousands of patterns for each flow regime
and classified cases which were suspected to be transitional, as such, by
identifying patterns for flow regime on each side of the boundary.

The measured quantities that were used to train the neural networks and
develop the models, for each of the systems were:

e Horizontal system — liquid level in a pipe’s cross section.

e S-shaped riser system — pressure difference between the bottom and
the top of the riser.

The time series of the appropriate system-variable was split into pieces
of a suitable length (time delay). These time delays were given as inputs
to the network while their respective classification identity was presented as
an output for comparison during the training process. The amount of data
(inputs) that was required for identifying the flow regime in the two systems
was:

e horizontal system — 20 seconds of data sampled at 10Hz, ie 200 inputs
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e S-shaped riser system — 100 seconds sampled at 1Hz, ie 100 inputs.

On the neural networks side of the methodology one Multilayer Percep-
tron was used with the logistic sigmoidal as an activation function for its
hidden and output units. It was trained with the Scaled Conjugate Gradi-
ent error reduction method, which is an improvement on the standard Back
Propagation method.

A requirement for such a methodology is the determination of a suitable
time delay with which the system-monitoring-signal will be presented to the
model. This has to be long enough for significant parts of the signal’s cycle
to be present but not too long as the larger the neural network the more
data will be required to obtain the model. This in its turn leads to larger
networks, longer training periods and longer calculation times from the final
model.

By comparing the two systems that were mentioned above it was identified
that:

e the S-shaped system by nature accommodates flows with long cycles,
like for example the Severe Slugging flow regime which were taking as
long as 230 sec.

e in the horizontal system on the other hand one would not see cycles
take more than 10 seconds.

So the determination of the time delay is dependent on the system the
classifier will be used on.

This leads us to the applicability of the classifier. As it stands the model
of flow regime identification can be used only for the system it was trained on.
This is because the pipeline configuration affects the flow regimes that will be
present. For example, effectively there will be no stratified smooth regime in
a pipeline with significantly sloped sections, and as it was mentioned above
this will affect the number of inputs to the network, hence its overall topology.

A more general model though, suitable to a wider pipeline configurations
could be achieved by training a neural network with data from a number of
systems and determining an appropriate delay according to the flow regime
with the largest cycle. As this will basically mean that a very large amount
of information will be required from one neural network to be learned, which
most certainly will lead to very large networks and long training times, a
more optimistic approach would be to split the task into modules. This way,
one network will perform classification only for one of the systems from which
data have been obtained, leading to much smaller networks and training can
be carried out in parallel and saving a lot of time.
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Although the idea of using raw time series as inputs to a neural network
was found to have been previously used by Seleghim et al. [28]. In that
work separate ANNs were used to identify each flow regime (six in total)
and a further winner-take-all (SOM) network was used at the end to resolve
multiple identities for the same input. Also the classifier was only tested
on a horizontal 60 mm pipe and they didn’t attempt to distinguish between
the “Bubble/Plug” and “Slug” flow regimes but considered them both as one,
the “Intermittent” regime.

Also as an input system-parameter they used the outputs from an electri-
cal impedance instrument of 16 electrodes. The time delay they used to split
the time series was 20 seconds as well but their total ANN inputs was much
bigger (320) as they took 20 seconds of inputs from each of the 16 electrodes
in the instrument. So their model is very specific to the measuring instru-
ment they have used and is restricted to the use of that one only. This may
not be always available and it can be costly and difficult to install, especially
in pipelines installed in considerable depths in the ocean.

Commenting on the results that were presented in Chapter 5 and the
discussion that was made about them and the methodology in general it can
be concluded that more realistic boundary region representation is possible
with the new methodology. This is due to the fact that a signal is analyzed
in its raw form, hence patterns from all the flow regimes which are present
in the signal are considered and as it has been shown they are also correctly
identified.

Any errors from the Horizontal system were due to original misclassifica-
tions of training cases. This misclassifications were mainly due to the fact
that the cases belonged to transitional regions and their time series did not
contain patterns of one flow regime only.

The large errors from the few Validation cases of the S-shape riser system
were due to original misclassifications but also due to lack of data from the
flow cases of some of the flow regimes. The short lengths of signals that were
available for these flow regimes led to use, during he training process, time
series lengths for a number of flow cases, of less than a cycle. This made the
training incomplete for these flow cases with a consequence on the errors.

The tests that were carried out in this thesis validate the suitability
and ability of the new methodology that was presented in Chapter 3. The
methodology is suitable to be used on the identification of flow regimes for
multiphase flows in pipelines and it is able to carry this task for a variety
of pipeline geometries. It also provides a number of advantages and also
highlights a number of potentials. The advantages are:

1. Faster identification of changes to the condition of the system. This
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makes it highly suitable for real life applications.

2. Inexpensive. There are no requirements for highly specialized and ex-
pensive instruments. Any instrument that can provide a measure of
the characteristic condition of the system is adequate.

3. Suitable for a variety of pipeline geometries.

4. Better performance. It gives a more realistic flow regime identification
for cases close and well within transitional regions.

Its potential is that it provides the means to remove subjectivity from all
of its classifications as it could be trained only from clear cut cases and still
perform well for transitional cases.

7.1 Future Work

Although extensive tests were carried out during the course of this research,
for the development and test of the new methodology, there are a number of
areas, which at least from an academic point of view, demand further work.

Such an area is the detailed comparison between competing flow regime
identification methods, especially between the FE and the current RD meth-
ods which utilize the neural network technology. This will give a more clear
picture of the benefits that are presented by the RD method which was de-
scribed in detail in the previous chapters.

Another area of future work is to take the synthetic data experiments
presented in this thesis a step further and investigate the effect that various
levels of noise in the data may have on the performance of the flow regime
identification models. This is of significant importance if the methodology is
to be used in real life applications.

In the preceding pages it was mentioned a number of times how important
the size of the delay window is. This the window with which the time series
are presented to the neural network. Although a number of tests had been
performed for a number of delay sizes, a rigorous optimisation was not carried
out, mainly because the results that were eventually obtained were all ready
very good and the analysis did not give any indications that the obtained
errors could have been improved by changing the delay size. Still due to the
importance of this parameter a system is necessary to be devised with which
a suitable value for the delay window can be determined satisfactorily. Also
unlike the time consuming and tedious visual observations of the signals that
was carried out during this work in order to determine this parameter, an
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automatic determination could be attempted, suitable for different systems
where the method could be applied on.

On page 77 it was mentioned that an improvement on the results was
achieved by extending the normalization range that the input data was nor-
malized with from the [0.15,0.85] interval to the [-2,2] interval. This suggests
that the choice of the normalization range is important and further optimi-
sation may prove to be advantageous.

Furthermore it would be interesting and beneficial to the industry if the
following areas were also investigated.

Speed of responding to change within one input. It has been shown that
between two neural network input sets, a change in flow regime is identified.
This makes the method as fast as the length of the delay window (size of the
input section). However every input set that was used in this work was of
the same flow regime. Would it be possible to identify a flow regime change
within the same input set and how many inputs will have to be changed
into the new flow regime before it is identified? Such a test will show if the
methodology can become even faster.

A part of this work that could be considered incomplete is the fact that,
due to experimental facility limitations, two major flow regimes were not
considered for the Horizontal flow system. These were the Annular and Dis-
persed (Bubbly) flows. Hence the investigation if they can also be identified
by the new methodology is important. Weisman et al. [41] showed that
amplitude variations observed visually from liquid level indicating signals of
horizontal flows are enough to distinguish between Annular flows and their
neighboring Wavy, Slug and Bubbly flows, and also between the Intermittent
Bubble and Slug flows. Hence this should be also possible with the use of
neural networks and the methodology presented and tested in this thesis.

Another area of future work would be to utilize the better performance
of the new methodology for the transitional cases and develop more realistic
flow regime maps. In this task the use of only clear cut flow cases during
training can also be applied to reduce the subjectivity in the results. This
way the transition boundaries will be more objectively determined and will
represent regions of transition where the flow regime on the one side of the
boundary will show reduction in its presence in the flow, gradually as the
flow moves towards the flow regime on the other side of the boundary. The
boundary will be placed at the flow case positions where the two flow regimes
are equally present in the signal of the specific flow case.

Finally it would be exciting to develop a working system for flow regime
identification and incorporate it in a control system of a hydrocarbon trans-
portation pipeline. Further more it would be interesting to investigate the
application of the new methodology to other dynamic systems where moni-
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toring of a time series, in real time, is important. In these new applications
the inputs to the ANN can be data from one or more time series that repre-
sent the characteristic condition of the dynamic system.
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Appendix A

Artificial Neural Networks:
Theory

There are a number of good text books where one can find all the information
necessary on Artificial Neural Network theory. Still the following sections are
included here for completeness.

A.1 The Multilayer Perceptron

An example of a Multilayer Perceptron (MLP) is shown in Figure A.1.

At each node in an MLP the inputs are summed after they have been mul-
tiplied by their respective weight (w) (see Figure A.2) and then put through
the activation function (g()). Hence the output (y) from each processing
node is

y= g(; wiT;) (A.1)

where
wyg = 6 the threshold or bias and
To = unity.

More specifically from Equation A.1 the output from each hidden unit is

I
yn = gD wini)
i=0
and the output from each output unit is
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Figure A.1: Example of an MLP neural network.
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Figure A.2: Close up on a MLP processing node, the artificial neuron.
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Yo = g(z_: Wholln) = 9(2_: whog(g WinT;)) (A.2)

A.2 The Backpropagation Learning Algorithm

The only reason why artificial neural networks are of any use is because they
can extract relationships between some inputs and outputs of the system un-
der investigation. This is achieved through a learning process where examples
(p) of inputs and target outputs (t) are feed to the neural network until, for
a given input the network gives an estimated output (y) close enough to the
respective target output. In order to achieve this an error function is chosen
which will have to be minimised using gradient descent. Such a function is
the Sum of Squares Error (SSE) function given by Equation A.3

1 N
= 5 Z yo — tp <A3)

The minimisation is achieved by adjusting the weights in the network ac-
cording to Equation A.4

oFE

ow = e

(A.4)

From Equations A.3 and A.4 it can be shown [33] that the weights between
the input and the hidden layers (w;,) and the weights between the hidden
and output layers (wp,) are adjusted during each training epoch (t) according
to the following formulae

Who(t + 1) = wpo(t) — Ndoyn (A.5)
where
50 = (yo - to)yo(l - yo)
win(t + 1) = wip(t) — nopy; (A.6)
where

Op = Z((Sowho)yh(l - yh)

k
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The learning process includes the following steps

Step 1 Initialise the weights randomly between a minimum and a maximum,
usually -1 to 1.

Step 2 Calculate the network outputs for all the training patterns using Equa-
tion A.2.

Step 3 Adjust the weight values according to Equations A.5 and A.6.

Step 4 Repeat the process from Step 2 until the SSE error is small enough
according to some criteria.

A.2.1 Conjugate Gradient method

They are general-purpose second order techniques that help minimise goal
functions (like the error function concerned with the NNs) of several vari-
ables with sound theoretical foundations [30]. Second order means that these
methods make use of the second derivatives of the goal function, while first-
order techniques like standard backpropagation only use the first derivatives.
A second order technique generally finds a better way to a local minimum
than a first order technique, but at a higher computational cost.

Like standard backpropagation CGMs iteratively try to get closer to the
minimum. But while standard backpropagation always proceeds down the
gradient of the error function, the conjugate gradient method will proceed in
a direction, which is conjugate to the directions of the previous descending
steps. Thus the minimisation performed in one step is not partially undone by
the next, as it is the case with standard backpropagation and other gradient
descent methods.

One example of the CGMs is the Scaled Conjugate gradient method. As it
is a CGM this is also slower due to additional computations. In one iteration
it requires the computation of two gradients (second-order technique) and
one call to the error function in contrast to one of each for the standard
backpropagation. Using Mller’s metric [30] one iteration of SCG is as complex
as around 10-16 iterations of standard backpropagation.

But although this method is slow on computations it is faster on reaching
final results and can, give better results than the standard back propagation,
as it was experienced during the course of this project. Also the SCG does
not incorporate learning parameters such as the step width of the gradient
descent (1) which are used in other BP methods, are important to the success
of the training and need to be fine tuned to achieve optimum performance
of the network. Its parameters are non critical and only influence the speed
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of convergence and not the final result. Hence they can be given a constant
value and ignored for the rest of the training process duration. Example
values for these parameters are given in manual of the SNNS software [30]
that was used in this work.

A.3 Time-Lagged Feedforward Network (TLFN)

This type of neural network is the same as the simple feedforward Multilayer
Perceptron (MLP) described above. The only difference is in that, for the
time-lagged networks the parameters that were chosen to be used as inputs
are not presented one value at a time, but a number of sequential values
together (see Figure A.3). This implies that all the values for each of the
input parameters must be part of a time series (signal). This sequence of
values from the same signal that are presented to the network together form
the time representation for the TLFNs.

Such a characteristic is important and useful in time series analysis where
any features of the series such as periodical oscillations and their frequency,
can only be observed by a number of values together (sample).

xy(n)

Figure A.3: An example of a Time-lagged feedforward network

The output (activation) y; of each processing neuron, according to Fig-
ure A.3 becomes ([10], p. 649)

() = 1w (s — 1) + 3wy (st D)

=0

where n denotes the current value of the series and p and ¢ are the order of
the sample taken from each of the two input signals x; and x,.
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In these neural networks where parts of the inputs are actual sections of
the same signal, the simplified, for only the (z7) input signal, above summa-
tion term

liwlj(l)xl(n - l)

which is part of the processing that is carried out by each of the neurons
in the network, becomes a linear asymmetric filter that involves present and
past values [6] . This would be more clear if we make the w;; term constant
(wy and ws) for each of the signals. Then with w = ﬁ the last summation
term becomes

1 p

> zi(n—1)

p+1i5

This gives the average of the x1(n), x1(n—1), ..., 21 (n—p) values and for a
number of such averaging steps it will smoothen (filter) out any fluctuations
that fit within the n,n —1,...,n — p window.

Hence each of the processing units in the network is a linear filter. This
is very useful as it shows the connection of the neural networks with a more
traditional method of signal analysis, the statistical method.

A.4 Time-Delay Neural Network (TDNN)

The time-delay neural networks (TDNNs) are similar to the time-lagged feed-
forward networks, in that:

they are also feedforward architectures

they are based on the MLP

each of the input variables (features) are presented to the network with
a number of values (total delay) at the same time, hence

e cach processing unit is a linear filter.

The two models are different in that:

e layers in the TDNNs are not represented by columns of units but by
matrices of units and
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e all of the hidden units are not connected to all of the input or output
units.

Apart from the total delay there is a second delay length for the inputs,
which specifies how many of the values from each of the feature units will be
connected to each of the hidden units [30]. An example of a TDNN is shown

in Figure A 4.
O

delay length

total delay length

| <
-

input layer hidden layer output layer
Figure A.4: Example of a TDNN

This characteristic of the TDNNs allow for the inputs between the differ-
ent training steps of the neural network to be related together, as it splits the
number of inputs from each feature into smaller groups. For example if a neu-
ron in a TLFN, which acts as a linear filter (as mentioned above), produces
an averaged value for the input values of the same input signal, a neuron from
a TDNN will produce a number of averaged values (i.e. a smoothness curve).
This number of the averaged values depends on the number of hidden units
in the columns of the hidden layer. Hence each neuron does not only give
an indication of amplitude but also an indication of gradient, which relates
the values of one training step to the values of the next. Recurrent networks
contain a characteristic feature in their architecture which could perform this
relation between consecutive steps of inputs, as is mentioned below, without
the need to present so many input values at the same time.

A.5 Recurrent Network

The two models that were described above had a fixed number of input values
(delay length), for each of the input signal. For a time series analysis the
length of the delay for each of the input signals is determined by the length
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of a fluctuation’s cycle. The problem exists where such fluctuations can vary
in length and it becomes difficult to decide how many inputs or what delay
length should be used for each of the input signals [5]. A way around this
problem is to use a recurrent network.

Recurrent networks are also based on the multilayer perceptron (MLP)
but are distinguished from the feedforward architectures by the freedom of
their neurons to feed their activations back to themselves (local feedback)
or to other neurons of the same layer or previous layers (global feedback) in
the network (see Figure A.5). This feeding back action of past activations
as inputs to neurons during the next processing step of new inputs is how
recurrent networks represent time. By disregarding the feedback connections,
recurrent networks operate in the same way as the MLP, hence it is said that
for every recurrent network there is a feedforward network with identical
behaviour ([5], page 101).

xy(N)

xAn)

y,(n)

act (n-1) C y,(n)

Figure A.5: Example of a recurrent network

An example of a simple recurrent network is the Elman model which has
its hidden activations feed back as inputs for the processing of the next in-
put values of a sequential input signal. These feed back inputs, are called
contert and can be seen as representing an internal reduced representation
of the previous in the sequence input data. This internal representation can
be understood by considering the filtering action of the processing neurons
that was mentioned above in the TDNN model, which removes some of the
fluctuations from part of the signal and reveals a reduced smoothened rep-
resentation of it. Also the simultaneous presentation of present and past
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processed values enhances the relation between previous and current inputs
as the first are not observed without the consideration of the second. This
is better illustrated by the Jordan model which has some of its input units
feeding their past values back to themselves. This explains why recurrent
networks are a solution to the problem stated at the beginning of this sec-
tion, where fluctuations in a signal may vary and make the number of inputs
that was initially chosen, inappropriate.
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Appendix B

The Sammon Map

The Sammon Map was named after John W. Sammon Jr, who published a
paper with the description of the nonlinear mapping (NM) algorithm in 1969
[27]. The algorithm was intended to be used for the analysis of multivariate
data. With analysis it is meant to detect and identify ”structure” which may
be present in a list of N L-dimensional vectors. Structure refers to geometric
relationships among subsets of the data vectors in the L-space.

The algorithm maps the multi-dimensional data onto 2 or 3 dimensions
by calculating the Euclidean distance (although the choice of this distance
is not a requirement of the algorithm and other distance measures can be
used) between the original vectors and creating the same number of the
lower dimension vectors which approximately maintain the same FEuclidean
distances between each other. The creation of the new 2 or 3 dimensional
vectors are created iteratively by comparing the two distances and aiming to
reduce their difference as much as possible. So there is an error F that is
attempted to be reduced. The error function that is used to do that is the
following

o ! i [di; — diy]?
Z[d:j] i<j d:j

1<j

d;; 1s the distance between the high dimension vectors ¢ and j
d;; is the distance between the 2 or 3 dimensions vectors ¢ and j
N is the total number of vectors in both dimensions.

Searching for the minimum of the error was done by using a steepest
descent procedure.

The author of the paper identifies two limitations to the algorithm. The
first one has to do with the reliability of the scatter diagram when display-
ing extremely complex high dimensional structures. With such structures it
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could be that the minimum mapping error that is achieved during the error
minimization is not small enough (E >> 0.1), hence the scatter plot will fail
to portray the true structure of the original data. Still they feel that for data
structures composed of superpositions of hyperspherical and hyperellipsoidal
clusters the NM map will, in general, display adequate representations of the
true data structure. The second limitation has to do with the number of
vectors that can be handled as the algorithm needs to compute N(N —1)/2
elements. This limitation was experienced during the analysis of the S-shape
riser data used for the research work described in this thesis. Any attempts
to analyze all the data in once would cause the computer to run out of mem-
ory and crush the process. A work around this problem was achieved by
selecting a smaller amount of the data to be visualized in random from the
total cluster. In this way a realistic indication of the smaller clusters is still
obtained, without having to consider all of the cases. Another disadvantage
of the algorithm due to the large amounts of computations that it needs to
carry out is that it makes it extremely slow.

For the work presented in this thesis, the Sammon algorithm was imple-
mented with the SOM_PAK [18] software package. SOM_PAK was developed
at Helsinki University of Technology by the SOM Programming team which
includes among others Teuvo Kohonen, the creator of the Kohonen self or-
ganizing map. The software is an implementation of Self Organizing Maps
(SOMs) and also includes a few tools for visualizing data sets and the output
layer of trained SOMs.



Appendix C

Sammon Maps for the S-shape
Riser data

For the labels shown in the legends of the Sammon maps found in this section
refer to the flow regime map in Figure C.1.
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Figure C.2: Sammon maps for (clockwise from top left) the Bubble, Oscilla-
tion, Slug and Severe Slugging 1 cases for the P1 data.
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Figure C.3: Sammon maps for (clockwise from top left) the Bubble, Oscilla-
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Appendix D

Neural Network Files

In this section of the appendix two types of files are presented which were
generated for use with the SNNS neural network software [30]. The first
type is an example of a pattern file according to which data that are to be
used with the SNNS software should be arranged. The second type of files
are neural network definition files which represent flow regime identification
models for the three systems that were used during the work of this thesis.
These files can be loaded directly into the SNNS software as network files and
used accordingly. Hence apart from the hard copies provided in the following
pages they are also supplied in electronic format on the accompanying CD-
ROM. In each of these files there are four sections:

1. General information, at the top
2. Default information for each of the units in the network
3. Unit definition section

4. Connection definition section

Attention should be given to sections two and four. The important parts
of the second section are column six, titled st which gives the layer each unit
in the network belongs to. The numbers for each of the units are given on
column one. The other important part of this section is column five, titled
bias which shows the bias values associated with each unit weight values
that have index zero. All of section four is of great importance as it provides
the remaining weight values which form each of the models. In this section
the weights between the input and the hidden and the weights between the
hidden and the output units are given in the same order, starting with the
hidden units as targets in column one and the their source, input, units in
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column three. These are followed by the output units as targets in column
one and their source, hidden, units in column three.

D.1 Example of a SNNS Pattern file

SNNS pattern definition file V1.4
generated at Fri Oct 31 10:07:17 2003

No. of patterns : 10
No. of input units : 10
No. of output units : 4

#1
0.276075 0.274194 0.283132 0.289718 0.294422 0.301478 0.301949
0.312298 0.303831 0.304301 0.000000 0.000000 0.000000 1.000000
#2
0.317473 0.328293 0.347110 0.351344 0.357460 0.359341 0.358871
0.326411 0.331586 0.327823 0.000000 0.000000 0.000000 1.000000
#3
0.329704 0.325941 0.323589 0.313710 0.309476 0.299597 0.276546
0.247379 0.247849 0.260551 0.000000 0.000000 0.000000 1.000000
#4
0.246909 0.258199 0.275134 0.269489 0.264785 0.248790 0.257728
0.278898 0.293481 0.297245 0.000000 0.000000 1.000000 0.000000
#5
0.310417 0.323589 0.312298 0.309946 0.302890 0.299597 0.317473
0.323118 0.335820 0.334879 0.000000 0.000000 1.000000 0.000000
#6
0.318414 0.328763 0.314180 0.295363 0.307124 0.301949 0.306183
0.298185 0.291599 0.285484 0.000000 0.000000 1.000000 0.000000
#7
0.274664 0.269489 0.272782 0.273723 0.272312 0.270901 0.281720
0.269960 0.259610 0.262433 0.000000 1.000000 0.000000 0.000000
#8
0.269960 0.270430 0.273723 0.296304 0.288306 0.286425 0.285954
0.285013 0.304301 0.312298 0.000000 1.000000 0.000000 0.000000
#9
0.313710 0.317944 0.329704 0.340995 0.339583 0.346169 0.321237
0.316532 0.324530 0.324059 0.000000 1.000000 0.000000 0.000000

o
o



D.1. EXAMPLE OF A SNNS PATTERN FILE 143

#10
0.329704 0.339113 0.326411 0.303360 0.299597 0.299126 0.290659
0.280309 0.266196 0.292070 1.000000 0.000000 0.000000 0.000000
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D.2
tem

SNNS network definition file

generated at Sun Nov 9 12:54
network name : SNNS_FF_NET
source files

no. of units : 27
no. of connections
no. of unit types

no. of site types

1 140
Y
: 0

learning function : SCG
update function : Topologic:

unit default section :

V1.4-3D
:35 2003

al_Order

APPENDIX D. NEURAL NETWORK FILES

Weight values for the Conceptual Sys-

act | bias | st | subnet | layer | act func | out func
| === | | |
0.00000 | 0.00000 | h | 0| 1 | Act_Logistic | Out_Identity
| |--=-1 | | |
unit definition section :
no. | typeName | unitName | act | bias | st | position | act func | out func | sites
| | | | |----1 | |
11 | unit | 0.26985 | 0.97581 | i | 2, 2,-26102 |||
2 | | unit | 0.50000 | -0.66415 | i | 2, 3,-26102 |||
31 | unit | 0.73015 | -0.29095 | i | 2, 4,-26102 |||
4 | | unit | 0.50000 | 0.50152 | i | 2, 5,-26102 |||
5 | | unit | 0.26985 | -0.05656 | i | 2, 6,-26102 |||
6 | | unit | 0.50000 | -0.49835 | i | 2, 7,-26102 |||
71 | unit | 0.74939 | -0.38826 | i | 2, 8,-26102 |||
8 | | unit | 0.50000 | -0.63945 | i | 2, 9,-26102 |||
9| | unit | 0.25061 | 0.97562 | i | 2,10,-26102 |||
10 | | unit | 0.50000 | -0.59343 | i | 2,11,-26102 |||
11 | | unit | 0.74939 | -0.62756 | i | 2,12,-26102 |||
12 | | unit | 0.50000 | 0.46157 | i | 2,13,-26102 |||
13 | | unit | 0.25061 | 0.54304 | i | 2,14,-26102 |||
14 | | unit | 0.50000 | -0.27641 | i | 2,15,-26102 |||
15 | | unit | 0.73068 | 0.42075 | i | 2,16,-26102 |||
16 | | unit | 0.50000 | 0.27955 | i | 2,17,-26102 |||
17 | | unit | 0.15217 | -1.67453 | h | 5, 2,-26102 |||
18 | | unit | 0.98009 | -0.30684 | h | 5, 3,-26102 |||
19 | | unit | 0.01741 | -1.32340 | h | 5, 4,-26102 |||
20 | | unit | 0.99661 | -0.64620 | h | 5, 5,-26102 |||
21 | | unit | 0.79369 | -3.14084 | h | 5, 6,-26102 |||
22 | | unit | 1.00000 | 1.44850 | h | 5, 7,-26102 |||
23 | | unit | 0.99783 | 1.94609 | h | 5, 8,-26102 |||
24 | | unit | 0.00335 | -1.64353 | o | 8, 2,-26102 |||
25 | | unit | 0.00002 | 6.05283 | o | 8, 3,-26102 |||
26 | | unit | 0.00011 | -8.91071 | o | 8, 4,-26102 |||
27 | | unit | 0.99725 | -25.26987 | o | 8, 5,-26102 |||
-1 | | | |----1 |
connection definition section :
target | site | source:weight
| |
17 | | 1:-17.77803, 2:-16.90094, 3:-25.39218, 4:-20.66088, 5:-20.16482, 6:-11.48761, 7: 8.00996, 8:19.27583, 9:19.10409,
.21169, 11:28.72409, 12:25.29601, 13:17.56765, 14: 3.38235, 15:-11.95089, 16:-22.61700
18 | | .34427, 2: 2.73206, 3: 3.96684, 4:-4.15715, 5:-3.82071, 6: 3.47854, 7: 2.58208, 8:-6.58403, 9:-5.92001
.56879, 11: 4.63149, 12:-2.05232, 13:-3.34851, 14: 4.84806, 15: 3.95446, 16:-4.67928
19 | | .33288, 2:-2.52603, 3: 3.27681, 4: 8.92439, 5:10.59701, 6: 6.26855, 7:-3.61069, 8:-11.33393, 9:-11.43137,
.98392, 11: 0.51221, 12: 6.77272, 13: 8.23693, 14: 3.98042, 15:-2.87766, 16:-7.15810
20 | | 1:-3.86021, 2: 0.81396, 3: 0.85018, 4:-8.01138, 5:-7.32820, 6: 6.57925, 7: 9.64112, 8:-0.20049, 9:-5.18932,
10: 1.10083, 11:-0.33507, 12:-8.43507, 13:-7.92662, 14: 5.25704, 15: 8.69542, 16: 0.27373
21 | | 1:-15.66791, 2:-15.69746, 3:-24.33647, 4:-18.10777, 5:-17.52876, 6:-8.41858, 7: 8.48098, 8:17.39152, 9:17.44447,
1.98042, 11:28.93421, 12:25.69523, 13:18.80127, 14: 5.17513, 15:-11.44376, 16:-23.10811
22 | | 1:-5.00684, 2: 5.55506, 3: 4.13507, 4:-5.83351, 5:-2.95151, 6: 8.78057, 7: 5.84568, 8:-6.94348, 9:-4.43556,
5.96413, 11: 4.39041, 12:-6.13100, 13:-2.94667, 14: 8.39725, 15: 5.77634, 16:-6.27422
23 | | 12.52463, 2:-6.00979, 3: 6.33281, 4:11.52684, 5: 9.81939, 6: 3.57285, 7:-4.93569, 8:-10.30935, 9:-11.92389,
3.60353, 11: 7.65062, 12:13.88461, 13:11.53185, 14: 3.08473, 15:-3.42596, 16:-10.42988
24 | | 17:36.63534, 18: 5.95416, 19:-13.09620, 20:17.29565, 21:-37.52725, 22:-22.54038, 23:19.89780
25 | | 1.82612, 18:13.89910, 19:23.33184, 20:-5.07166, 21: 2.74663, 22:-7.68617, 23:-20.70656
26 | | 17:-2.76665, 18:-13.60212, 19:-2.94219, 20:-5.54582, 21:-0.12993, 22:17.97838, 23: 1.25277
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27 | | 17:-37.15420, 18: 8.21103, 19:-18.33247, 20: 5.69230, 21:36.83509, 22:-14.08716, 23: 8.28391
| |
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D.3 Weight values for the Horizontal System

SNNS network definition file V1.4-3D
generated at Wed Apr 23 02:45:56 2003

network name : SNNS_FF_NET
source files

no. of units : 218

no. of connections : 2856
no. of unit types : O

no. of site types : 0

learning function : SCG
update function : Topological_Order

unit default section :

act | bias | st | subnet | layer | act func | out func
| |----1 | | |

0.00000 | 0.00000 | h | 0| 1 | Act_Logistic | Out_Identity
| |==—-1 | | |

unit definition section :

no. | typeName | unitName | act | bias | st | position | act func | out func | sites
—_— | | | | | |

11 | unit | -1.82329 | 0.21362 | i | 2, 2,-26102 ||
2| | unit | -1.83534 | 0.41938 | i | 2, 3,-26102 |||
31 | unit | -1.69478 | 0.41282 | i | 2, 4,-26102 |||
4 | | unit | -1.63454 | 0.99284 | i | 2, 5,-26102 |||
5 | | unit | -1.65462 | 0.57267 | i | 2, 6,-26102 |||
6 | | unit | -1.71084 | 0.40535 | i | 2, 7,-26102 |||
710 | unit | -1.31325 | -0.26904 | i | 2, 8,-26102 |||
8 | | unit | -1.38554 | 0.84933 | i | 2, 9,-26102 |||
9 | | unit | -1.48996 | -0.96587 | i | 2, 10,-26102 |||
10 | | unit | -1.43374 | o0.76767 | i | 2, 11,-26102 |||
11 | | unit | -1.54619 | -0.24958 | i | 2, 12,-26102 |||
12 | | unit | -1.71084 | -0.79889 | i | 2, 13,-26102 |||
13 | | unit | -1.78313 | -0.55979 | i | 2, 14,-26102 |||
14 | | unit | -1.87149 | 0.63159 | i | 2, 15,-26102 |||
15 | | unit | -1.85944 | -0.91442 | i | 2, 16,-26102 |||
16 | | unit | -1.81124 | -0.25724 | i | 2, 17,-26102 |||
17 | | unit | -1.91165 | -0.43722 | i | 2, 18,-26102 |||
18 | | unit | -1.97590 | 0.69757 | i | 2, 19,-26102 |||
19 | | unit | -1.97992 | -0.85635 | i | 2, 20,-26102 |||
20 | | unit | -1.97590 | 0.09179 | i | 2, 21,-26102 |||
21 | | unit | -1.96787 | -0.92406 | i | 2, 22,-26102 |||
22 | | unit | -1.44177 | 0.96671 | i | 2, 23,-26102 |||
23 | | unit | -1.58233 | -0.30679 | i | 2, 24,-26102 |||
24 | | unit | -1.66667 | -0.26543 | i | 2, 25,-26102 |||
25 | | unit | -1.41366 | -0.84342 | i | 2, 26,-26102 |||
26 | | unit | -1.46988 | -0.97510 | i | 2, 27,-26102 |||
27 | | unit | -1.64659 | 0.81689 | i | 2, 28,-26102 |||
28 | | unit | -1.75100 | -0.25426 | i | 2, 29,-26102 |||
29 | | unit | -1.71084 | 0.44167 | i | 2, 30,-26102 |||
30 | | unit | -1.73494 | 0.18128 | i | 2, 31,-26102 |||
31 | | unit | -1.84337 | 0.99660 | i | 2, 32,-26102 |||
32 | | unit | -1.93574 | 0.27998 | i | 2, 33,-26102 |||
33 | | unit | -1.89157 | -0.19373 | i | 2, 34,-26102 |||
34 | | unit | -1.82731 | -0.84410 | i | 2, 35,-26102 |||
35 | | unit | -1.94378 | 0.06342 | i | 2, 36,-26102 |||
36 | | unit | -1.93976 | -0.72297 | i | 2, 37,-26102 |||
37 | | unit | -1.92771 | -0.10586 | i | 2, 38,-26102 |||
38 | | unit | -1.98394 | 0.45306 | i | 2, 39,-26102 |||
39 | | unit | -1.75100 | -0.78941 | i | 2, 40,-26102 |||
40 | | unit | -1.82731 | 0.44958 | i | 2, 41,-26102 |||
41 | | unit | -1.84739 | -0.56802 | i | 2, 42,-26102 |||
42 | | unit | -1.90361 | -0.24144 | i | 2, 43,-26102 |||
43 | | unit | -1.49799 | -0.65185 | i | 2, 44,-26102 |||
44 | | unit | -1.67871 | 0.70209 | i | 2, 45,-26102 |||
45 | | unit | -1.67470 | 0.82739 | i | 2, 46,-26102 |||
46 | | unit | -1.77108 | 0.34563 | i | 2, 47,-26102 |||
47 | | unit | -1.82731 | -0.50356 | i | 2, 48,-26102 |||
48 | | unit | -1.76707 | -0.35984 | i | 2, 49,-26102 |||
49 | | unit | -1.85542 | 0.47419 | i | 2, 50,-26102 |||
50 | | unit | -1.25301 | 0.72074 | i | 2, 51,-26102 |||
51 | | unit | -1.46185 | 0.49014 | i | 2, 52,-26102 |||
52 | | unit | -1.60643 | -0.02566 | i | 2, 53,-26102 |||
53 | | unit | -1.59036 | 0.49472 | i | 2, 54,-26102 |||
54 | | unit | -1.55020 | -0.29102 | i | 2, 55,-26102 |||
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.59141
.32131
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.63359
.70449
.45564
.97107
.69067
. 72497
.37105
.80540
.27116
.60880
.39392
. 74996
. 78486
.31999
.37086
.69827
.44593
.04843
.25614
.03260
.60699
.02632
.83628
.57337
.63571
.88969
.86547
.77701
.90967
.78707
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.45834
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.57825
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2, 56,-26102
2, 57,-26102
2, 58,-26102
2, 59,-26102
2, 60,-26102
2, 61,-26102
2, 62,-26102
2, 63,-26102
2, 64,-26102
2, 65,-26102
2, 66,-26102
2, 67,-26102
2, 68,-26102
2, 69,-26102
2, 70,-26102
2, 71,-26102
2, 72,-26102
2, 73,-26102
2, 74,-26102
2, 75,-26102
2, 76,-26102
2, 77,-26102
2, 78,-26102
2, 79,-26102
2, 80,-26102
2, 81,-26102
2, 82,-26102
2, 83,-26102
2, 84,-26102
2, 85,-26102
2, 86,-26102
2, 87,-26102
2, 88,-26102
2, 89,-26102
2, 90,-26102
2, 91,-26102
2, 92,-26102
2, 93,-26102
2, 94,-26102
2, 95,-26102
2, 96,-26102
2, 97,-26102
2, 98,-26102
2, 99,-26102
2,100,-26102
2,101,-26102
2,102,-26102
2,103,-26102
2,104,-26102
2,105,-26102
2,106,-26102
2,107,-26102
2,108,-26102
2,109,-26102
2,110,-26102
2,111,-26102
2,112,-26102
2,113,-26102
2,114,-26102
2,115,-26102
2,116,-26102
2,117,-26102
2,118,-26102
2,119,-26102
2,120,-26102
2,121,-26102
2,122,-26102
2,123,-26102
2,124,-26102
2,125,-26102
2,126,-26102
2,127,-26102
2,128,-26102
2,129,-26102
2,130,-26102
2,131,-26102
2,132,-26102
2,133,-26102
2,134,-26102
2,135,-26102
2,136,-26102
2,137,-26102
2,138,-26102
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138 | | unit | -1.95984 | -0.83068 | i | 2,139,-26102 |||
139 | | unit | -1.32530 | -0.32563 | i | 2,140,-26102 |||
140 | | unit | -1.27711 | 0.66927 | i | 2,141,-26102 |||
141 | | unit | -1.27309 | 0.96019 | i | 2,142,-26102 |||
142 | | unit | -1.35341 | 0.45849 | i | 2,143,-26102 |||
143 | | unit | -1.50201 | -0.40262 | i |  2,144,-26102 |||
144 | | unit | -1.57430 | -0.33773 | i | 2,145,-26102 |||
145 | | unit | -1.66265 | 0.39638 | i | 2,146,-26102 |||
146 | | unit | -1.73896 | -0.40727 | i |  2,147,-26102 |||
147 | | unit | -1.79518 | -0.74302 | i |  2,148,-26102 |||
148 | | unit | -1.87550 | -0.45909 | i |  2,149,-26102 |||
149 | | unit | -1.95181 | 0.69905 | i | 2,150,-26102 |||
150 | | unit | -1.97590 | -0.24720 | i | 2,151,-26102 |||
151 | | unit | -1.97590 | 0.16786 | i | 2,152,-26102 |||
152 | | unit | -1.98394 | 0.09861 | i | 2,153,-26102 |||
153 | | unit | -1.98795 | -0.01560 | i | 2,154,-26102 |||
154 | | unit | -1.98394 | -0.61090 | i | 2,155,-26102 |||
155 | | unit | -1.77912 | -0.69299 | i | 2,156,-26102 |||
156 | | unit | -1.80321 | -0.48402 | i | 2,157,-26102 |||
157 | | unit | -1.89960 | -0.98602 | i | 2,158,-26102 |||
158 | | unit | -1.93976 | -0.48234 | i | 2,159,-26102 |||
159 | | unit | -1.83936 | -0.21830 | i | 2,160,-26102 |||
160 | | unit | -1.93976 | 0.57055 | i | 2,161,-26102 |||
161 | | unit | -1.97590 | 0.20435 | i | 2,162,-26102 |||
162 | | unit | -1.97590 | 0.55607 | i | 2,163,-26102 |||
163 | | unit | -1.98394 | -0.59790 | i |  2,164,-26102 |||
164 | | unit | -1.98795 | -0.37985 | i | 2,165,-26102 |||
165 | | unit | -1.56225 | -0.41098 | i | 2,166,-26102 |||
166 | | unit | -1.59036 | 0.66198 | i | 2,167,-26102 |||
167 | | unit | -1.72289 | 0.00752 | i | 2,168,-26102 |||
168 | | unit | -1.73494 | -0.47289 | i | 2,169,-26102 |||
169 | | unit | -1.64659 | -0.99361 | i | 2,170,-26102 |||
170 | | unit | -1.69076 | 0.51536 | i | 2,171,-26102 |||
171 | | unit | -1.81928 | -0.79340 | i | 2,172,-26102 |||
172 | | unit | -1.81124 | 0.39001 | i | 2,173,-26102 |||
173 | | unit | -1.44980 | -0.04408 | i | 2,174,-26102 |||
174 | | unit | -1.44980 | 0.34778 | i | 2,175,-26102 |||
175 | | unit | -1.59036 | -0.97205 | i | 2,176,-26102 |||
176 | | unit | -1.71888 | 0.01927 | i |  2,177,-26102 |||
177 | | unit | -1.75904 | -0.62485 | i | 2,178,-26102 |||
178 | | unit | -1.77510 | 0.92001 | i |  2,179,-26102 |||
179 | | unit | -1.86747 | -0.34181 | i |  2,180,-26102 |||
180 | | unit | -1.91566 | -0.26586 | i |  2,181,-26102 |||
181 | | unit | -1.92771 | -0.02979 | i | 2,182,-26102 |||
182 | | unit | -1.93173 | -0.79186 | i |  2,183,-26102 |||
183 | | unit | -1.97992 | -0.61894 | i |  2,184,-26102 |||
184 | | unit | -1.90361 | 0.19049 | i | 2,185,-26102 |||
185 | | unit | -1.69478 | -0.04614 | i | 2,186,-26102 |||
186 | | unit | -1.61044 | 0.36886 | i | 2,187,-26102 |||
187 | | unit | -1.71084 | -0.46994 | i | 2,188,-26102 |||
188 | | unit | -1.77912 | -0.28956 | i | 2,189,-26102 |||
189 | | unit | -1.73896 | 0.22266 | i | 2,190,-26102 |||
190 | | unit | -1.75100 | 0.67698 | i | 2,191,-26102 |||
191 | | unit | -1.88353 | -0.17272 | i | 2,192,-26102 |||
192 | | unit | -1.97189 | -0.16585 | i | 2,193,-26102 |||
193 | | unit | -1.97590 | 0.59804 | i | 2,194,-26102 |||
194 | | unit | -1.95984 | -0.40675 | i | 2,195,-26102 |||
195 | | unit | -1.93976 | -0.90302 | i | 2,196,-26102 |||
196 | | unit | -1.56225 | -0.37393 | i |  2,197,-26102 |||
197 | | unit | -1.69478 | 0.06725 | i | 2,198,-26102 |||
198 | | unit | -1.74297 | -0.07569 | i |  2,199,-26102 |||
199 | | unit | -1.40562 | 0.79975 | i |  2,200,-26102 |||
200 | | unit | -0.83132 | -0.56125 | i |  2,201,-26102 |||
201 | | unit | 0.00004 | -28.71648 | h | 5, 2,-26102 |||
202 | | unit | 1.00000 | 3.07337 | h | 5, 3,-26102 |||
203 | | unit | 1.00000 | -1.59320 | h | 5, 4,-26102 |||
204 | | unit | 0.00000 | -13.03296 | h | 5, 5,-26102 ||
205 | | unit | 0.99537 | 13.85686 | h | 5, 6,-26102 |||
206 | | unit | 0.00000 | -4.37778 | h | 5, 7,-26102 |||
207 | | unit | 0.00000 | -2.49093 | h | 5, 8,-26102 |||
208 | | unit | 0.81168 | 25.64724 | h | 5, 9,-26102 |||
209 | | unit | 0.00000 | 2.09435 | h | 5, 10,-26102 |||
210 | | unit | 1.00000 | 15.24584 | h | 5, 11,-26102 |||
211 | | unit | 1.00000 | -0.83087 | h | 5, 12,-26102 |||
212 | | unit | 1.00000 | 6.01576 | h | 5, 13,-26102 |||
213 | | unit | 0.00000 | -4.15981 | h | 5, 14,-26102 |||
214 | | unit | 0.00002 | -0.06663 | h | 5, 15,-26102 |||
215 | | unit | 0.11717 | -11.76184 | o | 8, 2,-26102 |||
216 | | unit | 0.90244 | -3.20578 | o | 8, 3,-26102 |||
217 | | unit | 0.00068 | -8.46868 | o | 8, 4,-26102 |||
218 | | unit | 0.00000 | -1.36493 | o | 8, 5,-26102 |||
|
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connection definition section :

target | site | source:weight

201 | | 0.72921, 2:-0.30019, 3: 1.25269, 4:-0.29776, 5:-1.62397, 6: 0.30551, 7: 0.45578, 8:-0.10563,
:-0.25527, 10: 0.19840, 11: 0.17527, :-0.00235, 14:-1.33185, 15: 0.42795, 16:-0.22889,
: 0.62373, 18: 0.78590, 19:-1.24712, :-0.59038, 22: 0.69802, 23: 0.63832, 24: 0.80974,
:-1.61800, 26:-0.04593, 27:-0.11117, 0.65018, 30: 0.04892, 31:-1.00626, 32:-0.09591
0.36838, 34: 0.50346, 35: 0.17763, 0.47407, 38:-0.25809, 39: 0.26792, 40:-0.88204,
0.29788, 42:-1.27933, 43: 0.05575, : 2.24235, 46:-0.41125, 47:-0.98735, 48: 0.28880,
0.29861, 50:-0.00734, 51: 0.47506, 1.63819, 54:-0.25460, 55: 1.47016, 56:-2.21340,
0.50658, 58: 1.22957, 59: 0.65734, 0.06250, 62: 0.27471, 63: 0.01227, 64:-0.49488,
: 0.41879, 66: 1.15324, 67: 0.46866, 1.11247, 70: 0.44011, 71: 1.17428, 72:-0.98311
:-0.00116, 74:-0.19078, 75: 0.04739, 0.73327, 78: 1.90824, 79:-0.66917, 80: 0.80265,
: 0.76446, 82:-1.05682, 83:-2.02826, .04324, 86:-1.07862, 87:-1.82142, 88: 0.06016,
89:-0.80416, 90: 0.77590, 91: 0.75363, .11771, 94: 4.03985, 95: 7.82760, 96: 7.22647,
97:11.27903, 98: 6.51887, 99: 6.16512, .94321, 102:-11.30757, 103:-13.18167, 104:-10.83249,
:-3.66582, 106:-2.67941, 107:-0.06195, 0.20106, 110:-0.44447, 111: 0.21492, 112: 1.31917,
0.22972, 114:-0.40568, 115: 0.12989, 0.43259, 118: 2.04789, 119: 0.09083, 120:-1.30938,
0.88873, 122:-0.51372, 123:-0.05856, 0.25567, 126: 0.17043, 127: 0.04668, 128: 0.35973,
1.07232, 130:-0.88719, 131: 0.96630, 1.57945, 134: 0.53570, 135: 0.37495, 136:-0.89772,
0.52826, 138: 1.17291, 139:-0.96528, 0.65807, 142: 0.45099, 143:-0.43995, 144: 0.56753,
:-0.08461, 146: 0.49578, 147: 0.44059, 1.00912, 150:-0.30246, 151: 0.31812, 152: 0.55495,
0.43060, 154:-0.48329, 155:-0.57147, 0.71087, 158: 0.45934, 159: 0.51230, 160: 0.51705,
1.38837, 162:-0.65291, 163:-1.55070, :-1.13116, 166: 0.67466, 167: 1.46826, 168:-0.69861,
0.34722, 170:-2.03200, 171:-0.56899, 0.26584, 174: 1.25567, 175:-1.31671, 176: 1.28065,
:-1.35935, 178:-0.96313, 179:-0.19243, :-0.96202, 182: 0.71610, 183:-1.04948, 184: 0.27187,
:-1.23302, 186:-0.01991, 187:-0.51906, 0.25788, 190: 1.48435, 191:-0.44445, 192: 1.04629,
:-0.42414, 194:-0.97085, 195: 0.66765, :-0.65184, 198:-1.16690, 199:-1.09403, 200: 0.03345
202 | | 0.80324, 2: 0.43941, 3:-0.59563, 0.84282, 6:-0.15643, 7:-0.68882, 8: 0.00435,
: 0.09830, 10: 0.71819, 11:-0.73365, 0.72061, 14: 0.16351, 15:-0.34438, 16:-0.01041
0.09729, 18: 0.35248, 19:-0.42250, 0.27193, 22:-0.00451, 23:-0.02509, 24: 1.11223,
:-0.14387, 26: 0.53326, 27: 0.17990, 0.08594, 30:-0.27746, 31:-0.22777, 32:-0.86171
: 0.19432, 34:-0.58286, 35:-0.03825, . 0.36638, 38:-0.43125, 39: 0.15905, 40:-0.37336,
41:-0.26873, 42:-0.38557, 43: 0.44231, 44: 0.65860, 45:-0.00148, 46:-0.05799, 47: 0.56512, 48:-0.97953,
49: 0.63984, 50: 0.00638, 51: 0.21191, 52:-1.15588, 53:-0.65227, 54:-0.72354, 55: 0.90349, 56: 1.24253,
57:-0.22889, 58: 0.29150, 59:-0.05862, : 0.66879, 62:-0.64447, 63:-0.21998, 64:-0.96658,
: 0.61562, 66:-0.86444, 67:-0.02256, : 0.59483, 70:-0.91031, 71:-0.85034, 72: 0.25631
: 0.34058, 74: 0.15472, 75:-0.03716, :-0.42114, 78:-0.10392, 79:-0.66151, 80: 0.09204,
: 0.34285, 82: 0.29624, 83:-0.51782, : 0.25036, 86:-0.52632, 87:-0.06120, 88:-0.59412,
0.04010, 90:-0.12065, 91:-0.07543, : 0.77736, 94:-0.37574, 95: 0.01270, 96:-0.45011
0.41034, 98:-0.19049, 99:-0.28635, 0.65386, 102:-0.62132, 103: 0.31306, 104:-0.78395,
0.18659, 106:-0.45801, 107: 0.83786, :-0.61774, 110: 0.55490, 111:-0.49347, 112: 0.06540,
:-0.87097, 114: 0.67213, 115: 0.41804, 0.93961, 118:-0.54171, 119: 0.65917, 120: 0.14534,
0.23917, 122:-0.22168, 123: 0.64972, 0.05417, 126: 0.57387, 127:-0.39111, 128:-0.03094,
:-0.69732, 130:-0.09713, 131: 0.49050, 132:-0.72699, 133:-0.27745, 134:-0.70138, 135:-0.30043, 136: 0.32152,
:-0.12955, 138: 0.18189, 139:-0.35252, 140: 0.67887, 141:-0.28138, 142:-1.00933, 143: 0.02109, 144:-0.73148,
145:-0.44128, 146: 1.01731, 147:-0.63942, 0.16033, 150: 0.66593, 151:-0.02009, 152:-0.62116,
:-0.23331, 154:-0.77251, 155:-0.65525, 0.83985, 158: 0.15239, 159: 0.46434, 160:-0.53139,
:-0.17827, 162: 0.53138, 163:-0.09245, :-0.87830, 166:-0.14625, 167: 0.94102, 168: 0.59844,
0.53087, 170:-0.49097, 171:-0.31292, :-0.40144, 174: 0.01825, 175: 0.00290, 176:-0.22958,
0.74410, 178:-0.90999, 179: 0.08905, 0.07476, 182:-0.24340, 183: 0.47022, 184:-0.69932,
0.26045, 186:-0.32029, 187:-0.08799, 0.78979, 190:-0.48675, 191:-0.94892, 192: 0.65169,
0.40571, 194:-0.49214, 195: 0.04704, :-1.02141, 198: 0.23542, 199: 0.88381, 200:-0.43614
203 | | :-0.74428, 2: 0.96263, 3: 0.41191, : 1.54528, 6: 0.94874, 7: 1.01548, 8: 1.16128,
: 0.22375, 10: 1.02649, 11:-0.53323, :-0.15147, 14:-0.65742, 15:-1.99871, 16:-1.56073,
17:-1.91421, 18: 0.86186, 19: 1.00392, 0.26168, 22:-0.32680, 23:-1.01667, 24: 0.19089,
25:-1.99697, 26:-0.73290, 27:-0.22400, 1.70977, 30: 1.96397, 31: 2.40739, 32: 1.31043,
: 0.17945, 34:-1.65916, 35: 0.71651, 0.43356, 38:-0.95746, 39:-0.40904, 40: 0.76517,
:-0.55195, 42:-0.61747, 43:-1.50096, :-0.72275, 46:-0.31071, 47: 0.87570, 48: 0.54399,
:1.35831, 50: 0.18807, 51: 0.67655, :-1.01724, 54:-0.12633, 55:-1.14216, 56:-0.17192,
:-1.64444, 58: 0.05027, 59:-0.17920, :-1.61741, 62:-0.96380, 63:-1.80983, 64:-1.02415,
0.24267, 66: 1.50005, 67: 0.73336, 0.32199, 70: 1.05032, 71:-0.53414, 72: 2.44557,
1 2.34988, T74: 2.48606, 75: 0.91455, 0.48992, 78:-0.00654, 79:-0.71575, 80:-0.76851
:1.40718, 82:-1.29980, 83:-1.50833, : 1.67211, 86: 1.68415, 87: 5.15139, 88: 2.25645,
0.63657, 90:-0.16632, 91:-0.27198, 2.00283, 94:-1.12965, 95: 0.79061, 96: 0.61103,
: 0.99460, 98: 1.15248, 99: 0.55396, :-0.08931, 102: 1.04649, 103: 1.50604, 104:-1.43157,
105:-1.45229, 106:-1.17854, 107:-0.96841, 1.64854, 110:-1.33890, 111:-0.41463, 112:-0.17042,
113:-1.24010, 114:-0.30754, 115:-0.07873, 116:-0.90360, 117:-0.15415, 118:-0.26158, 119: 0.19849, 120:-0.95475,
121:-0.53878, 122:-2.01022, 123:-2.23420, 1.23021, 126:-1.55381, 127:-1.40868, 128: 2.14109,
: 3.79399, 130: 2.08491, 131: 0.97686, :-0.57611, 134:-0.29729, 135: 0.72341, 136:-0.57271
:-1.05817, 138: 0.25599, 139:-1.32734, 0.49894, 142:-2.52911, 143:-0.67005, 144: 1.25922,
0.21792, 146: 0.79135, 147:-0.16460, :-1.05352, 150:-0.86558, 151: 1.25031, 152:-2.25182,
0.15429, 154: 0.93481, 155:-0.78745, 0.54514, 158:-0.95012, 159:-0.30527, 160: 0.47526,
1.27716, 162:-0.69596, 163: 0.66095, 0.36758, 166: 0.32602, 167: 0.67836, 168:-0.82542,
:-0.26503, 170:-0.49594, 171:-0.45991, :-1.36195, 174:-1.09353, 175:-0.30800, 176: 1.70595,
1.01159, 178: 0.44247, 179:-1.04612, 0.36031, 182:-0.23601, 183: 0.07163, 184:-0.33226,
185:-1.23662, 186:-0.37053, 187:-0.66337, 0.15579, 190:-2.26450, 191:-0.48320, 192:-0.77835,
193: 0.28976, 194: 0.30702, 195:-0.17969, 196: 0.04439, 197:-1.41187, 198:-0.76762, 199: 0.38231, 200:-1.52233
204 | | 1: 0.03160, 2: 0.07479, 3: 0.09218, 4:-0.10585, 5: 0.19144, 6: 0.01469, 7: 0.14191, 8: 0.01126,
9: 0.06087, 10:-0.05084, 11: 0.08666, 12: 0.08462, 13: 0.00071, 14: 0.14241, 15:-0.01965, 16: 0.04572,
17: 0.09467, 18: 0.18362, 19: 0.08286, 20: 0.14849, 21: 0.22092, 22:-0.03731, 23: 0.26411, 24: 0.02250,
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13492,
05135,
24764,
23638,
02686,
16450,
03253,
20153,
13953,
00568,
25049,
22542,
01842,
48344,
32245,
16032,
15456,
07066,
71752,

.30022,
.67782,
.20521,
.12357,
.21271,
.64505,

17777,

.03640,

64125,
95405,
41258,
65276,
43914,
33988,
45407,
50205,
12228,
12452,
10824,

.32730,

07071,
15199,
81476,
00185,
94278,
25902,
36974,
80305,
63523,
11378,
84778,
29488,
95757,
07910,
84473,
15559,
07039,
94798,
46755,
27005,
76974,
01070,
13925,
72283,
06934,
25383,
34164,
50779,
17913,
39080,

.76182,
.03726,
.88639,
.91381,
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05991,
06725,
15572,
21977,
17267,
01673,

.01619,

09629,

.06046,

12255,
00451,
21685,
14378,
02782,
06108,
01302,
18963,
05376,
05898,
12548,
01277,
02550,

.08919,
.45887,
.75334,
.32193,
.45413,
.34421,
.00366,
.53380,
.39549,
.61475,
.44249,
.50449,
.18634,
.12755,
.37370,
.98107,

24724,
61108,
33289,
37707,
69175,
98039,
00973,
06858,
51593,

.39053,

17161,
42191,

.08983,
-1,
.80400,
73917,
-1,
.51368,
.13702,
.38385,
.33572,
-1,
.15745,
.00277,
-1,
.62407,
.81782,
.54108,
.13074,
.58864,
.39239,
.65429,
.07975,
.44216,
.29643,
.49002,
-1,
.21034,
.43596,
.41614,
.68578,
27477,
.52884,
08064,
.94247,

04880,

05109,

44460,

20168,

58041,
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.08493,
.05225,
.01560,
.28583,
.01497,
.12469,

11047,
02953,
09167,
10201,
18213,
14925,
12121,
12486,
10795,
08461,
08547,
17455,
09545,
07480,
06854,
24665

31719,

.60772,
.68896,
.00797,
.46656,
.30862,
.39683,
.84655,
.82310,
.10604,
.48381,
.43515,
.48261,
.51768,
11162,
.09963,
.00312,
.95011,
.45405,
.34733,
.10313,
.82682,
.83976,
.72449,
.72181

.02948,
.10921,
.39993,
.11377,

02621,
57856,
73705,
72698,
31306,
48275,
12682,
50908,
65574,
30918,
79942,
58419,
37781,
22150,
89524,
51082,

.93046,
.34609,
.45186,
.60931,
.14651

.69096,
.83127,

06931,
05667,
24916,
54665,
61425,
29693,
11108,
36871,
60399,
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66624, 90:-0.64029, 91: 0.29038, 92:-1.17490, .82259, 94: 0.12714, 95:-0.62028, 96: 0.40791
11840, 98: 1.68828, 99: 0.03804, 100: 1.40981, 05708, 102:-0.58835, 103:-0.43792, 104:-1.80365,
12381, 106: 0.51911, 107: 0.40664, 108:-0.90545, 46438, 110: 1.26241, 111: 0.77749, 112: 0.58454,
02630, 114: 0.82303, 115: 0.49825, 116: 0.36594, 80249, 118: 1.26218, 119: 0.81416, 120: 2.12354,
09577, 122:-0.82844, 123:-3.45387, 124:-0.89927, 46530, 126:-0.54292, 127:-0.05071, 128:-0.62751,
78587, 130: 1.47493, 131: 0.05952, 132: 1.08214, 39028, 134: 1.78953, 135: 0.89471, 136:-0.89433,
137:-0.34160, 138:-0.50065, 139:-0.83638, 140:-2.23133, 19543, 142: 0.33448, 143: 0.27712, 144:-0.22231

70624, 146:-0.73003, 147:-0.29827, 148:-0.36155, .62397, 151: 0.89003, 152:

-

.81773,

154: 1.45697, 155: 0.93295, 156:-0.26361, 37955, 158:-0.43551, 159:-0.95612, 160:-0.85217,
23575, 162:-0.11452, 163:-0.11725, 164: 1.25330, 19998, 166: 1.11468, 167: 1.46469, 168: 0.52688,
89470, 170:-0.56248, 171: 0.91434, 172:-0.24561, 00847, 174: 1.06144, 175: 0.81529, 176: 0.91598,
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73253, 178: 0.59046, 179:-1.05564, 180: 1.15186, 76282, 182:-0.01585, 183:-0.35944, 184:-0.28056,

26267, 186:-0.55399, 187: 0.52325, 188:-0.08708, 13166, 190:-0.43206, 191: 1.31966, 192: 1.03387,

93529, 194: 2.78347, 195: 0.02342, 196: 1.72317, 74309, 198:-2.96033, 199:-3.17785, 200:-3.81820

208 | | 07915, 2: 0.07457, 3: 0.25043, 4: 0.30080, 5: 51063, 6:-0.59274, 7:-0.03807, 8:-0.24570,
33702, 10:-0.71720, 11:-0.92751, 12: 0.31873, 13:-0.98256, 14:-0.90399, 15: 0.90603, 16:-0.60573,

59822, 18:-0.19934, 19: 0.19406, 20:-0.85745, 0.73400, 22: 1.34349, 23:-0.09100, 24:-0.33975,
0.49331, 26: 0.47495, 27:-1.24529, 28: 0.57699, 0.49238, 30: 0.33870, 31:-1.08270, 32: 0.93255,
:-0.27896, 34: 0.99623, 35: 0.40374, 36:-0.60111, 0.80423, 38: 0.42710, 39:-0.71660, 40:-0.53630,

: 0.35542, 42:-1.54907, 43: 0.32046, 44:-1.38958, 0.54725, 46: 0.77187, 47:-0.40641, 48: 0.11190,

: 0.87118, 50:-1.04394, 51: 0.61967, 52:-0.23894, 0.58608, 54:-0.19307, 55: 1.40304, 56:-2.13180,

: 0.78874, 58:-0.01156, 59:-0.29216, 60: 0.48450, 0.21626, 62: 0.27467, 63: 0.01952, 64: 0.45686,
0.39846, 66: 0.41076, 67: 1.25101, 68:-1.52214, 0.97277, 70:-0.31586, 71: 1.07684, 72: 0.22479,
:-1.47517, 74: 0.69859, 75:-0.53183, 76: 0.58312, : 0.58730, 78:-0.51318, 79: 0.16937, 80:-0.45640,
:-0.44594, 82:-0.38834, 83:-2.60148, 84:-2.01832, 85:-3.65419, 86:-4.46050, 87:-8.51283, 88:-7.97979,
:-6.02120, 90:-4.48729, 91: 1.20077, 92: 7.31900, 93:12.09903, 94:14.40528, 95:10.75646, 96: 3.01294,

: 3.04425, 98:-1.19486, 99: 0.02486, 100:-0.52793, : 0.47484, 102:-1.13234, 103:-1.19005, 104:-1.54947,
:-1.94515, 106:-1.54179, 107:-2.74991, 108:-1.57637, 1.88625, 110: 2.67100, 111: 1.92103, 112: 1.81950,
1.10488, 114:-0.29569, 115:-1.15382, 116:-0.35668, 0.67106, 118: 0.88546, 119:-0.30630, 120: 0.24564,
:-1.05902, 122:-0.45560, 123: 1.34002, 124:-0.46988, 0.38453, 126: 0.15546, 127:-0.02800, 128:-0.38989,
0.26417, 130:-0.85283, 131: 1.47339, 132: 0.01952, 0.90854, 134: 0.57699, 135:-0.76099, 136: 0.20078,
1.04621, 138: 1.45941, 139: 0.08717, 140: 1.58413, 0.29210, 142: 0.24643, 143:-1.16359, 144:-1.00655,
:-0.04115, 146: 1.57863, 147: 1.62594, 148:-1.11979, 0.53299, 150:-0.28440, 151: 0.22118, 152: 0.25411
0.43183, 154:-0.45964, 155: 0.13914, 156: 0.53072, 0.04724, 158: 0.10599, 159:-1.11709, 160:-0.47615,
1.18690, 162: 0.37007, 163: 0.89202, 164:-0.17332, 1.21937, 166: 0.86244, 167: 0.32196, 168:-0.51700,
0.20977, 170:-0.37068, 171:-1.39271, 172: 1.67044, 173:-0.03691, 174:-0.64234, 175: 0.22207, 176: 0.90896,
177:-0.11620, 178:-0.73291, 179: 0.36222, 180:-0.32075, 181: 0.35712, 182:-0.56855, 183:-0.37087, 184:-1.68080,
0.53448, 186: 0.45778, 187: 0.54222, 188:-0.02699, 189: 1.89177, 190: 0.54740, 191:-1.00725, 192: 1.03857,
:-1.03635, 194: 0.92512, 195: 1.23045, 196:-0. :-0.26861, 198: 1.48579, 199:-1.69045, 200: 1.35104
209 | | :-0.34749, 2:-0.73489, 3:-1.01223, 4:-1.41401, :-1.29923, 6:-1.35965, 7: 1.23585, 8: 0.23910,
:1.29911, 10: 1.57347, 11:-0.43940, 12: 0.14557, :-1.23980, 14:-1.49598, 15:-0.48690, 16: 1.22877,

: 0.49391, 18: 1.04752, 19: 0.76361, 20: 1.35576, 1.00307, 22: 0.89402, 23:-1.46447, 24:-1.05664,
2.51870, 26: 0.48432, 27: 0.35688, 28: 0.87216, 2.07698, 30:-0.06383, 31:-0.51433, 32:-0.75623,

: 0.71337, 34: 0.48520, 35: 0.42230, 36: 1.45436, :-0.07684, 38: 1.27536, 39:-0.37983, 40: 1.67533,

: 1.31090, 42: 1.16028, 43: 1.35356, 44: 0.45090, 0.22073, 46:-0.32801, 47:-1.47420, 48:-2.61985,
:-1.02104, 50:-2.28106, 51:-1.78077, 52:-1.32896, :-1.90108, 54:-2.18876, 55: 0.15180, 56: 0.86567,

: 0.87216, 58:-0.30413, 59: 0.00481, 60:-0.21922, 0.35188, 62:-0.55913, 63: 0.04955, 64: 1.24126,

: 0.93606, 66: 0.90243, 67: 0.92957, 68: 0.10768, 0.10737, 70: 0.97029, 71:-0.03650, 72: 0.74582,

: 0.81809, 74: 2.14466, 75: 0.09923, 76:-0.14936, 77:-0.71911, 78: 0.65620, 79:-0.12885, 80:-0.44815,
:-1.20659, 82:-1.31668, 83:-0.81881, 84: :1.08887, 86: 0.50033, 87:-0.54635, 88: 0.07160,
:-1.50486, 90:-0.10825, 91: 0.33144, 92: 0.57000, 94:-1.62412, 95:-0.99283, 96:-1.73678,
:-0.53489, 98: 0.34799, 99: 1.33280, 100: 0.17629, 102: 0.58699, 103: 0.22494, 104: 1.33384,
0.50159, 106: 0.54152, 107:-1.35621, 108: 0.62621, 110:-0.71872, 111:-0.87685, 112:-1.17703,
0.16661, 114: 0.62761, 115: 0.85460, 116: 0.34876, 118: 1.30033, 119: 1.54642, 120: 1.68986,
1.15809, 122:-1.21168, 123:-0.75863, 124: 0.03168, 126:-0.38292, 127:-0.52499, 128:-0.29014,
1.59395, 130: 1.13398, 131: 1.48934, 132: 0.34725, 134:-1.32609, 135:-0.80094, 136:-0.59657,
:-1.75898, 138:-0.80638, 139:-0.31213, 140: 1.09050, 142: 0.40410, 143:-0.38892, 144: 0.76354,
145:-0.16969, 146: 0.87606, 147: 1.63142, 148: 0.23291, 150: 0.70678, 151:-0.43855, 152:-1.26677,
153:-1.10758, 154: 0.40894, 155:-0.53145, 156: 0.28117, 158: 0.79470, 159: 0.09370, 160: 0.51307,
161:-0.31017, 162:-0.47195, 163: 1.05106, 164: 0.46975, 166: 0.03469, 167: 0.22939, 168: 1.11934,
1.08368, 170: 1.50069, 171: 0.41021, 172: :-0.90676, 174: 0.00014, 175:-1.75652, 176: 0.19782,
1.51484, 178: 1.07688, 179: 0.84827, 180: 0.74449, 182:-0.14077, 183:-1.57533, 184:-1.10943,
:-1.77896, 186:-0.82948, 187:-0.52511, 188: :-0.51865, 190:-0.86957, 191: 1.02946, 192: 0.32256,
0.52037, 194: 1.60591, 195: 0.54775, 196: 0.43027, 198: 0.48502, 199: 1.10392, 200: 0.26006

210 | | 0.03276, 2:-0.19086, 3: 0.06131, 4: 0.12401, 6:-0.04115, 7:-0.06623, 8:-0.17908,
0.13187, 10:-0.24532, 11:-0.17891, 12: 0.15537, 14:-0.05654, 15:-0.18780, 16:-0.11956,
:-0.11708, 18:-0.10124, 19:-0.25467, 20: 0.18512, 22:-0.19739, 23:-0.08229, 24:-0.17493,
0.02269, 26:-0.39789, 27:-0.03411, 28: 0.06897, 30:-0.25284, 31:-0.04036, 32:-0.13542,
33:-0.12148, 34:-0.06385, 35:-0.09936, 36: 0.30509, 38:-0.06530, 39:-0.06675, 40:-0.21179,
:-0.05873, 42:-0.07515, 43:-0.02409, 44: 0.00671, 46:-0.15958, 47:-0.09474, 48:-0.19228,
49:-0.12536, 50:-0.29943, 51:-0.14602, 52: 0.03328, 54:-0.12892, 55:-0.15995, 56:-0.05717,
:-0.08963, 58:-0.04780, 59:-0.22169, 60: :-0.24936, 62: 0.06853, 63:-0.04934, 64:-0.02274,
:-0.07322, 66:-0.19635, 67: 0.05596, 68: 0.14266, 70:-0.12636, 71:-0.14865, 72:-0.08333,
:-0.19481, 74:-0.13229, 75: 0.03833, 76: :-0.23006, 78:-0.07934, 79:-0.01693, 80:-0.02787,
0.17850, 82: 0.03925, 83:-0.21894, 84: 0.17393, 86:-0.09236, 87: 0.04690, 88:-0.23935,
0.06793, 90:-0.16400, 91:-0.07948, 92: 0.19846, 94:-0.03641, 95:-0.12852, 96:-0.10140,
0.09161, 98:-0.11928, 99: 0.16685, 100: 0.16333, 102:-0.01337, 103:-0.13036, 104:-0.12462,
0.17050, 106:-0.00486, 107:-0.24525, 108: 0.00917, 110:-0.09403, 111:-0.08022, 112:-0.20495,
:-0.06790, 114:-0.07759, 115:-0.16374, 116: :-0.22633, 118:-0.27752, 119:-0.20923, 120:-0.12024,

:-0.30520, 126:-0.06592, 127:-0.03734, 128:-0.23041
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130:-0.17002, 131:-0.05852, 132: :-0.23921, 134: 0.02042, 135:-0.14409, 136:-0.13425,
137:-0.03508, 138:-0.10578, 139:-0.03381, 140: :-0.10737, 142:-0.14054, 143:-0.13432, 144:-0.16505,
145: 0.01056, 146:-0.15249, 147:-0.17518, 148: :-0.30399, 150:-0.07001, 151:-0.18623, 152:-0.20709,
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97: 0.
105:-0.
113:-0.
121:-0.

137:-0.
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33:-0.02207,
41: 0.35745, 42:
49:-1.32435, 50:

113: 1.03236, 114:
121: 0.09583, 122:
129:-0.86057, 130:
137: 0.42648,
145:
153:
161:
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177:
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193:

-
w
©

|
o

17:
25:
33:
41:
49:
57:
65:
73:
81:
89:

©
~
I
w
o
@
&
b
o
©
@
i
w

105:
113:
121:
129:-0.

or o
IS
9
N
o
a
o
o
[
|
=

i
IS
o
oo

153:

-
=
J
|
i
N
©
~
o
@
-
=)
©
0
N

; .. HEA "“
o o RHHBERPOOOO0OOO0OOOOOOO

CoORORRERLRO

!
o

COO0OO0OONONHOROOOOORNR

OO RrRLrRHORO

APPENDIX D.

115:

[l [ | | |
CO0O0O000O0000O0OO0O0O0ORrOO

-

o

-0

o r o

| | | |
HFHEPHROOOOROOOOWOOOO

o

|
oo r KL OO

|
or oo o

-1

06644,
.24013,
.15884,
.16025,
.26714,
.17475,
.51024,
.30739,
.02398,
.06705,
.73026,
.51357,
.04980,
.50586,
.38758,
.01882,
52486,
.45806,
.30395,
69466,
.65535,
.04850,
.95547,
.48025,
.76158,
.24888,
42739,
.32680,
.16649,
17867,
.68282,
.75971,
.08002,
-1,
.33793,
.68259,
.04643,
.35387,
.65609,
:-0.
:-0.

41925,

22767,
27638,

.50364,
.56080,
.11330,
.86686,
-1,
58124,
14677,
55165,
111312,
.04044,
.20328,
.04320,
01369,
.37638,
.11508,
.10204,
.30407,
.11173,
.26613,
.56603,
.63840,
.54604,
.23942,
06340,
.18220,
.13678,
91956,
.57040,
09993,
55116,
.84936,
.08058,
.51375,
.85587,
.44278,
.50153,
.36761,
.89365,
.50171,
.27436,
.57909,
.17773,

22138,
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.50415,
.34786,
.04346,
.32396,
.19434,
.93629,
24248,
02588,
.48735,
.74134,
11238,
66755,
07330,
69406,
.88481,
.03023,
.01494,
.19239,
.04077,
.60256,
.32976,
:-0.
-1
.69847,
.54859,
.35027,
.01821,
.34655,
.21360,
.85267,
66919,
.04889,
.31275,
.30184,
.90557,
.60912,
72953,
.34259,
.46726,
.20906,
:-0.
67566,
.21900,

.29715,
.18185,
.00672,
.30598,
.08124,
.16021,
.25902,
.74715,
.12359,
.00902,
.13126,
.66649,
.54304,
.68927,
.40064,
.87707,
.08930,
.03868,
.64457,
.72997,
.08710,
.95564,
.17418,
.51929,
67744,
76727,
.28540,
.95472,
.64634,
.25881,

08855,

.03255,
.13897,
.04696,
.51593,
.80989,
.42832,

40873,

16486,
44304,

72836,
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07111,
.13658,
.03796,
.05481,
.19931,
.04602, 198:
.67099,
.94116,
.12063,
.14242,
.20207,
.70266,
.24886,
.53026,
.47028,
77581,
.79454, 86:
27904, 94:

.39695,
.31486,
.52033,
.23792,
.66685,
.55576,
.06004,
.68993,
.07951,
.37879,
.68433,
.23179,
.28288,
.91513,
.31824,
17729,
.08355,
57782, 46:

.28094,
.91891,
.80806,
.55460,
.57691,
.84542,
.03266,
03948,
.28566, 134:
19260,
50217,
.63230,
04694,
60327,
20325,
.80715,
-1,
:-0.
-1
:-0.
.11758,
.48350,
.70581,
:-0.
.03639,
.85367,
.65796,
65169,
02177,
15748,
.13882, 110:
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15011,
13159,

74094,

79783,
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80453,
93893,
57924,
96606,
36120,
62602,
31140,
49486,
16340, 182:
59642,
37827, 198:
98699,  6:
26994, 14:

-
=
©

|
o

i

g

N
I

-

©

o
I

|
-

oo0ooooo

CO0OO000000O00O0OO0O0O0O0OO OO0

|
o

ONHrOOORKRO

!
o

PO OO0OO0OORRLRRLOOOOOOR O K

o

NOOOOOOOOOO

30230,
18274,
13036,
28202,
05009,
05002,

.43068,

71629,
75263,
32087,
51392,
75337,
45102,
74848,
87782,

.85293,

76778,
03895,
80469,
77413,
62633,
67404,
73234,
44095,
73153,
67393,
20533,
74235,
45744,
27892,
50825,
49486,
69638,
72332,
09854,

.63914,

38734,
56270,
61803,
06419,
49435,
46781,
94280,
26333,
30161,
79281,

.29204,

66493,
56969,
52326,
63278,
77684,
06478,
33436,
73290,
64584,
32786,
54136,
80955,
95289,
77095,
06157,
01107,
14771,
72684,
25715,
74336,
85544,

.04587,

65499,

.47166,

80652,
21585,
31655,
93315,
63846,
18289,
13533,
44728,
08225,
04358,
35494,

.48947,

167:
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.07439,
.34009,
.28017,
.23702,
.21941,
.14143,
.92085,
.98120,
.75830,
.98895,
.58604,
.76756,
.78693,
.556967,
16744,
.98882,
.79245,
14513,
.72011,
-1,
:-0.
:-0.
.55620,
:-0.
:-0.
.46420,
.05477,
.25970,
.84136,
.06753,
.34281,
.57655,
12505,
.17889,
.17563,
.66340,
.28279,
16346,
.55417,
.06875,
.31955,
.85897,
.58622,
.22465,
.82843,
. 76474,
.50133,
.10616,
.22253,
99477,
.64733,
.08869,
.36618,
.94238,

00418,
50144,
59489,

90712,
68415,

53796,
44374,
63034,
07457,
74810,
92641,
28599,
37696,

.03427,

55638,
12655,
23984,
43633,
84468,
27636,

:-0.93903,
-1,
.23466,
.00706,
.53785,
.29805,
.19480,
.21761,
.70816,
:-0.
-0

33940,

42326,

.06088,
.20091,
.51805,
.09821,

o

o

e

:=0

o or oo

.22761,
.00924,
.12463,
.09380,
.20917,
.11825

.86194,
11123,
.50966,
.48923,
.62348,
.03830,
.82400,
.64002,
.05706,
.07649,
.53436,
.74837,
.42566,
.47780,
.25492,
.52458,
.48663,
.87857,
.74148,
.01147,
.44169,
.37942,
.46172,
.20453,
.16310

.18892,
.47185,
.66614,

27431,
35375,
19747,
27493,
14172,

.34469,
.27206,
.30986,
.00506,
.27735,
.66294,
.60387,
.57236,
.65872,
.61554,
.10551,
.77235,
.42059,
.90538,
.53302,
.06688,
.64911

.22685,
.60202,
.24308,
.12474,
.54123,
.82036,
57764,
.23661,
.24458,
.13897,
.31637,
.58129,
.36160,
.38473,
.49274,
.25774,
.67994,
.47617,
.40515,
.33560,
.11041,
.33221,
.53637,
79794,
.84751

.22790,
.48975,
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.56668, 18: 1.19535, 19: 0.85299, 30935, 22: 0.39102, 23: 0.56725, 24: 0.72921,
.91650, 26: 1.50475, 27:-2.17316, 92148, 30: 0.97480, 31: 2.83228, 32: 3.33911,
.90413, 34:-0.56723, 35:-1.48351, 43409, 38:-2.10188, 39:-1.24092, 40:-1.54844,
.46604, 42:-2.02179, 43:-0.39143, 12369, 46: 0.16508, 47: 0.96423, 48: 0.85588,
.10945, 50:-0.47806, 51: 0.82021, 74547, 54: 1.08244, 55:-1.58356, 56: 1.08749,
.17497, 58:-0.05683, 59:-0.82291, 18713, 62: 1.76395, 63:-1.42975, 64:-0.86425,
.43238, 66: 0.73493, 67: 1.55587, 27214, 70: 0.30095, 71: 0.47255, 72:-0.45104,
.18342, 74: 1.06933, 75: 0.66466, 46130, 78: 0.15719, 79:-0.21677, 80: 0.24872,
-2

.36486, 82: 0.74786, 83: 0.20049, 14511, 86:-2.14071, 87:-2.38341, 88:-3.36337,
.21741, 90:-1.38007, 91:-0.05116, 55973, 94:-0.19681, 95: 1.28418, 96:-0.17876,
.97640, 98:-0.39924, 99:-0.53569, 955681, 102: 0.55026, 103: 0.11947, 104: 1.53239,
.46552, 106:-0.22775, 107: 0.22063, 110: 1.79678, 111:-0.68535, 112: 0.52146,
.01025, 114:-1.12068, 115:-1.42246, 76936, 118:-2.57762, 119:-2.55055, 120:-3.93730,
.69707, 122:-0.34048, 123: 0.71429, 39532, 126: 0.24921, 127: 0.26703, 128: 0.85115,
.52846, 130: 0.42773, 131: 0.48868, 52898, 134: 1.01988, 135:-0.00912, 136:-0.42235,
137: 0.69643, 138:-1.04210, 139: 1.31162, : 62775, 142: 0.42112, 143:-0.85469, 144: 0.13615,
145: 2.28235, 146: 1.25091, 147:-1.04362, 148: 06675, 150:-0.30302, 151: 0.90082, 152: 0.98763,
.30620, 154:-1.35331, 155: 0.44334, 156: 06535, 158:-0.18725, 159:-1.39536, 160:-0.27085,

0

1

2

0

0

0

1

0

0

2

1

1.35739, 162: 0.17207, 163: 1.30937, 164:
:-0.38272, 170:-0.59609, 171:-0.53151, 172:

1

0

0

8

5

8

9

1

3

0

0

o
f

50224, 166: 0.63923, 167:-1.75918, 168:-1.69934,
50953, 174:-0.37217, 175: 0.37209, 176: 0.79302,
14766, 182:-0. 183: 0.61856, 184: 0.21572,
80738, 190: 0.69298, 191: 0.43005, 192:-0.22825,
73570, 198:-1.20557, 199:-0.17420, 200: 2.79147
206:-17.27779, 207:-19.63564, 208:-8.07694,

.34310, 178: 0.59221, 179:-0.16159, 180:
.26857, 186: 1.11115, 187: 0.90954, 188:
.74929, 194:-0.34065, 195:-0.57326, 196:

o
o
-
=)
-
o
@

-

OO0 O0OOROOOONWOORKROOROWOO
o
&
w
p
w
N

215 | | .05657, 202:-0.47326, 203:-6.88959, 204:-3. :14.25779,
: 5.65202, 210:-8.38004, 211: 1.70418, 212:16.14486, 213:-18.01824, 214: 6.56142

216 | | 201:-8.81815, 202:-0.91956, 203: 8.76738, 204:-1.95995, 205:-14.43344, 206:-8.80742, 207:-6.87108, 208: 8.86285,
209:-9.73433, 210:-1.94612, 211:-2.47543, 212: 9.17747, 213:-9.26680, 214:-9.87326

217 | | 201: 1.80994, 202: 3.27975, 203:-2.18623, 204:-19.05398, 205:-2.83302, 206: 6.85769, 207: 7.78955, 208:-2.18017,
209: 3.23448, 210:15.49382, 211:-3.52834, 212:-7.29490, 213: 7.67179, 214: 2.54637

218 | | 201: 0.20828, 202:-2.10904, 203:-0.52986, 204: 7.97216, 205:-0.57531, 206:-0.05022, 207: 0.53919, 208: 0.47108,
209: 0.79411, 210:-9.49506, 211:-1.29161, 212: 0.55176, 213: 0.25201, 214: 0.41992
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SNNS network definition file V1.4-3D

generated at Sun Apr 27 21:09:02 2003

: SNNS_FF_NET

network name

source files

114

of units

no.

: 1040

: 0
Y

of connections

of unit types
of site types

no.

no.

no.

: SCG

learning function
update function

: Topological_Order

unit default section :

| st | subnet | layer | act func | out func

| bias

act

1 | Act_Logistic | Out_Identity

0

| 0.00000 | h
|====1

0.00000

unit definition section :

2]

o

»

o

2]

o

g

=

Al

L

=

o

g

Al

U e —————————————————
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R -R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-Re-R-R-R-RoRoRo RN RN o R RN =]
e e R R ]
0 © 0 0 O © © 0 O O WO DWW OO OOV 0OV D OO0 OO0 OO0 OO0 00
FAAANATAAAAAATAIAAAATIAANATIAAAAIAIAAAAAANAINANIAANNIANNAINNNN AN

o DR RN N RN R N S S D N S D D N D D D D D T D D D S S D D M A D)

C |l NMITOWONDNIOATANNHIWONNDO TANLWLONDNDOANNLOONONO HANDLLON DD NM Y WO

A A A A AT A A AT NNNNAANANNOOONOOONOOFSIIISIITISIDOOOW0W

D

) R T T T

A I I R I I B R R I R R L B B R e R R R R R O R O R O

(="

I

2] E L T T e B B B B T T I B B I T T B B B T o T T I B O T T T T I T e T T T B I e I B I

bias

| act

unitName
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55 | | 0.58333 | 0.16859 | i | 2, 56,-26102
56 | | 0.55645 | -0.62456 | i | 2, 57,-26102
57 | | 0.55645 | 0.05747 | i | 2, 58,-26102
58 | | 0.55645 | -0.52926 | i | 2, 59,-26102
59 | | 0.56452 | -0.51572 | i | 2, 60,-26102
60 | | 0.55645 | 0.30776 | i | 2, 61,-26102
61 | | 0.55645 | 0.05175 | i | 2, 62,-26102
62 | | 0.53763 | 0.87326 | i | 2, 63,-26102
63 | | 0.53763 | -0.46634 | i | 2, 64,-26102
64 | | 0.58333 | -0.36676 | i | 2, 65,-26102
65 | | 0.58333 | 0.15991 | i | 2, 66,-26102
66 | | 0.55645 | -0.07675 | i | 2, 67,-26102
67 | | 0.58333 | 0.80658 | i | 2, 68,-26102
68 | | 0.55645 | -0.28111 | i | 2, 69,-26102
69 | | 0.58333 | 0.08856 | i | 2, 70,-26102
70 | | 0.58333 | 0.18479 | i | 2, 71,-26102
71 | | 0.55645 | -0.09317 | i | 2, 72,-26102
72 | | 0.58333 | -0.50768 | i | 2, 73,-26102
73 | | 0.58333 | -0.88155 | i | 2, 74,-26102
74 | | 0.58333 | -0.86706 | i | 2, 75,-26102
75 | | 0.55645 | 0.38900 | i | 2, 76,-26102
76 | | 0.55645 | 0.78654 | i | 2, 77,-26102
7 | | 0.58333 | -0.69546 | i | 2, 78,-26102
78 | | 0.55645 | -0.33645 | i | 2, 79,-26102
79 | | 0.56452 | -0.62668 | i | 2, 80,-26102
80 | | 0.53763 | 0.12256 | i | 2, 81,-26102
81 | | 0.53763 | 0.29200 | i | 2, 82,-26102
82 | | 0.55645 | 0.11448 | i | 2, 83,-26102
83 | | 0.55645 | 0.83891 | i | 2, 84,-26102
84 | | 0.55645 | 0.30400 | i | 2, 85,-26102
85 | | 0.58333 | 0.69980 | i | 2, 86,-26102
86 | | 0.55645 | 0.46250 | i | 2, 87,-26102
87 | | 0.58333 | 0.27543 | i | 2, 88,-26102
88 | | 0.61022 | -0.36402 | i | 2, 89,-26102
89 | | 0.55645 | -0.76440 | i | 2, 90,-26102
90 | | 0.58333 | 0.71207 | i | 2, 91,-26102
91 | | 0.56452 | -0.35102 | i | 2, 92,-26102
92 | | 0.56452 | -0.17860 | i | 2, 93,-26102
93 | | 0.61022 | -0.01557 | i | 2, 94,-26102
94 | | 0.53763 | 0.07949 | i | 2, 95,-26102
95 | | 0.53763 | 0.26026 | i | 2, 96,-26102
96 | | 0.58333 | 0.98694 | i | 2, 97,-26102
97 | | 0.53763 | -0.13379 | i | 2, 98,-26102
98 | | 0.58333 | -0.82435 | i | 2, 99,-26102
99 | | 0.53763 | -0.01590 | i |  2,100,-26102
100 | | 0.58333 | 0.88439 | i | 2,101,-26102
101 | | 0.96800 | -2.99604 | h | 5, 2,-26102
102 | | 0.99350 | 5.53834 | h | 5, 3,-26102
103 | | 0.10138 | -20.31278 | h | 5, 4,-26102
104 | | 0.98703 | -2.86665 | h | 5, 5,-26102
105 | | 0.45767 | 4.95476 | h | 5, 6,-26102
106 | | 0.00000 | 1.17697 | h | 5, 7,-26102
107 | | 0.97428 | -2.63886 | h | 5, 8,-26102
108 | | 0.92642 | -4.27375 | h | 5, 9,-26102
109 | | 1.00000 | 8.13581 | h | 5, 10,-26102
110 | | 0.00000 | -9.28413 | h | 5, 11,-26102
111 | | 0.97143 | 5.57508 | o | 8, 2,-26102
112 | | 0.00002 | -2.32903 | o | 8, 3,-26102
113 | | 0.00903 | -21.28129 | o | 8, 4,-26102
114 | | 0.00000 | -2.47878 | o | 8, 5,-26102
- | I-—=-1 |
connection definition section :
target | site | source:weight
2 2:-1.34059, 98558, 4:-0.82090, -1. 7:-0. 8:-0.98276,
1 10:-0.54826, 11:-0.17401, 12:-1.06394, 0. 15: 0. 16:-0.11834,
-0. 18: 0.49476, 19: 0.14892, 20:-0.08750, 0. 23: 0. 24: 0.70043,
0. 26: 0.30432, 27: 0.80207, 28: 0.09942, 0. 31: 0. 32: 1.26293,
: 0. 34: 1.56515, 35: 1.81569, 36: 1.52996, 1. 39: 1. 40: 1.87062,
0. 42: 1.37401, 43: 1.565563, 44: 0.53017, 0. 47: 1. 48: 1.20136,
0. 50: 1.74287, 51: 0.73417, b52: 0.69351, 0. 55: 0. 56: 0.86512,
0. 58: 0.60847, 59: 0.07857, 60:-0.40617, 0. 63: 0. 64: 0.39678,
0. 66: 0.47408, 67: 0.33281, 68:-0.77610, :-0. 71:-0. 72:-1.14507,
0. 74:-0.90324, 75:-0.71346, 76: 0. 0. 79: 0. 80: 0.03930,
-0. 82: 0.22103, 83: 0.58506, 84:-0.25323, 0. 87:-0. 88:-0.08407,
: 0. 90: 0.76757, 91: 0.74081, 92:-0.00562, 0. 95 96: 0.11790,
-1. 98:-0.65857, 99:-1.23666, 100:-0.34138
: 0. 2: 0.66293, 3: 1.00487,  4: 0.72452, : 0. 0. 7: 0. 8: 0.28614,
: 0. 10: 0.13992, 11: 0.03459, 12:-0.02668, 0. 0. 15: 0. 16: 1.49174,
0. 18: 1.37336, 19: 0.95159, 20: 1.37130, 1. 1. 23: 1. 24: 1.14747,
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103 |

104 |

105 |

106 |

107 |

108 |
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-1,
-1,
.53871,
.31734,
.01504,
.25703,
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o oo oo
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.665124,
.76857,
.56149,
.29750,
.25059,
.98693,
.38595,
.55263,
.58645,

18157,
89764,
76628,
26488,
20461,
30684,
26440,
12149,
35020,
10989,
62943,
74581,
44175,
57157,
62620,
08469,
48246,
45029,
06962,

.04955,
.53916,
.38895,
.58953,
.66476,
.46708,
.46668,
.53711,
.07159,
.57336,
.04861,
.53488,
.70761,
.27642,
.18307,
.33854,
.26348,
.11965,
.01437,
.71698,
.43741,
.39048,
.16034,
.95169,
.67006,
.10346,
.04291,
.49575,
.67984,
.84670,
.47476,
.03708,
.16882,
.01032,
.80590,
.00739,
.12762,
.12478,
.11490,
.37276,
.00529,
.36104,
.39890,

25051,
57517,
81121,
70670,
44064,
26299,
21660,
28319,

o

o

®
|

o

o o

:-0.

o

o
|

o

[
[
|

= OOk

-
o
coo0oo0oo0o0O0O0O0O0O0

CO0OO0OO0O00O0O0OO0OOKRNOOOOO

coomrOORrO

oOONORrROOKROO

Cooo0ooooo

ROOOOROORO

APPENDIX D.

o © © 0 ~
© R WO RO

27:

o
3

[
= O oo

-

o

ONHOOO0OO0OO0OO0OO0OO0O

.08009,
.39786,
.35343,
.64460,
.66604,
.66260,
.48216,
.47091,
.44387,
.32517,
.68517,
.13981,

59832,
01659,
14175,
49389,
28144,
18413,
06606,
33449,
12730,
36057,
69481,
56482,
54036,
32800,

67147,
.61503,
.20147,
.05684,
-1,
.47925,
.28190,
.25893,
.16208,
94998,
.09128,
90542,
.05811,
-1
.563704,
.47669,
.90540,
.90652,
.70414,
.49180,
.43489,
.35108,
171186,
.19625,
.02609,
.57884,
.62388,
.05635,
.62771,
.03193,
.03706,
.28557,
.36477,
.16425,
.14647,
.12450,
.57068,
.52808,
.04503,
.56099,
.63072,
.33905,
.48196,
.64445,
.10575,
.18982,
.50445,
.73369,
.52961,
.08864,
.48952,
.37999,
.07142,
.72918,
.35817,
.59439,
87960,

49752,

04382,
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O, OO0 0000
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.01113,
.21543,
.14316,
.64369,
.31771,
.55883,
.08011,
.42925,
.48099,
.28248

.04439,

00484,

.34798,
.47092,
.91381,
.82083,
.37726,
.41834,
.18287,
.15477,

12304,

.59253,

92360

.19864,
.79361,
.50731,
.94712,

41370,

.16486,
11757,
.74364,
.60755,
.11091,
.02517,
.63919,
.78210
.14936,
.61910,
.86173,
.96089,
.84192,
.08858,
.21960,
.41547,
.31360,
.08529,
.24223,
.67268,
.85987
.64496,
.34212,
.43851,
.99436,
.38483,
.55415,
.89540,
.27760,
.94366,
.24923,
. 75996,
.49770,
.89150
.82531,
.11756,
.08652,
.20977,
.16694,
.09954,
.63415,
.56620,
.96363,

44101,

.78561,
.84172,
.66083

.00429,
.50817,
.23579,
.08287,
.63755,
.85915,
.75167,
.99968,
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29:
37:
45:
53:
61:
69:
77
85:
93:

13:
21:
29:
37:
45:
53:
61:
69:
7
85:
93:

13:

29:
37:
45:
83:
61:
69:
7
85:
93:

13:

29:
37:
45:
53:
61:
69:
7
85:
93:

13:
21:
29:
37:
45:
53:
61:
69:
7
85:
93:

21:
29:
37:
45:
53:
61:
69:
7
85:
93:

o o

-1

-1.
-0.

-0

|
o oo

Ooooo0ooo0o0oo0

-0.

-0.
-0.

I
o or o

-0.
-0.

i

)

-0
:-0.
:-0.

:-0.

.76754, : 0.55091,
.05159, :-0.12267,
.06284, :-0.75641,
.37231, 1.21235,
73665, :-1.51816,
82395, :-0.20024,
.24760, :-0.04296,
.15117, ¢ 0.21357,
.26673, 0.39440,
.93386, : 0.28152,
39552, ¢ 0.41036,
35255, : 0.04132,
22068, : 0.44162,
09980, : 0.12553,
44275, : 0.35562,
35908, : 0.46245,
54509, : 0.86822,
38519, : 0.33635,
15787, :-0.13517,
10807, ¢ 0.03562,
09431, ¢ 0.33157,
68513, : 1.75399,
18239, :1.45207,
41375, : 1.26264,
19581, ¢ 0.19115,
.22690, :-0.14248,
.61733, :-0.42034,
.13443, :-1.52023,
.10906, 1.38508,
.10118, 0.09432,
.27498, : 0.54371,
.82730, : 0.27846,
.69603, 94:-0.82798,
.22652, 6: 0.12750,
.20898, 1.30373,
.46718, :-0.32553,
.52248, :-1.89243,
.05546, : 0.43883,
.17851, : 0.42493,
.85621, 0.07538,
.06201, :-0.09193,
.30886, :-0.68485,
.80178, ¢ 0.40188,
.63205, : 0.93857,
.25469, : 0.67148,
.70334, .05966,
.48494, .33871,
.72198, .14272,
.25602, .04134,
.83361, .71850,
.41641, .08542,
28669, .10726,
.77215, .56252,
.50393, .59144,
11064, .97326,
31026, .15716,
.33105, 74626,
.79170, .67743,
.31966, .15439,
.91242, .12856,
.21480, .45518,
.20838, .77690,
25261, .47651,
89950, .14110,
.35739, 119227,
.24000, :-1.35864,
74390, 78: 1.02546,
28166, 86: 0.93491,
60502, 94: 1.90158,
.24630, : 0.52083,
.37997, :-0.00887,
61504, :-0.79838,
81459, :-1.901186,
.31777, 38:-1.05507,
36302, 46: 0.15593,
.32075, 54: 0.52367,
.75984, 62: 1.81816,

31:
39:
47:
-1
63:
71:
79:
87:
95:

15:
23:
31:
39:
47:
55:
63:
71:
79:
87:
95:

15:

31:
39:
47:
55:
63:
71:
79:
87:
95:

15:
23:
31:
39:
47:
55:
63:

79:
87:
95:
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|
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|
o

|
o
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| |
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N
o N

o

Lo
oo ooo

o
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oooooo

.59637,
.64204,
.29649,
.44431,
-1

.25455,

88471,

08680,
25881,
23454,

71815,
41255,
08825,
26312,

.33893,

09565,
58930,
36627,
84716,
76866,
15441,

.16230,

43663,
91206,
97856,
54761,
00140,
22594,
97925,
00884,
28146,
37645,
00373,

.95825,

.46272,
.44426,
.07298,
.89421,
.62900,
.86203,
.63807,
.26693,
.07452,
.18277,
.57714,
.12934,

.99506,
.20492,
.08654,
.16432,
.26499,
.26058,
.64015,
.32015,
.50507,
.86344,
.10474,
.18826,

64257,
.61314,
.26177,
.02702,
.562576,
.63883,
-1,
05105,
.13809,
93174,
.31435,
.34507,

30938,

.10630,
.15534,
.58816,
.98680,
.83231,
.14739,
.31617,
.10468,

32:
40:
48:
56:
64:
72:
80:
88:
96:

16:
24:
32:
40:
48:
56:
64:
72:
80:
88:
96:

o

-1
-1,
-1,
-1

o

.35446,
.34600,
.03920,
.40711,
.64939,
.08365,
.02342,
.86311,

28036,

05889,
52923,
50803,
51650,
16598,
09769,
54910,
14137,
19530,
39415,
43483,
53579,

63170,
61204,
49709,
86941,

.91983,
.69037,
.19470,
.05379,
.13469,
.36010,
.34872,
.11764,

.21941,
.55038,
.50076,
.69888,
.92818,
.99576,
.09960,
.48245,
.19351,
.05737,
.62267,
.69370,

.07265,
.32618,
.07805,
.95077,
.19065,
.54954,
.13559,
.60848,
.78885,
.69266,
.17891,
.29572,

.18496,
.86188,
.11639,
.58833,
.97434,
.34332,
.77105,

53561,
15456,
80261,
09108,
57068,

.02570,
.13459,

19703,
37883,

.24257,
77465,
.72419,
.96810,
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109

110

111
112
113

114

WEIGHT VALUES FOR THE S-SHAPE RISER

| 101:
9: 7.50695,
| 101: 3.08403,
109:11.14361,
| 101:-1.77414,
109:-9.03734,

—
o

66:
74:
82:
90:
98:

18:

102

10:

IS}

110:

10:
110
10:

N}

S}

110:

1.54403, 67:
1.19819, 75:
0.69129, 83:
-0.36720, 91:
0.58310, 99:
:-0.39885, 3:
:-0.60301, 11:
0.07157, 19:
¢ 0.46717, 27:
: 0.61517, 35:
1.24836, 43:
-0.13410, 51:
:-0.89694, 59:
0.22292, 67:
0.16746, 75:
-0.11629, 83:
0.82420, 91:
0.21236, 99:
0.42509, 3:
:-0.43136, 11:
0.55634, 19:
0.45452, 27:
:-1.12807, 35:
:-0.09644, 43:
0.74835, 51:
:-0.55769, 59:
:-1.06470, 67:
:-1.20050, 75:
:-1.08180, 83:
: 0.26800, 91:
1.03282, 99:

N

|
o o

|
o

|
o

-1

[ | [l |
OO0 o00O0O0O0O0OOo

cooNOR

.31090,
.09537,
.22079,
.34151,
.16386,
-1

.61226,
.01048,

10356,

11683,
00205,
09585,
59814,
20087,
15832,

.33234,
.30516,
.14580,
77722,
.01715,
-1

.01358,
.83608,
.50029,
.52544,
.22651,
.10482,
.02830,
.12536,
.49260,
.53925,
0.

52914,

33034,

68: 1.
76: 0.

84:-0
92:-0

100:-0.
4:-1.

12:-0

20: 0.
28:-0.

36:-0

44: 1.
52: 1.

60: 0

68: 1.
76:-0.

84:-0

92:-0.
100: 0.

4:-1

12:-1.
20:-0.
28:-0.

36:-0

44: 0.
52: 0.

60: 0

68:-1.
76: 1.

84:-0

92:-1.
100: 0.

:-11.47898, 103:-14.29568, 104:
110:11.79521
:11.95402, 103:21.32338,

-7.21627

:-5.92675, 103:-2.47414,

:-13.82436

:-1.59320, 103:-4.31537,

8.88850

104:-8

104: 3

104:-3

87297,
53825,
.16060,
.02521,
09837

27713,
.25106,
33119,
86181,
.74533,
62317,
52054,
.82900,
03225,
32310,
.87486,
89749,
17478

.31214,
05030,
87230,
79854,
.93105,
48001,
57961,
.55478,
05113,
54630,
.11302,
91572,
08351

5.98906,

.86108,
.83274,

.65101,
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69: 2.18994, 70: 1.76969, 71: 0.89145, 72: 2.25029,
77: 0.68898, 78: 0.94858, 79: 0.63704, 80:-0.26503,
85: 0.54867, 86: 0.31295, 87: 0.24916, 88: 0.85775,
93:-0.42439, 94: 0.91045, 95: 0.07371, 96: 0.76066,
5:-1.39768, 6:-0.13564, 7: 0.57395, 8: 0.82363,
13:-1.17186, 14:-0.77256, 15:-0.16755, 16: 0.65281,
:-0.20152, 22:-0.40186, 23:-0.64303, 24: 0.15235,
:-1.30169, 30:-0.74892, 31:-1.19355, 32:-0.41668,
: 0.04382, 38:-0.35612, 39:-0.94288, 40:-0.85186,
: 0.27756, 46: 0.31749, 47: 0.60826, 48:-0.00320,
: 0.15434, b54: 0.05512, 55: 0.16939, 56: 0.30568,
1.08541, 62:-0.03770, 63: 0.51034, 64: 0.71649,
1.25684, 70: 1.06897, 71: 0.83385, 72: 0.23555,
1.04707, 78: 1.92902, 79: 1.46909, 80: 0.07947,
85:-0.05137, 86: 0.70605, 87: 0.56970, 88: 1.18291
93:-1.04584, 94:-0.34638, 95: 0.75873, 96: 1.38263,
5:-0.70830, 6:-0.68251, 7: 0.02441, 8:-0.42591,
: 14:-0.14018, 15: 0.35339, 16:-0.22654,
22:-0.20305, 23: 0.11406, 24: 0.39669,
30:-0.94552, 31:-0.83416, 32: 0.75889,
. 38:-2.26728, 39:-2.25602, 40:-1.37394,
45: 0.80705, 46:-0.20550, 47:-0.41012, 48:-1.15226,
53: 0.88722, 54: 0.45839, b55:-0.56565, 56:-1.42065,
61:-0.14832, 62: 1.55756, 63: 0.49105, 64:-0.11391,
69: 0.06781, 70:-0.30435, 71: 0.57457, 72:-0.27713,
77: 0.84451, 78: 1.59724, 79: 1.31571, 80: 1.50711
85: 0.63895, 86: 0.67200, 87: 0.56600, 88: 1.28210,
93:-0.49465, 94:-0.10249, 95: 0.60467, 96: 0.14795,
105:-10.00127, 106:-0.55234, 107: 4.56877, 108: 8.12682,
105: 5.40298, 106:-11.69273, 107:-7.19213, 108:-8.44941
105:-3.20055, 106:15.51036, 107: 3.15440, 108: 3.45649,
105: 0.48013, 106:-0.59155, 107:-5.18612, 108:-4.52440,
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Appendix E

Detailed Results

E.1 Conceptual System

E.1.1 Total Results

#Training Patterns

STATISTICS ( 4000 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 100.00 % ( 4000 pattern(s) )
unknown : 0.00 % ( O pattern(s) )
error : 0.081128

#Test Patterns

STATISTICS ( 2000 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 100.00 % ( 2000 pattern(s) )
unknown : 0.00 % ( O pattern(s) )
error : 0.029920

#Validation Patterns

STATISTICS ( 1940 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 100.00 % ( 1940 pattern(s) )
unknown : 0.00 % ( O pattern(s) )
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error : 0.033813

#Analysis Function Parameters
-e 402040 -1 0.490 -h 0.510

E.1.2 Individual Flow Case Results

#Signal 1

STATISTICS ( 1985 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 100.00 % ( 1985 pattern(s) )
unknown : 0.00 % ( O pattern(s) )
error : 0.053549

#3ignal 2

STATISTICS ( 1985 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 100.00 % ( 1985 pattern(s) )
unknown : 0.00 % ( O pattern(s) )
error : 0.015783

#Signal 3

STATISTICS ( 1985 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 100.00 % ( 1985 pattern(s) )
unknown : 0.00 % ( O pattern(s) )
error : 0.025360

#3ignal 4

STATISTICS ( 1985 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 100.00 % ( 1985 pattern(s) )
unknown : 0.00 % ( O pattern(s) )
error : 0.051390
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#Analysis Function Parameters
-e 402040 -1 0.490 -h 0.510
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E.2 Horizontal Multiphase System

E.2.1 Total Results

#Training Patterns

STATISTICS ( 30000 patterns )

wrong : 3.24 % ( 973 pattern(s) )
right : 96.35 % ( 28905 pattern(s) )
unknown : 0.41 9% ( 122 pattern(s) )
error : 1951.768188

#Test Patterns

STATISTICS ( 20020 patterns )

wrong : 7.30 % ( 1462 pattern(s) )
right : 91.19 % ( 18256 pattern(s) )
unknown : 1.51 % ( 302 pattern(s) )
error 1 2766.916504

#Validation Patterns

STATISTICS ( 47603 patterns )

wrong : 6.92 % ( 3292 pattern(s) )
right : 91.04 % ( 43338 pattern(s) )
unknown : 2.04 % ( 973 pattern(s) )
error : 6549.362305

#Analysis Function Parameters
-e 402040 -1 0.490 -h 0.510

E.2.2 Individual Flow Case Results

#Flow case 1

STATISTICS ( 2801 patterns )
wrong : 0.00 % ( O pattern(s) )
right : 100.00 % ( 2801 pattern(s) )
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unknown : 0.00 % ( O pattern(s) )
error : 8.149170

#Flow case 2

STATISTICS ( 5801 patterns )

wrong . 0.

00 % ( O pattern(s) )

right : 100.00 % ( 5801 pattern(s) )

unknown : O.
error : 17,

#Flow case

STATISTICS (

wrong 1
right : 98.
unknown : O
error : 64.

#Flow case

STATISTICS (

wrong : 0
right : 99.
unknown : O
error : 30.

#Flow case

STATISTICS (

wrong : O
right : 99.
unknown : O
error : b1

#Flow case

STATISTICS (

wrong : 0.
right : 99.
unknown : O.

00 % ( O pattern(s) )
099339

2801 patterns )

.00 % ( 28 pattern(s) )

93 % ( 2771 pattern(s) )

.07 % ( 2 pattern(s) )

318222
4

2801 patterns )

.39 % ( 11 pattern(s) )

54 % ( 2788 pattern(s) )

.07 % ( 2 pattern(s) )

434122

2801 patterns )

.79 % ( 22 pattern(s) )

18 % ( 2778 pattern(s) )

.04 % (1 pattern(s) )
. 734482

2801 patterns )

79 % ( 22 pattern(s) )
07 % ( 2775 pattern(s) )
14 % ( 4 pattern(s) )
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error . 53.844448
#Flow case 7

STATISTICS ( 2801 patterns )

wrong : 0.32 % ( 9 pattern(s) )
right : 99.64 % ( 2791 pattern(s) )
unknown : 0.04 % ( 1 pattern(s) )
error 1 23.204681

#Flow case 8

STATISTICS ( 2801 patterns )

wrong : 0.11 % ( 3 pattern(s) )
right : 99.86 % ( 2797 pattern(s) )
unknown : 0.04 % ( 1 pattern(s) )
error : 15.097422

#Flow case 9

STATISTICS ( 2801 patterns )

wrong : 2.64 } ( 74 pattern(s) )
right : 97.07 % ( 2719 pattern(s) )
unknown : 0.29 % ( 8 pattern(s) )
error : 167.305237

#Flow case 10

STATISTICS ( 3190 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 100.00 % ( 3190 pattern(s) )
unknown : 0.00 % ( O pattern(s) )
error : 5.039117

#Flow case 12

STATISTICS ( 2800 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 100.00 % ( 2800 pattern(s) )
unknown : 0.00 % ( O pattern(s) )
error : 3.826895
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#Flow case 13

STATISTICS ( 2800 patterns )

wrong : 4.21 7 ( 118 pattern(s) )
right : 95.43 % ( 2672 pattern(s) )
unknown : 0.36 % ( 10 pattern(s) )
error : 222.467819

#Flow case 14

STATISTICS ( 2800 patterns )

wrong : 2.14 % ( 60 pattern(s) )
right : 97.54 % ( 2731 pattern(s) )
unknown : 0.32 % ( 9 pattern(s) )
error : 106.733963

#Flow case 15

STATISTICS ( 2801 patterns )

wrong : 5.86 % ( 164 pattern(s) )
right : 93.65 % ( 2623 pattern(s) )
unknown : 0.50 % ( 14 pattern(s) )
error : 281.048492

#Flow case 17

STATISTICS ( 2800 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 100.00 % ( 2800 pattern(s) )
unknown : 0.00 % ( O pattern(s) )
error : 7.679321

#Flow case 18

STATISTICS ( 11801 patterns )

wrong : 51.73 % ( 6105 pattern(s) )
right : 29.46 % ( 3477 pattern(s) )
unknown : 18.80 % ( 2219 pattern(s) )
error : 13286.876953
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#Flow case 19

STATISTICS ( 2800 patterns )

wrong : 7.96 % ( 223 pattern(s) )
right : 91.68 % ( 2567 pattern(s) )
unknown : 0.36 % ( 10 pattern(s) )
error 1 377.278687

#Flow case 20

STATISTICS ( 2801 patterns )

wrong : 5.86 % ( 164 pattern(s) )
right : 93.86 % ( 2629 pattern(s) )
unknown : 0.29 % ( 8 pattern(s) )
error 1 292.512329

#Flow case 21

STATISTICS ( 2800 patterns )

wrong : 39.61 % ( 1109 pattern(s) )
right : 59.46 ) ( 1665 pattern(s) )
unknown : 0.93 % ( 26 pattern(s) )
error : 1873.426392

#Flow case 22

STATISTICS ( 11800 patterns )

wrong : 92.36 % ( 10898 pattern(s) )
right : 1.31 % ( 155 pattern(s) )
unknown : 6.33 % ( 747 pattern(s) )
error 1 22216.748047

#Flow case 23

STATISTICS ( 2800 patterns )

wrong : 47.64 % ( 1334 pattern(s) )
right : 46.29 % ( 1296 pattern(s) )
unknown : 6.07 % ( 170 pattern(s) )
error : 2468.751709

#Flow case 24



E.2. HORIZONTAL MULTIPHASE SYSTEM

STATISTICS ( 2800 patterns )

wrong : 24.71 % ( 692 pattern(s) )
right : 74.93 % ( 2098 pattern(s) )
unknown : 0.36 % ( 10 pattern(s) )
error : 1186.0056127

#Flow case 25

STATISTICS ( 2800 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 100.00 % ( 2800 pattern(s) )
unknown : 0.00 % ( O pattern(s) )
error : 0.309424

#Flow case 26

STATISTICS ( 4800 patterns )

wrong : 1.92 % ( 92 pattern(s) )
right : 91.46 % ( 4390 pattern(s) )
unknown : 6.62 % ( 318 pattern(s) )
error : 440.638428

#Flow case 27

STATISTICS ( 2800 patterns )

wrong : 12.04 % ( 337 pattern(s) )
right : 80.61 % ( 2257 pattern(s) )
unknown : 7.36 % ( 206 pattern(s) )
error : 793.602539

#Flow case 28

STATISTICS ( 4500 patterns )

wrong : 21.33 % ( 960 pattern(s) )
right : 78.40 % ( 3528 pattern(s) )
unknown : 0.27 % ( 12 pattern(s) )
error : 1721.651978

#Flow case 29
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STATISTICS ( 11800 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 99.99 % ( 11799 pattern(s) )
unknown : 0.01 % ( 1 pattern(s) )
error :1.449908

#Flow case 30

STATISTICS ( 5800 patterns )

wrong : 27.07 % ( 1570 pattern(s) )
right : 65.00 % ( 3770 pattern(s) )
unknown : 7.93 % ( 460 pattern(s) )
error : 3218.660645

#Flow case 31

STATISTICS ( 2800 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 100.00 % ( 2800 pattern(s) )
unknown : 0.00 % ( O pattern(s) )
error : 0.339914

#Flow case 32

STATISTICS ( 5800 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 99.66 % ( 5780 pattern(s) )
unknown : 0.34 % ( 20 pattern(s) )
error : 15.831513

#Flow case 33

STATISTICS ( 2800 patterns )

wrong : 3.32 % ( 93 pattern(s) )
right : 87.93 % ( 2462 pattern(s) )
unknown : 8.75 % ( 245 pattern(s) )
error : 366.238098

#Flow case 34

STATISTICS ( 5800 patterns )
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wrong : 0.00 % ( O pattern(s) )
right : 100.00 % ( 5800 pattern(s) )
unknown : 0.00 % ( O pattern(s) )
error : 0.626762

#Flow case 35

STATISTICS ( 5850 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 99.42 % ( 5816 pattern(s) )
unknown : 0.58 % ( 34 pattern(s) )
error : 27.847963

#Flow case 36

STATISTICS ( 5800 patterns )

wrong : 0.05 % ( 3 pattern(s) )
right : 98.34 % ( 5704 pattern(s) )
unknown : 1.60 % ( 93 pattern(s) )
error : 86.130341

#Flow case 37

STATISTICS ( 4800 patterns )

wrong : 18.12 % ( 870 pattern(s) )
right : 70.94 % ( 3405 pattern(s) )
unknown : 10.94 7 ( 525 pattern(s) )
error : 1967.843872

#Flow case 38

STATISTICS ( 2800 patterns )

wrong : 9.32 % ( 261 pattern(s) )
right : 84.11 % ( 2355 pattern(s) )
unknown : 6.57 % ( 184 pattern(s) )
error : 622.427856

-e 402040 -1 0.490 -h 0.510
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E.2.3 Results Analysis

Incorrectly Classified Patterns
2801 patterns #Flow case 1

SW: 0

S5: 0

Slug: O

Bubble: 0

There are 0 ’w’ outputs (’w’ = wrong, ’r’ = right).

5801 patterns #Flow case 2

SW: 0

S35: 0

Slug: O

Bubble: 0

There are 0 ’w’ outputs (’w’ = wrong, ’r’ = right).

2801 patterns #Flow case 3

SW: 28

S35: 0

Slug: O

Bubble: 0

There are 28 ’w’ outputs (’w’ = wrong, ’r’ = right).

2801 patterns #Flow case 4

Sw: 11

SS: 0

Slug: O

Bubble: 0

There are 11 ’w’ outputs (’w’ = wrong, ’r’ = right).

2801 patterns #Flow case 5
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SW: 22

S5: 0

Slug: O

Bubble: 0

There are 22 ’w’ outputs (’w’ = wrong, ’r’ = right).

2801 patterns #Flow case 6

SW: 22

SS: 0

Slug: O

Bubble: 0

There are 22 ’w’ outputs (’w’ = wrong, ’r’ = right).

2801 patterns #Flow case 7

Sw: 9

SS: 0

Slug: O

Bubble: 0

There are 9 ’w’ outputs (’w’ = wrong, ’r’ = right).

2801 patterns #Flow case 8

Sw: 3

SS: 0

Slug: O

Bubble: 0

There are 3 ’w’ outputs (’w’ = wrong, ’r’ = right).

2801 patterns #Flow case 9

SW: 74
SS: 0
Slug: O
Bubble: O
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There are 74 ’w’ outputs (’w’ = wrong, ’r’ = right).

3190 patterns #Flow case 10

SW: 0

SS: 0

Slug: O

Bubble: 0

There are 0 ’w’ outputs (’w’ = wrong, ’r’ = right).

2800 patterns #Flow case 12

SW: 0

S35: 0

Slug: O

Bubble: 0

There are 0 ’w’ outputs (’w’ = wrong, ’r’ = right).

2800 patterns #Flow case 13

Sw: 118

SS: 0

Slug: O

Bubble: 0

There are 118 ’w’ outputs (’w’ = wrong, ’r’ = right).

2800 patterns #Flow case 14

SW: 60

SS: 0

Slug: O

Bubble: 0

There are 60 ’w’ outputs (’w’ = wrong, ’'r’ = right).

2801 patterns #Flow case 15
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SW: 164

S55: 0

Slug: O

Bubble: 0

There are 164 ’w’ outputs (’w’ = wrong, ’r’ = right).

2800 patterns #Flow case 17

SW: 0

SS: 0

Slug: O

Bubble: 0

There are 0 ’w’ outputs (’w’ = wrong, ’r’ = right).

11801 patterns #Flow case 18

Sw: 0

SS: 825

Slug: 5280

Bubble: 0

There are 6105 ’w’ outputs (’w’ = wrong, ’r’ = right).

2800 patterns #Flow case 19

SW: 223

SS: 0

Slug: O

Bubble: 0

There are 223 ’w’ outputs (’w’ = wrong, ’r’ = right).

2801 patterns #Flow case 20

SW: 164

SS: 0

Slug: O

Bubble: 0

There are 164 ’w’ outputs (’w’ = wrong, ’r’ = right).
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2800 patterns #Flow case 21

SW: 0

SS: 1109

Slug: O

Bubble: 0

There are 1109 ’w’ outputs (’w’ = wrong, ’r’ = right).

11800 patterns #Flow case 22

SW: 0

SS: 8

Slug: 10890
Bubble: O

There are 10898 ’w’ outputs (’w’ = wrong, ’r’ = right).

2800 patterns #Flow case 23

SW: 0

SS: 1304

Slug: 30

Bubble: 0

There are 1334 ’w’ outputs (’w’ = wrong, ’r’ = right).

2800 patterns #Flow case 24

SW: 0

SS: 692

Slug: O

Bubble: 0

There are 692 ’w’ outputs (’w’ = wrong, ’r’ = right).

2800 patterns #Flow case 25

SW: O
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SS: 0

Slug: O

Bubble: 0

There are 0 ’w’ outputs (’w’ = wrong, ’r’ = right).

4800 patterns #Flow case 26

SW: 84

SS: 8

Slug: O

Bubble: 0

There are 92 ’w’ outputs (’w’ = wrong, ’'r’ = right).

2800 patterns #Flow case 27

Sw: 0

S8: 170

Slug: 167

Bubble: 0

There are 337 ’w’ outputs (’w’ = wrong, ’r’ = right).

4500 patterns #Flow case 28

SW: 0

SS: 960

Slug: O

Bubble: 0

There are 960 ’w’ outputs (’w’ = wrong, ’r’ = right).

11800 patterns #Flow case 29

SW: 0

SS: 0

Slug: O

Bubble: 0

There are 0 ’w’ outputs (’w’ = wrong, ’r’ = right).



176 APPENDIX E. DETAILED RESULTS

5800 patterns #Flow case 30

SW: O

S3: 775

Slug: 795

Bubble: 0

There are 1570 ’w’ outputs (’w’ = wrong, ’r’ = right).

2800 patterns #Flow case 31

SW: 0

S8: 0

Slug: O

Bubble: 0

There are 0 ’w’ outputs (’w’ = wrong, ’r’ = right).

5800 patterns #Flow case 32

SW: 0

SS: 0

Slug: O

Bubble: 0

There are 0 ’w’ outputs (’w’ = wrong, ’r’ = right).

2800 patterns #Flow case 33

SW: 91

S8: 2

Slug: O

Bubble: 0

There are 93 ’w’ outputs (’w’ = wrong, ’r’ = right).

5800 patterns #Flow case 34

SW: O
SS: 0
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Slug: O
Bubble: 0
There are 0 ’w’ outputs (’w’ = wrong, ’r’ = right).

5850 patterns #Flow case 35

SW: 0

S5: 0

Slug: O

Bubble: 0

There are 0 ’w’ outputs (’w’ = wrong, ’r’ = right).

5800 patterns #Flow case 36

Sw: 3

S55: 0

Slug: O

Bubble: 0

There are 3 ’w’ outputs (’w’ = wrong, ’r’ = right).

4800 patterns #Flow case 37

SW: 801

SS: 69

Slug: O

Bubble: 0

There are 870 ’w’ outputs (’w’ = wrong, ’r’ = right).

2800 patterns #Flow case 38

SW: 239

SS: 22

Slug: O

Bubble: 0

There are 261 ’w’ outputs (’w’ = wrong, ’r’ = right).
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Unclassified Patterns
2801 patterns #Flow case 1

SW: 0

SS: 0

Slug: O

Bubble: 0

SW + SS: 0

SW + Slug: O

SW + Bubble: O

S8 + Slug: O

SS + Bubble: 0O

Slug + Bubble: O

There are 0 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 0 unclassified results where all outputs are < 0.51
There are O unclassified inputs in total

5801 patterns #Flow case 2

SW: 0

SS: 0

Slug: O
Bubble: O

SW + SS: 0

SW + Slug: O
SW + Bubble: 0
S8 + Slug: O
SS + Bubble: O

Slug + Bubble: 0

There are 0 unclassified results where there is one output above 0.51 and
one neutral (0.49< 7 <0.51)

There are O unclassified results where all outputs are < 0.51

There are 0 unclassified inputs in total

2801 patterns #Flow case 3

SW: O
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SS: 0

Slug: O

Bubble: 0

SW + SS: 0

SW + Slug: O

SW + Bubble: O

SS + Slug: O

SS + Bubble: 0

Slug + Bubble: 0

There are 0 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 2 unclassified results where all outputs are < 0.51
There are 2 unclassified inputs in total

+
+
+
+

2801 patterns #Flow case 4

SW: 0

SS: 1

Slug: O
Bubble: O

SW + SS: 0

SW + Slug: O
SW + Bubble: 0
SS + Slug: O
SS + Bubble: O

Slug + Bubble: 0

There are 1 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 1 unclassified results where all outputs are < 0.51

There are 2 unclassified inputs in total

2801 patterns #Flow case 5

SW: 0

SS: 0

Slug: O
Bubble: 0

SW + SS: 0
SW + Slug: O
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SW + Bubble: O

SS + Slug: O

SS + Bubble: 0O

Slug + Bubble: O

There are 0 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 1 unclassified results where all outputs are < 0.51

There are 1 unclassified inputs in total

2801 patterns #Flow case 6

Sw: 0

SS: 0

Slug: O

Bubble: 0

SW + S5: 0

SW + Slug: O

SW + Bubble: 0O

S8 + Slug: O

SS + Bubble: 0O

Slug + Bubble: 0

There are O unclassified results where there is one output above 0.51 and
one neutral (0.49< 7 <0.51)

There are 4 unclassified results where all outputs are < 0.51
There are 4 unclassified inputs in total

2801 patterns #Flow case 7

SW: 1

SS: 0

Slug: O

Bubble: 0

SW + SS: 0

SW + Slug: O

SW + Bubble: 0O
S8 + Slug: O

SS + Bubble: 0
Slug + Bubble: 0
There are 1 unclassified results where there is one output above 0.51 and
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one neutral (0.49< ? <0.51)
There are O unclassified results where all outputs are < 0.51
There are 1 unclassified inputs in total

2801 patterns #Flow case 8

SW: 0

SS: 0

Slug: O
Bubble: O

SW + SS: 0

SW + Slug: O
SW + Bubble: O
SS + Slug: O
SS + Bubble: O

Slug + Bubble: 0

There are O unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 1 unclassified results where all outputs are < 0.51

There are 1 unclassified inputs in total

2801 patterns #Flow case 9

SW: 0

SS: 2

Slug: O
Bubble: O

SW + SS: 0

SW + Slug: O
SW + Bubble: O
SS + Slug: O
SS + Bubble: 0

Slug + Bubble: 0O

There are 2 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 6 unclassified results where all outputs are < 0.51

There are 8 unclassified inputs in total
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3190 patterns #Flow case 10

Sw: 0

SS: 0

Slug: O

Bubble: 0

SW + S5: 0

SW + Slug: O

SW + Bubble: 0O

S8 + Slug: O

S8 + Bubble: 0O

Slug + Bubble: 0

There are O unclassified results where there is one output above 0.51 and
one neutral (0.49< 7 <0.51)

There are 0 unclassified results where all outputs are < 0.51
There are 0 unclassified inputs in total

2800 patterns #Flow case 12

SW: 0

SS: 0

Slug: O
Bubble: O

SW + SS: 0

SW + Slug: O
SW + Bubble: O
S8 + Slug: O
SS + Bubble: 0

Slug + Bubble: O

There are 0 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 0 unclassified results where all outputs are < 0.51

There are O unclassified inputs in total

2800 patterns #Flow case 13
SW: 0

SS: 0
Slug: O
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Bubble: 0

SW + SS: 0

SW + Slug: O

SW + Bubble: 0

SS + Slug: O

SS + Bubble: 0

Slug + Bubble: 0

There are O unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 10 unclassified results where all outputs are < 0.51
There are 10 unclassified inputs in total

2800 patterns #Flow case 14

SW: 0

SS: 0

Slug: O
Bubble: O

SW + SS: 0

SW + Slug: O
SW + Bubble: O
SS + Slug: O
SS + Bubble: 0

Slug + Bubble: 0O

There are 0 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 9 unclassified results where all outputs are < 0.51

There are 9 unclassified inputs in total

2801 patterns #Flow case 15

SW: 2

SS: 1

Slug: O
Bubble: O

SW + SS: 0

SW + Slug: O
SW + Bubble: 0
SS + Slug: O
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SS + Bubble: 0O

Slug + Bubble: O

There are 3 unclassified results where there is one output above 0.51 and
one neutral (0.49< 7 <0.51)

There are 11 unclassified results where all outputs are < 0.51

There are 14 unclassified inputs in total

2800 patterns #Flow case 17

SW: 0

SS: 0

Slug: O
Bubble: O

SW + SS: 0

SW + Slug: O
SW + Bubble: O
S8 + Slug: O
SS + Bubble: 0

Slug + Bubble: O

There are 0 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are O unclassified results where all outputs are < 0.51

There are O unclassified inputs in total

11801 patterns #Flow case 18

SW: 662

SS: 32

Slug: 670

Bubble: 0

SW + S5: 0

SW + Slug: 631

SW + Bubble: 0

S8 + Slug: 30

S3S + Bubble: O

Slug + Bubble: 0

There are 703 unclassified results where there is one output above 0.51 and
one neutral (0.49< 7 <0.51)

There are 855 unclassified results where all outputs are < 0.51
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There are 2219 unclassified inputs in total

2800 patterns #Flow case 19

SW: 0

SS:1

Slug: O
Bubble: O

SW + SS: 0

SW + Slug: O
SW + Bubble: O
S5 + Slug: O
SS + Bubble: O

Slug + Bubble: 0

There are 1 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 9 unclassified results where all outputs are < 0.51

There are 10 unclassified inputs in total

2801 patterns #Flow case 20

Sw: 1

SS: 1

Slug: O
Bubble: O

SW + SS: 0

SW + Slug: O
SW + Bubble: 0
SS + Slug: O
SS + Bubble: O

Slug + Bubble: 0

There are 2 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 6 unclassified results where all outputs are < 0.51

There are 8 unclassified inputs in total

2800 patterns #Flow case 21
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SW: 3

SS: 6

Slug: O

Bubble: 0

SW + S5: 0

SW + Slug: O

SW + Bubble: O

SS + Slug: O

SS + Bubble: 0O

Slug + Bubble: 0

There are 9 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 17 unclassified results where all outputs are < 0.51
There are 26 unclassified inputs in total

11800 patterns #Flow case 22

Sw: 614

SS: 16

Slug: 635

Bubble: 0

SW + SS: 0

SW + Slug: 607

SW + Bubble: 0O

SS + Slug: 15

S3S + Bubble: O

Slug + Bubble: O

There are 19 unclassified results where there is one output above 0.51 and
one neutral (0.49< 7 <0.51)

There are 106 unclassified results where all outputs are < 0.51
There are 747 unclassified inputs in total

2800 patterns #Flow case 23

SW: b5

SS: 0
Slug: 5
Bubble: O
SW + SS: 0
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SW + Slug: 4

SW + Bubble: 0

S5 + Slug: O

SS + Bubble: 0

Slug + Bubble: 0

There are 6 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 160 unclassified results where all outputs are < 0.51

There are 170 unclassified inputs in total

2800 patterns #Flow case 24

SW: 2

SS: 4

Slug: O
Bubble: O

SW + SS: 0

SW + Slug: O
SW + Bubble: 0
SS + Slug: O
SS + Bubble: O

Slug + Bubble: 0O

There are 6 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 4 unclassified results where all outputs are < 0.51

There are 10 unclassified inputs in total

2800 patterns #Flow case 25

SW: 0

SS: 0

Slug: O
Bubble: O

SW + SS: 0

SW + Slug: O
SW + Bubble: O
SS + Slug: O
SS + Bubble: 0

Slug + Bubble: 0O
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There are 0 unclassified results where there is one output above 0.51 and
one neutral (0.49< 7 <0.51)

There are O unclassified results where all outputs are < 0.51

There are O unclassified inputs in total

4800 patterns #Flow case 26

SW: 273

S8: 12

Slug: 285

Bubble: 0

SW + SS: 0

SW + Slug: 270

SW + Bubble: 0O

SS + Slug: 11

SS + Bubble: 0O

Slug + Bubble: O

There are 6 unclassified results where there is one output above 0.51 and
one neutral (0.49< 7 <0.51)

There are 31 unclassified results where all outputs are < 0.51
There are 318 unclassified inputs in total

2800 patterns #Flow case 27

SW: 23

SS: 0

Slug: 22

Bubble: 0

SW + S5: 0

SW + Slug: 21

SW + Bubble: 0O

S8 + Slug: O

SS + Bubble: 0

Slug + Bubble: 0

There are 24 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 161 unclassified results where all outputs are < 0.51
There are 206 unclassified inputs in total
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4500 patterns #Flow case 28

SW: 0

SS: 1

Slug: O
Bubble: O

SW + SS: 0

SW + Slug: O
SW + Bubble: O
SS + Slug: O
SS + Bubble: O

Slug + Bubble: 0

There are 1 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 11 unclassified results where all outputs are < 0.51

There are 12 unclassified inputs in total

11800 patterns #Flow case 29

Sw: 1

SS: 0

Slug: O
Bubble: 1

SW + SS: 0

SW + Slug: O
SW + Bubble: 0
SS + Slug: O
SS + Bubble: 0

Slug + Bubble: 0

There are 1 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are O unclassified results where all outputs are < 0.51

There are 1 unclassified inputs in total

5800 patterns #Flow case 30

Sw: 101
SS: 10
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Slug: 110

Bubble: 0

SW + SS: 0

SW + Slug: 97

SW + Bubble: 0O

S8 + Slug: 9

SS + Bubble: 0O

Slug + Bubble: O

There are 115 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 239 unclassified results where all outputs are < 0.51
There are 460 unclassified inputs in total

+
+
+
+

2800 patterns #Flow case 31

SW: 0

SS: 0

Slug: O

Bubble: 0

SW + S5: 0

SW + Slug: O

SW + Bubble: 0O

SS + Slug: O

SS + Bubble: 0O

Slug + Bubble: 0

There are 0 unclassified results where there is one output above 0.51 and
one neutral (0.49< 7 <0.51)

There are O unclassified results where all outputs are < 0.51
There are O unclassified inputs in total

5800 patterns #Flow case 32

SW: 16

SS: 0

Slug: 4

Bubble: 20

SW + SS: 0

SW + Slug: O

SW + Bubble: 15
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SS + Slug: O

SS + Bubble: 0

Slug + Bubble: 3

There are 2 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 0 unclassified results where all outputs are < 0.51

There are 20 unclassified inputs in total

2800 patterns #Flow case 33

SW: 202

SS: 3

Slug: 209
Bubble: O

SW + SS: 0

SW + Slug: 200
SW + Bubble: O
SS + Slug: 2
SS + Bubble: O

Slug + Bubble: 0

There are 8 unclassified results where there is one output above 0.51 and
one neutral (0.49< 7 <0.51)

There are 35 unclassified results where all outputs are < 0.51

There are 245 unclassified inputs in total

5800 patterns #Flow case 34

SW: 0

SS: 0

Slug: O
Bubble: 0

SW + SS: 0

SW + Slug: O
SW + Bubble: O
SS + Slug: O
SS + Bubble: O

Slug + Bubble: 0O
There are O unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)
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There are 0 unclassified results where all outputs are < 0.51
There are O unclassified inputs in total

5850 patterns #Flow case 35

SW: 26

SS: 0

Slug: 28

Bubble: 0

SW + S5: 0

SW + Slug: 25

SW + Bubble: 0O

SS + Slug: O

SS + Bubble: 0O

Slug + Bubble: 0

There are 3 unclassified results where there is one output above 0.51 and
one neutral (0.49< 7 <0.51)

There are 6 unclassified results where all outputs are < 0.51
There are 34 unclassified inputs in total

5800 patterns #Flow case 36

SW: 86

S8: 1

Slug: 89

Bubble: 0

SW + SS: 0

SW + Slug: 85

SW + Bubble: 0O

S8 + Slug: O

33 + Bubble: 0O

Slug + Bubble: O

There are 4 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 4 unclassified results where all outputs are < 0.51
There are 93 unclassified inputs in total

4800 patterns #Flow case 37
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SW: 388

SS: 16

Slug: 415
Bubble: O

SW + SS: 0

SW + Slug: 377
SW + Bubble: O
SS + Slug: 15
SS + Bubble: O

Slug + Bubble: 0

There are 33 unclassified results where there is one output above 0.51 and

one neutral (0.49< ? <0.51)
There are 100 unclassified results where all outputs are < 0.51
There are 525 unclassified inputs in total

2800 patterns #Flow case 38

SwW: 118

SS: 9

Slug: 130
Bubble: O

SW + SS: 0

SW + Slug: 116
SW + Bubble: O
SS + Slug: 7
SS + Bubble: 0

Slug + Bubble: 0O

There are 9 unclassified results where there is one output above 0.51 and

one neutral (0.49< ? <0.51)
There are 52 unclassified results where all outputs are < 0.51
There are 184 unclassified inputs in total
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E.3 S-shape Riser Multiphase System

E.3.1 Total Results

#Training Patterns

STATISTICS ( 6300 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 95.24 7 ( 6000 pattern(s) )
unknown : 4.76 % ( 300 pattern(s) )
error : 307.321564

#Test Patterns

STATISTICS ( 8567 patterns )

wrong : 0.77 % ( 66 pattern(s) )
right : 96.52 % ( 8269 pattern(s) )
unknown : 2.71 % ( 232 pattern(s) )
error : 313.583618

#Validation Patterns

STATISTICS ( 15233 patterns )

wrong : 11.52 % ( 1755 pattern(s) )
right : 81.53 % ( 12420 pattern(s) )
unknown : 6.95 % ( 1058 pattern(s) )
error : 4163.135254

#Analysis Function Parameters
-e 402040 -1 0.490 -h 0.510

E.3.2 Individual Flow Case Results

#Flow case 1

STATISTICS ( 1400 patterns )
wrong : 0.00 % ( O pattern(s) )
right : 93.29 % ( 1306 pattern(s) )
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unknown : 6.71 % ( 94 pattern(s) )
error : 86.790283

#Flow case 2

STATISTICS ( 905 patterns )
wrong : 0.00 % ( O pattern(s) )

right : 93.26 % ( 844 pattern(s) )

unknown : 6.74 % ( 61 pattern(s) )
error : 51.898067

#Flow case 3

STATISTICS ( 800 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 100.00 % ( 800 pattern(s)
unknown : 0.00 % ( O pattern(s) )
error : 0.103090

#Flow case 4

STATISTICS ( 1400 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 97.64 % ( 1367 pattern(s)
unknown : 2.36 % ( 33 pattern(s) )
error : 28.219751

#Flow case 5

STATISTICS ( 1400 patterns )

wrong : 5.07 % ( 71 pattern(s) )
right : 93.21 % ( 1305 pattern(s)
unknown : 1.71 % ( 24 pattern(s) )
error : 116.853195

#Flow case 6

STATISTICS ( 817 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 100.00 % ( 817 pattern(s)
unknown : 0.00 % ( O pattern(s) )

)
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error : 0.419808
#Flow case 7

STATISTICS ( 1400 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 99.71 % ( 1396 pattern(s) )
unknown : 0.29 % ( 4 pattern(s) )
error : 4.038830

#Flow case 8

STATISTICS ( 622 patterns )

wrong : 0.32 % ( 2 pattern(s) )
right : 99.68 % ( 620 pattern(s) )
unknown : 0.00 % ( O pattern(s) )
error : 3.029054

#Flow case 9

STATISTICS ( 1400 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 99.86 % ( 1398 pattern(s) )
unknown : 0.14 % ( 2 pattern(s) )
error : 5.052010

#Flow case 10

STATISTICS ( 1400 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 96.43 % ( 1350 pattern(s) )
unknown : 3.57 % ( 50 pattern(s) )
error : 48.545624

#Flow case 11

STATISTICS ( 800 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 98.75 % ( 790 pattern(s) )
unknown : 1.25 % ( 10 pattern(s) )
error 1 7.894430
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#Flow case 12

STATISTICS ( 807 patterns )

wrong : 8.30 % ( 67 pattern(s) )
right : 88.97 % ( 718 pattern(s) )
unknown : 2.73 % ( 22 pattern(s) )
error : 139.956253

#Flow case 13

STATISTICS ( 1400 patterns )

wrong : 15.36 % ( 215 pattern(s) )
right : 78.64 % ( 1101 pattern(s) )
unknown : 6.00 % ( 84 pattern(s) )
error : 463.463531

#Flow case 14

STATISTICS ( 650 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 100.00 % ( 650 pattern(s) )
unknown : 0.00 % ( O pattern(s) )
error : 0.860633

#Flow case 15

STATISTICS ( 1400 patterns )

wrong : 2.71 % ( 38 pattern(s) )
right : 93.93 % ( 1315 pattern(s) )
unknown : 3.36 % ( 47 pattern(s) )
error : 97.012177

#Flow case 16

STATISTICS ( 810 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 100.00 % ( 810 pattern(s) )
unknown : 0.00 % ( O pattern(s) )
error : 0.498109
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#Flow case 17

STATISTICS ( 800 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 99.88 % ( 799 pattern(s) )
unknown : 0.12 % ( 1 pattern(s) )
error : 1.246582

#Flow case 18

STATISTICS ( 1400 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 100.00 % ( 1400 pattern(s) )
unknown : 0.00 % ( O pattern(s) )
error : 1.5929256

#Flow case 19

STATISTICS ( 1400 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 100.00 % ( 1400 pattern(s) )
unknown : 0.00 % ( O pattern(s) )
error : 1.113598

#Flow case 20

STATISTICS ( 507 patterns )

wrong : 8.68 % ( 44 pattern(s) )
right : 87.18 % ( 442 pattern(s) )
unknown : 4.14 % ( 21 pattern(s) )
error : 93.828728

#Flow case 21

STATISTICS ( 797 patterns )

wrong : 57.47 % ( 458 pattern(s) )
right : 0.00 % ( O pattern(s) )
unknown : 42.53 % ( 339 pattern(s) )
error : 1166.470093

#Flow case 22
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STATISTICS (

wrong 3.
right : 95.
unknown : O.
error : 37.

#Flow case

STATISTICS (

wrong D22,
right : 60.
.86 % ( 236 pattern(s) )

unknown : 16

542 patterns )

87 % ( 21 pattern(s) )
39 % ( 517 pattern(s) )
74 % ( 4 pattern(s) )
525764

23
1400 patterns )

50 % ( 315 pattern(s) )
64 % ( 849 pattern(s) )

error 1 751.943848

#Flow case

STATISTICS (

wrong 3
right 1 92,
unknown : b
error : 40.

#Flow case

STATISTICS (
wrong : 21

right : 64.
.06 % ( 72 pattern(s) )

unknown : 14

24

500 patterns )

.00 % ( 15 pattern(s) )

00 % ( 460 pattern(s) )

.00 % ( 25 pattern(s) )

588840
25

512 patterns )

.48 % ( 110 pattern(s) )

45 % ( 330 pattern(s) )

error : 255.485550

#Flow case

STATISTICS (

wrong : 0.
right : 99.
unknown : O.

26

500 patterns )

00 % ( O pattern(s) )
80 % ( 499 pattern(s) )
20 % (1 pattern(s) )

error : 0.618865

#Flow case

27
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STATISTICS ( 500 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 100.00 % ( 500 pattern(s) )
unknown : 0.00 % ( O pattern(s) )
error : 0.426723

#Flow case 28

STATISTICS ( 535 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 98.88 % ( 529 pattern(s) )
unknown : 1.12 % ( 6 pattern(s) )
error : 4.213898

#Flow case 29

STATISTICS ( 500 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 99.60 % ( 498 pattern(s) )
unknown : 0.40 % ( 2 pattern(s) )
error : 1.378908

#Flow case 30

STATISTICS ( 510 patterns )

wrong : 3.73 % ( 19 pattern(s) )
right : 88.63 % ( 452 pattern(s) )
unknown : 7.65 % ( 39 pattern(s) )
error 1 66.629425

#Flow case 31

STATISTICS ( 562 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 94.84 7 ( 533 pattern(s) )
unknown : 5.16 % ( 29 pattern(s) )
error 1 26.527973

#Flow case 32

STATISTICS ( 502 patterns )
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wrong  : 99.60 % ( 500 pattern(s) )
right : 0.00 % ( O pattern(s) )
unknown : 0.40 % ( 2 pattern(s) )
error : 980.261353

#Flow case 33

STATISTICS ( 522 patterns )

wrong : 2.11 % ( 11 pattern(s) )
right : 0.00 % ( O pattern(s) )
unknown : 97.89 % ( 511 pattern(s) )
error : 529.876648

#Flow case 34

STATISTICS ( 1400 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 99.93 % ( 1399 pattern(s) )
unknown : 0.07 % ( 1 pattern(s) )
error : 2.491639

#Flow case 35

STATISTICS ( 1400 patterns )

wrong : 0.00 % ( O pattern(s) )
right : 100.00 % ( 1400 pattern(s) )
unknown : 0.00 % ( O pattern(s) )
error : 1.386668

-e 402040 -1 0.490 -h 0.510
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E.3.3 Results Analysis

Incorrectly Classified Patterns
1400 patterns #Flow case 1

SS1: 0

Slug: O

Oscillation: O

Bubble: 0

There are 0 ’w’ outputs (’w’ = wrong).

905 patterns #Flow case 2

S51: 0

Slug: O

Oscillation: O

Bubble: 0

There are 0 ’w’ outputs (’w’ = wrong).

800 patterns #Flow case 3

SS1: 0

Slug: O

Oscillation: O

Bubble: 0

There are 0 ’w’ outputs (’w’ = wrong).

1400 patterns #Flow case 4

SS1: 0

Slug: O

Oscillation: O

Bubble: 0

There are 0 ’w’ outputs (’w’ = wrong).

1400 patterns #Flow case 5

DETAILED RESULTS
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S81: 0

Slug: O

Oscillation: O

Bubble: 71

There are 71 ’w’ outputs (’w’ = wrong).

817 patterns #Flow case 6

SS1: 0

Slug: O

Oscillation: O

Bubble: 0

There are 0 ’w’ outputs (’w’ = wrong).

1400 patterns #Flow case 7

SS1: 0

Slug: O

Oscillation: O

Bubble: 0

There are 0 ’w’ outputs (’w’ = wrong).

622 patterns #Flow case 8

S81: O

Slug: O

Oscillation: O

Bubble: 2

There are 2 ’w’ outputs (’w’ = wrong).

1400 patterns #Flow case 9

SS1: 0

Slug: O
Oscillation: O
Bubble: O
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There are 0 ’w’ outputs (’w’ = wrong).

1400 patterns #Flow case 10

SS1: 0

Slug: O

Oscillation: O

Bubble: 0

There are 0 ’w’ outputs (’w’ = wrong).

800 patterns #Flow case 11

S51: 0

Slug: O

Oscillation: O

Bubble: 0

There are 0 ’w’ outputs (’w’ = wrong).

807 patterns #Flow case 12

SS1: 67

Slug: O

Oscillation: O

Bubble: 0

There are 67 ’w’ outputs (’w’ = wrong).

1400 patterns #Flow case 13

S81: 0

Slug: 215

Oscillation: 0O

Bubble: 0

There are 215 ’w’ outputs (°w’ = wrong).

650 patterns #Flow case 14
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SS1: 0

Slug: O

Oscillation: O

Bubble: 0

There are 0 ’w’ outputs (’w’ = wrong).

1400 patterns #Flow case 15

SS1: 0

Slug: O

Oscillation: 38

Bubble: 0

There are 38 ’w’ outputs (’w’ = wrong).

810 patterns #Flow case 16

SS1: 0

Slug: O

Oscillation: O

Bubble: 0

There are 0 ’w’ outputs (’w’ = wrong).

800 patterns #Flow case 17

S81: O

Slug: O

Oscillation: O

Bubble: 0

There are 0 ’w’ outputs (’w’ = wrong).

1400 patterns #Flow case 18

SS1: 0

Slug: O

Oscillation: O

Bubble: 0

There are 0 ’w’ outputs (’w’ = wrong).
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1400 patterns #Flow case 19

S351: 0

Slug: O

Oscillation: O

Bubble: 0

There are 0 ’w’ outputs (’w’ = wrong).

507 patterns #Flow case 20

SS1: 3

Slug: 41

Oscillation: O

Bubble: 0

There are 44 ’w’ outputs (’w’ = wrong).

797 patterns #Flow case 21

S81: 193

Slug: 265

Oscillation: O

Bubble: 0

There are 458 ’w’ outputs (’w’ = wrong).

542 patterns #Flow case 22
SS1: 0

Slug: 21

Oscillation: 0O

Bubble: 0
There are 21 ’w’ outputs (’w’ = wrong).

1400 patterns #Flow case 23

SS1: 0
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Slug: 315

Oscillation: O

Bubble: 0

There are 315 ’w’ outputs (’w’ = wrong).

500 patterns #Flow case 24

SS1: 0

Slug: O

Oscillation: 15

Bubble: 0

There are 15 ’w’ outputs (°w’ = wrong).

512 patterns #Flow case 25

SS1: 110

Slug: O

Oscillation: O

Bubble: 0

There are 110 ’w’ outputs (’w’ = wrong).

500 patterns #Flow case 26

Ss1: 0

Slug: O

Oscillation: O

Bubble: 0

There are 0 ’w’ outputs (’w’ = wrong).

500 patterns #Flow case 27

SS1: 0

Slug: O

Oscillation: O

Bubble: 0

There are 0 ’w’ outputs (’w’ = wrong).
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535 patterns #Flow case 28

SS1: 0

Slug: O

Oscillation: O

Bubble: 0

There are 0 ’w’ outputs (’w’ = wrong).

500 patterns #Flow case 29

S51: 0

Slug: O

Oscillation: O

Bubble: 0

There are 0 ’w’ outputs (’w’ = wrong).

510 patterns #Flow case 30

SS1: 0

Slug: O

Oscillation: 19

Bubble: 0

There are 19 ’w’ outputs (’w’ = wrong).

562 patterns #Flow case 31

S551: 0

Slug: O

Oscillation: O

Bubble: 0

There are 0 ’w’ outputs (’w’ = wrong).

502 patterns #Flow case 32

SS1: 4
Slug: 496



E.3. S-SHAPE RISER MULTIPHASE SYSTEM

Oscillation: O
Bubble: 0
There are 500 ’w’ outputs (’w’ = wrong).

522 patterns #Flow case 33

S51: 11

Slug: O

Oscillation: O

Bubble: 0

There are 11 ’w’ outputs (’w’ = wrong).

1400 patterns #Flow case 34

SS1: 0

Slug: O

Oscillation: O

Bubble: 0

There are 0 ’w’ outputs (’w’ = wrong).

1400 patterns #Flow case 35

SS1: 0

Slug: O

Oscillation: O

Bubble: 0

There are 0 ’w’ outputs (’w’ = wrong).
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Unclassified Patterns
1400 patterns #Flow case 1

S81: 94

Slug: O

Oscillation: O

Bubble: 94

SS1 + Slug: O

881 + Oscillation: O

S3S1 + Bubble: 94

Slug + Oscillation: O

Slug + Bubble: O

Oscillation + Bubble: O

There are 0 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 0 unclassified results where all outputs are < 0.51
There are 94 unclassified inputs in total

905 patterns #Flow case 2

SS1: 61

Slug: O

Oscillation: O

Bubble: 61

SS1 + Slug: O

SS1 + Oscillation: O

SS1 + Bubble: 61

Slug + Oscillation: O

Slug + Bubble: 0

Oscillation + Bubble: 0

There are 0 unclassified results where there is one output above 0.51 and
one neutral (0.49< 7 <0.51)

There are O unclassified results where all outputs are < 0.51
There are 61 unclassified inputs in total

800 patterns #Flow case 3

SS1: 0
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Slug: O

Oscillation: O

Bubble: 0

SS1 + Slug: O

SS81 + Oscillation: O

SS1 + Bubble: O

Slug + Oscillation: O

Slug + Bubble: 0

Oscillation + Bubble: O

There are 0 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 0 unclassified results where all outputs are < 0.51
There are O unclassified inputs in total

1400 patterns #Flow case 4

SS1: 33

Slug: O

Oscillation: O

Bubble: 33

881 + Slug: O

SS1 + Oscillation: O

SS1 + Bubble: 33

Slug + Oscillation: O

Slug + Bubble: 0

Oscillation + Bubble: O

There are O unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are O unclassified results where all outputs are < 0.51
There are 33 unclassified inputs in total

1400 patterns #Flow case 5

SS1: 1

Slug: O

Oscillation: O
Bubble: 2

SS1 + Slug: O

SS1 + Oscillation: O
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S3S1 + Bubble: O

Slug + Oscillation: O

Slug + Bubble: O

Oscillation + Bubble: O

There are 3 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 21 unclassified results where all outputs are < 0.51

There are 24 unclassified inputs in total

817 patterns #Flow case 6

SS1: 0

Slug: O

Oscillation: O

Bubble: 0

SS1 + Slug: O

SS1 + Oscillation: O

SS1 + Bubble: 0

Slug + Oscillation: O

Slug + Bubble: 0

Oscillation + Bubble: 0

There are O unclassified results where there is one output above 0.51 and
one neutral (0.49< 7 <0.51)

There are O unclassified results where all outputs are < 0.51
There are 0 unclassified inputs in total

1400 patterns #Flow case 7

S81: 0

Slug: O

Oscillation: O

Bubble: 0

881 + Slug: O

881 + Oscillation: O
351 + Bubble: O

Slug + Oscillation: O
Slug + Bubble: 0
Oscillation + Bubble: O
There are O unclassified results where there is one output above 0.51 and
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one neutral (0.49< ? <0.51)
There are 4 unclassified results where all outputs are < 0.51
There are 4 unclassified inputs in total

622 patterns #Flow case 8

SS1: 0

Slug: O

Oscillation: O

Bubble: 0

881 + Slug: O

SS1 + Oscillation: O

SS1 + Bubble: 0

Slug + Oscillation: O

Slug + Bubble: 0

Oscillation + Bubble: O

There are O unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are O unclassified results where all outputs are < 0.51
There are 0 unclassified inputs in total

1400 patterns #Flow case 9

SS1: 1

Slug: 2

Oscillation: O

Bubble: 0

S81 + Slug: 1

SS1 + Oscillation: O

SS1 + Bubble: O

Slug + Oscillation: O

Slug + Bubble: 0O

Oscillation + Bubble: O

There are 1 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 0 unclassified results where all outputs are < 0.51
There are 2 unclassified inputs in total
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1400 patterns #Flow case 10

SS1: 50

Slug: O

Oscillation: O

Bubble: 50

SS1 + Slug: O

SS1 + Oscillation: O

SS1 + Bubble: 50

Slug + Oscillation: O

Slug + Bubble: 0

Oscillation + Bubble: 0

There are O unclassified results where there is one output above 0.51 and
one neutral (0.49< 7 <0.51)

There are 0 unclassified results where all outputs are < 0.51
There are 50 unclassified inputs in total

800 patterns #Flow case 11

S81: 0

Slug: O

Oscillation: O

Bubble: 0

381 + Slug: O

881 + Oscillation: O

351 + Bubble: O

Slug + Oscillation: O

Slug + Bubble: O

Oscillation + Bubble: O

There are 0 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 10 unclassified results where all outputs are < 0.51
There are 10 unclassified inputs in total

807 patterns #Flow case 12
SS1: 17

Slug: 13
Oscillation: 2



E.3. S-SHAPE RISER MULTIPHASE SYSTEM 215

Bubble: 0

SS1 + Slug: 11

SS1 + Oscillation: 2

SS1 + Bubble: 0

Slug + Oscillation: O

Slug + Bubble: 0

Oscillation + Bubble: O

There are 6 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 3 unclassified results where all outputs are < 0.51
There are 22 unclassified inputs in total

1400 patterns #Flow case 13

S81: 71

Slug: 71

Oscillation: O

Bubble: 0

SS1 + Slug: 70

SS81 + Oscillation: O

SS1 + Bubble: O

Slug + Oscillation: O

Slug + Bubble: 0

Oscillation + Bubble: O

There are 2 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 12 unclassified results where all outputs are < 0.51
There are 84 unclassified inputs in total

650 patterns #Flow case 14

SS1: 0

Slug: O

Oscillation: O
Bubble: O

SS81 + Slug: O

SS1 + Oscillation: O
SS1 + Bubble: O

Slug + Oscillation: O
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Slug + Bubble: 0

Oscillation + Bubble: O

There are O unclassified results where there is one output above 0.51 and
one neutral (0.49< 7 <0.51)

There are 0 unclassified results where all outputs are < 0.51

There are 0 unclassified inputs in total

1400 patterns #Flow case 15

S81: 0

Slug: 23

Oscillation: 19

Bubble: 0

SS1 + Slug: O

881 + Oscillation: O

351 + Bubble: O

Slug + Oscillation: 16

Slug + Bubble: O

Oscillation + Bubble: O

There are 26 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 5 unclassified results where all outputs are < 0.51
There are 47 unclassified inputs in total

810 patterns #Flow case 16

SS1: 0

Slug: O

Oscillation: O

Bubble: 0

SS1 + Slug: O

SS1 + Oscillation: O

SS1 + Bubble: 0

Slug + Oscillation: O

Slug + Bubble: 0

Oscillation + Bubble: O

There are O unclassified results where there is one output above 0.51 and
one neutral (0.49< 7 <0.51)

There are O unclassified results where all outputs are < 0.51
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There are 0 unclassified inputs in total

800 patterns #Flow case 17

S81: 0

Slug: O

Oscillation: O

Bubble: 0

881 + Slug: O

SS81 + Oscillation: O

SS1 + Bubble: O

Slug + Oscillation: O

Slug + Bubble: 0

Oscillation + Bubble: O

There are 0 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 1 unclassified results where all outputs are < 0.51
There are 1 unclassified inputs in total

1400 patterns #Flow case 18

SS1: 0

Slug: O

Oscillation: O

Bubble: 0

881 + Slug: O

SS1 + Oscillation: O

SS1 + Bubble: 0

Slug + Oscillation: O

Slug + Bubble: 0

Oscillation + Bubble: O

There are O unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 0 unclassified results where all outputs are < 0.51
There are 0 unclassified inputs in total

1400 patterns #Flow case 19
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S81: 0

Slug: O

Oscillation: O

Bubble: 0

SS1 + Slug: O

881 + Oscillation: O

351 + Bubble: O

Slug + Oscillation: O

Slug + Bubble: O

Oscillation + Bubble: 0

There are 0 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are O unclassified results where all outputs are < 0.51
There are O unclassified inputs in total

507 patterns #Flow case 20

SS1: 0

Slug: 6

Oscillation: 5

Bubble: 0

881 + Slug: O

SS1 + Oscillation: O

SS1 + Bubble: 0

Slug + Oscillation: 4

Slug + Bubble: 0

Oscillation + Bubble: O

There are 7 unclassified results where there is one output above 0.51 and
one neutral (0.49< 7 <0.51)

There are 10 unclassified results where all outputs are < 0.51
There are 21 unclassified inputs in total

797 patterns #Flow case 21

SS1: 0

Slug: O
Oscillation: O
Bubble: O

881 + Slug: O
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SS81 + Oscillation: O

SS1 + Bubble: 0

Slug + Oscillation: O

Slug + Bubble: 0

Oscillation + Bubble: O

There are 0 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 339 unclassified results where all outputs are < 0.51

There are 339 unclassified inputs in total

542 patterns #Flow case 22

SS1: 1

Slug: O

Oscillation: 1

Bubble: 0

881 + Slug: O

SS1 + Oscillation: O

SS1 + Bubble: 0

Slug + Oscillation: O

Slug + Bubble: 0

Oscillation + Bubble: O

There are 2 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 2 unclassified results where all outputs are < 0.51
There are 4 unclassified inputs in total

1400 patterns #Flow case 23

SS1: 226

Slug: 226

Oscillation: O

Bubble: O

SS81 + Slug: 225

SS1 + Oscillation: O
SS1 + Bubble: O

Slug + Oscillation: O
Slug + Bubble: 0O
Oscillation + Bubble: 0



220 APPENDIX E. DETAILED RESULTS

There are 2 unclassified results where there is one output above 0.51 and
one neutral (0.49< 7 <0.51)

There are 9 unclassified results where all outputs are < 0.51

There are 236 unclassified inputs in total

500 patterns #Flow case 24

SS1: 0

Slug: 15

Oscillation: 13

Bubble: 0

SS1 + Slug: O

SS1 + Oscillation: O

351 + Bubble: O

Slug + Oscillation: 13

Slug + Bubble: 0

Oscillation + Bubble: O

There are 2 unclassified results where there is one output above 0.51 and
one neutral (0.49< 7 <0.51)

There are 10 unclassified results where all outputs are < 0.51
There are 25 unclassified inputs in total

512 patterns #Flow case 25

SS1: 4

Slug: 4

Oscillation: 0O

Bubble: 0

881 + Slug: 3

881 + Oscillation: O

351 + Bubble: O

Slug + Oscillation: O

Slug + Bubble: 0

Oscillation + Bubble: 0

There are 5 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 64 unclassified results where all outputs are < 0.51
There are 72 unclassified inputs in total
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500 patterns #Flow case 26

SS1: 0

Slug: O

Oscillation: O

Bubble: 0

SS1 + Slug: O

SS1 + Oscillation: O

SS1 + Bubble: O

Slug + Oscillation: O

Slug + Bubble: 0

Oscillation + Bubble: O

There are O unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 1 unclassified results where all outputs are < 0.51
There are 1 unclassified inputs in total

500 patterns #Flow case 27

S81: 0

Slug: O

Oscillation: O

Bubble: 0

881 + Slug: O

SS81 + Oscillation: O

SS1 + Bubble: 0

Slug + Oscillation: O

Slug + Bubble: 0O

Oscillation + Bubble: O

There are 0 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are O unclassified results where all outputs are < 0.51
There are O unclassified inputs in total

535 patterns #Flow case 28

S81: O
Slug: 1
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Oscillation: O

Bubble: 0

SS1 + Slug: O

SS1 + Oscillation: O

351 + Bubble: O

Slug + Oscillation: O

Slug + Bubble: 0

Oscillation + Bubble: O

There are 1 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 5 unclassified results where all outputs are < 0.51
There are 6 unclassified inputs in total

500 patterns #Flow case 29

S81: 0

Slug: O

Oscillation: 0O

Bubble: 0

SS1 + Slug: O

881 + Oscillation: O

SS1 + Bubble: 0

Slug + Oscillation: O

Slug + Bubble: O

Oscillation + Bubble: 0

There are 0 unclassified results where there is one output above 0.51 and
one neutral (0.49< 7 <0.51)

There are 2 unclassified results where all outputs are < 0.51
There are 2 unclassified inputs in total

510 patterns #Flow case 30

SS1: O

Slug: 20
Oscillation: 21
Bubble: O

381 + Slug: O

SS1 + Oscillation: O
SS1 + Bubble: 0
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Slug + Oscillation: 20

Slug + Bubble: 0

Oscillation + Bubble: O

There are 1 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 18 unclassified results where all outputs are < 0.51

There are 39 unclassified inputs in total

562 patterns #Flow case 31

S81: 29

Slug: O

Oscillation: O

Bubble: 29

881 + Slug: O

SS81 + Oscillation: O

SS1 + Bubble: 29

Slug + Oscillation: O

Slug + Bubble: 0

Oscillation + Bubble: O

There are 0 unclassified results where there is one output above 0.51 and
one neutral (0.49< 7 <0.51)

There are O unclassified results where all outputs are < 0.51
There are 29 unclassified inputs in total

502 patterns #Flow case 32

SS1: 1

Slug: 1

Oscillation: O

Bubble: 0

881 + Slug: O

SS1 + Oscillation: O

SS1 + Bubble: O

Slug + Oscillation: O

Slug + Bubble: 0
Oscillation + Bubble: O
There are 2 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)
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There are 0 unclassified results where all outputs are < 0.51
There are 2 unclassified inputs in total

522 patterns #Flow case 33

S81: 0

Slug: O

Oscillation: 0O

Bubble: 0

SS1 + Slug: O

881 + Oscillation: O

SS1 + Bubble: 0

Slug + Oscillation: O

Slug + Bubble: 0

Oscillation + Bubble: 0

There are 0 unclassified results where there is one output above 0.51 and
one neutral (0.49< 7 <0.51)

There are 511 unclassified results where all outputs are < 0.51
There are 511 unclassified inputs in total

1400 patterns #Flow case 34

SS1: 0

Slug: O

Oscillation: O

Bubble: 0

881 + Slug: O

SS1 + Oscillation: O

351 + Bubble: O

Slug + Oscillation: O

Slug + Bubble: 0

Oscillation + Bubble: O

There are O unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are 1 unclassified results where all outputs are < 0.51
There are 1 unclassified inputs in total

1400 patterns #Flow case 35
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SS1: 0

Slug: O

Oscillation: O

Bubble: 0

381 + Slug: O

SS81 + Oscillation: O

SS1 + Bubble: 0

Slug + Oscillation: O

Slug + Bubble: 0

Oscillation + Bubble: O

There are 0 unclassified results where there is one output above 0.51 and
one neutral (0.49< ? <0.51)

There are O unclassified results where all outputs are < 0.51
There are 0 unclassified inputs in total



