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ABSTRACT 

Flexible rotor-bearing system stability is a very important subject impacting the 

design, control, maintenance and operating safety. As the rotor bearing-system 

dynamic nonlinearities are significantly more prominent at higher rotating 

speeds, the demand for better performance through higher speeds has rendered 

the use of linear approaches for analysis both inadequate and ineffective. To 

address this need, it becomes important that nonlinear rotor-dynamic responses 

indicative of the causes of nonlinearity, along with the bifurcated dynamic 

states of instabilities, be fully studied. The objectives of this research are to 

study rotor-dynamic instabilities induced by mass unbalance and to use smart 

materials to stabilise the performance of the flexible rotor-system. A 

comprehensive mathematical model incorporating translational and rotational 

inertia, bending stiffness and gyroscopic moment is developed. The dynamic end 

conditions of the rotor comprising of the  active bearing-induced axial force is 

modelled, the equations of motion are derived using Lagrange equations and the 

Rayleigh-Ritz method is used to study the basic phenomena on simple systems. In 

this thesis the axial force terms included in the equations of motion provide a 

means for axially directed harmonic force to be introduced into the system.  The 

Method of Multiple Scales is applied to study the nonlinear equations obtained 

and their stabilities. The Dynamics 2 software is used to numerically explore the 

inception and progression of bifurcations suggestive of the changing rotor-

dynamic state and impending instability.    

In the context of active control of flexible rotors, smart materials particularly 

SMAs and piezoelectric stack actuators are introduced. The application of shape 

memory alloy (SMA) elements integrated within glass epoxy composite plates and 

shells has resulted in the design of a novel smart bearing based on the principle 

of antagonistic action in this thesis. Previous work has shown that a single 

SMA/composite active bearing can be very effective in both altering the natural 

frequency of the fundamental whirl mode as well as the modal amplitude. The 

drawback with that design has been the disparity in the time constant between 

the relatively fast heating phase and the much slower cooling phase which is 

reliant on forced air, or some other form of cooling. This thesis presents a 

modified design which removes the aforementioned existing shortcomings. This 

form of design means that the cooling phase of one half, still using forced air, is 
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significantly assisted by switching the other half into its heating phase, and vice 

versa, thereby equalising the time constants, and giving a faster push-pull load 

on the centrally located bearing; a loading which is termed ‘antagonistic’ in this 

present dissertation. The piezoelectric stack actuator provides an account of an 

investigation into possible dynamic interactions between two nonlinear systems, 

each possessing nonlinear characteristics in the frequency domain. Parametric 

excitations are deliberately introduced into a second flexible rotor system by 

means of a piezoelectric exciter to moderate the response of the pre-existing 

mass-unbalance vibration inherent to the rotor. The intended application area 

for this SMA/composite and piezoelectric technologies are in industrial rotor 

systems, in particular very high-speed plant, such as small light pumps, motor 

generators, and engines for aerospace and automotive application. 
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CHAPTER 1 

INTRODUCTION 

________________________________________________________ 

1.1 Background 

Rotating machinery play an important role in many different industries in our 

society. Some examples are in electrical power production, gas-turbines, aircraft 

engines, process machines in heavy industry, fans, pumps and ship engines, 

which are only a few of the applications in which rotating machinery has a 

central role. The designs of many rotating machines are now fifty to a hundred 

years old; however, the demands of these units are continuously changing. 

Hence, it becomes important to work on product development and research in 

the area of rotating machinery. The behaviour of these rotor-dynamic 

components can influence the performance of the whole system. Namely, for 

certain ranges of rotational speed, such systems can exhibit various types of 

vibration which can be so violent that it can cause significant damage. 

Consequently, the understanding of the dynamic behaviour of these systems is 

very important.  

Vibration in dynamical systems can be caused by nonlinearities which induce 

forces locally in the system under consideration. However, their presence in 

general has important consequences for the overall dynamic behaviour. Some 

examples of nonlinearities in mechanical systems are friction forces, mass 

unbalance, and nonlinear spring and damper supports. Therefore, in order to 

gain understanding and to predict different types of vibration it is important to 

understand the causes of such vibrations, and also to understand the interactions 

between them where there exists more than one type of vibration.  Lateral 

vibrations in rotor systems have been analysed extensively by Tondl, 1965; Fritz, 

1970 (a, b) and Lee, 1993. They considered different types of rotor systems, and 

in all those systems, lateral vibrations are induced by the mass unbalance in a 

rotor. In all the systems considered it is noticed that increase of mass unbalance 

can have destabilising effects. For example, Tondl, 1965 and Lee, 1993 
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considered a simple disk with a mass unbalance connected to a shaft which is 

elastic in the lateral direction and found out that in such systems, under certain 

conditions, instabilities can appear if the mass unbalance increases. Since the 

rotating parts of these machines are mostly the main sources of vibration, 

adequate understanding and knowledge of the vibration phenomena of rotor-

dynamics are necessary for finding ways to reduce or eliminate when possible 

vibrations. It has been observed that when the running speed exceeds certain 

critical speeds, various kinds of undesirable problems of rotor-dynamic 

instability would occur. Therefore, studying the static and dynamic response, 

both theoretically and experimentally, of the flexible rotor system under various 

loading conditions would help in understanding and explaining the behaviour of 

more complex, real structures under similar conditions.  

The analysis of the nonlinear effects in rotor-bearing systems is extremely 

difficult and there are a few analytical procedures that will generate valid 

results over a wide range of parameters. Vibration problems involving 

nonlinearities do not generally lend themselves to closed form solutions obtained 

by using conventional analytical techniques. The Perturbation methods are a 

collection of techniques that can be used to simplify, and to solve, a wide 

variety of mathematical problems, involving small or large parameters. The 

solutions may often be constructed in explicit analytical form or, when it is 

impossible, the original equation may be reduced to a more simple one that is 

much easier to solve numerically. The techniques including Incremental 

Harmonic Balance, Averaging, Krylov-Bogolioubov, Lindstedt-Poincaré and the 

Method of Multiple Scales, usually assume the system has a simple periodic 

response, which is then successively iterated upon to converge to an acceptable 

approximation to the actual response. A common solution procedure for 

nonlinear vibration problems, such as rotor-bearing systems, is to perform a long 

time-transient numerical integration of the equations of motion. This procedure 

can yield the transient behaviour plus a stable steady state response for given 

system parameters and initial conditions. 

Generally, vibration control in rotating machines is linked to a critical speed, to 

an excitation at rotation harmonics, or to rotordynamic instability. Active 

vibration control is usually divided into active and semi-active control. In active 
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control, a dynamic force is applied against the vibration to be controlled. In the 

semi-active case, the characteristics of a structure are adjusted in such a way 

that the vibration response is reduced. Applications of smart materials 

technology to various physical systems are evolving to actively control vibration.  

Smart materials involve distributed actuators and sensors and in the application 

of one or more of these, one may either integrate them in the structure making 

up an embedded system or develop control systems that can even cope with 

unexpected operating conditions.  

This dissertation first establishes rotor-dynamic responses as function of control 

parameters and system configuration, which are obtained by an analytical model 

that describes the physical nature of the nonlinear mechanism within a flexible 

rotor-bearing system. The excitation is provided by the rotor unbalance and the 

nonlinearity is given by the inherent instability mechanism and nonlinear 

elements within the system. Thus, the set-in and progress of dynamic instability 

induced by nonlinearities in the rotary model is both analytically and 

numerically investigated. Experimental investigations are conducted to study the 

controllability of the flexible rotor system using Smart materials. 

1.2 Objectives 

It is established that nonlinear analysis is of great importance for understanding 

the behaviour of a rotor-dynamic system. Presently, research in rotor-dynamics 

is such that nonlinear analytical methods for rotating machines are either 

unavailable or insufficient. Effective methods of controlling vibrations in rotor-

dynamic systems are still being sought. Therefore, the major objectives of this 

research are to: 

Develop a dynamic mathematical model of a flexible rotor system described by 

differential equations including axial force terms, taking into consideration 

translational, rotational inertia, bending stiffness, gyroscopic moment and 

nonlinearities. The axial force term enables one to include or apply an external 

force axially into the rotor system. To control the vibrations of a dynamic rotor 

system using active control methods, it is first appropriate to apply a controller 

to a system in a theoretical setting. It therefore becomes necessary to build a 
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valid model on which to base the control. The model needs to reproduce 

accurately the dynamic response of the real system over the frequency range of 

interest and also needs to be versatile enough to model variations of the rotor 

dynamic properties. 

Analyse vibrations of flexible rotor systems using appropriate analytical and 

numerical tools with and without the introduction of axial parametric force 

terms, with the focus of the analysis based on the steady-state behaviour of the 

system. 

Construct test environments for active vibration control of rotors by employing 

the use of Smart actuators directed to the control of stability. 

The main contributions of the thesis can be described as follows: 

• Modifications have been made to the existing governing equations of 

motion of the flexible rotor system by accommodating large deflections 

and including axial force terms which allow the introduction of external 

axial forces in order to manipulate the behaviour of the flexible rotor 

system. The physical bases employed to model the axial force term is 

that the force term is modelled as a physical effect equivalent to the 

localised changing of the elastic part of the rotor shaft stiffness, which 

can then be manipulated to cause reduction in vibration amplitude and 

changes in critical speeds.  

• Provision of knowledge by solving the nonlinear equations of motion 

analytically using the Perturbation Method of Multiple Scales to show how 

the introduction of parametric force terms can help in stabilising the 

otherwise unstable system due to mass unbalance, by reducing the 

amplitude values. 

• Provision of knowledge that has not previously been available using 

dynamical systems analysis to show how a hard-driven nonlinear rotor 

system can be stabilised by the introduction of a parametrically excited 

force into the system. The availability of the knowledge would thus 

positively impact the operating safety of rotary machinery. 



Chapter 1: Introduction 
 

 

 
5 

• New information on the alternatives to the traditional stability chart for 

better or instability-free rotary machine concept development and 

configuration design by  

(a) Designing and experimentally testing an antagonistic SMA/Composite 

active bearing for controlling vibration by shifting the resonance 

frequency range of a flexible rotor system. 

(b) Designing and experimentally testing a piezoelectric actuator exciter 

for controlling vibration by reducing the amplitude of vibration when 

parametric excitation is introduced into the system at a principal 

parametric resonance where the frequency of excitation is twice the first 

whirl mode frequency of the system. 

 

This work presents and demonstrates an effective approach that 

integrates weakly nonlinear rotor-dynamics, and analytical and numerical 

modelling that applied to the detection and identification of instabilities. 

Under the influence of mass unbalance, the rotor-bearing system displays 

transitional behaviour typical of a nonlinear dynamic system, going from 

periodic to period-doubling to quasiperiodic and eventually to chaotic 

motions. When actuator forces are also considered, the model system 

demonstrates very different behaviour. As a result, dynamic methods of 

vibration controlling using specially designed devices made out of smart 

materials are proposed as alternatives to operating purely by the 

traditional stability chart. Observations and results such as these have 

important practical implications on the design and safe operation of high 

performance rotary machinery.  

1.3 Outline and Methodology 

This thesis is divided into nine chapters. It begins with an introduction in 

Chapter 1 followed by literature review in Chapter 2. The flexible rotor-bearing 

system is modelled mathematically in Chapter 3. Chapter 4 applies the 

Perturbation Method of Multiple Scales, and also applies a direct numerical 

integration method. In chapter 5 a stability analysis of steady-state solutions is 

investigated using the Routh-Hurwitz criterion.  
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Chapter 6 strengthens the above results with the numerical investigation of the 

system dynamics in the form of calculations leading to bifurcation diagrams and 

the Lyapunov exponent. Phase planes, Poincaré maps and time plots are also 

plotted for a more in-depth understanding into the system dynamics. This 

provides one with a better comprehension of the overall dynamics of the flexible 

rotor-bearing system. 

Experiments have been carried out based on the theoretical work to control 

vibrations as a result of instabilities in the rotor system using smart materials in 

the form of Shape Memory Alloys and Piezoelectric actuators. These are 

discussed in Chapter 7.  

Chapter 8 presents a discussion and comparison of results from the different 

methods employed in this thesis, and the conclusions and recommendations for 

further work are also presented in Chapter 9.  

Publications produced during the course of this postgraduate research by the 

author, and others, are given after the Reference section. 
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CHAPTER 2  

LITERATURE REVIEW 

_________________________________________________ 

2.1 Historical Perspective 

2.1.1 Jeffcott’s Rotor 

Rotordynamics as a subject first appeared in the last quarter of the 19th Century 

due to the problems associated with the high speed turbine of Gustaf de Laval 

who invented the elastically supported rotor, called de Laval Rotor, and 

observed its supercritical operation. Foeppl (1895) explained analytically the 

dynamic behaviour of the de Laval rotor. Serious research on rotor dynamics 

started in 1869 when Rankine (1869) published his paper on whirling motions of a 

rotor. However, he did not realize the importance of the rotor unbalances and 

therefore concluded that a rotating machine never would be able to operate 

above the first critical speed.  De Laval showed around 1900 that it is possible to 

operate above critical speed, with his one-stage steam turbine. In 1919 Jeffcott 

prescribed the first paper where the theory of unbalanced rotors is described. 

Jeffcott derived a theory which shows that it is possible for rotating machines to 

exceed the critical speeds. However, in the Jeffcott model the mass is basically 

represented as a particle or a point-mass, and the model can not correctly 

explain the characteristics of a rigid-body on a flexible rotating shaft 

(Gustavsson R., (2005)). DeLaval and Jeffcott’s names are still in use as the 

name of the simplified rotor model with the disc in the mid-span of the shaft. 

Jeffcott’s rotor is described by Vance (1988), for example as one that consists of 

a flexible shaft, with zero mass, supported at its ends. The supports are rigid 

and allow rotation around the centre axis of the shaft. The mass is concentrated 

in a disk, fixed at the midpoint of the shaft. The system is geometrically 

symmetrical with respect to its rotational axis, except for a mass imbalance 

attached to the disk. When rotating the mass imbalance provides excitation to 

the system. 
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2.1.2 Origins of Vibration Theory 

The development of vibration theory, as a subdivision of mechanics, came as a 

natural result of the development of the basic sciences it draws from, 

mathematics and mechanics. The term “vibration” was used from Aeschylus 

times (Dimarogonas, 1992). Pythagoras of Samos (ca. 570-497 BC) conducted 

several vibration experiments with hammers, strings, pipes and shells.  He 

established the first vibration research laboratory. That for a (linear) system 

there are frequencies at which the system can perform harmonic motion was 

known to musicians but it was stated as a law of nature for vibration systems by 

Pythagoras. Moreover, he proved with his hammer experiments that natural 

frequencies are system properties and do not depend on the magnitude of the 

excitation (Dimarogonas 1990, Dimarogonas and Haddad 1992). 

Euler in 1744 obtained the differential equation for the lateral vibration of bars 

and determined the functions that are now known as normal functions and the 

equation now called frequency equation for beams with free, clamped or simply 

supported ends and Navier in 1821 investigated the general equations of 

equilibrium and vibration of elastic solids (Dimarogonas, 1992). He formed an 

expression for the work done in a small relative displacement by all forces and 

obtained the differential equations by way of the calculus of variations. 

Solutions of the differential equations of motion for an elastic solid were treated 

by Poisson (1829) who founded the general theory of vibrations. Poisson in 1829 

brought under the general equations of vibration of elastic solids the theory of 

vibration of thin rods. Lord Rayleigh in 1889 formalised the idea of normal 

functions introduced by Daniel Bernoulli and Clebsch and introduced the ideas of 

generalised forces and generalised coordinates. He further introduced 

systematically the energy and approximate methods in vibration analysis. This 

idea was further developed by W. Ritz (1909), and Rayleigh introduced a 

correction to the lateral vibration of beams due to rotating inertia.  

2.1.3 Gyroscopic Effects 

The influence of gyroscopic effects on a rotating system was presented in 1924 

by Stodola. The model that was presented consists of a rigid disk with a polar 

moment of inertia, transverse moment of inertia and mass. The disk is 
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connected to a flexible mass-less overhung rotor. The gyroscopic coupling terms 

in Stodola’s rotor model resulted in the natural frequencies being dependent 

upon the rotational speed. The concept of forward and backward precession of 

the rotor was introduced as a consequence of the results from the natural 

frequencies analysis of the rotor model. When the natural frequencies of the 

rotor system changes with the rotational speed the result is often represented in 

a frequency diagram or Campbell diagram with natural frequencies as a function 

of the rotational speed (Lalanne and Ferraris, 1990).   

2.1.4 Shape Memory Alloys 

The first recorded observation of Shape Memory Alloy (SMA) transformation was 

made in 1932 on gold-cadmium. In addition, in 1938 the phase transformation 

was observed in brass (copper-zinc). It was not until 1962, however, that Beehler 

and co-workers found the transformation and attendant shape memory effect in 

Nickel-Titanium at the Naval Ordinance Laboratory. They named this family of 

alloy NiTinol after their Laboratory. A few years after the discovery of NiTinol, a 

number of other alloy systems with the shape memory effect were found, 

(Hodgson and Brown, 2000). Though product development using SMA began to 

accelerate after the discovery of NiTinol, many of the SMAs contain expensive 

and exotic elements. Only the copper based alloys came close to challenging the 

NiTinol family as a commercially attractive system. During the1980s and early 

1990s, a number of products, especially medical products, were developed to 

market (Hodgson and Brown, 2000 and DesRoches, 2002).    

2.1.5 Piezoelectric Materials 

 Although as early as the 18th century, crystals of certain minerals were known to 

generate charge when heated (which became known as pyroelectricity) it was 

two brothers who actually came to develop the actual “piezoelectricity” used 

yet today. In 1880, the Curie brothers; Jacques and Pierre discovered the 

piezoelectric effect. They found out that when a mechanical stress was applied 

on crystals such as tourmaline, topaz, quartz, Rochelle salt and sugar cane, 

electrical charges appeared, and this voltage was proportional to the stress. 

Conversely piezoelectricity was mathematically deduced from fundamental 

thermodynamic properties by Lippmann in 1881. The first practical application 
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for piezoelectric devices was sonar, first developed during World War I. In 

France in 1917, Paul Langevin and his co-workers developed an ultrasonic 

submarine detector. An everyday life application example is the automotive 

airbag sensor. The material detects the intensity of the shock and sends an 

electrical signal which triggers the airbag (www. Piezomaterials.com, 2008). 

2.2 Vibration Control of Rotor Systems 

Reduction of vibration in structures has always been an important issue in 

mechanics. Lighter, more flexible constructions are more susceptible to 

oscillations, mechanical vibrations are associated with fatigue which can lead to 

a catastrophic failure, which often have to be eliminated as much as possible, 

since they can deteriorate performance and contribute to premature collapse. 

An effective means of controlling and reducing vibrations in rotating machinery 

is the use of external damping and elastic elements often provided via flexible 

bearings and /or bearing supports. 

Rotor systems have been traditionally supported on oil-film bearings due to their 

robustness. The oil-film bearings introduce some damping to the rotor system, 

but can also lead to oil whip instability. In order to control the resonance and to 

delay the onset of instability, passive devices such as squeeze-film bearings have 

been used to augment the system damping (Cunningham, 1978). However, in 

supercritical systems several lateral bending modes of vibration are liable to be 

excited, and given a single passive device it is not possible to select the stiffness 

and damping parameters so as to exert a significant influence over all these 

modes (Stanway et.al., 1981), and on the other hand, their success depends on 

accurate knowledge of the dynamic behaviour of the machine. Additionally, 

passive control techniques have low versatility, i.e., any change in the machine 

configuration or in the loading condition may require a new damping device. 

Therefore, passive vibration control devices are of limited use. This limitation 

together with the desire to exercise greater control over rotor vibration, with 

greatly enhanced performance, has led to a growing interest in the development 

of active control of rotor vibrations ( Abduljabbar et.al. (1996)). 
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The development of microelectronics in the last three decades has allowed the 

implementation of active vibration control techniques. Active vibration control 

is based on a feedback control law that is applied to the mechanical system in 

order to obtain a suitable response. An important advantage of active vibration 

control is that it can be adjusted to suit different load conditions and machine 

configurations. In the field of rotating machinery active vibration control can be 

applied either to modify the structure characteristics such as damping and 

stiffness (Yao et.al.1999), or to introduce a control force. Application of control 

forces can be achieved either directly, using actuators which correspond to fixed 

position forces (Barret et.al. 1995), or by using active balancing devices, (Der 

Haopian et.al. 1999). The use of active balancing is restricted to attenuation of 

synchronous perturbations (Simões et.al. 2007)). 

Allaire et.al. (1986) developed and tested magnetic bearings in a multimass 

flexible rotor both as support bearings and as vibration controller and 

demonstrated the beneficial effect of reducing vibration amplitudes by using an 

electromagnet applied to a transmission shaft respectively. They used two 

approaches to actively control flexible rotors. In the first approach magnetic 

bearings or electromagnetic actuators are used to apply control forces directly 

to the rotating rotor without contacting it. In the second approach, the control 

forces of the electro-magnetic actuators are applied to the bearing housings. 

Subbiah et.al. (1988) and Viderman et.al. (1987) showed that a rotor has certain 

speed ranges in which large and unacceptable amplitude of vibration could be 

developed. These speed ranges are known as critical speeds (or critical 

frequencies) which could cause a bearing failure or result in excessive rotor 

deflection. Under these circumstances, the problem of ensuring that a rotor-

bearing system performs with stable and low-level amplitude of vibration 

becomes increasingly important. The use of electromagnetic bearings in lowering 

the amplitude level has increased and Keith et.al. (1990) showed that they 

generate no mechanical loss and need no lubricants such as oil or air as they 

support the rotor without physical contact. However, the electromagnets are 

open loop unstable and all designs require external electronic control to 

regulate the forces acting on the bearing (Cheung et.al. (1994)). Abduljabbar 

et.al. (1996) derived an optimal controller based on characteristics peculiar to 
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rotor bearing systems which take into account the requirements for the free 

vibration and the persistent unbalance excitations. The controller uses as 

feedback signals, the states and the unbalance forces. A methodology of 

selecting the gains on the feedback signals has been presented based on 

separation of the signal effects: the plant states are the primary stimuli for 

stabilizing the rotor motion and augmenting system damping, while the 

augmented states representing the unbalance forces are the primary stimuli for 

counteracting the periodically excited vibration. The results demonstrate that 

the proposed controller can significantly improve the dynamical behaviour of the 

rotor-bearing systems with regard to resonance and instabilities. 

Sun et.al. (1998) used a multivariable adaptive self-tuning controller to control 

forced vibrations in a rotor system. They used an active hydrodynamic bearing as 

a third bearing to add damping to the system. The self-tuning regulator was 

implemented to control oil-film thickness in the third bearing located between 

the load-carrying ball bearings. The system was designed to cope with nonlinear 

fluid-film bearing characteristics and parameter variations (Tammi (2003)). They 

showed that the self-tuning regulator was suitable for forced vibration 

compensation. Sun et.al. (1998) also used a multivariable self-tuning adaptive 

control strategy to control forced vibration of rotor systems incorporating a new 

type of active journal bearing, which has particular advantages compared with 

control strategies, such as requiring no pre-knowledge of the system parameters 

and imbalance distribution and being easy to implement. Such a proposed 

control strategy is especially significant in applications with complex rotor-

bearing systems supported on fluid-film bearings (He et.al. (2007)).   

The use of disk type Electrorheological (ER) damper in controlling vibration of 

rotor systems was carried out by Yao et.al. (1999). ER fluid is a kind of smart 

material which has the merits of fast response, easy control, low energy 

consumption and a broad application of vibration control. These authors 

designed a new disk type ER damper and attached its moving part to the outer 

ring of a bearing which was mounted on a squirrel cage. The suppression of the 

resonant vibration around the first critical speed and the suppression of the 

large response caused by the sudden unbalance were considered and achieved.  
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Yan et.al. (2000) presented an intelligent bearing system for passing through the 

critical speed of an aero engine rotor by changing the stiffness using SMA wires 

based on Nagata et.al. (1987) method. The authors considered vibration control 

with the rotating speed rising, and paid attention to avoiding the first critical 

speed of the rotating machine system. Their system has only two changeable 

stiffness values in the pedestal bearing, because the SMA character has two 

phases and therefore the SMA stiffness can be changed only twice. And when the 

rotational speed arrives at the critical speed, the stiffness of the rotor system is 

changed by the switch on/off of the SMA. Their result shows the effect of the 

avoidance of the first resonance (He et.al. (2007)).  Ehmann et.al. (2003) used a 

third point in a rotor for controlling vibrations. A piezo-actuator was integrated 

with one of two bearings of a rotor. The shaft of the rotor had two disks 

attached. Two different controllers were considered: an integral-force-feedback 

controller and a robust controller designed with µ -synthesis. The use of active 

control reduced the response of the rotor.  

Vibration control of nonlinear rotor systems using a dynamic absorber utilizing 

the Electromagnetic force was studied by Inoue et.al. (2001). Rotor systems 

supported by single-row deep grove ball bearings exhibit nonlinear spring 

characteristics. The vibration characteristics are changed due to the effect of 

nonlinearities. They clarified that the isotropic symmetrical nonlinearity has 

influence on the vibration control characteristics, and also that vibration control 

can be achieved by considering such effects of nonlinearity in designing the 

parameters of the dynamic absorber.  

Nagata et.al. (1987) proposed a method of active vibration control for passing 

through critical speeds for rotating shafts by changing stiffness of the supports. 

In this method, the vibration of the shaft at the critical speed is controlled by 

means of heating and cooling the SMA for bearing supports. But the control of 

the vibration response worked only at every constant rotating speed rising from 

0 rpm (He et.al. (2007)). Vibration control of a rotor-bearing system using a self-

optimizing support system based on shape memory alloy was proposed by He 

et.al. (2007).The authors used SMA spring to construct a pedestal bearing for the 

rotor-bearing system. The principle of the dynamic absorber is utilized to 

calculate and change the stiffness of the SMA pedestal bearing in order for the 
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rotor shaft to be usually situated near anti-resonance with changes of the 

rotating speed, and its vibration can be controlled.  

Simões et.al. (2007) worked on active vibration control of a rotor in both steady 

state and transient motion using piezoelectric stack actuators. They investigated 

the efficiency of the control strategy in the following conditions: Rotor at rest, 

steady state motion and transient motion. The piezoelectric actuators were 

orthogonally mounted in a single plane localized at one of the rotor bearings. 

They used the modal control technique to the dynamic behaviour of the 

structure. An optimal Linear Quadratic Regulator (LQR) controller associated 

with a state estimator Linear Quadratic Estimator (LQE) was used. These authors 

have shown that a simple optimal controller can be successfully used for 

vibration attenuation in flexible rotors and that a single active plane is enough 

to provide control effort. The results are very encouraging in the sense that 

piezoelectric actuators provide significant control forces over an important 

frequency band and that they can be used for balancing purposes. 

A control method to eliminate the jump phenomena of the rotating speed and to 

restrain the whirling motion in a flexible rotor system by controlling torque is 

proposed by Inoue et.al. (2000). They derived a sufficient condition for 

stabilization of the system modelled by a second-order differential equation 

whose coefficients are continuous, bounded, time-varying and sign-definite. 

They showed that the jump of the rotating speed is eliminated and the 

maximum amplitude of the whirling motion is reduced.  

2.3 Nonlinearities in Structures 

Interesting physical phenomena occur in structures in the presence of 

nonlinearities, which cannot be explained by linear models. These phenomena 

include jumps, saturation, subharmonic, superharmonic and combination 

resonances, self-excited oscillation, modal interactions and chaos. Naturally no 

physical system is strictly linear and hence linear models of physical systems 

have limitations of their own. In general, linear models are applicable only in a 

very restrictive domain, for instance when the vibration amplitude is very small. 

Thus to accurately identify and understand the dynamic behaviour of a 
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structural system under general loading conditions, it is essential that 

nonlinearities present in the system also be modelled and studied (Malatkar 

(2003). 

2.3.1 Types of Nonlinearity 

Nonlinearity exists in a system whenever there are products of dependent 

variables and their derivatives in the equations of motion and boundary 

conditions and whenever there are any sort of discontinuities or jumps in the 

system. Nayfeh et.al. (1979) and Moon (1987) have explained in detail the 

various types of nonlinearities with examples. However, the majority of physical 

systems belong to the class of weakly nonlinear (or quasi-linear) system. Most of 

these systems exhibit behaviours only slightly different from that of their linear 

counterparts. They also exhibit phenomena which do not exist in the linear 

domain. Therefore, for weakly nonlinear structures, the usual starting point is 

still the identification of the linear natural frequencies and mode shapes. Then, 

in the analysis, the dynamic response is usually described in terms of its linear 

natural frequencies and mode shapes. The effect of the small nonlinearities is 

seen in the equations governing the amplitude and phase of the structure 

response. 

In structural mechanics and rotating machinery applications, relevant 

nonlinearities can in a broad sense be classified as follows:  

1. Inertial nonlinearity which comes from nonlinear terms containing velocities 

and/or accelerations in equations of motion. The source of the inertial 

nonlinearity is the Kinetic energy of the system. Examples are the centripetal 

and Coriolis acceleration terms in motions of bodies moving relative to rotating 

frames. 

2. Geometric nonlinearities are mostly found in systems undergoing large 

deformations or deflections. This nonlinearity arises from the potential energy of 

the system. In structural mechanics, large deformations mostly results in 

nonlinear strain-and curvature–displacement relations. Examples of this type can 

be found in the equations derived from nonlinear strain-displacement relations 

due to mid-plane stretching in strings, due to nonlinear curvature in beams and 
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due to shaft elongation of a rotor system (Ishida et.al. (1996) and Shaw, (1988)). 

Another example is the simple pendulum, the equation of motion of which is 

2
0 sin 0θ ω θ+ =ɺɺ ; the nonlinear term 2

0 sinω θ  represents geometric nonlinearity, 

since it models large angular motions (Amabili et.al. (2003) and Nayfeh et.al. 

(2004)).  

3. Damping is a nonlinear phenomenon and linear viscous damping in structures 

is an idealization. Some examples of nonlinear damping are hysteretic damping, 

Coulomb friction and aerodynamic drag. Caughey et.al. (1970), Tomlinson et. al. 

(1979), Sherif et.al. (2004) and Al-Bender et. al. (2004).   

4. In boundary conditions nonlinearities can also be found. For example, free 

surfaces in fluid, vibro-impacts due to loose joints or contacts with rigid 

constraints. Also, in the situation when a pinned-free rod is attached to a 

nonlinear torsional spring at the pinned end and that resulting from clearance in 

bearings. 

5. Material or Physical nonlinearity. This is when the constitutive law relating 

the stresses and strains is nonlinear. In other words nonlinear stress-strain 

relationship gives rise to this type of nonlinearity. Nonlinear beam problems with 

material nonlinearity have been studied by Papirno, (1982), Ditcher et.al. (1982) 

and Bert (1982).  Examples are rubber Isolators, Richard et.al. (2001) and for 

metals, the nonlinear Ramberg-Osgood material model is used at elevated 

temperatures. Here Papirno (1982) conducted an experimental investigation to 

check the validity of the Ramberg-Osgood type nonlinear stress-strain 

relationship to various materials. Another example is the case in foams, White 

et. al. (2000), Schultze et.al. (2001) and Singh et.al. (2003). 

6. Structural systems could also be affected physically by nonlinearities that 

stem from trigonometric functions of fixed angular co-ordinates. Examples can 

be found in flexible rotor systems, Adiletta et.al. (1997a, b). Tondl (1965) first 

applied nonlinear vibration theory to the rotor-bearing problem in 1965. Rotor 

systems with nonlinearities show interesting behaviours such as jump 

phenomena, subharmonic phenomena and bifurcation phenomena. Ishida, (1994) 
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and Yamamoto et.al. (2001) have investigated the effects of these nonlinearities 

on the dynamic characteristics of the vibrations of the rotor system. 

2.3.2 Nonlinearities of Beams/ Shafts  

Basic beam theories developed decades ago by Bernoulli, Coulomb, Euler, 

Kirchhoff, Rayleigh and Timoshenko and many others are still in use today. When 

dealing with small deformations linear beam theory would have been enough, 

but with moderately large deformations and accurate modelling several 

nonlinearities need to be included. Most of the nonlinear theories of transverse 

beam vibrations deal with the effect of midplane stretching for the case of a 

simply supported uniform beam with an infinite axial restraint. Burgreen in 1951 

looked at free oscillations of a beam having hinged ends at a fixed distance 

apart. He also studied, both experimentally and theoretically, the effects of a 

compressive load. He derived the equation of motion containing a nonlinear 

term due to midplane stretching which results in nonlinear strain-displacement 

relations. He gave the solution in terms of elliptic functions and also found that 

the frequency of vibration varies with the amplitude. In agreement with the 

above theories Ray et.al. (1969), through experiment analyzed the effect of 

midplane stretching on the vibrations of a uniform beam with immovable ends 

for simply supported, clamped, and simply supported-clamped cases.  

Nonlinear vibrations of a hinged beam with one end free to move in the axial 

direction were studied by Atluri (1973). Including rotatory inertia and 

nonlinearities due to inertia and geometry and ignoring the effects of midplane 

stretching and transverse shear deformation he found out that the effective 

nonlinearity depends on the contributions of the geometric and inertia 

nonlinearity terms and that the inertia nonlinearity is of the softening type. 

Moyer Jr. et.al. (1984) considered the transient response of nonlinear beam 

vibration problems subjected to pulse loading using a numerical approach and 

Liebowitz (1983) also investigated vibrational response of geometrically 

nonlinear beams subjected to impulse and impact loading. Nonlinear vibrations 

of rotating shafts have been reported by Yamamoto et.al. (1981) and 

Vassilopoulos et.al. (1983). Pai et.al. (1990b) and Anderson et.al. (1996b) using 

equations derived by Crespo da Silva et.al. (1978a, b) who investigated the 
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nonlinear motions of cantilever beams and observed that, for the first mode, the 

geometric nonlinearity, which is of the hardening type, is dominant; whereas for 

the second and higher modes, the inertia nonlinearity, which is of the softening 

type, becomes dominant.    

Hodges et.al. (1974) developed nonlinear equations of motion with quadratic 

nonlinearities to describe the dynamics of slender, rotating, extensional 

helicopter rotor blades undergoing moderately large deformations and Rosen et. 

al. (1979) derived a more accurate set of equations than those of Hodges et.al. 

(1974) by including some nonlinear terms of order three in which their numerical 

results are in agreement with the experimental data obtained by Dowell et.al. 

(1977). Retaining cubic nonlinearities effects in derived nonlinear differential 

equations of motion, Crespo da Silva et.al. (1986a, b) investigated their 

influence on the motion of a helicopter rotor blade. They concluded that the 

most significant cubic nonlinear terms are those associated with the structural 

geometric nonlinearity in the equation. Pai and Nayfeh (1990a) developed 

nonlinear equations containing structural coupling terms, quadratic and cubic 

nonlinearities due to curvature and inertia for vibration of slewing or rotating 

metallic beams.  

2.3.3 Nonlinearities in Bearings 

In rotor-bearing systems there are many sources of nonlinearities, such as play in 

bearings and fluid dynamics in journal bearings. The dynamic stiffness of the 

bearing which supports the rotating shaft has a significant effect on the 

vibration. In particular it affects the machine critical speeds and the vibration in 

between critical speeds and Yamamoto et.al. (1976) suggested that rolling 

bearings, which are frequently used in industry, sometimes have nonlinear spring 

characteristics due to coulomb friction and the angular clearance between roller 

and ring. Yamamoto et.al. (1981) and Ishida et.al. (1990) revealed that in 

practice all components of nonlinear forces appear markedly up to the third 

power of deflections in single–row deep groove ball bearings, and to the fourth 

power in double–row angular contact ball bearings. 

Studies carried out by Gonsalves et.al. (1995), Nelson et.al. (1988), Kim et. 

al.(1990), Goldman et.al. (1994a,1994b and 1995)  on nonlinear rotor systems 
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with bearing clearance subjected to out-of-balance phenomena showed that the 

presence of clearances invariably causes severe nonlinearities in the system, 

primarily in the form of discontinuous stiffness effects which can lead to very 

complex responses. Investigations carried out by Lee et.al. (1993) on rotor 

systems concluded that various spring constants of bearings giving  rise to the 

jump phenomenon, and causing the frequency response curves to bend at 

various inclinations are due to nonlinearities in bearings. It has been shown by 

Azeez et. al. (1999) that very small free-plays in the bearings of a rotordynamic 

system lead to strong and potentially catastrophic nonlinear instabilities, 

evidenced by large-amplitude chaotic motions with frequencies close to 

linearised critical speeds. In the nonlinear analysis of a dynamic system, Zheng 

et.al. (2000), showed that a quasi-periodic bifurcation was found for a group of 

bearing parameters and after the bifurcation point a jump phenomenon was 

detected and in the system appeared a large number of closed branches of 

subharmonic motions occurring in very tiny frequency (rotating speed) intervals. 

As the rotating speed increases, the system undergoes bifurcation, and finally 

goes to chaos. 

Shabaneh et.al. (2003) showed in their analysis of a rotor shaft with 

viscoelastically supported bearings that the primary resonance peak shifts to 

higher frequencies when the bearing elastic characteristic is increased. The 

nonlinearity occurs at the boundaries due to nonlinear characteristics of the 

bearings. 

In a rotor-bearing system, the hydrodynamic pressure in journal bearings is 

generated entirely by the motion of the journal and depends on the viscosity of 

the lubricating fluid. However, the hydrodynamic pressure around the bearing is 

nonlinear and hence the fluid film rotor-bearing system has a strong nonlinearity 

which can cause substantial vibrations of the rotor and its bearings, Chang-Jian 

et.al. (2007). In 1978, Holmes et.al. (1978) published a paper dealing with 

aperiodic behaviour in journal bearings. In their work, the symmetrical, steady-

state motion of a rigid shaft supported by two short journal bearings was 

studied. The behaviour of this test rig was found to be of two distinct types. For 

small eccentricity, the motion was asymptotically periodic and consisted of a 

small number of components, principally at synchronous and half-synchronous 
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frequencies. For high eccentricity, the motion observed was complex and did not 

settle to a limit cycle, remaining in a state of aperiodic motion.  

In 1994, Brown et.al.(1994), developed a simple model of a rigid, 

hydrodynamically supported journal bearing using short bearing theory. It was 

shown that the journal behaved chaotically when the rotating unbalance force 

exceeded the gravitational load. High speed journal bearings lubricated with 

unconventional lubricants of low viscosity give rise to large Reynolds numbers, 

and therefore the flow of the bearing becomes turbulent. In 2000, Lahmar 

et.al.(2000), proved that the turbulent effects on the dynamic behaviour of 

rotor-bearing systems become more significant as the journal rotational speed 

increases.  

2.4 Nonlinear Control 

Interesting cases of nonlinear dynamics under principal parametric resonance 

have been investigated for some years now. While the disturbing force is a time-

dependent excitation that is orthogonal to the coordinate of the structure and 

its frequency is close to twice that of one of the natural frequencies of the 

structure, the principal parametric resonance may occur and high-amplitude 

oscillation will take place in the structure. Nayfeh and Mook (1979) have studied 

this phenomenon and revealed that the high-amplitude vibration occurs because 

the system undergoes nonlinear vibrations such as bifurcations or limit cycles. 

Parametric resonance differs from the commonly encountered external 

resonances, i.e., when the frequency of the disturbing force is near to one of 

the natural frequencies of the structure. For parametric resonances, the 

excitation parameters such as frequency and amplitude are represented by time-

dependent coefficients within the governing partial-differential equations of 

motion. In terms of their behaviour, parametrically excited systems may exhibit 

large responses even when the excitation is small and not close to the system’s 

natural frequencies.   

In recent years, chaos control has been a hot topic in scientific research in many 

important applications in physics, mechanics and engineering. The general 

principle of active nonlinear control is to introduce an action which affects a 
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change in behaviour of a dynamical system in a desirable manner.              

Several control methods leading to suppression of chaos have been presented. 

Asfar et.al. (1994) conducted numerical studies of vibration suppression of a 

single-degree-of-freedom system subjected to a principal parametric resonance. 

Passive vibration control techniques like the Lanchester-type dampers were used 

in their studies in order to increase the structural damping.  Chow et.al. (2001) 

on vibrational control of a nonlinear elastic panel used a high frequency 

parametric vibration and amplitude modulation of the forcing function. The high 

frequency parametric vibration used introduced a change in some system 

parameter causing static stability, whilst the modulation of the forcing 

amplitude stabilizes unstable periodic motions. 

Yabuno (1997) proposed a combined linear-plus-nonlinear displacement feedback 

and linear-velocity feedback control for a parametrically excited Duffing system. 

His numerical simulation shows that linear-velocity feedback stabilizes the trivial 

solution in the quasi-stationary frequency-response, while linear-plus-nonlinear 

displacement feedback reduces the quasi-stationary frequency-response. It has 

been shown by Queini et.al. (1999) that vibration amplitudes resulting from 

nonlinear resonance that cannot be fully controlled by conventional techniques 

such as the addition of linear damping or by the implementation of conventional 

mass absorber can be suppressed by cubic-velocity feedback. For their active 

control technique they used piezoelectric actuators to suppress the nonlinear 

vibrations of a cantilever steel beam.  

Based on the work of Queini et.al. (1999), Chen et.al. (2003) proposed an 

alternative control method that combines linear and nonlinear velocity (cubic-

velocity) feedback control to suppress the principal parametric resonance in a 

flexible cantilever beam structure. They further noted that combined 

bifurcation control and nonlinear feedback control can avoid actuator saturation 

and performs better than either linear feedback or nonlinear feedback control. 

The proposed nonlinear response modification in the context of this thesis is 

largely relevant to flexible rotor systems subjected to parametric excitations. 
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2.5 Perturbation Methods 

Perturbation methods date back to the 18th Century, when Pierre Simon Laplace 

[1749-1827] a French astronomer, mathematician and physicist was the first to 

use perturbation methods to solve a problem of equilibrium of a large weightless 

drop on a plane. The perturbation methods, which have many similar qualities to 

asymptotic methods, are a collection of techniques that may be used to simplify, 

and to solve, a wide variety of mathematical problems involving small or large 

parameters. The solutions may often be constructed in explicit analytical form 

or, when it is impossible, the original equation may be reduced to a more simple 

one that is much easier to solve numerically (Lim (2003)).   

The first comprehensive book on perturbation methods was written by Van Dyke 

(1964), with a focus on fluid mechanical applications. Cole (1968) introduced a 

text from the point of view of applied mathematics. Aziz (1984) gave a review of 

the various applications of perturbation methods in heat transfer area. 

Comprehensive material on perturbation methods can be found in the latest 

books by Nayfeh (1973), Bender and Orszag (1978), Lin and Segel (1988), and 

Hinch (1991).  

In Nonlinear oscillations, Nayfeh and Mook (1979) provided examples of 

parametrically excited systems, and presented some analytical techniques for 

studying parametrically excited systems. They introduced perturbation 

techniques into the analysis of nonlinear and/or parametric vibrations. Some of 

the perturbation methods used in the resolution of nonlinear problems include 

Incremental Harmonic Balance (I-H-B), Averaging, Krylov-Bogolioubov (K-B), 

Krylov-Bogolioubov-Mitropolski (K-B-M), Lindstedt-Poincaré (L-P) and the Method 

of Multiple Scales (MMS). In the Incremental Harmonic Balance (I-H-B) and 

Lindstedt-Poincaré (L-P) methods one seeks directly a periodic steady state 

solution, which is assumed a priori to occur, whilst the Averaging, Krylov-

Bogolioubov (K-B), Krylov-Bogolioubov-Mitropolski (K-B-M) and the Method of 

Multiple Scales (MMS) methods yield a set of first order differential equations 

which describe the slow time evolution of the amplitude and phase of the 

response. 
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Using computer analysis, Lau et.al. (1982) presented an incremental harmonic 

balance method (I-H-B) for determining the parametric instability of a nonlinear 

vibrating beam system with viscous damping. Pierre et.al. (1985) extended the   

I-H-B method to investigate the dynamic instability of viscous damped plates. 

Investigating the dynamic stability problems of a sandwich beam with a 

constrained layer and an electrorheological fluid core subjected to an axial 

dynamic force Yeh et.al. (2004) used the Harmonic Balance Method to calculate 

the instability regions of the sandwich band.  Further to this Yeh et.al. (2005) 

used the I-H-B method to study the regions of dynamic instability of 

Magnetorheological material-based adaptive beams. These investigations 

demonstrated that the I-H-B method has been successfully applied to determine 

the dynamic instability of structural systems with viscous damping.   

Averaging methods have been in use since the time of Lagrange and Laplace. 

Examples of applications of the method of averaging are provided by Mitropolsky 

(1967) and Nayfeh (1973). Sethna (1965) and Haxton et.al. (1972) used the 

method of averaging to analyze primary resonances of systems governed by 

equations with quadratic nonlinearities when one natural frequency is twice 

another. Palacios et.al. (2002) employed the Bogoliubov averaging method in 

their study of the vibrations of an elastic foundation consisting of a portal frame 

with quadratic nonlinearities, forced by a non-ideal energy source. Krylov-

Bogoliubov-Mitropolsky (K-B-M) asymptotic method was used by Wickert (1992) 

to study the nonlinear vibrations and bifurcations of moving beams. 

Mockensturm et.al. (1996) applied the perturbation method of K-B-M to examine 

the stability and limit cycles of parametrically excited and axially moving strings 

in the presence of tension fluctuations. 

2.6 Method of Multiple Scales (MMS) 

The perturbation method of multiple scales has been associated primarily with 

the names of  Sturrock (1957, 1963), Frieman (1963), Cole and Kevorkian (1963), 

Nayfeh (1965a, 1965b, 1968, 1973), and Sandri (1965, 1967) and applied by 

Kevorkian (1966a) and Cole (1968) to several examples. According to Nayfeh, 

‘the method of multiple scales is so popular that it is being rediscovered just 

about every 6 months’. The underlying idea of the method of multiple scales is 
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to consider the expansion representing the response to be a function of multiple 

independent variables, or scales, instead of a single variable. This method has 

advantages over the Lindstedt-Poincaré method as it can treat damped systems 

conveniently and that it yields transient solutions as well as steady state 

solutions in contrast to some other techniques which yield only the steady state 

solution (Cartmell, 1984). The MMS is one of several tools used to study the 

nonlinear equations of motion; it appears particularly suitable for solving 

stability problems. The method of multiple scales was used by Ji et.al. (1998) 

for the analysis of a simple rotor with a disk located on the middle of the shaft. 

Lee et.al. (1999) investigated a weakly nonlinear, harmonically excited, spring 

pendulum in which analysis was carried out using a second order multiple scales 

expansion, neglecting the zeroth order term. This led to the identification of 

stable and unstable regions, as well as routes to chaos. Poincaré maps for 

bifurcation analysis and Lyapunov exponent were generated, with differences 

showing quantitatively and qualitatively for the first order and second order 

approximations, with the suggestion that the second order approximation agrees 

better with the original system. 

However, when employing higher order expansions, slightly different versions of 

the method are used in literature. The oldest version, called reconstitution 

method (called MMS version I), is due to Nayfeh (1981, 1985). In version I, for 

primary resonances, the damping and forcing terms are re-ordered such that 

they balance the effect of nonlinearities. The nearness of the external 

excitation frequency to one of the natural frequencies is represented by using 

only one correction term. The time derivatives for each time scale do not vanish 

separately, but their sum vanishes for finding the steady state solutions. In 

contrast, Rahman and Burton (1989) proposed a newer version of MMS (called 

MMS version II). They showed that the version I cannot capture well the steady-

state solutions and that it yields extra solutions which are not physical for the 

case of a simple Duffing oscillator for example. 

The version II method can be used to determine the periodic, steady-state, 

primary response of a single degree of freedom, lightly damped, and weakly 

nonlinear, forced oscillator. Rahman and Burton then suggested that the 

excitation and the damping should be expanded in a series and require that each 
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time-scale derivative vanish independently. However, unsteady-state solutions 

cannot be retrieved using the version II method. This led to Lee and Lee’s (1997) 

modification of MMS version II by showing how to calculate the unsteady and 

steady state solutions. The details of the extended method were illustrated 

using a Duffing-type equation of the form  

 3ˆ ˆ cosu u u u p tδ β+ + + = Ωɺɺ ɺ , (2.7-1)                                  

Where, δ̂ , β  and p̂  are of the order ε  which is a small parameter. 

The above equation is similar to the example presented by Rahman and Burton 

(1989). Similar to version I, modified version II makes series expansions 

unnecessary for the frequency, damping and excitation amplitude. The damping 

and excitation are scaled to appear in the first nonlinear order. Transient 

solutions can also be obtained. In establishing this, time derivatives are taken to 

be non-zero only on their corresponding level of approximation, i.e., 1D  terms 

are non-zero on the first level of approximation but vanish on the second level 

of approximation. Where 1D  is an operator notation for the partial derivative 

with respect to a multiple scales slow time 1T  

El-Bassiouny et.al. (2001) used the method of multiple scales to investigate a 

second-order approximate analytic solution. They determined the instability 

regions of the response of the considered oscillator via an algorithm that used 

Floquet theory to evaluate the stability of the investigated second-order 

approximate analytic solutions in the neighbourhood of the nonlinear resonance 

of the system. They constructed Bifurcation diagrams showing the locus of 

instabilities of periodic solutions, thereby predicting the qualitative changes that 

can be observed when either the frequency or the amplitude of excitation is 

varied across a bifurcation curve. By constructing the bifurcation diagram they 

investigated the solutions lose stability through three types of bifurcations; 

saddle-node, period-doubling, to other attractors (sequence of period-doubling 

to chaos).    
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A detailed review of the method of multiple scales has been done by Cartmell 

et.al. (2003). They studied the role of term ordering, the integration of the so-

called small (perturbation) parameter within systems constant, 

nondimensionalisation and time scaling, series truncation, inclusion and 

exclusion of higher order nonlinearities and typical problems in the handling of 

secular terms. In the paper Cartmell et.al. (2003) showed that a consistent 

feature of all multiple scale analysis is the choice of the ordering scheme and 

the form of the power series expansion and that it is possible to obtain the same 

results for different structural combinations of each. According to the paper, the 

continual emergence of new and ingenious variations of the basic method as well 

as continual new problem applications makes it abundantly clear that multiple 

scales is set to continue as a cornerstone of analysis in nonlinear engineering 

dynamics. 

Investigating the principal parametric resonance of a single-degree-of-freedom 

system with nonlinear two-frequency parametric and self-excitations, El-

Bassiouny (2005) used the method of multiple scales to determine the equations 

that describe to first-order the modulation of the amplitude and phase and 

predicted the existence of the steady state responses and stabilities. Duchemin 

et.al.(2006) applied the method of multiple scales to study the dynamic 

behaviour and stability of a rotor under base excitation, when the system 

mounting is subjected to a sinusoidal rotation. They applied the method of 

multiple scales to identify the instability zone which are then obtained 

numerically using a step-by-step computation. 

2.7 Smart Materials 

Generally speaking the term “smart” or “intelligent” material systems refers to 

man-made structural systems inspired by natural models. Natural systems display 

numerous admirable qualities smart material systems emulate: precision, 

efficacy, functionality, durability and adaptability (adaptive materials and 

structures). To achieve these standards, smart material systems employ three 

basic tools. Sensors, analogous to the human nervous system, register important 

internal and external information. Actuators (motors) perform work like 

muscles. Finally, computerized control centres acts as the brains of a system, 
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making decisions and issuing orders. These materials exhibit non-negligible 

deformation or material property change with the application of thermal fields, 

electrical fields, or magnetic fields. These materials include Electrorheological 

(ER) fluids, Magnetorheological (MR) fluids, Electrostrictive materials, Shape 

Memory Alloys (SMA), Magnetic Shape Memory Alloys (MSMA), Magnetostrictive 

materials, and Piezoelectric materials. 

Smart fluid is defined as fluid in which the flow can be controlled through the 

application of an electric or magnetic field. Electrorheological (ER) and 

Magnetorheological (MR) materials belong to the family of controllable fluids. 

The ER effect was first discovered by Winslow and the MR effect was discovered 

by Rabinow in the late 1940s. However, more active research studies on the ER 

and MR fluids and their applications began in the mid-1980s (Yalcintas and Dai 

1999). Their rheological properties, such as viscosity, elasticity and plasticity, 

change in the order of milliseconds in response to applied electric and magnetic 

field levels. (Yalcintas and Dai 1999). The ability of controllable fluids to be 

directly used as fast-acting, fluid valves with no moving parts in semi-active 

vibration control has been one of the principle motivating factors for the 

development of such fluids (Carlson et.al. 1995, Carlson and  Sproston, 2000 and 

Hietanen, 2002) 

Magnetic shape memory alloy (MSMA) effect is a new invention in the actuator 

materials field, allowing 50 times greater strains than in Magnetostrictive 

materials. In MSMA materials the magnetic field moves the twins formed in the 

structure creating a net shape change in the material. The mechanism also 

enables more complicated shape changes than conventional linear strain, such as 

bending and shear. Typically, present MSMA’s, such as Ni2MnGa produce 2% 

strain at 0 to 2 MPa stress in actuator use. Other potential MSMA materials are 

Fe-Pd and Fe-Ni-Co-Ti alloys (AdaptaMat, Finland MSM actuators). The maximum 

strain of MSM material is about 5% and the application temperature range is from 

-130 oC to 70oC (Marke et.al. 2002). 

Magnetostriction is observed in a substance when it strains upon application of a 

magnetic field. Conversely, a field is generated when the material is stressed; 

this is, however, proportional to the material’s rate of strain. James Joule 

discovered the magnetostrictive effect first in nickel in 1840, however, the 
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modern era of Magnetostriction began in 1963 when strains approaching 1% were 

discovered in the rare earth materials of terbium and dysprosium at cryogenic 

temperatures. The most frequently used material is giant magnetostrictive Fe-

Tb-Dy-alloy called Terfenol-D (Active Materials Laboratory, MIT, USA). 

Magnetostrictive material is usually sold as a complete actuator system because 

the Magnetostriction is optimised when the material is both mechanically and 

magnetically biased. The commercially-available actuators have total 

displacement capabilities of 0.2%, are capable of producing output forces of 

1750N, and operate at frequencies up to 60 kHz. Terfenol-D transducers are used 

as positioners, sonar projectors, isolators, shock absorbing mounts, linear 

stepper motors, and to mimic the vibrations of an artificial heart (Shakeri 

et.al.(2002) and Marke et.al.2002). 

Electrostrictive materials are similar to Piezoelectric materials, with about the 

same strain capabilities. However, they are very sensitive to temperature, have 

a monopolar, nonlinear relation between the applied field and induced strain, 

and exhibit negligible hysteresis. In the Electrostrictive material there is an 

interaction between the electric field and electric dipoles that is inherently 

nonlinear. Materials such as relaxor ferroelectrics undergo strain when an 

electric field is applied. Under this category of materials, lead magnesium 

niobate (PMN) alloys have sufficiently large dielectric permittivity that helps to 

generate significant polarization and hence strains. Electrostrictives are used as 

actuators in a wide range of applications. The maximum strain is of order 0.1% 

(Uchino1986, Blackwood et.al. 1993 and Chopra 2002). 

2.8 Shape Memory Alloy (SMA) 

Shape Memory Alloys (SMA) refers to a group of materials that have the ability to 

return to a predetermined shape when heated. This property is utilised in an 

SMA actuator, which, in its simplest form comprises an arrangement of SMA 

wires or strips. A shape memory alloy, when deformed (in the martensitic phase) 

with the external stresses removed and heated above its characteristic transition 

temperatures, will regain its original “memory” shape (in the austenitic phase). 

This unique effect of retuning to its original geometry after inelastic 

deformation (more than 1%) is known as the shape memory effect (SME). The 
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first observation of the shape memory effect (SME) was made in 1932 with gold-

cadmium. The phase transformation associated with the shape memory effect 

was later discovered in 1938 with brass (Perkins et.al., 1975).  Several years 

after in 1962 Buehler and Wiley (1965) at the Naval Ordnance Laboratory (NOL) 

discovered a series of nickel-titanium alloys that demonstrated this shape 

memory effect. This SMA discovered by Buehler et al. was later named NiTinol, 

and has been made commercially available ever since.   

SMAs can thus transform thermal energy directly to mechanical work (Liang 

et.al. 1993). The characteristic transformation temperatures are defined as 

follows (Ju et.al. 1999, Otsuka et.al. 1999).   

Ms: martensite start temperature upon cooling 

Mf: martensite finish temperature upon cooling 

As: reverse transformation start temperature upon heating 

Af: reverse transformation finish temperature upon heating 

The thermoelastic martensite transformations are characterised by a small 

hysteresis between the starting temperature transformation (Ms) and its reverse 

(As), and the continuous growth of the martensite, and this is shown graphically 

in the Figure 2-1 below. The transformation also exhibits hysteresis, and it varies 

with the alloy system (Otsuka et.al. 1999, Zhao 2001, Marke et.al.2002).     

The superelasticity (SE) effect is common for SMA intermetallics. SE, which is 

pseudoelasticity occurring at a temperature above Af (slightly above their 

transformation temperatures). This provides a very springy, “rubberlike” 

elasticity in these alloys. Apart from NiTinol (nickel-titanium alloys), there are 

other metallic materials that are known to exhibit shape memory effect. These 

include the copper alloy systems Cu-Zn, Cu-Zn-Al, Cu-Zn-Ga, Cu-Zn-Sn, Cu-Zn-Si, 

Cu-Al-Ni, Cu-Au-Zn, and the alloys of Au-Cd, Ni-Al, etc. 
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Figure 2-1: Typical temperature-transformation curv es of a NiTi alloy (Marc van der Wijst 
1998). 

SMAs are highly adaptive, compact, and lightweight and have a high force-to-

weight ratio. They are the only materials that can impart both large strains and 

large forces but their poor energy conversion remains a problem (Barsoum, 

1997). In dynamic applications, as in the case of this research, which require 

heating and cooling of the strips to start and stop, the recovery process, the 

heating and cooling rates become a limiting factor. Electric heating can drive 

the transformation; while cooling depends on heat conduction, which is a slower 

process for many applications.  

Investigations on using SMAs to damping vibrations have been carried out by 

many research groups. Rogers (1988) suggested that SMA fibres could be 

embedded into conventional composites such as graphite/epoxy to control the 

structural response including static deformation, vibration, buckling, and 

structural acoustic radiation/transmission. Nagaya et.al.(1987) suggested that 

shape memory alloys could be used to control the critical speed of rotating 

shafts.   SMA wires and tendons have been applied for active damping of flexural 

vibrations of cantilever beams by Baz et.al. (1990), Ikegami et.al. (1990), Rhee 

(1992), Choi and Cheong (1996) and Shahin (1997), and the results indicate that 

active vibration control is possible using SMA wires and tendons. It has also been 

shown by Rogers et.al. 1990, 1991, Baz et.al. (1994, 1995) and Bideaux et.al. 

(1995) that vibration of structures can be reduced by shifting the resonance 

frequencies away from the disturbing frequencies by heating SMA wires 
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embedded in a cantilever beam or plate. In this thesis SMA ( in the form of 

strips) applications to rotordynamics are introduced, specifically the use of 

single-ended and antagonistic active bearing housings, and some prototypical 

experiments have given encouraging results for the reduction in the resonant 

amplitude for forward whirl in a flexible rotor. 

2.9 Piezoelectric Materials 

Piezoelectric materials produce electric charge (voltage) if their crystalline 

structure is deformed by an external force. This effect is called the direct effect 

of piezoelectricity. On the other hand, piezoelectric materials change their 

crystalline structure with the application of an external electric field. This 

phenomenon is known as the converse effect of piezoelectricity. Pierre and 

Jacques Curie discovered the direct effect of piezoelectricity in 1880. The 

converse piezoelectric effect was first predicted by Lippmann via methods of 

analytical thermodynamics in 1881 which was confirmed by the Curies in 1881. 

Thus they can be used both as actuators and sensors (Chopra 2002). Over time 

the use of the converse effect of piezoelectricity has become critical in 

applications that require oscillators with relatively large amplitude and very 

slow rate of decay. 

The most commonly used piezoelectric ceramics are barium titanate (BaTiO3), 

lead lanthanum zirconate (PLZT), lead magnesium niobate (PMN) and lead 

zirconate titanate PZT (PbZrTiO3). These materials exhibit nonlinear coupling 

between a mechanical and an electric response. Piezoelectric ceramics can 

either be monolithic or made of thin, stacked ceramic layers. They are high-

force, but low stroke devices, have a very broad operating frequency bandwidth, 

and exhibit precise positioning response and repeatability. They can achieve 

precision that is measured in nanometres (Piezoelectric ceramics- Noliac A/S, 

Denmark). One common actuator design, that addresses the limitation in 

achievable stroke, is the stack actuator depicted schematically in Figure 2-2.  

The stack is created by bonding thin layers of piezoelectric together such that 

their polarization directions alternate along the major axis. Electrodes separate 

the layers nearly entirely. When a voltage difference is applied across the 
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electrodes, a complicated electric field and mechanical response result if one 

considers the fine scales of the devices. 

 

 

 

 

 

 

 

 

Figure 2-2: Schematic cross-section of piezoelectri c stack actuator 

 
Piezoelectric stack actuators are often used in motion control applications 

where precise positioning and fast response are critical. They are typically 

available with displacements ranges of up to 200 mµ , with force capacities of up 

to 10,000 N, and maximum voltage ratings from 150 V to 1000V. Electrically, the 

piezoelectric actuators behave as a nonlinear capacitive load. The actuator can 

be expanded or contracted by applying a positive or negative voltage. The 

elongation or contraction of the piezoelectric material is the result of the in-

place realignment of electrical dipoles in the crystalline domains (Yi et.al. 

2005). 

Piezoelectric materials are currently being considered for a number of actuator 

applications including precision positioning, vibration suppression, noise control 

and inkjet printing. Piezoelectric actuators have been used for the active shape, 

vibration and acoustic control of structures. Their ability to be easily integrated 

into structures makes them very attractive in structural control. Multilayer 

actuators have advantages such as fast switching time, high block force and low 

driving voltage (Steinkopff et.al. 2000). 
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Bailey and Hubbard (1985) introduced piezoelectric actuators to active vibration 

control. They used the actuators bonded to the surface of a cantilever beam in 

their feedback vibration damping design. Crawley and de Luis (1987) presented 

an analytical and experimental development of piezoelectric actuators as 

vibration exciters. Using the models they developed from the stress/strain 

relationships, they were able to predict the displacement of three real 

cantilevered beam and piezoelectric actuator arrangements under steady-state 

resonance vibration conditions. Dimitriadis et.al. (1991) had performed a two 

dimensional extension of Crawley and de Luis’s work, applying pairs of laminated 

piezoelectric actuators to a plate. They demonstrated that the location and 

shape of the actuator dramatically affected the vibration response of the plate. 

Other researchers such as Fansen and Chen (1986) and Baz and Poh (1988, 1990) 

have used piezoelectric actuators in active vibration control experiments, 

showing again the potential of piezoelectric actuators as control actuators in 

vibration control. The application of piezoelectric stack actuators to control of 

vibrations in rotating machinery was considered by Palazzolo et.al. (1989). The 

authors showed that significant reductions in the vibration of rotating machinery 

could be achieved using two of these actuators in the support structure of the 

rotating shaft. In this thesis the author is deliberately introducing parametric 

excitations into a flexible rotor by means of a piezoelectric exciter and with the 

intention of using this to moderate the responses of the pre-existing mass-

unbalance vibration inherent to the rotor. 
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CHAPTER 3  

ANALYTICAL MODELLING OF FLEXIBLE ROTOR 
SYSTEMS 

_______________________________________________ 

3.1 Introduction 

For several years, a wide variety of phenomena concerning industrial rotor 

dynamic systems have been studied and much attention has been given to one 

of them, namely the behaviour of rotors under mass unbalance excitation. 

One important phenomenon is the self-excited oscillation which has been 

shown to be stemming from deviations from assumptions employed such as 

linearity. Resonances induced without periodic excitations are called self-

excited oscillations. In the system having a single degree of freedom, the self-

excited oscillation occurs due to the effect of negative damping and the 

amplitude grows with time (Kunitoh et.al., (2004)). The dynamic behaviour of 

rotors has been extensively studied by Lalanne and Ferraris (1990), Rao 

(1991), Ehrich (1992), and Childs (1992). The books by Lalanne and Ferraris 

(1990) and Rao (1991) describe the discretisation of the system into 

components for the shaft, mass unbalance, bearings and disks. The 

mathematical model derived and used in this research is based on the work of 

Lalanne and Ferraris (1990). Two models for the equations of motion have 

been derived using Lagrangian dynamics and the Rayleigh-Ritz method, and 

are used to study some phenomena in rotor systems. The equations of motion 

include rotary inertia, gyroscopic coupling, axial load effects and the 

influence of nonlinear bearings. Nonlinearities in the system due to inertia 

and geometric properties are also considered in the modelling of the 

equations of motion. The equations are obtained in the following systematic 

way. First the expressions of the kinetic and strain energies of the rotor 

elements are constructed and the Rayleigh-Ritz method is applied for the 

simplification of the energy expressions. Then, the virtual work of external 

forces is modelled and finally Lagrange’s equations are employed to derive 

the coupled equations.   
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3.2 Derivation of the Equations of Motion 

In deriving the equations of motion, the scalar method of Lagrangian dynamics 

or the vectorial approach of Newtonian mechanics can both be applied to 

problems of this sort depending on preference. Lagrangian dynamics permits 

the derivation of the equation of motion from three scalar quantities; the 

kinetic energy, potential energy, and virtual work of the nonconservative 

forces.  

The rotor equations are derived by means of the following steps: 

Derivation of the kinetic energy of the disk, the shaft and the mass 

unbalance. Derivation of strain energy of the shaft. Use of Lagrange’s 

equation of the form 

 
iq

i i i i

d T T U W
F

dt q q q q

 ∂ ∂ ∂ ∂− + = = ∂ ∂ ∂ ∂ ɺ
  (3.2- 1) 

 

where, 1,2i = , T  represents the kinetic energy, U  is the strain energy, iq  are 

generalised independent coordinates, and 
iqF are generalised forces. W∂  

represents the virtual work of the nonconservative forces under a virtual 

displacement iq∂ .   

The Rayleigh-Ritz method has been used to obtain a simple model. It is a 

method in which a single function can be replaced by a series of shape 

functions multiplied by constant coefficients. It is used for finding the 

approximate real resonant frequencies and mode shapes of multi degree of 

freedom systems, such as spring mass systems or flywheels on a shaft. In this 

work it is used to obtain the displacement functions in terms of the 

generalised coordinates for the first mode shape of the shaft with a constant 

cross-section in bending that is simply supported at both ends.        
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3.2.1 Rotor Model 

In many dynamical problems involving spinning bodies it is convenient to 

express the motion in terms of components along and about rotating frames of 

reference, which, by definition, are noninertial frames. In relating this motion 

to the inertial space authors such as Dimarogonas (1983), Meirovitch (1990), 

and Lalanne and Ferraris (1990) developed expressions relating the 

components of the rotating and the fixed systems of axes. In considering the 

movement of the rotor, two reference frames are used. 0( , , )R x y z  is an 

inertial frame, and ( , , )R X Y Z  is a frame fixed to the disk (see Figure 3-1). 

The movement of the rotor is defined using six parameters (3 translational, 3 

rotational). Therefore, the three coordinates of a point on the disk with 

respect to 0R  are expressed by , ,X Y Z . Similarly, the three components of 

the angular velocity vector from 0R to R  expressed in frame R  are xω , yω  

and zω . The movement of the frame R  fixed to the disk with respect to 0R  is 

described by angles ,ψ θ , and φ . To orientate the disk, a rotation into a 

vibration mode through angle ψ  around the Z  axis brings the triad into 

coincidence with axes zyx ′′′ ,, . A further rotation of the axes zyx ′′′ ,,  through 

angle θ  about axes x  puts the disk into the orientation of wvu ′′′ ,,  where axis 

x  is sometimes referred to as the nodal axis, and it remains in the horizontal 

plane at all times. Finally a rotation of axes wvu ′′′ ,,  through angle φ  about v′  

makes the triad coincide with the body axes, zyx ,,  (see Figure 3-1). The 

instantaneous angular velocity vector of the xyz  frame, as stated in Lalanne 

and Ferraris (1990) is 

 yxZRR φθψω ɺɺɺ +′+=
0/       (3.2- 2) 
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                                                 (a) 3-D view of the rotor 

 

 
 
 
 
 
 
 
 
 
 
               (b) Rotation about Z          (c) Rotation about x           (d) Rotation about y                 
 

Figure 3-1: Reference frames for a disk on a rotati ng flexible shaft. 
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3.2.2 Kinetic Energy of the Rotating Disk 

The disk is assumed to be rigid and is thus characterized solely by its kinetic 

energy. The kinetic energy of the disk about its centre of mass O  is 

calculated within the frame 0R . In this system the angular velocity vector 

becomes  

 

















+
+

+−
=

















=
φθφθψ

θψφ
φθφθψ

ω
ω
ω

ω
sincoscos

sin

cossincos

0/

ɺɺ

ɺɺ

ɺɺ

z

y

x
R

RR     
(3.2- 3) 

 

Let u  and w  designate the coordinates of O  in 0R , the coordinate along y  

being constant. In addition, the mass of the disk is dM  and its tensor of 

inertia in O  is given by /OI , where xyz  are the principal axes of the inertia, 

as follows 

 

















=

dz

dy

dx

O

I

I

I

I

00

00

00

/     
(3.2- 4) 

 

The angular velocity of the frame R  with respect to frame 0R  is    

 
0

x

R y

z

ω
ω
ω

 
 Ω =  
  

     
(3.2- 5) 

 

The kinetic energy due to the rotation of the disk is more difficult to 

calculate, therefore we assume that the disk is symmetric so that the inertia 

properties may be calculated using the polar moment of Inertia dyI , about the 

shaft, and the diametral moment of inertia, dxI  about any axis perpendicular 

to the shaft line. The kinetic energy due to the rotational motion of the disk 

is then, 

 
)(

2

1
)(

2

1 22222
zdzydyxdxdd IIIwuMT ωωω ++++= ɺɺ    (3.2- 6) 

 

For a symmetric disk  dzdx II =  



Chapter 3: Analytical Modelling of Flexible Rotor Systems 
 

 

 
39 

Substituting the angular velocity vector, equation (3.2-3) into the kinetic 

energy of the disk equation (3.2-6) we have  

 2 2 2 2 2 2 2 21 1 1
( ) ( cos ) ( sin 2 sin )

2 2 2d d dx dyT M u w I Iθ ψ θ φ ψ θ φψ θ= + + + + + +ɺ ɺ ɺɺ ɺ ɺɺ ɺ    (3.2- 7) 
 

which can be simplified here as the disk is symmetric ( dx dzI I= ), the angles ψ  

and θ   are small angles, and the angular velocity of the rotor is constant; that 

is,  

 tφ = Ω  and φ = Ωɺ  (3.2- 8) 
 

Therefore the kinetic energy of the disk becomes, 

 2 2 2 2 2

2 2 2

1 1
( ) ( cos )

2 2
1

( sin 2 sin )
2

d d dx

dy

T M u w I

I

θ ψ θ

ψ θ ψ θ

= + + +

+ Ω + + Ω

ɺ ɺɺ ɺ

ɺ ɺ

 
(3.2- 9) 

 

where, dM  is the mass of the disk and θψ sinɺΩdyI   represents the gyroscopic 

effect. 

3.2.3 Kinetic Energy of the Shaft 

The general formulation of the kinetic energy of the shaft is from an 

extension of the disk equation (3.2-9). For an element of length l , the 

expression for the kinetic energy is, 

 
( ) ( )

( )

2 2 2 2 2 2

0 0

2 2

0 0

cos
2 2

( sin ) 2 sin
2

l l

s

l l

s I
T u w dy dy IL

I
dy I dy

ρ ρ θ ψ θ ρ

ρ ψ θ ρ ψ θ

= + + + + Ω

+ + Ω

∫ ∫

∫ ∫

ɺ ɺɺ ɺ

ɺ ɺ

     
(3.2- 10) 

 

where, ρ  is mass per unit volume, S  is the cross-sectional area of the shaft, 

I  is area moment of Inertia of the shaft cross-section about the neutral axis , 

dy  is the thickness of the shaft,  ( )dywu
s l

∫ +
02

ɺɺ
ρ

 is the classical expression for 

the kinetic energy of the shaft in bending, ( )dy
I l

∫ +
0

222 cos
2

θψθρ
ɺɺ  is the 
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secondary effect of rotatory inertia, and ( )∫Ω
l

dyI
0

sin2 θψρ ɺ  represents the 

gyroscopic term. 

3.2.4 Strain Energy of the Shaft 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-2: Coordinates of the geometric centre c  and an arbitrary point B on the shaft 
(Lalanne & Ferraris, 1990) 
 

Considering the cross-section of the shaft, where, c  is the geometric centre 

of the shaft, ( ),B x z  is a typical point on the cross-section, E  is the Young’s 

modulus of the material, ε  is the longitudinal strain, σ  is stress, *u  and *w  

are displacements of the geometric centre with respect to the x  and z  axis 

and including second–order terms in the expression, the longitudinal strain of 

point B  of the rotating shaft can be shown to be  

 2 22 * 2 * * *

2 2

1 1

2 2

u w u w
x z

y y y y
ε    ∂ ∂ ∂ ∂= − − + +   ∂ ∂ ∂ ∂   

 
(3.2- 11) 
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Let 2 * 2 *

2 2l

u w
x z

y y
ε ∂ ∂= − −

∂ ∂
 (3.2- 12) 

 

and 2 2* *1 1

2 2nl

u w

y y
ε    ∂ ∂= +   ∂ ∂   

 
(3.2- 13) 

 

where, lε  contains the linear strain terms and nlε  contains the nonlinear 

strain terms. Thus equation (3.2-11) can be written as 

 
l nlε ε ε= +  (3.2- 14) 

 

The strain energy of the shaft is 

 
1

1

2 τ

εσ τ= ∫U d  (3.2- 15) 
 

where τ is the volume of the shaft and the relationship between stress and 

strain is  

 Eσ ε=  (3.2- 16) 
 

Substituting equations (3.2-14) and (3.2-16) into the strain energy equation 

(3.2-15) we get, 

 ( )2 2
1 2

2 l l nl nl

E
U d

τ

ε ε ε ε τ= + +∫  (3.2- 17) 
 

The second integral in equation (3.2-17) gives rise to a stiffness term, which 

couples the linear and nonlinear strains. It is assumed that the cross-section 

of the shaft is circular, and the arbitrary point B will be symmetrical about 

the axes x  and z , thus making the shaft cross-section with respect to x  and 

z  symmetrical.  The symmetry of the shaft cross-section with respect to x  

and z  results in the second term being 

 0nl ld
τ

ε ε τ =∫  (3.2- 18) 
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The strain energy therefore becomes,   

 22 2 22 * 2 * * *

1 2 2
0

1 1

2 2 2

l

s

E u w u w
U x z dSdy

y y y y

       ∂ ∂ ∂ ∂ 
 = − − + +       ∂ ∂ ∂ ∂        

∫ ∫  
(3.2- 19) 

 

Expanding equation (3.2-19) gives, 

 2 22 * 2 * 2 * 2 *
2 2

2 2 2 2

1 4 2 2 4* * * *
0

2

2 1 1 1

4 2 4

l

s

u w u w
x z xz

y y y yE
U dSdy

u u w w

y y y y

      ∂ ∂ ∂ ∂
 + +     ∂ ∂ ∂ ∂      =  

        ∂ ∂ ∂ ∂+ + +        ∂ ∂ ∂ ∂        

∫ ∫  
(3.2- 20) 

 

Because of symmetry, the integral of the third term in equation (3.2-20) is 

equal to zero. Introducing area moments of Inertia with respect to x  and z  

 2
x

s

I z ds= ∫  (3.2- 21) 
 

 2
z

s

I x ds= ∫  (3.2- 22) 
 

where s  is the cross-sectional area. The strain energy expression is thus 

 2 22 * 2 *

1 2 2
02

l

z x

E u w
U I I dy

y y

    ∂ ∂ = +    ∂ ∂     
∫  

(3.2- 23) 
 

If the shaft is subjected to a constant axial force 0F  there is a further 

contribution to the strain energy of the shaft given by 

 
( )0

2

0

l

l nl

F
U d

s
ε ε τ= +∫  (3.2- 24) 

 

Owing to symmetry, the first term under the integral will vanish over the 

cross-sectional area; substituting equations (3.2-12) and (3.2-13) into 

equation (3.2-24) gives 

 2 2* *
0

2

02

lF u w
U dy

y y

    ∂ ∂ = +    ∂ ∂     
∫  

(3.2- 25) 
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The combined strain energy, 1U + 2U  is then 

 2 2 2 22 * 2 * * *
0

2 2
0 02 2

l l

z x

FE u w u w
U I I dy dy

y y y y

          ∂ ∂ ∂ ∂   = + + +          ∂ ∂ ∂ ∂             
∫ ∫  

(3.2- 26) 
 

To avoid periodic terms explicitly as a function of time, it is necessary, 

because of the bearing properties, to express the strain energy as a function 

of u  and w , components of the displacement in 0R  using equations (3.2-27) 

and (3.2-28) deduced from Figure 3-2, 

 * cos sinu u t w t= Ω − Ω  
(3.2- 27) 

 * sin cosw u t w t= Ω + Ω  (3.2- 28) 
 

 Therefore equation (3.2-26) can be written as 

 22 2

2 2
0

22 2

2 2
0

2 2

0

0

cos sin
2

sin cos
2

2

l

z

l

x

l

E u w
U I t t dy

y y

E u w
I t t dy

y y

F u w
dy

y y

  ∂ ∂ = Ω − Ω  ∂ ∂   

  ∂ ∂ + Ω + Ω  ∂ ∂   

    ∂ ∂ + +    ∂ ∂     

∫

∫

∫

 (3.2- 29) 
 

Finally, for the most common case of a symmetric shaft (i.e. x zI I I= = ), the 

strain energy becomes 

 2 2 2 22 2
0

2 2
0 02 2

l lFEI u w u w
U dy dy

y y y y

          ∂ ∂ ∂ ∂   = + + +          ∂ ∂ ∂ ∂           
∫ ∫  

(3.2- 30) 
 

 

3.2.5 Kinetic Energy of the Mass Unbalance 

Unbalance is one load that is impossible to avoid and can be conveniently 

defined by a small mass um  situated at a distance d  from the geometric 

centre of the shaft, and so its kinetic energy uT  has to be calculated.          
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The mass remains in a plane perpendicular to the y  axis and its coordinate 

along the y  axis is a constant or zero depending on the origin of the 

reference frame (Lalanne and Ferraris, 1990).  

Considering a positive (counter clockwise) rotation through the angle tΩ , or 

θ  

                   Z  

 

 

              

 

                                    Figure 3- 3: Ma ss Unbalance  
 

The displacement in the X  direction is 

 sinxOD u d t= + Ω  (3.2- 31) 
 

The displacement in the Z  direction is 

 cosyOD w d t= + Ω  (3.2- 32) 
 

and is a constant in the Y  direction  

Therefore the displacement of the mass in the  X , Z  and Y  directions can be 

written as 

 sin

cos

u d t

OD const

w d t

+ Ω
=

+ Ω
 

(3.2- 33) 
 

 

where const here represents the word constant. 
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Then velocity can be stated as 

 cos
( )

0

sin

u d t
d OD

V
dt

w d t

+ Ω Ω
= =

− Ω Ω

ɺ

ɺ

    
(3.2- 34) 

 

 

and the kinetic energy of the mass unbalance is 

 ( )tdwtuddwu
m

T u
u ΩΩ−ΩΩ+Ω++= sin2cos2

2
2222

ɺɺɺɺ      (3.2- 35) 
 

The term 2/22dmu Ω  is a constant in this context and has no subsequent 

influence on the equations. The mass unbalance um  is smaller than the mass 

of the rotor, so the expression for the kinetic energy can be written as 

 ( )twtudmT uu Ω−ΩΩ≅ sincos ɺɺ   (3.2- 36) 
 

3.2.6 Simplified Model 

The Rayleigh-Ritz method is used to study a model composed of a shaft of 

length l , supporting a disk located at 1l  along the shaft (see Figure 3-4). It is 

used to devise new expressions for the displacement in the x  and z  

directions in terms of the generalised coordinates. The rotor is assumed to be 

simply supported at both ends and neglecting the argument t  for simplicity, 

the expression for the displacement in the x  and z  directions are  

 ( ) 11 )()()(, qyftqyftyu ==    (3.2- 37) 
 

 ( ) 22 )()()(, qyftqyftyw ==   (3.2- 38) 
 

where, 1q  and 2q  are generalised independent coordinates and ( )f y  is the 

displacement function, and it is chosen as the normalised first mode shape of 

a beam with a constant cross section in bending and simply supported at both 

ends, and is given as 
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( ) sin

y
f y

l

π =  
 

 (3.2- 39) 
 

 

 

 

 

 

 

                                                 Figure 3- 4: Coordinates 
 

 θ  in Figure 3-4 is the angular displacement in the Z  direction and ψ  is the 

angular displacement in the X  direction. As angular displacements θ  and ψ  

are small, they are approximated by  

 
2 2

( )
( )

w df y
q g y q

y dy
θ ∂= = =

∂
            (3.2- 40) 

 

 
1 1

( )
( )

u df y
q g y q

y dy
ψ ∂= − = − = −

∂
     (3.2- 41) 

 

where, ( ) cos
y

g y
l l

π π= and it is coming from differentiating the displacement 

function. Introducing the displacement function (equation (3.2-39)) into the 

kinetic energy of the system, we have, for the disk, 

 { }2 2 2 2 2 2 2
1 1 2 1 2 1 1 2

2 2 2 2
1 1 1 2 1 1 1 2

1 1
( )( ) ( ) cos ( ( ) )

2 2
1 1

( ) sin ( ( ) ) ( ) sin( ( ) )
2 2

d d dx

dy dy dy

T M f l q q I g l q q g l q

I I g l q g l q I g l q g l q

= + + +

+ Ω + − Ω

ɺ ɺ ɺ ɺ

ɺ ɺ

    
(3.2- 42) 
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For the shaft 

 
( ) ( ) { }

{ } ( )

2 2 2 2 2 2 2
1 2 2 1 1 2

0 0

2 2 2 2
1 1 2 1 1 2

0 0

( ) cos ( ( ) )
2 2

( ) sin ( ( ) ) 2 sin( ( ) )
2

l l

s

l l

s I
T f y dy q q g y dy q q g l q

I
IL g y dy q g l q I g y dyq g l q

ρ ρ

ρρ ρ

= + + +

+ Ω + − Ω

∫ ∫

∫ ∫

ɺ ɺ ɺ

ɺ ɺ

    

(3.2- 43) 
 

  

For the disk and shaft combined 

 
( ) ( )

{ }

{ }

2 2 2 2
1 1 2

0

2 2 2 2 2
1 2 1 1 2

0

2 2 2 2 2
1 1 1 2

0

1 1 1 2

0

1
( )

2

1
( ) ( ) cos ( ( ) )

2

1 1
( ) ( ) sin ( ( ) )

2 2

( ) 2 ( ) sin( ( )

l

d

l

dx

l

dy dy

l

dy

T M f l s f y dy q q

I g l I g y dy q q g l q

I IL I g l I g y dy q g l q

I g l I g y dy q g l q

ρ

ρ

ρ ρ

ρ

 
= + + 

 

 
+ + + 

 

  + Ω + + +  
   

 
− Ω + 

 

∫

∫

∫

∫

ɺ ɺ

ɺ ɺ

ɺ

ɺ{ })

 (3.2- 44) 
 

Simplifying equation (3.2-44) gives 

 ( ) ( )( )2 2 2
1 2 2 1 2

1 1
sin

2 2 dyT m q q I IL a q qρ = + + Ω + − Ω ϒ 
 

ɺ ɺ ɺ  (3.2- 45) 
 

where, 

1( )g lϒ = , 1m m P= + , ( ) ( )2 2
1 1

0

l

dm M f l s f y dyρ= + ∫ , ( ) ( )2 2
1

0

l

dxP I g l I g y dyρ= + ∫ , 

dx dyI I≈ , ( ) ( )∫+=
l

dy dyygIlgIa
0

12 2ρ ,  1
1( ) sin

l
f l

l

π =  
 

, and 1
1( ) cos

l
g l

l l

ππ= .     1l  

and  l  values are obtained from the experimental rig. 

Also introducing the displacement function (equation (3.2-39)) into the kinetic 

energy of the mass unbalance expression of equation (3.2-36) gives 

 ( )( )tqtqldfmT uu Ω−ΩΩ= sincos 211 ɺɺ  (3.2- 46) 
 

Likewise, introducing this displacement function into the strain energy of the 

shaft results in,  
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( ) ( )2 2 2 2 2 20

1 2 1 2

0 0

( ) ( )
2 2

l lFEI
U h y dy q q g y dy q q= + + +∫ ∫  (3.2- 47) 

where, 
2

2

( )
( )

d f y
h y

dy
=  . Simplifying equation (3.2-47) gives 

 ( )2 2
1 2

1

2 sU k q q= +  (3.2- 48) 
 

where, 2 2
0

0 0

( ) ( )
l l

sk EI h y dy F g y dy= +∫ ∫  and is the stiffness of the shaft .   

Equations (3.2-45), (3.2-46) and (3.2-48) are the kinetic energy expression for 

the disk and shaft combined, the kinetic energy expression for the mass 

unbalance and the strain energy expression for the shaft respectively, in 

terms of the generalised coordinates.  

3.2.7 Nonlinear Bearing 

In rotating machinery, the dynamic stiffness of the bearing which supports the 

rotating shaft can have a significant quantitative and qualitative effect on the 

vibration within the machine. In particular it affects the machine critical 

speeds and the vibration in between critical speeds. Rolling bearings 

sometimes have nonlinear spring characteristics due to Coulomb friction and 

the angular clearance between roller and ring (An-Chen et.al.1993). Brown 

et.al.(1994) assuming linear damping force and using short bearing theory 

verified that a simple model of a rigidly supported hydrodynamic journal 

bearing can be shown to behave chaotically when the rotating unbalance 

force exceeds the gravitational load.  Chen et.al. (1998) in the study of chaos 

in the unbalanced response of a flexible rotor supported by oil film bearings 

with nonlinear suspension assumed a linear damping force and their findings 

showed that the dimension of the bearing centre trajectory is fractal and 

greater than two in some operating conditions, indicating that the system is in 

a state of chaotic motion. For simplification, the damping forces of the 

bearing are assumed to be linear. Thus, the equations of the bearing forces as 

shown in Figure 3-5 are expressed in the following.     
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 n n
x xx xz xx xz xx xzF k x k z k x k z C x C z= + + + + +ɺ ɺ  (3.2- 49) 

 

 n n
z zx zz zx zz zx zzF k x k z k x k z C x C z= + + + + +ɺ ɺ  (3.2- 50) 

 

where, 1,2...n = ,  

ijk are linear spring coefficients;     zxji ,, =  

ijk are nonlinear spring coefficients; zxji ,, =   

ijC are linear damping coefficients; zxji ,, =  

In practice, all components of these nonlinear forces appear markedly up to 

the third power of deflections in single-row ball bearings (Yamamoto 

et.al.1981). Therefore, the bearing is assumed to have cubic nonlinear spring, 

and linear damping characteristics is also assumed. The generalised force 

from the bearing can be written as  

 
x zF F F= +  (3.2- 51) 

 

The virtual work associated with a generalised force is 

 
i iq q iW F qδ δ =    (3.2- 52) 

 

where the generalised force 
iqF  is associated with the generalised coordinate 

iq . Taking u  and w  as lateral displacements of the centre of mass of the disk 

with respect to the fixed frame , ,X Y Z , then the virtual work, which is the 

sum of the virtual work terms for the damping and stiffness effects of the 

bearing, can be expressed if u u uδ→ +  and 0wδ = , to give  

 
( ) [ ] [ ]

[ ] [ ]

3

3

xx xz xxu

xz xx xz

W k u u k w u k u u

k w u c u u c w u

δ δ δ δ

δ δ δ

 = − + − + − 

 + − + − + −  ɺ ɺ

 
(3.2- 53) 

 

For the case where  w w wδ→ +  and 0uδ = , then, 
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( ) [ ] [ ]

[ ] [ ]

3

3

zz zx zzw

zx zz zx

W k w w k u w k w w

k u w c w w c u w

δ δ δ δ

δ δ δ

 = − + − + − 

 + − + − + −  ɺ ɺ

 
(3.2- 54) 

 

The generalised forces are negative because of work done by the bearing on 

the shaft. 

 

                                                                                      

 

 

 

                       Figure 3- 5: Bearing stiffne ss and damping  
                

For 0== zxxz kk  (3.2- 55) 
 

 and applying equation (3.2-55) to equations (3.2-53) and (3.2-54) we have 

 
( ) [ ] [ ]3

xx xx xxuW k u u k u u c u uδ δ δ δ = − + − + −  ɺ  (3.2- 56) 
 

 
( ) [ ] [ ]3

zz zz zzwW k w w k w w c w wδ δ δ δ = − + − + −  ɺ  (3.2- 57) 
 

so, 
u wW W Wδ δ δ= +  (3.2- 58) 

 

giving 

 [ ] [ ]u wW F u F wδ δ δ= +  (3.2- 59) 
 

For u u uδ→ +  the uδ  is coaxial with the uF  components and for w w wδ→ +  

the wδ  is also coaxial with the wF  components, thus equations (3.2-56) and 

(3.2-57) become 

X  

Z  

u  

w  

xzk  
zzC  

 

zzk  
zzk  

xzk  
xzC  

xxC  

zxk  

xxk  

zxC  
zxk  

zxk  
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 3
u xx xxF k x k x Cx= − − − ɺ  (3.2- 60) 

 

  3
w zz zzF k z k z Cz= − − − ɺ  (3.2- 61) 

 

 

Applying equations (3.2-37) and (3.2-38) to (3.2-60) and (3.2-61) we have, 

 ( ) ( ) ( )
1

3

2 1 2 1 2 1q xx xx xxF k f l q k f l q C f l q = − − −  ɺ  (3.2- 62) 
 

 ( ) ( ) ( )
2

3

2 2 2 2 2 2q zz zz zzF k f l q k f l q C f l q = − − −  ɺ  (3.2- 63) 
 

For a symmetrical bearing  

 )()()( 222 lkflfklfk zzxx ==  (3.2- 64) 
 

 3 3 3
2 2 2( ) ( ) ( )xx zzk f l k f l kf l= =  (3.2- 65) 

 )()()( 222 lfClfClfC bzzxx ==  (3.2- 66) 

Then, letting, 

 ( )2 bkf l k=  (3.2- 67) 
 

 ( )3
2kf l b=  (3.2- 68) 

 

 
2( )b bC f l c=  (3.2- 69) 

 

where, bk  is the bearing stiffness coefficient and bc  is the bearing damping 

coefficient. Substituting equations (3.2-64) to (3.2-69) into equations (3.2-62) 

and (3.2-63) we obtain 
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1

3
111

qcbqqkF bbq ɺ−−−=  (3.2- 70) 
 

 
2

3
222

qcbqqkF bbq ɺ−−−=  (3.2- 71) 
 

where; 
1qF and 

2qF are the two components of the force. 

The Smart Actuator introduces a Y  directed axial force component into the 

bearing force. This is a force vF  directed along Y  when switched on, and 

therefore the virtual work expression of equation (3.2-59) extends to  

 [ ] [ ] [ ]u w vW F u F w F vδ δ δ δ= + +  (3.2- 72) 
 

vF  is assumed to be positive because it is external. Therefore expressing vF  in 

terms of 1q  and 2q  we have 
1

1qv actF F q=  and 
2

2qv actF F q=  respectively. Where, 

actF  is the actuator force. (See Appendix A-1 for the derivation of the actuator 

force term).  For v v vδ→ + , the vδ  is coaxial with the vF  components, so the 

two components of the forces extend to  

 
1

3
1 1 1 1q b b actF k q bq c q F q= − − − +ɺ  (3.2- 73) 

 

 
2

3
2 2 2 2q b b actF k q bq c q F q= − − − +ɺ  (3.2- 74) 

 

3.2.8 Equations of Motion 

Now applying Lagrange’s equations (3.2.1) to the kinetic energy given by the 

addition of (3.2-45) and (3.2-46) and the strain energy given by (3.2-48) and 

using 1q  and 2q  as generalised coordinates and the generalised forces as 

1qF and 
2qF  results in the equations in the following subsections. 
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3.2.8.1 Alternative Analytical Model A 

In this model large deflections are accommodated within the equations. 

 ( ) 3 2
1 5 2 2 1 1 1 1 sinb act umq a q Cos q kq bq c q F q m d t− Ω ϒ + + + − = Ω Ωɺɺ ɺ ɺ  (3.2- 75) 

 

 ( ) 3 2
2 5 1 2 2 2 2 2 cosb act umq a q Cos q kq bq c q F q m d t+ Ω ϒ + + + − = Ω Ωɺɺ ɺ ɺ  (3.2- 76) 

 

where; bs kkk += ; 5 2a a= ϒ , ( )1 1.325g lϒ = = , this is calculated using data from 

the experimental rig, and k  is the rotor-bearing radial stiffness representing 

the combined circumferentially-symmetric stiffness of the rotor shaft and 

bearings. 

 Reference to Appendix A-2 provides a discussion of the equations (3.2-75) and 

(3.2-76). 

3.2.8.2 Alternative Analytical Model B 

Going back to the kinetic energy expression equation (3.2-45) and applying 

small angle approximation of the form sinθ θ≈  and  cos 1θ ≈ , leads to  

 ( ) ( )2 2 2
1 2 2 1 2

1 1

2 2 dyT m q q I IL a q qρ = + + Ω + − Ω ϒ 
 

ɺ ɺ ɺ  (3.2- 77) 
 

 Thus equation (3.2-77) becomes 

 ( )2 2 2
1 2 5 1 2

1 1

2 2 dyT m q q I IL a q qρ = + + Ω + − Ω 
 

ɺ ɺ ɺ  (3.2- 78) 
 

Applying Lagrange’s equations (3.2-1) to the kinetic energy given by the 

addition of (3.2-78) and (3.2-46) and the strain energy given by (3.2-48) gives 

the equations 

 3 2
1 5 2 1 1 1 1 sinb act umq a q kq bq c q F q m d t− Ω + + + − = Ω Ωɺɺ ɺ ɺ  (3.2- 79) 

 

 3 2
2 5 1 2 2 2 2 cosb act umq a q kq bq c q F q m d t+ Ω + + + − = Ω Ωɺɺ ɺ ɺ  (3.2- 80) 
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3.2.8.3 Alternative Analytical Model C 

Taking a small angle approximation to the Model A equations, using the 

Maclaurin Series in the form 
3 5
2 2

2 2 ...
3! 5!

q q
sin q q= − + − +  and  

2 4
2 2

2 1 ...
2! 4!

q q
cos q = − + − +  to expand the trigonometrical functions in equations 

(3.2-75) and (3.2-76) by assuming the flexible rotor lateral oscillations to be 

finite, but not very large, and for small angles of 2q , the expansions of  sin 2q  

and cos 2q  will be dominated by the leading term. Thus for small vibrations we 

can make the approximation of replacing ( )2sin qϒ  by ( )2qϒ and ( )2cos qϒ  by 

1, equations (3.2-75) and (3.2-76) therefore become, 

 3 2
1 5 2 1 1 1 1 sinb act umq a q kq bq c q F q m d t− Ω + + + − = Ω Ωɺɺ ɺ ɺ  (3.2- 81) 

 

 3 2
2 5 1 2 2 2 2 cosb act umq a q kq bq c q F q m d t+ Ω + + + − = Ω Ωɺɺ ɺ ɺ  (3.2- 82) 

 

3.2.9 Linear Viscous Damping  

Damping is a nonlinear phenomenon and some examples are hysteretic 

damping, Coulomb dry friction and aerodynamic drag. Linear viscous damping 

is an idealisation, which provides a term proportional to velocity. Including 

linear viscous term ( qcs ɺ ) into equations (3.2-75), (3.2-76), (3.2-79), (3.2-80), 

(3.2-81) and (3.2-82) we get the three equation models as, 

 

3.2.9.1 Model A 

 ( ) 3 2
1 1 5 2 2 1 1 1 sinact umq cq a q Cos q kq bq F q m d t+ − Ω ϒ + + − = Ω Ωɺɺ ɺ ɺ  (3.2- 83) 

 

 ( ) 3 2
2 2 5 1 2 2 2 2 cosact umq cq a q Cos q kq bq F q m d t+ + Ω ϒ + + − = Ω Ωɺɺ ɺ ɺ  (3.2- 84) 

 



Chapter 3: Analytical Modelling of Flexible Rotor Systems 
 

 

 
55 

3.2.9.2 Model B 

 3 2
1 1 5 2 1 1 1 sinact umq cq a q kq bq F q m d t+ − Ω + + − = Ω Ωɺɺ ɺ ɺ  (3.2- 85) 

 

 3 2
2 2 5 1 2 2 2 cosact umq cq a q kq bq F q m d t+ + Ω + + − = Ω Ωɺɺ ɺ ɺ  (3.2- 86) 

 

3.2.9.3 Model C 

 3 2
1 1 5 2 1 1 1 sinact umq cq a q kq bq F q m d t+ − Ω + + − = Ω Ωɺɺ ɺ ɺ  (3.2- 87) 

 

 3 2
2 2 5 1 2 2 2 cosact umq cq a q kq bq F q m d t+ + Ω + + − = Ω Ωɺɺ ɺ ɺ  (3.2- 88) 

 

where; c  is the damping coefficient and bs ccc += , and sc  is the damping 

coefficient of the shaft . A close look at Models B and C show that they are 

identical in structure and they all assume small angle approximations.   

3.2.10 Parameter Estimation Procedure 

We estimate the parameters ( ,c b ) describing the weakly damping and weakly 

nonlinear cubic stiffness coefficients experimentally by measuring the rate of 

decay of free amplitude oscillations for the linear viscous damping coefficient 

c  (see Appendix A.4 for the estimation of the linear viscous damping 

coefficient) and from frequency-response results for b respectively. It is 

known that, for a given excitation level, the amplitude at the peak of the 

corresponding frequency-response curve depends on the damping value, and 

the effect of the nonlinearity is essentially to shift the peak away from the 

natural frequency ω . For a system with hardening nonlinearity, the peak is 

shifted to the right; and in the case of a softening nonlinearity it is shifted to 

the left. The magnitude of the shift depends on the strength of the 

nonlinearity (Nayfeh and Mook, 1979). Thus, knowing the amplitude at the 

peak and the frequency shift, it is possible to estimate approximately the 

effective nonlinearity coefficient of a system. The detailed estimation 

procedure is described in the following subsection. 
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3.2.10.1 Nonlinearity Estimation 

Using Duffing’s equation as given by (Thomson, 1993) 

 
2 3 cosy y by F tω+ + = Ωɺɺ  (3.2- 89) 

 

where, 3by  is the nonlinear cubic stiffness term and F  is excitation 

amplitude. The solution of the nonlinear natural frequency of vibration is 

given by 

 
2 2 23

4nl

F
bA

A
ω ω= + −  (3.2- 90) 

 

Equation (3.2-90) is adopted for this work, where ω  is the linear natural 

frequency and nlω  is the nonlinear natural frequency. The term nlω  is a 

function of A , which is the response amplitude.  

As A  increases, nlω  also increases correspondingly as is expected for a 

hardening spring (Thomson, 1993). If large amplitude A  is chosen and 

denoted as 1A , we have the following 

 
( )

2 2 2
11

1

3

4nl

F
bA

A
ω ω= + −  (3.2- 91) 

 

Where ( )1nlω  is the first nonlinear natural frequency. The value of A  can be 

increased or decreased slightly by either increasing or decreasing the 

excitation level. Let this altered response amplitude be called 2A  (Wong, 

1988). Thus the equation (3.2-90) becomes 

 
( )

2 2 2
22

2

3

4nl

F
bA

A
ω ω= + −  (3.2- 92) 

 

Where ( )2nlω is taken as the second nonlinear frequency. By manipulating 

equations (3.2-91) and (3.2-92), b  is evaluated to be  

 
( ) ( )( )

( ) ( )

2 2
1 2

2 2
1 2 1 21 2

4 4

33

nl nl F
b

A A A AA A

ω ω−
= −

+−
 

(3.2- 93) 
 

  

This is obtained by an experiment as conducted and described in Appendix 

A.5. It should be noted that ( )1nlω  and ( )2nlω  will be very close, and that 

accurate work on a spectrum analyser is the only practical way of identifying 
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this shift as the response amplitude itself shifts from 1A  to 2A  during the small 

change introduced by shifting the excitation amplitude level. 

 

3.2.11 Discussions 

A rotor system can be considered a vibrating system in the classical sense. It 

is represented by a system of equations which relates excitations and 

responses, where responses of interest are motions of the geometric centre of 

the shaft. Excitations can be due to rotating mass unbalance. A resonance 

condition exists when the frequency of excitation due to mass unbalance 

coincides with the natural frequency. The rotating system has several unique 

features compared to other vibrating systems due to its rotation. Mass 

unbalance provides excitation which is present whenever the rotor spins; for 

this reason mass unbalance is considered an integral part of the analysis as 

opposed to an excitation term. The tendency of a rotor disk’s angular 

momentum or the momentum of the rotor itself, to couple with rotations 

about the bearing is called the “gyroscopic effect” and causes the natural 

frequencies to vary with rotor speed. Equations of the rotor system are 

obtained systematically in the following way. First the expressions of the disk 

kinetic, shaft kinetic, mass unbalance kinetic and strain energies of the rotor 

elements are constructed. Then the virtual work of external forces, including, 

bearing and axial force terms are formed. The axial force term enables one to 

include or apply an external force axially into the rotor system. A numerical 

method, Rayleigh-Ritz method which gives simple models that are useful to 

understanding of the basic phenomena, has been used to simplify the model. 

Lagrange’s equations are applied to the expressions, firstly by accommodating 

large deflections to obtain the model A equations, and secondly, by making 

small angle approximations to obtain the model B and C equations. 
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CHAPTER 4  

APPROXIMATE ANALYTICAL AND NUMERICAL 
SOLUTIONS TO THE EQUATIONS OF MOTION 

__________________________________________  

4.1 Introduction 

In this chapter nonlinear vibrations of the flexible rotor while passing through 

primary resonance and the associated stability behaviour are analysed, with and 

without an axial parametric excitation. Solutions are developed based on an 

appropriate Jeffcott rotor model, which consists of a single unbalanced disk 

attached to an elastic shaft at mid-span. The classical perturbation Method of 

Multiple Scales (MMS) has been chosen for the analysis of the equations of 

motion because the solution is a function of multiple independent time-scales, 

so the fast scale can be used for capturing motions at frequencies comparable to 

the linear frequency of the system, whilst the slow scale accounts for slow 

modulations of amplitudes and phases. This method is well discussed in the 

books of Nayfeh and Mook (1979), Cartmell (1990), and Murdock (1999). Cartmell 

et.al. (2003) reviewed the Multiple Scales Method as applied to the weakly 

nonlinear dynamics of mechanical systems. The MMS is one of several tools used 

to study the nonlinear equations of motion and is sometimes suitable for solving 

stability problems. The principal difference between this and other perturbation 

methods is that the time (independent variable) is represented by independent 

time scales. Its chief advantage over other perturbation techniques, such as the 

Lindstedt-Poincaré method, is that it is easily applicable to damped systems. It 

also generates all possible resonance conditions and allows the user great 

control over the overall accuracy of the solution (Cartmell,1984). The underlying 

idea of this method is to consider an expansion of the dependent variables as a 

function of multiple independent variables, or scales, instead of a single 

independent variable. Extended expansions based on “slow” and “fast” time 

scales are applied to obtain uniform expansions for the amplitudes of the 

motion. Expressions for the amplitude and phase modulation functions are 

explicitly obtained, and manipulated to yield steady-state solutions. Frequency-



Chapter 4: Approximate Analytical and Numerical Solutions to the Equations of Motion 
 

 

 
59 

amplitude relationships which describe approximate general solutions resulting 

from mass unbalance and combined parametric and mass unbalance, are 

derived.  

Stability regions in the parameter space are obtained numerically for a suitable 

solution in terms of the perturbed steady-state solutions of the governing 

nonlinear equations of motion. The sensitivity of vibration amplitudes to various 

rotor-dynamic system parameters is illustrated through a numerical study. In 

addition direct numerical integration within MathematicaTM is also performed for 

the comparison of numerical solutions for the model of the rotor system. 

4.2 Ordering of Terms 

Referring to chapter 3, the equations of Models B and C are identical. The Model 

A equations contain trigonometrical terms in coordinate 2q  whereas Models B 

and C use small angle approximations to these. Since it is not possible to apply 

the method of multiple scales to systems such as the Model A equations without 

first removing the trigonometrical terms, removing them takes us to the 

equations of Models B and C. So, the multiple scales method can only be applied 

to the equations of Models B and C. The necessity now is to order the two sets of 

equations in terms of the small perturbation parameter ε .  

The equations are for Model B; 

 2 3 2
1 1 5 2 1 1

ˆˆ ˆ sinq cq a q q bq d tω µ+ − Ω + + = Ω Ωɺɺ ɺ ɺ  (4.2- 1) 
 

 2 3 2
2 2 5 1 2 2

ˆˆ ˆ cosq cq a q q bq d tω µ+ + Ω + + = Ω Ωɺɺ ɺ ɺ  (4.2- 2) 
 

where,    25
5

ˆˆ ˆ, , , , ua mk b c
a b c

m m m m m
ω µ= = = = =  

We nondimensionalise the time scale t  and order the equations by introducing 

the small parameter ε . Let nondimensional time τ  be tτ ω= , where 
k

m
ω = , 
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and it is the natural frequency. ω  is normalised to unity, therefore 1τ ≅ . Also 

we let 

 
1 1 2 2;q q q qε ε= =  (4.2- 3) 

 

on the assumption that 1q  and 2q  are fairly small. 

Substituting for 1q  and 2q  across the two equations of motion we have, for the 

second time derivative terms, 

 2 2
2 2 21 1

1 1 12 2

d q d q
q q q

dt d
ω ω εω

τ
′′ ′′= = ≡ ⇒ɺɺ  (4.2- 4) 

 

where the dots denote differentiation with respect to t  and the primes denote 

differentiation with respect to timescale τ , and  

 2 2
2 2 22 2

2 2 22 2

d q d q
q q q

dt d
ω ω εω

τ
′′ ′′= = ≡ ⇒ɺɺ  (4.2- 5) 

 

The other terms transform as follows, in the sequence that they appear in the 

equations of motion, 

 1 1
1 1 1

dq dq
q q q

dt d
ω ω εω

τ
′ ′= = ≡ ⇒ɺ  (4.2- 6) 

 

 2 2
2 2 2

dq dq
q q q

dt d
ω ω εω

τ
′ ′= = ≡ ⇒ɺ  (4.2- 7) 

 

 
1 1q qε⇒  and 2 2q qε⇒  (4.2- 8) 

 

 3 3 3
1 1q qε⇒  and  3 3 3

2 2q qε⇒  (4.2- 9) 
 

For the right hand side, since um

m
µ =  and this is necessarily small, then it is 

agreed that it is possible to set µ µε= ; similarly for uniformity we set d dε= . 
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Assembling the terms now, from equations (4.2-1) and (4.2-2) we have 

 2 2 3 3 2 2
1 1 5 2 1 1

ˆˆ ˆ sinq cq a q q bq d tεω εω εω εω ε ε µ′′ ′ ′+ − Ω + + = Ω Ω  (4.2- 10) 
 

 2 2 3 3 2 2
2 2 5 1 2 2

ˆˆ ˆ cosq cq a q q bq d tεω εω εω εω ε ε µ′′ ′ ′+ + Ω + + = Ω Ω  (4.2- 11) 
 

The following equations result from dividing through by 2εω , 

 2
2 3

1 1 5 2 1 12

ˆˆ
ˆ sin

c b
q q a q q q dε εµ τ

ω ω ω ω ω
Ω Ω Ω   ′′ ′ ′+ − + + =    

   
 (4.2- 12) 

 

 2
2 3

2 2 5 1 2 22

ˆˆ
ˆ cos

c b
q q a q q q dε εµ τ

ω ω ω ω ω
Ω Ω Ω   ′′ ′ ′+ + + + =    

   
 (4.2- 13) 

 

The equations are now scaled as well, with a normalised natural frequency of 

unity. The gyroscopic terms 5ˆ ia q
ω
Ω ′ , 1,2i = , and the linear viscous damping terms 

ˆ
i

c
q

ω
′  , 1,2i = ,are to ( )0O ε  i.e. the zeroth order, which is mathematically 

inconvenient since their effects will appear within the zeroth order perturbation 

equations and they are not fundamental to the motion and do not strongly 

contribute to the resonance of interest. To make them less inconvenient, they 

are re-formulated in terms of the small parameter, ε , so that they appear in the 

same perturbation equation as the excitation term. This also ensures that their 

effects only appear within the higher order perturbation equations. We 

therefore propose 5â  and  ĉ  as small hence  5 5â aε=  and  ĉ cε=  leading to  

 2
2 3

1 1 5 2 1 12

ˆ
sin

c b
q q a q q q dε ε ε εµ τ

ω ω ω ω ω
Ω Ω Ω   ′′ ′ ′+ − + + =    

   
 (4.2- 14) 

 

 2
2 3

2 2 5 1 2 22

ˆ
cos

c b
q q a q q q dε ε ε εµ τ

ω ω ω ω ω
Ω Ω Ω   ′′ ′ ′+ + + + =    

   
 (4.2- 15) 

 

This retains the linear Inertia and stiffness terms at the zeroth order 

perturbation level from which generating solutions are obtained, the damping, 

gyroscopic coupling and excitation terms appear to first order perturbation, and 

the cubic nonlinearity term to second order perturbation. This philosophy is 

pragmatic and realistic in that it permits the pre-ordained generation of linear, 

homogeneous, generating solutions for each coordinate.  
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4.3 The Method of Multiple Scales 

4.3.1  Introducing the Time Scales 

As required by the method of multiple scales, the coordinates ( )1,2q t  are stated 

in power series form, as are their derivatives with respect to time. The solution 

of the equations (4.2-14) and (4.2-15) are approximated by uniformly valid 

expressions of the form as indicated in equations (4.2-16) and (4.2-17), 

 ( ) ( ) ( ) ( ) ( )2 3
1 10 0 1 2 11 0 1 2 12 0 1 2, , , , , , ,q t q T T T q T T T q T T T Oε ε ε ε= + + +  (4.2- 16) 

 

 ( ) ( ) ( ) ( ) ( )2 3
2 20 0 1 2 21 0 1 2 22 0 1 2, , , , , , ,q t q T T T q T T T q T T T Oε ε ε ε= + + +  (4.2- 17) 

 

where, ( )10 0 1 2, ,q T T T … ( )22 0 1 2, ,q T T T  are functions of time scales nT  for 

0,1,2,...n = yet to be determined and ε  is an arbitrarily small parameter. The 

derivative perturbations rely on the notion that the real time t , can be 

expressed in the form of a set of successively independent time scales, nT ,  

given by  

 n
nT tε=  for 0,1,2,...n = , (4.2- 18) 

 

In equations (4.2-16) and (4.2-17), 0T  is nominally considered as a fast time-

scale and 1T , 2T  as slower time-scales, such that 0T t= , 1T tε=  and 2
2T tε=  as 

from equation (4.2-18). Each time-scale is treated as an independent variable 

and the required order of approximation to the solution dictates the number of 

time scales used. It follows that the derivatives with respect to t  become 

expansions in terms of the partial derivatives with respect to the nT  according to  

 20 1 2
0 1 2

0 1 2

2
2 2 2 2
0 0 1 0 2 12

2 2

dT dT dTd
D D D

dt dt T dt T dt T

d
D D D D D D

dt

ε ε

ε ε ε

∂ ∂ ∂= + + = + +
∂ ∂ ∂

= + + +
 

(4.2- 19) 
 

(4.2- 20) 
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The partial derivatives of equations (4.2-19) and (4.2-20) are stated in the D 

operator notation where 
j

i

j
j

i
T

D
∂
∂= . Series (4.2-16) to (4.2-20) inclusive are 

truncated after the second order ε  terms, because this perturbation analysis has 

been deliberately limited to the second order perturbation level. Higher order 

terms, 3ε  and so on, may be neglected, because the associated higher order 

perturbation equations will yield negligible corrections for the problem, as set 

up here. 

4.3.2 Treatment of Coefficients to like Orders of ε  

Applying the method of multiple scales in the conventional manner by 

substituting equations (4.2-16), (4.2-17), (4.2-19) and (4.2-20) into the 

differential equations of motion (4.2-14) and (4.2-15), these become, 

 ( )
( )

( ) ( ) ( )

( ) ( )

2 2 2 2 2
10 11 12 0 0 1 0 2 1

2 2
10 11 12 0 1 2

2 2 2
5 20 21 22 0 1 2 10 11 12

2
3 42 2

10 11 122

2 2

ˆ

q q q D D D D D D

c
q q q D D D

a q q q D D D q q q

b
q q q o d Sin

ε ε ε ε ε

ε ε ε ε ε
ω

ε ε ε ε ε ε ε
ω

ε ε ε ε εµ τ
ω ω ω

 + + + + + 

 + + + + + 

Ω  − + + + + + + + 

Ω Ω   + + + + =    
   

 (4.2- 21) 
 

 ( )
( )

( ) ( ) ( )

( ) ( )

2 2 2 2 2
20 21 22 0 0 1 0 2 1

2 2
20 21 22 0 1 2

2 2 2
5 10 11 12 0 1 2 20 21 22

2
3 42 2

20 21 222

2 2

ˆ

q q q D D D D D D

c
q q q D D D

a q q q D D D q q q

b
q q q o d Cos

ε ε ε ε ε

ε ε ε ε ε
ω

ε ε ε ε ε ε ε
ω

ε ε ε ε εµ τ
ω ω ω

 + + + + + 

 + + + + + 

Ω  + + + + + + + + 

Ω Ω   + + + + =    
   

 (4.2- 22) 
 

Then, collecting the coefficients of like order of nε , and equating them to zero 

in order to construct the perturbation equations, leads to, 
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Order  0ε  

 2
0 10 10 0D q q+ =  (4.2- 23) 

 

 2
0 20 20 0D q q+ =  (4.2- 24) 

 

where the natural frequency of free undamped vibration is normalised to unity, 

thus 2 1ω = . These are linear, homogeneous, second order perturbation 

equations and can be thought of as ordinary differential equations with respect 

to timescale 0T . They are the zeroth order perturbation equations. 

Order  1ε  

 2
2
0 11 11 0 1 10 0 10 5 0 202

c
D q q D D q D q a D q d Sinµ τ

ω ω ω ω
Ω Ω Ω   + = − − + +    

   
 (4.2- 25) 

 

 2
2
0 21 21 0 1 20 0 20 5 0 102

c
D q q D D q D q a D q d Cosµ τ

ω ω ω ω
Ω Ω Ω   + = − − − +    

   
 (4.2- 26) 

 

The equations (4.2-25) and (4.2-26) are the first order perturbation equations. 

Order  2ε  

 2 2
0 12 12 0 2 10 1 10 0 1 11 1 10

3
0 11 5 0 21 5 1 20 102

2 2

ˆ
 

c
D q q D D q D q D D q D q

c b
D q a D q a D q q

ω

ω ω ω ω

+ = − − − −

Ω Ω− + + −
 

(4.2- 27) 
 

 2 2
0 22 22 0 2 20 1 20 0 1 21 1 20

3
0 21 5 1 10 5 0 11 202

2 2

ˆ
 

c
D q q D D q D q D D q D q

c b
D q a D q a D q q

ω

ω ω ω ω

+ = − − − −

Ω Ω− − − −
 

(4.2- 28) 
 

Equations (4.2-27) and (4.2-28) are the second order perturbation equations. It is 

clear that each perturbation order requires explicit solutions to 10q  and 20q , and 

then 11q  and 21q  by means of  appropriate treatment of the emergent structures 

on the right hand sides of the perturbation equations starting with the zeroth 

order generating equations. 
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4.3.3 Secular Terms to First Order Perturbation 

Harmonic solutions of (4.2-23) and (4.2-24), the zeroth order perturbation 

equations are stated in convenient polar form. Respectively, these are, 

 ( ) ( )0 0
10 1 2 1 2, ,iT iTq A T T e A T T e−= +  (4.2- 29) 

 

 ( ) ( )0 0
20 1 2 1 2, ,iT iTq C T T e C T T e−= +  (4.2- 30) 

 

where, 1ω = , and A  and C  are as yet unknown complex amplitudes, with their 

complex conjugates denoted by A  and C . 

Substituting the zeroth order perturbation solutions from equations (4.2-29) and 

(4.2-30) into the first order perturbation equations (4.2-25) and (4.2-26), and 

henceforth neglecting the arguments 1T and 2T  for simplicity, gives 

 
0 0 0 0

0 0

2
0 11 11 1 1

5 5

2 2iT iT iT iT

iT iT

c c
D q q iD Ae iD Ae i Ae i Ae

a a
i Ce i Ce Sin

ω ω

τ
ω ω ω

− −

−

+ = − + − +

Ω Ω Ω + − + Γ  
 

 
(4.2- 31) 

 

 
0 0 0 0

0 0

2
0 21 21 1 1

5 5

2 2iT iT iT iT

iT iT

c c
D q q iD Ce iD Ce i Ce i Ce

a a
i Ae i Ae Cos

ω ω

τ
ω ω ω

− −

−

+ = − + − +

Ω Ω Ω − + + Γ  
 

 
(4.2- 32) 

 

where 
2

dµ
ω
Ω Γ =  
 

. Also, substituting the zeroth order perturbation solutions, 

equations (4.2-29) and (4.2-30) into the second order perturbation equations 

(4.2-27) and (4.2-28), and also neglecting the arguments 1T  and 2T  for simplicity 

from hereon gives 

 0 0 0 0

0 0

0 0

0 0 0 0

2 2 2
0 12 12 2 2 1 1

1 0 11 1 1 0 11

5 5 5
0 21 1 1

3 33 2 2 3
2

2 2

2

ˆ
3 3

iT iT iT iT

iT iT

iT iT

iT iT iT iT

D q q iD Ae iD Ae D Ae D Ae

c c c
D D q D Ae D Ae D q

a a a
D q D Ce D Ce

b
A e A Ae AA e A e

ω ω ω

ω ω ω

ω

− −

−

−

− −

+ = − + − −

− − − −

Ω Ω Ω+ + +

 − + + + 

 
(4.2- 33) 
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 0 0 0 0

0 0

0 0

0 0 0 0

2 2 2
0 22 22 2 2 1 1

1 0 21 1 1 0 21

5 5 5
1 1 0 11

3 33 2 2 3
2

2 2

2

ˆ
3 3

iT iT iT iT

iT iT

iT iT

iT iT iT iT

D q q iD Ce iD Ce D Ce D Ce

c c c
D D q D Ce D Ce D q

a a a
D Ae D Ae D q

b
C e C Ce CC e C e

ω ω ω

ω ω ω

ω

− −

−

−

− −

+ = − + − −

− − − −

Ω Ω Ω− − −

 − + + + 

 
(4.2- 34) 

 

Terms proportional to 0iTe and 02iTe− are resonant, and they will cause secular 

terms to appear in the particular solutions if they are not removed. Retaining 

the secular terms would create a disproportionate increase in the relative 

magnitude of the additional correction generated by solving at this order of 

perturbation. Expressing Sin τ
ω
Ω Γ  
 

and Cos τ
ω
Ω Γ  
 

 in exponential forms and 

substituting into the first order perturbation equations (4.2-31) and (4.2-32), and 

taking the common factor of 0iTe out from the right hand sides, the secular terms 

are immediately identified. Thus we have, 

 
0 0

0

0 0
0

2 2
1 1

2
0 11 11

1 1
25 5

2 2

2 2

iT iT

iT

i T i T
iT

c c
iD A iD Ae i A i Ae

D q q e
a a

i C i Ce i e i eω ω

ω ω

ω ω

− −

Ω Ω   − − +   −    

 − + − + 
 + =
 Ω Ω Γ Γ+ − + − 
 

 (4.2- 35) 
 

 
0 0

0

0 0
0

2 2
1 1

2
0 21 21

1 1
25 5

2 2

2 2

iT iT

iT

i T i T
iT

c c
iD C iD Ce i C i Ce

D q q e
a a

i A i Ae e eω ω

ω ω

ω ω

− −

Ω Ω   − − +   −    

 − + − + 
 + =
 Ω Ω Γ Γ− + + + 
 

 (4.2- 36) 
 

 It can be seen that all terms in the right hand side of the first order 

perturbation equations (4.2-35) and (4.2-36) are secular. The general approach 

in multiple scales is to equate the secular terms of equations such as (4.2-35) 

and (4.2-36) to zero, so as to preserve the uniformity of the expansions of the 

dependent variables. Therefore, terms proportional to 0iTe constitute a set of 

secular terms and are removed from the equations (4.2-35) and (4.2-36), and to 

eliminate them we must put, 

 



Chapter 4: Approximate Analytical and Numerical Solutions to the Equations of Motion 
 

 

 
67 

  
01

1 52 0
2

i Tc
iD A i A i a C i e ω

ω ω

Ω − 
 Ω Γ− − + + =  (4.2- 37) 

 

 
01

1 52 0
2

i Tc
iD C i C i a A e ω

ω ω

Ω − 
 Ω Γ− − − + =  (4.2- 38) 

 

Considering terms proportional to 02iTe− , we get another set of secular terms 

becoming, 

 
01

1 52 0
2

i Tc
iD A i A i a C i e ω

ω ω

Ω − + 
 Ω Γ+ − − =  (4.2- 39) 

 

 
01

1 52 0
2

i Tc
iD C i C i a A e ω

ω ω

Ω − + 
 Ω Γ+ + + =  (4.2- 40) 

 

Further, since by the assumption that ω≈Ω , the term 
0

2

i T
e ω

ΩΓ
 will then be near-

resonant, causing small divisor terms to appear in the particular solutions. To 

include near-resonant terms within the secular terms a detuning parameter σ  is 

introduced, this being a measure of the nearness to resonance, for the 

nondimensionalised case, by means of  

 
1 1

ω εσ εσ εσ
ω ω ω
Ω += = + = +  (4.2- 41) 

 

This means the solvability equations (4.2-37) and (4.2-38) can now be expressed 

as 

 
0

1 52 0
2

i Tc
iD A i A i a C i e εσ

ω ω
Ω Γ− − + + =  (4.2- 42) 

 

 
0

1 52 0
2

i Tc
iD C i C i a A e εσ

ω ω
Ω Γ− − − + =  (4.2- 43) 

 

Applying the time-scale transformation 0 0
0 0 1

T T
T T T

ω εσ σ
ω ω

+Ω = = +  to (4.2-42) 

and (4.2-43) gives,  

 
1

1 52 0
2

i Tc
iD A i A i a C i e σ

ω ω
Ω Γ− − + + =  (4.2- 44) 

 

 
1

1 52 0
2

i Tc
iD C i C i a A e σ

ω ω
Ω Γ− − − + =  

(4.2- 45) 
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With the solvability conditions fulfilled, the first order perturbation equations 

(4.2-35) and (4.2-36) are reduced to homogeneous linear oscillators becoming, 

 2
0 11 11 0D q q+ =  (4.2- 46) 

 
 2

0 21 21 0D q q+ =  (4.2- 47) 

 
Trial solutions of equations (4.2-46) and (4.2-47) are taken by stating them in 

the following assumed polar form,  

 ( ) ( )0 0
11 1 2 1 2, , −= +iT iTq E T T e E T T e  (4.2- 48) 

 
 ( ) ( )0 0

21 1 2 1 2, , −= +iT iTq F T T e F T T e  (4.2- 49) 

 
which, upon substituting into equations (4.2-46) and (4.2-47) give the particular 

solutions as, 

 
11 0q =  (4.2- 50) 

 

 
21 0q =  (4.2- 51) 

 

The solutions to the first order perturbation equations are null because all terms 

in the right hand sides of the equations (4.2-35) and (4.2-36) are secular and 

have been removed.  

4.3.4 Modulation of First Order Perturbation Equati ons 

In solving equations (4.2-44) and (4.2-45) the complex amplitudes A  and C  can 

conveniently be expressed in polar form,  

 
1

1

2
iA ae α= , 2

1

2
iC be α=  (4.2- 52) 

 

where, a  and b  are amplitudes and 1α  and 2α  are the associated phase angles 

and are real valued functions of ( )1 2,T T . The physical reasoning behind this is so 

that real amplitude and phase quantities can be obtained. Substituting these 
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forms into equations (4.2-44) and (4.2-45), and then separating out the real and 

imaginary parts of the resulting equations, leads to a set of modulation 

equations, sometimes known as the slow-time solvability equations which can be  

stated here as, 

 ( ) 5
1 1 12 2

σ γ ψ γ
ω

Ω Γ′− − =a
a bSin Sin  (4.2- 53) 

 

 5
1 12 2 2

ψ γ
ω ω

Ω Γ′ + − =ac
a a bCos Cos  (4.2- 54) 

 

 ( ) 5
2 2 22 2

σ γ ψ γ
ω

Ω Γ′− + = −a
b aSin Cos  (4.2- 55) 

 

 5
2 22 2 2

ψ γ
ω ω

Ω Γ′ + + =ac
b b aCos Sin  (4.2- 56) 

 

where,  

 
1 1 1 2 1 2 1 2 1 2 1 2; ; ;γ σ α γ σ α ψ α α ψ α α= − = − = − = −T T  (4.2- 57) 

 

and the prime is used to indicate differentiation with respect to the slow-time 

scale 1T . The form of equations (4.2-53) to (4.2-56) renders the system 

autonomous i.e. one in which 1T  does not appear explicitly because of the use of 

equations (4.2-58). For steady-state conditions, the slowly varying amplitudes 

and phases are set to zero, thus,  

 
1 2 0a b γ γ′ ′′ ′= = = =  (4.2- 58) 

 

This is done on the basis that the dependence on the slow time-scale 1T  provides 

a reasonable justification for doing this. In order to obtain the steady-state 

solutions, it is necessary to differentiate equations (4.2-57) with respect to 1T  

leading to, 

 
1 1α σ γ′ ′= − ;   2 2α σ γ′ ′= −  (4.2- 59), (4.2- 60) 

 
 Substituting equations (4.2-58) to (4.2-60) into equations (4.2-53) to (4.2-56) 

generates the steady-state solutions, which correspond to the singular points of 

equations (4.2-53) to (4.2-56); that is, they correspond to the solutions of 
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 5
1 12 2

a
a bSin Sinσ ψ γ

ω
Ω Γ− =  (4.2- 61) 

 

 5
1 12 2 2

ac
a bCos Cosψ γ

ω ω
Ω Γ− =  (4.2- 62) 

 

 5
2 22 2

a
b aSin Cosσ ψ γ

ω
Ω Γ− = −  (4.2- 63) 

 

 5
2 22 2 2

ac
b aCos Sinψ γ

ω ω
Ω Γ+ =  (4.2- 64) 

 

Squaring and adding equations (4.2-61) and (4.2-62), and (4.2-63) and (4.2-64) 

and rearranging leads to equations (4.2-65) and (4.2-66) which give the 

amplitudes of response a  and b  as functions of the detuning parameter σ . 

These are the frequency–response equations which is a measure of deviation 

from the perfect forced resonance condition. These are first order results and 

they miss the cubic nonlinearity term which is a second order perturbation 

phenomena. 

 22 2

5 5
22 2 2 2

a b a bc

a a a
σ

ω ω ω
Ω ΓΩΓ     = ± + − +    

    
 

(4.2- 65) 
 

  22 2

5 5
22 2 2 2

a a a ac

b b b
σ

ω ω ω
Ω ΓΩΓ     = ± + − +    

    
 

(4.2- 66) 
 

   

4.3.5 Second Order Perturbation Equations 

Going back to the second order perturbation equations (4.2-33) and (4.2-34) and 

appropriately substituting the particular solutions of the first order equations 

(4.2-50) and (4.2-51) leads to these final forms for the second order perturbation 

equations , 

 
0 0

0 0 0

0 0 0

2 22 2
2 2 1 1

2 22 5 5
0 12 12 1 1 1 1

2 2 43 2 2 3
2 2 2 2

2 2

ˆ ˆ ˆ ˆ3 3

iT iT

iT iT iT

iT iT iT

iD A iD Ae D A D Ae

a ac c
D q q e D A D Ae D C D Ce

b b b b
A e A A AA e A e

ω ω ω ω

ω ω ω ω

− −

− −

− −

 
 − + − −
 

Ω Ω + = − − + + 
 
 − − − − 
 

 (4.2- 67) 
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0 0

0 0 0

0 0 0

2 22 2
2 2 1 1

2 22 5 5
0 22 22 1 1 1 1

2 2 43 2 2 3
2 2 2 2

2 2

ˆ ˆ ˆ ˆ3 3

iT iT

iT iT iT

iT iT iT

iD C iD Ce D C D Ce

a ac c
D q q e D C D Ce D A D Ae

b b b b
C e C C CC e C e

ω ω ω ω

ω ω ω ω

− −

− −

− −

 
 − + − −
 

Ω Ω + = − − − − 
 
 − − − − 
 

 (4.2- 68) 
 

       

4.3.6 Secular Terms from the Second Order Perturbat ion 
Equations 

Once again considering terms proportional to 0iTe  in equations (4.2-67) and (4.2-

68), we get a pair of secular terms equations representing the solvability 

conditions. 

 
2 25

2 1 1 1 2

ˆ3
2 0

ac b
iD A D A D A D C A A

ω ω ω
Ω− − − + − =  (4.2- 69) 

 

 
2 25

2 1 1 1 2

ˆ3
2 0

ac b
iD C D C D C D A C C

ω ω ω
Ω− − − − − =  (4.2- 70) 

 

Also, considering terms proportional to 02iTe−  in equations (4.2-67) and (4.2-68), 

we get another set of secular terms equations representing the solvability 

conditions. 

 
2 25

2 1 1 1 2

ˆ3
2 0

ac b
iD A D A D A D C AA

ω ω ω
Ω− − + − =  (4.2- 71) 

 

 
2 25

2 1 1 1 2

ˆ3
2 0

ac b
iD C D C D C D A CC

ω ω ω
Ω− − − − =  (4.2- 72) 

 

With the solvability conditions fulfilled, the second order perturbation equations 

(4.2-67) and (4.2-68) become, 

 
0 03 32 3 3

0 12 12 2 2

ˆ ˆ
iT iTb b

D q q A e A e
ω ω

−+ = − −  (4.2- 73) 
 

 
0 03 32 3 3

0 22 22 2 2

ˆ ˆ
iT iTb b

D q q C e C e
ω ω

−+ = − −  (4.2- 74) 
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Hence, the particular solutions for the second order perturbation equations 

shown in terms of the complex amplitudes A  and C  after removing secular 

terms are as follows, 

 
0 03 33 3

12 2 2

ˆ ˆ

8 8
iT iTb b

q A e A e
ω ω

−= +  (4.2- 75) 
 

 
0 03 33 3

22 2 2

ˆ ˆ

8 8
iT iTb b

q C e C e
ω ω

−= +  (4.2- 76) 
 

 

4.3.7 Analysis of the Second Order Solvability Equa tions 

The second order solvability equations (4.2-69) and (4.2-70) contain the terms 

2
1D A  and 2

1D C , and going back to the solvability conditions of the first order 

perturbation equations (4.2-44) and (4.2-45) and differentiating with respect to 

1T  and rearranging leads to expressions for these terms,  

  
12

1 1 5 12 2 4
i Tc

D A D A a D C i e σσ
ω ω

Ω Γ= − + +  (4.2- 77) 
 

 
12

1 1 5 12 2 4
i Tc

D C D C a D A e σσ
ω ω

Ω Γ= − − +  (4.2- 78) 
 

Now, substituting the differentiated first order solvability equations, (4.2-77) 

and (4.2-78), into the solvability conditions of the second order perturbation 

equations, (4.2-69) and (4.2-70), and rearranging gives, 

 
1

1

1 1

1

2 5

5
5

5

25
5 2

4 2 2 4

4 2 2 4

8 2 2 2 4

ˆ3

2 2 2 4 2

i T

i T

i T i T

i T

c c
D A A a C e

i

a c
C a A e

i i

c c
e A a C e

i

a c b
C a A e A A

i i i

σ

σ

σ σ

σ

ω ω ω

ω ω ω

σ
ω ω ω

ω ω ω ω

Ω Γ = − + + 
 

Ω Ω Γ − − + + 
 

Γ Ω Γ − − − + + 
 

Ω Ω Γ + − + + − 
 

 (4.2- 79) 
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1

1

1 1

1

2 5

5
5

5

25
5 2

4 2 2 4

4 2 2 4

8 2 2 2 4

ˆ3

2 2 2 4 2

i T

i T

i T i T

i T

c c
D C C a A e

i i

a c
A a C e

i

c c
e C a A e

i i i

a c b
A a C e C C

i i

σ

σ

σ σ

σ

ω ω ω

ω ω ω

σ
ω ω ω

ω ω ω ω

Ω Γ = − + + 
 

Ω Ω Γ + − + + 
 

Γ Ω Γ − − − − + 
 

Ω Ω Γ − − + + − 
 

 (4.2- 80) 
 

The time variance of the complex amplitudes to second perturbation order with 

respect to the original time scale t  can be expressed using a form of 

reconstituted derivatives. Thus, 

 2
1 2

dA
D A D A

dt
ε ε= +  (4.2- 81) 

 

 2
1 2

dC
D C D C

dt
ε ε= +  (4.2- 82) 

 

Substituting the first order perturbation equations (4.2-44) and (4.2-45) and the 

solvability conditions of the second order perturbation equations (4.2-79) and 

(4.2-80) into the equations (4.2-81) and (4.2-82) leads to, 

 
0

0 0

0 0

0

22 2
5 5

2 2

2 2 2 2 22
5 5 5

2 2

22 2 2
2 5

2 2

2 2 2 2 2 2
5 5 5

2 2

2 2 4 8 8

16 8 8 16

8 4 4 8
ˆ3

4 4 8

i T

i T i T

i T i T

i T

a a cdA c c
A C e A C

dt i i

ca a ac
e C A e

i i i

a cc c
e A C e

i i i

ca a a
C A e

i i

εσ

εσ εσ

εσ εσ

εσ

ε εε ε ε
ω ω ω ω

ε ε εε
ω ω ω ω

εε εε σ
ω ω ω

ε ε ε ε
ω ω ω

Ω ΩΓ= − + + − +

Ω Ω Ω ΓΓ+ + − +

ΩΓ Γ− + − −

Ω Ω Ω Γ− − − − 2
22

b
A A

iω

 (4.2- 83) 
 

 
0

0 0

0 0

0

22 2
5 5

2 2

2 2 2 2 22
5 5 5

2 2

22 2 2
2 5

2 2

2 2 2 2 2 2
5 5 5

2 2

2 2 4 8 8

16 8 8 16

8 4 4 8

4 4 8

i T

i T i T

i T i T

i T

a a cdC c c
C A e C A

dt i i i

ca a ac
e A C e

i i i

a cc c
e C A e

i i i

ca a a
A C e

i i i

εσ

εσ εσ

εσ εσ

εσ

ε εε ε ε
ω ω ω ω

ε ε εε
ω ω ω ω

εε εε σ
ω ω ω

ε ε ε ε
ω ω ω

Ω ΩΓ= − − + − −

Ω Ω Ω ΓΓ− − + +

ΩΓ Γ− + + +

Ω Ω Ω Γ+ − − − 2
2

ˆ3

2

b
C C

iω

 (4.2- 84) 
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In order to obtain amplitude and phase information within an autonomous 

representation we re-define the complex amplitudes A and C in this form 

 / 2 / 2

/ 2 / 2

;

;

εσ εσ

εσ εσ

−

−

= =
= =

i t i t

i t i t

A ue A ue

C ve C ve
 (4.2- 85) 

 

where the substitutions for A and C admit the conditions / / 0du dt dv dt= = , as 

required for 1 2( , )A A T T=  and 1 2( , )C C T T= . Substituting the amplitude 

transformations of equation (4.2-85) into equations (4.2-83) and (4.2-84), and 

removing the common factor of / 2εσi te   leaves the equations in terms of uɺ  and vɺ  

respectively and these produce autonomous equations in , ,u u v and v  giving 

 2 2
/ 2 2 / 25

2

2 2 2 2 22
/ 2 / 25 5 5

2 2

2
2

2

2 2 4 8 8

3

16 4 8 16
ˆ3

2

εσ εσ

εσ εσ

εε ε εε σ
ω ω ω

ε ε εε
ω ω ω ω

ε
ω

Ω Γ Γ= − + + − +

Ω Ω Ω ΓΓ− − − −

−

ɺ
i t i t

i t i t

ac c
u u v e e u

i

ca a ac
e v u e

i i i

b
u u

i

 (4.2- 86) 
 

 2 2
/ 2 2 / 25

2

2 2 2 2 22
/ 2 / 25 5 5

2 2

2
2

2

2 2 4 8 8

16 4 8 16
ˆ3

2

εσ εσ

εσ εσ

εε ε εε σ
ω ω ω

ε ε εε
ω ω ω ω

ε
ω

Ω Γ Γ= − − + − +

Ω Ω Ω ΓΓ+ + − −

−

ɺ
i t i t

i t i t

ac c
v v u e e v

i i i

ca a ac
e u v e

i i i

b
v v

i

 (4.2- 87) 
 

For a steady state solution uɺ  and vɺ  are taken to be zero resulting in the 

following equations, where the substitutions made in equations (4.2-10) and 

(4.2-11) have been reversed to recover the original parameters of equations 

(4.2-1) and (4.2-2). 

 2
/ 2 / 25

2

2 2
/ 2 / 2 25 5 5

2 2 2

ˆˆ ˆ

2 2 4 8 8
ˆˆ ˆ ˆ ˆˆ 3 3

0
16 4 8 16 2

i t i t

i t i t

ac c
u v e e u

i

ca a ac b
e v u e u u

i i i i

εσ εσ

εσ εσ

σ
ω ω ω

ω ω ω ω ω

Ω Γ Γ− + + − +

Ω Ω Ω ΓΓ− − − − − =
 

(4.2- 88) 
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 2
/ 2 / 25

2

2 2
/ 2 / 2 25 5 5

2 2 2

ˆˆ ˆ

2 2 4 8 8
ˆˆ ˆ ˆ ˆˆ 3

0
16 4 8 16 2

i t i t

i t i t

ac c
v u e e v

i i i

ca a ac b
e u v e v v

i i i i

εσ εσ

εσ εσ

σ
ω ω ω

ω ω ω ω ω

Ω Γ Γ− − + − +

Ω Ω Ω ΓΓ+ + − − − =
 

(4.2- 89) 
 

In order to solve the equations (4.2-88) and (4.2-89) it is helpful to state the 

complex transformed amplitudes , ,u u v and v  in the following forms 

 ,

,

= + = −
= + = −

u p iq u p iq

v r is v r is
 (4.2- 90) 

 

Therefore further substitution of equations (4.2-90) into (4.2-88) and (4.2-89) 

leads to further forms of these equations in which real and imaginary parts are 

explicit, 

 2
/ 2 / 25 5

2

2 2 2 22
/ 2 5 5 5 5

2 2 2 2 2

/ 2 3 2 2 35
2 2 2 2

ˆ ˆˆ ˆ ˆ

2 2 2 2 4 8 8
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ 3 3

8 16 4 4 8 8
ˆ ˆ ˆ ˆˆ 3 3 3 3

0
16 2 2 2 2

i t i t

i t

i t

a ac c c
p i q r i s e e p

i

ca ca a ac c
q e r s p q

i i i

a b b b b
e p p q pq q

i i

εσ εσ

εσ

εσ

σ
ω ω ω ω ω

ω ω ω ω ω ω

ω ω ω ω ω

Ω Ω Γ Γ− − + + + − +

Ω Ω Ω ΩΓ+ − − − − −

Ω Γ− − − − − =

 (4.2- 91) 
 

 / 2 / 25 5

2 22 2
/ 2 5 5 5

2 2 2 2 2

2 2
/ 2 3 2 2 35 5

2 2 2 2 2

ˆ ˆˆ ˆ

2 2 2 2 4 8
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ

8 8 16 4 4 8
ˆ ˆ ˆ ˆˆ ˆ 3 3 3 3

0
8 16 2 2 2 2

i t i t

i t

i t

a ac c
r i s p i q e e

i i

ca ca ac c c
r s e p q r

i i i

a a b b b b
s e r r s rs s

i i i

εσ εσ

εσ

εσ

σ
ω ω ω ω

ω ω ω ω ω ω

ω ω ω ω ω ω

Ω Ω Γ Γ− − − − + −

Ω Ω ΩΓ+ + + + + −

Ω Ω Γ− − − − − − =

 (4.2- 92) 
 

Separating out the real and imaginary terms leads to the steady-state amplitude 

and phase equations in , ,p q r  and s . 

 2
5 5

2

2 2
2 35 5

2 2 2 2

ˆ ˆˆ ˆ
1 cos

2 2 4 2 4 8

ˆ ˆˆ ˆ ˆˆ 3 3 3
sin 0

16 4 8 2 2

a ac c
p r q

ca ac b b
s q p q q

σ φ
ω ω ω ω

φ
ω ω ω ω ω

Ω ΩΓ  − + + − − + 
 

Ω ΩΓ− − − − − =

 
(4.2- 93) 
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 2
5 5

2

2 2
2 35 5

2 2 2 2

ˆ ˆˆ ˆ
1 sin

2 2 4 2 4 8

ˆ ˆˆ ˆ ˆˆ 3 3 3
cos 0

16 4 8 2 2

a ac c
q s p

ca ac b b
r p pq p

σ φ
ω ω ω ω

φ
ω ω ω ω ω

Ω ΩΓ  − + + − − + 
 

Ω ΩΓ− − − − − =

 
(4.2- 94) 

 

 2
5 5

2

2 2
2 35 5

2 2 2 2

ˆ ˆˆ ˆ
1 sin

2 2 4 2 4 8

ˆ ˆˆ ˆ ˆˆ 3 3
cos 0

16 4 8 2 2

a ac c
r p s

ca ac b b
q s r s s

σ φ
ω ω ω ω

φ
ω ω ω ω ω

Ω ΩΓ  − − + − − + 
 

Ω ΩΓ+ + − − − =

 
(4.2- 95) 

 

 2
5 5

2

2 2
2 35 5

2 2 2 2

ˆ ˆˆ ˆ
1 cos

2 2 4 2 4 8

ˆ ˆˆ ˆ ˆˆ 3 3
sin 0

16 4 8 2 2

a ac c
s q r

ca ac b b
p r rs r

σ φ
ω ω ω ω

φ
ω ω ω ω ω

Ω ΩΓ  − − + − − + 
 

Ω ΩΓ+ + − − − =

 
(4.2- 96) 

 

Equations (4.2-93) to (4.2-96) can be expressed more compactly, thus, 

 
1cos sin 0m nφ φ η− + =  (4.2- 97) 

 

 
2sin cos 0m nφ φ η− + =  (4.2- 98) 

 

 
3sin cos 0m nφ φ η+ + =  (4.2- 99) 

 

 
4cos sin 0m nφ φ η+ + =  (4.2- 100) 

 

where, m , n , 1η , 2η , 3η and 4η are defined as, 

 
5ˆ1

4 2 4

a
m

σ
ω

ΩΓ  = − − 
 

 (4.2- 101) 
 

 ˆ

16

c
n

ω
Γ=  (4.2- 102) 

 

 2 22
2 35 5 5

1 2 2 2 2 2

ˆ ˆˆ ˆ ˆ ˆˆ ˆ 3 3 3

2 2 8 4 8 2 2

a ca ac c b b
p r q s q p q qη

ω ω ω ω ω ω ω
Ω Ω Ω= − + + − − − −  (4.2- 103) 

 

 2 22
2 35 5 5

2 2 2 2 2 2

ˆ ˆˆ ˆ ˆ ˆˆ ˆ 3 3 3

2 2 8 4 8 2 2

a ca ac c b b
q s p r p pq pη

ω ω ω ω ω ω ω
Ω Ω Ω= − + + − − − −  (4.2- 104) 

 

 2 22
2 35 5 5

3 2 2 2 2 2

ˆ ˆˆ ˆ ˆ ˆˆ ˆ 3 3

2 2 8 4 8 2 2

a ca ac c b b
r p s q s r s sη

ω ω ω ω ω ω ω
Ω Ω Ω= − − + + − − −  (4.2- 105) 
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 2 22
2 35 5 5

4 2 2 2 2 2

ˆ ˆˆ ˆ ˆ ˆˆ ˆ 3 3

2 2 8 4 8 2 2

a ca ac c b b
s q r p r rs rη

ω ω ω ω ω ω ω
Ω Ω Ω= − − + + − − −  (4.2- 106) 

 

Adding equations (4.2-97) and (4.2-100) we get, 

 
1 42 cos 0m φ η η+ + =  (4.2- 107) 

 

Then, by adding equations (4.2-98) and (4.2-99) it can be shown that 

 
2 32 sin 0m φ η η+ + =  (4.2- 108) 

 

Squaring and adding equations (4.2-107) and (4.2-108) and rearranging leads to 

the equation (4.2-109) describing the relationship between excitation amplitude, 

Γ , detuning parameter, σ , and the system’s responses. 

 ( ) ( )2 25
1 4 2 3

ˆ 4
2

2

aσ η η η η
ω

Ω= − ± + + +
Γ

 (4.2- 109) 
 

 

4.3.8 General Solutions of the Equations of Motion (4.2-1) and 
(4.2-2) 

After finding the solvability equations a return is made to the main analysis to 

substitute the zeroth order perturbation solutions, equations (4.2-29) and     

(4.2-30), the first order perturbation solutions, equations (4.2-50) and (4.2-51), 

and the second order perturbation solutions, equations (4.2-75) and (4.2-76) into 

the approximated solutions of the equations (4.2-16) and (4.2-17) to get the full 

time-domain solutions to the equations of motion (4.2-1) and (4.2-2). We then 

substitute the re-defined A and C of equation (4.2-85) and further substitute 

equation (4.2-90) to get the full time-domain solutions in the original 

parameters of equations of motion (4.2-1) and (4.2-2) as 

 
3

1 2

2 2 3
2 2 2

ˆ 3
2 cos 2 sin cos

2 2 4 2

ˆ ˆ ˆ3 3 3 3 3
sin cos sin

4 2 4 2 4 2

t t b t
q p q p

b t b t b t
p q pq q

ω ω ω ω

ω ω ω ω ω ω

Ω Ω Ω     = − +     
     

Ω Ω Ω     − − +     
     

 (4.2- 110) 
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3

2 2

2 2 3
2 2 2

ˆ 3
2 cos 2 sin cos

2 2 4 2

ˆ ˆ ˆ3 3 3 3 3
sin cos sin

4 2 4 2 4 2

t t b t
q r s r

b t b t b t
r s rs s

ω ω ω ω

ω ω ω ω ω ω

Ω Ω Ω     = − +     
     

Ω Ω Ω     − − +     
     

 (4.2- 111) 
 

We likewise applied the Method of Multiple Scales solutions to the equations of 

motion with axial force terms included. The axial forces are introduced into the 

system as time-dependent excitations. The excitations appear as coefficients in 

the equations of motion. Since the excitations when they are time-dependent 

appear as parameters in the equations, these excitations are called parametric 

excitations. A small parametric excitation can produce a large response when 

the frequency of the excitation is close to twice one of the natural frequencies 

of the system (principal parametric resonance), (Nayfeh et.al., (1995)).The 

parametric excitations are introduced into the system to investigate the 

interactions between forced vibrations and the parametric excitations. 

Therefore, applying the method of multiple scales to the equations of motion 

with axial parametric excitation terms in the form ( )2cos Ωact iF t q  included, 

where 1,2i = , act iF q  are the force terms in equations (3.2-85) and (3.2-86) in 

chapter 3, and 2Ω  is the parametric excitation frequency for the system 

operating in principal parametric resonance,  we get, 
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3 2

1 2 2

2 3 2
2 2 2

2 2

22
2
2 2

ˆ ˆ3 3 3
2 cos 2 sin cos sin

2 2 4 2 4 2

ˆ ˆ ˆ2 53 3 3
cos sin cos

4 2 4 2 2 4 4

ˆ ˆ ˆ2 25
sin

2 4 4

ω ω ω ω ω ω

ω ω ω ω ω ω

ω ω

Ω Ω Ω Ω       = − + −       
       

ΩΩ Ω     − + −     Ω + Ω     

ΩΩ + − Ω + Ω  

act

act act

t t b t b t
q p q p p q

F p tb t b t
pq q

F q Ft 2
2 2 3
2 2

2 2 2
2 2 3 2 2
2 2 2 2

2 52 2
2 2 2 2 3
2 2 2 2

2 5

5
sin

2 4 4

ˆ ˆˆ ˆ2 25 5
cos sin

2 4 4 2 4 4

ˆ ˆˆ ˆ2 25 5
cos sin

2 4 4 2 4 4

ˆ ˆ2

ω ω ω

ω ω ω ω ω ω

ω ω ω ω ω ω

Ω 
 Ω + Ω  

Ω Ω Ω   − +   Ω + Ω Ω + Ω   

ΩΩΩ Ω   − +   Ω + Ω Ω + Ω   

ΩΩ+

act act

act act

act

ckp t

F ckq F ckpt t

F ckq F a krt t

F a k 52 2
2 2 3 2 2
2 2 2 2

5 2 2
2 2 2 2 3
2 2 2 2

2
2 2 3
2 2

ˆ ˆ25 5
cos sin

2 4 4 2 4 4

ˆ ˆˆ2 25 9
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2 4 4 4 8 4

ˆ2 9
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4 8 4

ω ω ω ω ω ω

ω ω ω ω ω ω

ω ω ω
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Ω Ω Ω   + −   Ω + Ω Ω + Ω   

Ω +  Ω + Ω  
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F Qq t

 

(4.2- 112) 
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ω ω ω ω ω ω
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(4.2- 113) 

 
 

where, 
2
2 2
2

1
2

k

ω ω

 
 

=  
Ω Ω − − 

 

 and 
2
2 2

2

1
4 4

Q

ω ω

 
 

=  
Ω Ω − − 
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From the standpoint of these solvability and general solutions, the next section 

shows the results of the frequency-response and amplitude plots for the Models 

of equations with and without parametric force terms under appropriately 

varying conditions and parameters.  

4.3.9 Multiple Scales Results 

Four algebraic solutions for the amplitudes and phases, equations (4.2-93) to 

(4.2-96) were derived from the real and imaginary parts of the secular terms 

equations for perturbations 12q  and 22q . The function of the secular terms 

equations is to remove those terms from the right hand sides of the perturbation 

equations that would otherwise have invalidated the uniformity of the power 

series. The secular terms equations are then processed separately in order to 

find the steady-state amplitudes of the solutions. After this, a return is made to 

the main analysis to find the particular solutions for the system variables (i.e. 

co-ordinates), into which the analytical forms that have been found for the 

steady state amplitudes can be substituted to give the complete solutions. In 

order to get the required results, MathematicaTM code was then used to solve 

numerically for 1q  and 2q  within equations (4.2-110) and (4.2-111) and those 

within Models B equations with the parametric force terms, equations (4.2-112) 

and (4.2-113). To obtain the values for p ,q , r  and s  MathematicaTM code was 

used to solve the equations (4.2-93) to (4.2-96) simultaneously. (See Appendices 

B.1 and B.2 for the solutions). The results obtained are in the time domain and 

are transformed into the frequency domain by running the MathematicaTM code 

several times for a range of frequency values from 243.2 rad/s to 252.8 rad/s to 

obtain a list of amplitude values. While going through all the data individually 

one selects that portion of the amplitude values where the values are in steady 

state condition, for the amplitude response plots.  

Graphs of amplitude versus forcing frequency Ω , i.e., the frequency of the 

excitation are plotted for some varying parameter values and for the case where 

the parametric force term is included in the equations. Table 4-1 represents the 

values of the constants for the graphs in Figures 4-1 to 4-4. These values are 

obtained from the coefficients of the modelled equations in Chapter 3 using the 

experimental set up and from the Appendices A3 and A4.   
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Parameters 

 
  
           Stiffness           Damping            Actuator                     Stiffness 
           (Linear)          Coefficient             Force                        (Cubic) 
                 k                    c                      actF                              b  

 

            1Nm−              
1Nsm−                   [ ]N                            2 2m s− −                                         

 
 

           38379                  13.6                  532                        95.05 10×  
                                        15 
 
                                                                          
Coefficient 5 0.001a = kg ; Resonance frequency: 248.8 /rad sΩ = ; 

 Parametric frequency: 2 497.6 /rad sΩ = ; Modal mass: 0.62m kg= ;  

 Mass unbalance: 0.004um kg=  

 

Table 4- 1: Data of graphs plotted               

             
 

4.3.9.1 Amplitude Response Plot – without Parametri c Force Term 
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Figure 4-1: Amplitudes of the response as functions of the frequency at mass unbalance 
mu=0.004kg  and damping coefficient of 13.6 Ns/m. 
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Figure 4- 2:  Amplitudes of the response as functions of the frequency at mass unbalance 3mu 

and damping coefficient of 13.6 Ns/m. 
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Figure 4- 3:  Amplitudes of the response as functions of the frequency at mass unbalance mu 

and damping coefficient of 15 Ns/m. 

 

4.3.9.2 Amplitude Response Plot – with Parametric F orce Term 
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Figure 4- 4:  Amplitudes of the response as functions of the frequency at mass unbalance mu 

and damping coefficient of 13.6 Ns/m with parametric force term. 
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• Each dot on the curves corresponds to a singular point.  

• Figure 4-1 shows plots of amplitudes 1q  and 2q versus forcing frequency Ω  

when the mass unbalance is mu and the damping coefficient is 13.6 1Nsm− . 

Peak amplitudes of 16mm are observed for 1q  and 2q . Jump phenomena 

of the rotating speed are also observed. 

• In Figure 4-2, increasing the mass unbalance to 3mu shows increases in the 

amplitudes to 16.8mm for 1q  and 2q , resulting in a further increase in the 

jump. 

• Maintaining the mass unbalance at mu and increasing the damping 

coefficient to 15 1Nsm−  resulted in Figure 4-3, with amplitudes decreasing 

to 15.5mm for 1q and 2q . Although there are decreases in the amplitudes, 

they are relatively very small and the jump phenomena are not 

eliminated. 

• In Figure 4-4 including parametric force terms in the equations and at 

mass unbalance of mu and damping coefficient of 13.6 1Nsm− , the 

amplitudes reduced to 12.3mm for 1q and 2q . It is also observed that the 

jump of the rotating speed is eliminated and the peak amplitudes of the 

whirling motion are reduced by about 23%. 

4.4 Direct Numerical Integration 

Direct numerical integration of the governing equations of motion in the time 

domain is the most general approach for the solution of the dynamic response of 

the system. The solution is initially defined at time zero and then convergence is 

sought thereafter at discrete points in time. Most of the methods use equal time 

steps at , 2 , 3t t t n tδ δ δ δ… , however, highly nonlinear systems benefit from more 

sophisticated alternatives where variable step size is employed in an attempt to 

achieve convergence. The most common methods for integrating ordinary 

differential equations are Runge-Kutta, Bulirsch-Stoer, Adams-Moulton, Adams, 

Newmark and Gear methods. The Gear method (Gear, 1971) is mostly used for 
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stiff systems. Stiff systems are models where the ratio between the slowest and 

the fastest rate constants is greater than 500 (stiffness ratio >500). 

In this section, the Runge-Kutta technique is used to integrate numerically the 

equations of motion, equations (4.2-1) and (4.2-2) so that these can be 

compared with the results that were generated by the method of multiple 

scales. The MathematicaTM program developed by Wolfram Research (Wolfram, 

1996), has been used to carry out this analysis. NDSolve integrator is the 

function used within this MathematicaTM code to solve the set of differential 

equations since it can handle a wide range of ordinary differential equations as 

well as some partial differential equations. In solving differential equations 

there can be any number of unknown functions iy , but all these functions must 

depend on a single “independent variable” x , which is the same for each 

function. NDSolve integrator represents solutions for the functions iy  which are 

represented as Interpolating Function objects. The Interpolating Function 

objects provide approximations to the iy  over the range of values minx  to maxx  

for the independent variable x . The integrator method selected within the 

function NDSolve integrator is the fourth order Runge-Kutta (i.e. Method →  

Runge-Kutta). This is because the relevant equations of motion are non-stiff. 

The Runge-Kutta method numerically integrates differential equations by using a 

trial step at the midpoint of an interval to cancel out lower-order error terms. 

The fourth order Runge-Kutta method requires four gradient or ‘ k ’terms to 

calculate for 1ny +  

 ( )1 1 2 3 4

1
2 2

6n ny y k k k k+ = + + + +  (4.2- 114) 
 

where, h  is the incremental independent variable and, 

                       

( )

( )

1
1 2

2
3 4 3

, ; ,
2 2

, ; ,
2 2

n n n n

n n n n

kh
k hf t y k hf t y

kh
k hf t y k hf t h y k

 = = + + 
 

 = + + = + + 
 

                (4.2- 115)     

 



Chapter 4: Approximate Analytical and Numerical Solutions to the Equations of Motion 
 

 

 
85 

4.4.1 Results from MathematicaTM                         

Results from the bespoke MathematicaTM integrator are given for a range of 

frequency values varied from 243.2 rad/s to 252.8 rad/s. The results obtained 

are in the time domain and are transformed into the frequency domain by 

running the NDSolve code several times for the range of frequency values from 

243.2 rad/s to 252.8 rad/s to obtain a list of amplitude values. Values from the 

steady state conditions are selected and their averages obtained for the 

amplitude versus frequency plots. The results obtained from this method provide 

a basis for comparison with the multiple scales solution. 

4.4.1.1 Numerical Integration Plot- without Paramet ric Force Term 
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Figure 4- 5: Amplitudes of the response as functions of the frequency. 

4.4.1.2 Numerical Integration Plot- with Parametric  Force Term 
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Figure 4- 6: Amplitudes of the response as functions of the frequency at the inclusion of 
parametric force term.  
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Figure 4- 7: Plots of response for MMS and Numerica l Integration together- without 
parametric force terms. 
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Figure 4- 8: Plots of response for MMS and Numerica l Integration together- with parametric 
force terms. 

 
• Where MMS is the method of multiple scales plot and NI is the direct 

integration plot. 

• Figure 4-5 shows the response of the flexible rotor system obtained from 

direct integration by the use of NDSolve within MathematicaTM for the 

nonlinear Duffing ODE without the parametric force term. In Figure 4-7 

reasonable agreement in terms of the amplitude levels and the jump 

phenomena can be observed comparing Figure 4-5 with the multiple 

scales results in Figure 4-1.  

• Figure 4-6 shows the response obtained from the direct integration 

method with the parametric force term included. Also in Figure 4-8 

reasonable agreement in terms of the amplitude levels and the 

elimination of the jump phenomena can be observed comparing Figure 4-6 

with the multiple scales results in Figure 4-4.  

MMS MMS 

MMS MMS 

NI NI 

NI NI 
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4.5 Discussion of Results 

Comparison between the results from the multiple scales analysis and the 

numerical integration benchmark summarised here shows evidence of a 

consistent phenomenon whereby both the responses in the first mode of 1q and 

2q show hardening characteristics, jump phenomena and both stable and 

unstable solutions when the equations of motion contain no parametric force 

term. Including the parametric force terms, the two solutions show decreases in 

amplitude values, elimination of the jump phenomena and stable solutions.  
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CHAPTER 5  

STABILITY OF STEADY-STATE SOLUTIONS 

__________________________________________  

5.1 Introduction 

The usual approach adopted in the literature for investigating the stability of 

rotor-bearing systems depends mainly upon solving the system governing 

equations of motion after simplification under certain assumptions and 

transformation into an eigenvalue problem. Then, from the evolution of 

exponential growth or decay, stability criteria are established based on the 

resulting eigenvalues and their systems parametric dependence. Many authors, 

including Kisk et.al., (1964), Chivens (1973), Chang et.al., (1993) and El-

Marhomy (1994, 1998) have studied the nonlinear dynamics and stability of 

rotating shaft-disk systems by using perturbation methods in conjunction with 

well known stability techniques. 

In this work the governing differential equations are solved analytically using the 

approximate method of multiple scales, in Chapter 4, and then the ensuing 

nonautonomous slow-time modulation equations are used to construct a stability 

matrix by applying small perturbations to the equilibrium. The stability of the 

flexible rotor-bearing system is then analysed by using the Routh-Hurwitz 

stability criterion.  

5.2 Stability Matrix  

From the multiple scales analysis in Chapter 4 the nonautonomous slow-time 

modulation equations emerge in the following form 

 ( ) ( )5
1 2 1 1 1 0

2 2

a
a bSin Sin Tα α α σ α

ω
Ω Γ′ − − − − =   

(5.2- 1) 
  ( ) ( )5

2 1 1 1 0
2 2 2

ac
a a bCos Cos Tα α σ α

ω ω
Ω Γ′ + − − − − =  

(5.2- 2) 
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 ( ) ( )5
2 1 2 1 2 0

2 2

a
b aSin Cos Tα α α σ α

ω
Ω Γ′ + − + − =  (5.2- 3) 

 

 ( ) ( )5
1 2 1 2 0

2 2 2

ac
b b aCos Sin Tα α σ α

ω ω
Ω Γ′ + + − − − =  (5.2- 4) 

 

 
where, a , b are the response amplitudes, 1α , 2α  are the associated phase 

angles, Γ  is the excitation amplitude, and  c  is the damping coefficient , 5aΩ  is 

a mass coupling coefficient, and  Ω  is the excitation frequency, ω  is the linear 

undamped natural frequency of the free vibration, εσ ω= Ω −  is a detuning 

parameter , and  1T  is slow time scale. 

Applying small perturbations to the amplitudes and phases we have, 

 
0a a aδ= +  (5.2- 5) 

 

 
0b b bδ= +  (5.2- 6) 

 

 
1 10 1α α δα= +  (5.2- 7) 

 

 
2 20 2α α δα= +  (5.2- 8) 

 

These are notionally small perturbations around the equilibria, 0a , 0b , 10α , 20α . 

Substituting equations (5.2-5) to (5.2-8) into equations (5.2-1) to (5.2-4) leads 

to, 

 ( ) ( ) ( ) ( )

( )

5
0 10 1 0 20 2 10 1

1 10 1

2

0
2

a
a a b b Sin

Sin T

δ α δα δ α δα α δα
ω

σ α δα

Ω′ ′+ + − + + − −

Γ− − − =
 

(5.2- 9) 
 

 ( ) ( ) ( ) ( )

( )

5
0 0 0 20 2 10 1

1 10 1

2 2

0
2

ac
a a b b Cos

Cos T

α δα δ δ α δα α δα
ω ω

σ α δα

Ω′ ′+ + + − + + − −

Γ− − − =
 

(5.2- 10) 
 



Chapter 5: Stability of Steady-State Solutions 
 

 

 
90 

 ( )( ) ( ) ( )

( )

5
0 20 2 0 10 1 20 2

1 20 2

2

0
2

a
b b a a Sin

Cos T

δ α δα δ α δα α δα
ω

σ α δα

Ω′ ′+ + + + + − −

Γ+ − − =
 

(5.2- 11) 
 

 ( ) ( ) ( ) ( )

( )

5
0 0 0 10 1 20 2

1 20 2

2 2

0
2

ac
b b b b a a Cos

Sin T

δ δ δ α δα α δα
ω ω

σ α δα

Ω′ ′+ + + + + + − −

Γ− − − =
 

(5.2- 12) 
 

It is convenient to make the system autonomous, i.e. one in which 1T  does not 

appear explicitly, at the equilibrium points by introducing the following,   

1 10 10 1 20 20;T Tσ α γ σ α γ− ⇒ − ⇒                         (5.2- 13), (5.2- 14) 

 
Also, for convenience let  

20 10 10 10 20 20 20 10; ;α α ψ α α ψ ψ ψ− ⇒ − ⇒ = −           (5.2- 15), (5.2- 16), (5.2- 17) 

 
Expanding the trigonometric terms as necessary, and then substituting equations 

(5.2-13) to (5.2-17) into equations (5.2-9) to (5.2-12) gives, 

 
0 10 0 10 10 0 1 10 10 10

0 2 1 10 2 1 10 0 2 10

2 10 0 1 10 1 10 1 10

a Zb Sin mSin a a a Z bSin

Zb Sin Z b Sin Zb Cos

Z b Cos Zb Cos Z b Cos m Cos

α ψ γ δα α δ δ δα δ ψ
δα δα ψ δ δα δα ψ δα ψ

δ δα ψ δα ψ δ δα ψ δα γ

′ ′ ′ ′− − = − − − +
+ + +
+ − − −

 
(5.2- 18) 

 

 
0 0 0 10 10 10

0 2 1 10 2 1 10 0 2 10

2 10 0 1 10 1 10 1 10

os os os

os os

a na Zb C mC n a Z bC

Zb C Z b C Zb Sin

Z b Sin Zb Sin Z b Sin m Sin

ψ γ δα δ δ ψ
δα δα ψ δ δα δα ψ δα ψ

δ δα ψ δα ψ δ δα ψ δα γ

′ ′+ − − = − − +
+ + −
− + + +

 
(5.2- 19) 

 

 
0 20 0 10 20 0 2 20 2 10

0 1 2 10 1 2 10 0 1 10

1 10 0 2 10 2 10 2 20

b Za Sin mCos b b b Z aSin

Za Sin Z a Sin Za Cos

Z a Cos Za Cos Z a Cos m Sin

α ψ γ δα α δ δ δα δ ψ
δα δα ψ δ δα δα ψ δα ψ

δ δα ψ δα ψ δ δα ψ δα γ

′ ′ ′ ′− + = + + + +
+ + −
− + + −

 
(5.2- 20) 

 

 
0 0 0 10 20 10

0 1 2 10 1 2 10 0 1 10

1 10 0 2 10 2 10 2 20

os os

os os

b nb Zb C mSin b n b Z aC

Za C Z a C Za Sin

Z a Sin Za Sin Z a Sin m Cos

ψ γ δ δ δ ψ
δα δα ψ δ δα δα ψ δα ψ

δ δα ψ δα ψ δ δα ψ δα γ

′ ′+ + − = − − −
− − −
− + + −

 
(5.2- 21) 

 

where, 5

2

a
Z

ω
Ω= , 

2

c
n

ω
= , 

2
m

Γ=  
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Equations (5.2-18) to (5.2-21) are deliberately arranged so that the left hand 

sides are structural re-statements of the former equations (5.2-1) to (5.2-4), in 

terms of the equilibrium points, therefore they can be equated to zero, and  

hence, the right hand sides must also equate to zero, 

 
0 1 10 1 10 0 2 1 10 2 1 10

0 2 10 2 10 0 1 10 1 10

1 10 0

a a a Z bSin Zb Sin Z b Sin

Zb Cos Z b Cos Zb Cos Z b Cos

m Cos

δα α δ δ δα δ ψ δα δα ψ δ δα δα ψ
δα ψ δ δα ψ δα ψ δ δα ψ

δα γ

′ ′ ′− − − + + +
+ + − −
− =

 
(5.2- 22) 

 

 '
10 0 2 1 10 2 1 10

0 2 10 2 10 0 1 10 1 10

1 10

os os os

0

n a Z bC Zb C Z b C

Zb Sin Z b Sin Zb Sin Z b Sin

m Sin

δα δ δ ψ δα δα ψ δ δα δα ψ
δα ψ δ δα ψ δα ψ δ δα ψ

δα γ

− − + + +
− − + +
+ =

 
(5.2- 23) 

 

 
0 2 20 2 10 0 1 2 10 1 2 10

0 1 10 1 10 0 2 10 2 10

2 20 0

b b b Z aSin Za Sin Z a Sin

Za Cos Z a Cos Za Cos Z a Cos

m Sin

δα α δ δ δα δ ψ δα δα ψ δ δα δα ψ
δα ψ δ δα ψ δα ψ δ δα ψ

δα γ

′ ′ ′+ + + + +
− − + +
− =

 
(5.2- 24) 

 

 
10 0 1 2 10 1 2 10

0 1 10 1 10 0 2 10 2 10

2 20

os os os

0

b n b Z aC Za C Z a C

Za Sin Z a Sin Za Sin Z a Sin

m Cos

δ δ δ ψ δα δα ψ δ δα δα ψ
δα ψ δ δα ψ δα ψ δ δα ψ

δα γ

′− − − − −
− − + +
− =

 
(5.2- 25) 

 

In terms of “smallness” 0 1 0a δα ′ →  and 0 2 0b δα ′ →  because they are quadratic and 

include the derivative with respect to slow time 1T , of already small terms 1δα  

and 2δα . Also, the products of the perturbed amplitudes and phases are 

definitionally small and therefore tend to zero. 

Thus, equations (5.2-22) to (5.2-25) reduce to, 

 
0 1 10 10 0 2 10 0 1 10

1 10 0

a a Z bSin Zb Cos Zb Cos

m Cos

δα α δ δ ψ δα ψ δα ψ
δα γ

′ ′− − + + −
− =

 (5.2- 26) 
 

 
10 0 2 10 0 1 10

1 10

os

0

n a Z bC Zb Sin Zb Sin

m Sin

δα δ δ ψ δα ψ δα ψ
δα γ
′− − + − +

+ =
 (5.2- 27) 

 

 
0 2 20 10 0 1 10 0 2 10

2 20 0

b b Z aSin Za Cos Za Cos

m Sin

δα α δ δ ψ δα ψ δα ψ
δα γ

′ ′+ + − +
− =

 (5.2- 28) 
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10 0 1 10 0 2 10

2 20

os

0

b n b Z aC Za Sin Za Sin

m Cos

δ δ δ ψ δα ψ δα ψ
δα γ
′− − − − +

− =
 (5.2- 29) 

 

Equations (5.2-26) to (5.2-29) are first order ordinary differential equations with 

respect to slow time  1T , in aδ , bδ , 1δα  and 2δα , with solutions which can be 

stated in the exponential form, 

 1* Ta a eλδ δ=  (5.2- 30) 
 

 1* Tb b eλδ δ=  (5.2- 31) 
 

 1*
1 1

Teλδα δα=  (5.2- 32) 
 

 1*
2 2

Teλδα δα=  (5.2- 33) 
 

where, *aδ  and *bδ  are the small real perturbation amplitudes and *
1δα and 

*
2δα are the small real perturbation phase angles. 

Substituting equations (5.2-30) to (5.2-33) into equations (5.2-26) to (5.2-29) and 

after removing the common factor of 1Teλ , and with some rearrangement, we 

have, 

 ( ) ( )
( )

* * *
10 10 0 10 0 10 1

*
0 10 2 0

a ZSin b Zb Cos a mCos

Zb Cos

α δ ψ δ ψ λ γ δα

ψ δα

′− + − + +

+ =
 (5.2- 34) 

 

 ( ) ( ) ( )
( )

* * *
10 0 10 10 1

*
0 10 2 0

n a ZCos b Zb Sin mSin

Zb Sin

λ δ ψ δ ψ γ δα

ψ δα

− + + + +

− =
 (5.2- 35) 

 

 ( ) ( )
( )

* * *
10 20 0 10 1

*
0 10 0 20 2 0

ZSin a b Za Cos

Za Cos b mSin

ψ δ α δ ψ δα

ψ λ γ δα

′+ −

+ + − =
 (5.2- 36) 

 

 ( ) ( ) ( )
( )

* * *
10 0 10 1

*
0 10 20 2 0

ZCos a n b Za Sin

Za Sin mCos

ψ δ λ δ ψ δα

ψ γ δα

− − + −

+ − =
 (5.2- 37) 

 

Equations (5.2-34) to (5.2-37) can now be stated in matrix form, from which the 

associated determinant can be obtained, and equated to zero in order to 

generate the characteristic equation. 
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 ( )
( )

( )
( )

10 10 0 10 0 10 0 10

10 0 10 10 0 10

10 20 0 10 0 10 0 20

10 0 10 0 10 20

0

ZSin Zb Cos a mCos Zb Cos

n ZCos Zb Sin mSin Zb Sin

ZSin Za Cos Za Cos b mSin

ZCos n Za Sin Za Sin mCos

α ψ ψ λ γ ψ
λ ψ ψ γ ψ

ψ α ψ ψ λ γ
ψ λ ψ ψ γ

′ − − −
− − + −

=
′ − + −

− − − − −

 

 

(5.2- 38) 

                                                                   
From equation (5.2-38) the characteristic equation is obtained  

 

 

4 3 2 1 0
1 2 3 4 5 0k k k k kλ λ λ λ λ+ + + + =  (5.2- 39) 

 

where the coefficients 1k  to 5k are defined in Appendix B3. 

5.3 The Routh-Hurwitz Stability Criterion 

Instead of computing the roots of the characteristic equation, and then using 

these to determine stability, it is possible to utilize the characteristic 

polynomial to determine whether all the roots have negative real parts without 

actually having to solve for the roots. A large number of stability criteria have 

been developed for this purpose and the most commonly used is the Routh-

Hurwitz stability criterion. In the late 1800s, Routh E. J., (1875) and Hurwitz A., 

(1895) published independently a method of investigating the stability of a linear 

system. The Routh-Hurwitz stability criterion provides necessary and sufficient 

conditions for the accurate delineation of the relevant parameter space into 

stable and unstable regions. The Routh-Hurwitz stability criterion states: 

(a) For there to be roots with negative real parts there is a necessary, but not 

sufficient, condition that all coefficients in the characteristic equation, have the 

same sign and that none are zero. 

 If (a) above is satisfied, then the necessary and sufficient condition for stability 

is either, 

(b) all the Hurwitz determinants of the polynomial are positive, or alternatively 

(c) all the coefficients of the first column of Routh’s array have the same sign. 

The number of sign changes indicates the number of unstable roots. 
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Bhattacharyya and Dutt, (1997) used the Routh-Hurwitz criterion to perform an 

approximate stability analysis when studying the unbalance response and 

stability of a rotor shaft system mounted on nonlinear rolling element bearings 

with viscoelastic  support. A stability analysis of rotor-bearing system by                      

El-Marhomy et.al., (2004) also applied the  Routh-Hurwitz criterion. These 

authors derived sufficient conditions for asymptotic stability of both the 

translational and rotational modes of motion of the system and presented the 

system’s stability boundaries graphically in terms of the various systems 

parameters, to afford a comprehensive demonstration of the effects of these 

parameters on the system’s stability of motion.  

Using this technique, it is possible to determine immediately the stability of the 

system if the polynomial is the characteristic equation. This criterion is also 

useful for determining the ranges of coefficients of the characteristic equation 

for stability.  

Considering the general nth order characteristic polynomial written in the form 

 1 2 2 1
0 1 2 2 1 0n n n

n n na s a s a s a s a s a− −
− −+ + + + + + =⋯  (5.2- 40) 

 

where the coefficients ( )0,1, ,ia i n= ⋯  are real quantities. Then, we consider if 

any of the ia  components are zero, or negative, in the presence of at least one 

zero eigenvalue, or if there is at least one eigenvalue which has a positive real 

part, or if there are eigenvalues which are imaginary. Then the system is 

unstable, and it is not necessary to follow the procedure described below. It is 

also possible to divide the characteristic equation by 0a , and then the 

coefficient of ns  will be unity. The condition that all the ia  coefficients are 

present, and they are all positive, is a necessary and sufficient condition for 

stability, taking into account that if all the coefficients are negative, they can 

be made positive by multiplying both sides of the characteristic equation by -1.    

Therefore the only case that is considered here is where all the coefficients are 

positive. The Routh-Hurwitz criterion is based on ordering the coefficients of the 

characteristic equation into the well established Routh array: 
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0 2 4 6

1
1 3 5 7

2
1 2 3

3
1 2

4
1

:

:

:

:

:

n

n

n

n

n

s a a a a

s a a a a

s b b b

s c c

s d

−

−

−

−

 
(5.2- 41) 

 

The elements of the Routh array are obtained whereby each new row is derived 

from the two rows immediately above it, these being called the working rows. 

The first column of the 2x2 matrix in the expressions is always the first column 

of the two working rows of the Routh-Hurwitz array. The remaining column is 

the column of the working rows just to the right of the position of the unknown. 

The denominator of the expression is the first number of the lower of the two 

working rows.  

Thus the elements are obtained as: 

 
0 2 0 3

1 0 3 1 2 2
1 31 1 1

1 1
( )

a a a a
b a a a a a

a aa a a

− −= = − = −  (5.2- 42) 
 

 
0 4 0 5

2 4
1 51 1

1 a a a a
b a

a aa a

−= = −  (5.2- 43) 
 

 
0 6 0 7

3 6
1 71 1

1 a a a a
b a

a aa a

−= = −  (5.2- 44) 
 

The evaluation of the ib  coefficients is performed until the rest of them are 

equal to zero. The ic  coefficients are obtained as: 

 
1 3 1 2

1 3
1 21 1

1 a a a b
c a

b bb b

−= = −  (5.2- 45) 
 

 
1 5 1 3

2 5
1 31 1

1 a a a b
c a

b bb b

−= = −  (5.2- 46) 
 

And the coefficients id  are determined in a similar way where, 

 
1 2 1 2

1 2
1 21 1

1 b b b c
d b

c cc c

−= = −  (5.2- 47) 
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The Routh-Hurwitz criterion states that the number of roots of the characteristic 

equation with positive real parts is equal to the number of changes in sign of the 

first column of the array. According to Routh’s stability criterion, the necessary 

and sufficient condition that all the eigenvalues of the characteristic equation 

have negative real parts is that all the coefficients of the characteristic equation 

are positive and all the terms in the first column of the Routh Array have 

positive signs, for a stable system, and this is summarised in table 5-1. Thus if 

the sign of the coefficients in the first column of the Routh Array changes p 

times, it follows that the characteristic equation has p roots with positive real 

parts, and thus the system is unstable.  

For the flexible rotor-bearing system being considered here, it follows from 

equation (5.2-39) that 4n = , therefore 

 4 3 2 1 0
0 1 2 3 4 0a s a s a s a s a s+ + + + =  (5.2- 48) 

 

So from equation (5.2-39)  

 
0 1 1 2 2 3 3 4 4 5; ; ; ;a k a k a k a k a k= = = = =  (5.2- 49) 

 

0 0a >  2 0a >  4 0a >  6 0a >  

1 0a >  3 0a >  5 0a >  7 0a >  

1 0b >  2b  3b   

1 0c >  2c    

1 0d >     

 

Table 5- 1: Summary of conditions for stability acc ording to Routh’s criterion 
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Hence, equations (5.2-42) to (5.2-47) can be re-stated as,  

 1 4
1 3

2

k k
b k

k
= −  (5.2- 50) 

 

 ( )1
2 5 5

2

0k
b k k

k
= − =  (5.2- 51) 

 

 
3 0 0 0b = − =  (5.2- 52) 

 

 2 5
1 4

1

k k
c k

b
= −  (5.2- 53) 

 

 ( )2
2

1

0
0 0

k
c

b
= − =  (5.2- 54) 

 

 ( )1
1 2 2

1

0b
d b b

c
= − =  (5.2- 55) 

 

Therefore the elements of the first column of the Routh Array are 

0 1a k= , 1 2a k= , 1 4
1 3

2

k k
b k

k
= −  , 2 5

1 4

1 4
3

2

k k
c k

k k
k

k

= −
 

− 
 

 ,and  1 5d k= . 

The Routh-Hurwitz criterion requires that all the first column elements are 

positive and all 0ia > , i.e. 1 0k > , 2 0k > , 3 0k > , 4 0k > , 5 0k > , 1 4
3

2

0
k k

k
k

− > , and 

2 5
4

1 4
3

2

0
k k

k
k k

k
k

− >
 

− 
 

 for stability. 

5.3.1 Stability Results 

The results of the stability of the steady-state solutions at various mass 

unbalance values of the flexible rotor-bearing system are presented in Table 5-2 

and Figures 5-1 and 5-2. The results show that there are values of mass 

unbalance for which the system can be stable or unstable. Table 5-2 shows 

discrete mass unbalance values with their coefficient values and eigenvalues. 
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For a mass unbalance of 0.004um kg= , all first column elements are greater than    

zero, and all 0ia > , i.e. 1 0.000256k = , 2 0.077k = , 3 1.5k = , 4 7.84k = , 5 0.16k = , 

1 1.47b = , 1 7.839c = , 1 0.16d = . Also the eigenvalues have negative real parts 

indicating stable motion. 

At mass unbalances of 3 um , 4 um  and 5 um  all the first column elements and ia  

are greater than zero, except 5k and 1d which are less than zero, and since 

1 5d k= , and with eigenvalues 4λ  being real but positive, the motion is unstable.  

A further increase in mass unbalance to 6 um  and 7 um  shows their respective 

5k and 1d values to be greater than zero, and all eigenvalues as real and negative 

indicating stability at these values. 

Figures 5-1 and  5-2 show stability graphs of coefficients and mass unbalance, 

and eigenvalues and mass unbalance, with Figures 5-1(b) and 5-2(b) showing 

enlarged views of coefficients 5k  and mass unbalance, and eigenvalues 4λ  and 

mass unbalance plots respectively, and they show the transitions between 

stability and instability. 

From Figures 5-1 and 5-2, at mass unbalance values between zero and 0.006kg, 

all the coefficients 1k to 5k  values are greater than zero and there are no sign 

changes in the first columns of the Routh arrays. Also all the eigenvalues 1λ  to 

4λ  are negative indicating stable motions. 

At mass unbalance values from 0.006kg to 0.022kg, the system is unstable. The 

coefficients 1k to 4k  values are greater than zero, but 5k  values are negative, 

also negative numbers are found in the first columns of the Routh arrays, 

meaning there are sign changes in the first column. The eigenvalues 4λ are either 

zero or positive. 
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At mass unbalance values greater than 0.022kg, the system is stable because all 

the coefficients 1k to 5k values are greater than zero, and there are no sign 

changes in the first columns of the Routh arrays. Also all the eigenvalues 1λ  to 

4λ are negative. 

 Mass 

Unbalance 

(mu)[kg] 

ia Values Eigenvalues iλ  

Stable 

(S)/Unstable 

(U) 

um =0.004 
1 2

3 4 5

0.000256; 0.077;

1.5; 7.84; 0.16

k k

k k k

= =
= = =  

1 2

3 4

292.3; 11.15;

10.24; 0.044;

λ λ
λ λ

= − = −
= − = −  S 

3 um  
1 2

3 4 5

0.000256; 0.135;

2.79; 14.87; 0.45

k k

k k k

= =
= = = −  

1 2

3 4

475.9; 11.44;

10.07; 0.032;

λ λ
λ λ

= − = −
= − =  U 

4 um  
1 2

3 4 5

0.000256; 0.163;

3.44; 18.39; 0.46

k k

k k k

= =
= = = −  

1 2

3 4

567.7; 11.58;

9.99; 0.033;

λ λ
λ λ

= − = −
= − =  U 

5 um  
1 2

3 4 5

0.000256; 0.192;

4.08; 21.9; 0.18

k k

k k k

= =
= = = −  

1 2

3 4

659.5; 11.73;

9.9; 0.0158;

λ λ
λ λ

= − = −
= − =  U 

6 um  
1 2

3 4 5

0.000256; 0.221;

4.73; 25.42; 0.16

k k

k k k

= =
= = =  

1 2

3 4

751.3; 11.87;

9.82; 0.045;

λ λ
λ λ

= − = −
= − = −  S 

7 um  
1 2

3 4 5

0.000256; 0.250;

5.38; 28.94; 0.48

k k

k k k

= =
= = =  

1 2

3 4

843.1; 12.01;

9.72; 0.0602;

λ λ
λ λ

= − = −
= − = −  S 

 

Table 5- 2: Discrete mass unbalance values with the ir stability indicators 
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                                                 (b) Enlarged view of k5 values 

   

                                            Figure 5- 1: Stability plots for k values                     
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                                                  (b) Enlarged view of 4λ values 

                                      Figure 5- 2: Stability plots for λ values                                           
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CHAPTER 6  

INVESTIGATION OF SYSTEMS DYNAMICS 

_________________________________________________ 

6.1 Introduction 

In nonlinear dynamical systems analysis, exact solutions are hard, if not 

impossible to find. In addition to relying on analytical solutions for the flexible 

rotor, emphasis can also be placed on its qualitative behaviour. The analysis 

methods employed in this study are inclusive of the dynamic trajectories of the 

rotor, displacement-time plots, Poincaré maps, and bifurcation diagrams. 

Maximum Lyapunov exponent analysis is also used, together with the above 

mentioned feature properties to determine the onset conditions for chaotic 

motion. If a system falls into a chaotic regime, its behaviour is difficult to 

predict and control. Hence identifying chaotic motion and preferably taking 

steps to avoid generating the conditions which induce it are both highly 

important. Therefore, understanding the dynamics of an analytically modelled 

system can be extended further by recourse to techniques based on specialized 

numerical investigations. Over the years, numerous software namely, Dynamics 

Solver, XPPAUT and AUTO among others have been specifically designed for the 

analysis of dynamical systems. These softwares packages can be employed to 

generate plots of equilibria, limit cycles, bifurcation diagrams and Lyapunov 

exponents. The primary function of these system dynamics software packages is 

to perform numerical integrations and numerical continuation. The numerical 

integration technique is iterative and is applied for the majority of nonlinear 

systems that are not analytically solvable, and the trajectory is approximated by 

calculating a sequence of solutions at a given period of time. On the other hand, 

the numerical continuation technique is employed to trace the path of solutions 

to a given system as one or more parameter values varies, allowing one to find 

the bifurcations, and the tracing of stable and unstable solutions. Nusse and 

Yorke (1994) have developed numerical analysis software, Dynamics, for 

computational numerical investigations of system dynamics. Nusse et. al., (1994, 

1995) and Chin et.al., (1994) have used this software for calculating bifurcation 

diagrams, basins of attraction, and Lyapunov exponents for a range of physically 
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interesting systems. A newer edition, Dynamics 2, also developed by Nusse and 

York in 1998 has since been in use. In this study, the Dynamics 2 and 

Mathematica TM softwares are being employed here as computational basis for 

the qualitative assessments of bifurcation and to acquire the bifurcation set that 

expresses the boundary of the stable and unstable motions, with and without the 

introduction of parametric force terms into the governing equations developed 

in Chapter 3. 

6.2  Program Code 

6.2.1  Dynamics 2 Code 

The Dynamics 2 programming environment has numerous examples of maps and 

differential equations built in. Examples of built-in maps are the Henon map, 

Ikeda map, Kaplan/Yorke map, Logistic map, Quasiperiodicity map, Tinkerbell 

map, Tent map, and the Piecewise linear map amongst others. The differential 

equations include Chua’s circuit, Goodwin’s equation, examples of Hamiltonian 

systems, the Lorenz systems, the Lotka/Volterra equations, forced-damped 

pendulum equation, a parametrically excited Duffing equation, the Rossler 

equation, and the forced Van der Pol equation. Some of the defined equations 

from the program are as follows, 

Henon map:  

 ( ) ( )2
1, ,H x y x C xρ= − +   

Logistic map: 

 ( ) ( )1L x x xρ= −   

Forced-damped pendulum: 

 [ ]( )1 2 3sin cosx C x C x C tρ′′ ′+ + = + Ω   
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Parametrically excited Duffing equation: 

[ ]( ) [ ]( )2 3
1 3 31 sin 1 sin 0x C x x C t x C t xρ ρ′′ ′+ − + + Ω + + Ω =  

Forced van der Pol equation: 

( ) [ ]2 3
1 2 31 sinx C x x C x C x tρ′′ ′− − + + = Ω  

where ρ  is the excitation amplitude, Ω  is the excitation frequency, and 1C , 2C  

and 3C  are all constants. 

Although code is provided for a variety of maps and differential equations in the 

Dynamics 2 program, coupled differential equations are not pre-defined. 

However, options within Dynamics 2 allow the addition of bespoke mathematical 

models to the program. Figure C1 in Appendix C shows a screen dump of the 

code that was created for the analysis of the coupled differential equations. The 

reader is referred to Appendix C for the definition of the program code used in 

Figure C1, and also for a summary of detailed procedures for adding bespoke 

differential equations into Dynamics 2.  The models of the flexible rotor system 

as discussed in Chapter 3 are used after some modifications for analyzing the 

behaviour of the dynamical system using the Dynamics 2 software. We therefore 

write Model A equations in the following form: 

 3
1 2 3 4cos( ) sin( )x C x C y y C x C x tρ+ − + + = Ωɺɺ ɺ ɺ  (6.2- 1) 

 

 3
1 2 3 4cos( ) cos( )y C y C x y C y C y tρ+ + + + = Ωɺɺ ɺ ɺ  (6.2- 2) 

 

 

Where, 1

c
C

m
=  ; 5

2

a
C

m

Ω=  ; 3

k
C

m
=  ; 4

b
C

m
= ; 

2
um d

m
ρ Ω=  

6.2.1.1 Nondimensionalisation 

The equations of motion contain dimensional parameters and one way of 

reducing the order of the design-space is to scale the equations of motion. The 

resulting parameters may after this operation become nondimensional. 
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Nondimensional numbers themselves can reveal much about a system. 

Nondimensionalisation does not change the dynamics of the system. This can be 

used to scale a good design to give the new design the same dynamical 

behaviour. For numerical simulation reasons scaling can be used to condition the 

equations better. By proper scaling, the difference in order of magnitude 

between numbers can be significantly reduced. Proper scaling will also reduce 

the computational time. The time t  is nondimensionalised by using the rotor 

system natural frequency ω . Nondimensionalisation of the timescale in 

equations (6.2-1) and (6.2-2) is introduced by stating tτ ω= , where, ω  is the 

natural frequency of the first mode of the flexible rotor system. Therefore, 

 
( ) ( )

2 2 2

22 2

d x d x d x
x x t x

dt d
d

ω ω τ
ττ

ω

′′= = = ∴ =
 
 
 

ɺɺ ɺɺ  

( ) ( )dx dx dx
x x t x

dt d
d

ω ω τ
ττ

ω

′= = = ∴ =
 
 
 

ɺ ɺ  

(6.2- 3), (6.2- 4) 

 
 

 
( ) ( )

2 2 2

22 2

d y d y d y
y y t y

dt d
d

ω ω τ
ττ

ω

′′= = = ∴ =
 
 
 

ɺɺ ɺɺ  

( ) ( )dy dy dy
y y t y

dt d
d

ω ω τ
ττ

ω

′= = = ∴ =
 
 
 

ɺ ɺ  

(6.2- 5), (6.2- 6) 

 
 

In terms of the dimensionless timescale, τ , equations (6.2-1) and (6.2-2) 

become 

 
3

1 2 3 4cos( ) sinx C x C y y C x C xω ω ω ρ τ
ω

Ω ′′ ′ ′+ − + + =  
 

 (6.2- 7) 
 

 
3

1 2 3 4cos( ) cosy C y C x y C y C yω ω ω ρ τ
ω

Ω ′′ ′ ′+ + + + =  
 

 (6.2- 8) 

 

where the prime ( )'  denotes differentiation with respect to dimensionless time 

τ . Dividing equations (6.2-7) and (6.2-8) by ω , gives  
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 ( )3
1 2 3 4cos( ) sinx C x C y y C x C x t

ρ φ
ω

′′ ′ ′+ − + + =  (6.2- 9) 
 

 ( )3
1 2 3 4cos( ) cosy C y C x y C y C y t

ρ φ
ω

′′ ′ ′+ + + + =  (6.2- 10) 
 

where, 1
1

C
C

ω
= ; 2

2

C
C

ω
= ; 3

3

C
C

ω
= ; 4

4

C
C

ω
= ; φ ω=  

The second order ordinary differential equations are then split into first order 

ordinary differential equations making them more compact. 

 x u′ =  (6.2- 11) 
 

 3
1 2 3 4sin( ) cos( )u t C u C v y C x C x

ρ φ
ω

′ = − + − −  (6.2- 12) 
 

 y v′ =  (6.2- 13) 
 

 3
1 2 3 4cos( ) cos( )v t C v C u y C x C x

ρ φ
ω

′ = − − − −  (6.2- 14) 
 

6.2.2 Mathematica TM Code 

Nonlinear dynamic analysis of the rotor can also be carried out by using the 

NDSolve numerical integrator within MathematicaTM. The program code has been 

developed for phase plane construction, Poincaré map generation and time plot 

calculation, and is presented in Appendix C2. For effective and efficient analysis 

the second order ordinary differential equations are split into two first order 

ordinary differential equations as at equations (6.2-11) to (6.2-14). These first 

order equations can then be used to calculate time responses, phase plane 

trajectories, and predictions of bifurcations.  

6.2.3 Definition of Parameters 

The parameter values for the program codes are presented in Table 6-1 for the 

models of coupled equations with and without the parametric force term, 

corresponding to all the data described in Chapters 3 and 4.  
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                                   Dynamics 2 Program Parameters 

                                       Dimensional Parameters 
  
Stiffness           Damping            Actuator           Stiffness       Excitation 
(Linear)          Coefficient            Force               (Cubic)        Amplitude 
                                                                                
[ 2s− ]                  [ 1s− ]                 [ 2ms− ]               [ 2 2m s− − ]          [m 2s− ]                             
 
 

3 61901.6C =      1 21.9C =         7 1533.7C =        9
4 8.15 10C = ×         12ρ =  

 
 
Gyroscopic term 1

2 0.4C s−= ;                                          

Reference frequency: 248.8 /rad sω = ; Parametric frequency: 2 497.6 /rad sΩ =  

 

 
--------------------------------------------------------------------------------------------------- 

                                       Nondimensional Parameters 
 
  
Stiffness           Damping            Actuator           Stiffness       Excitation 
(Linear)          Coefficient            Force               (Cubic)        Amplitude 
                                                                                                                                  
 
 

3 248.8C =         1 1.4C =             7 6.16C =        7
4 3.28 10C = ×         0.048

ρ
ω

=  

 
 
Gyroscopic term 2 0.025C = ;   248.8φ = rad/s; 2 497.6φ =  rad/s  
 

Table 6- 1: Data used for numerical simulations   
 

6.3 Bifurcation Analysis 

In the study of dynamical systems, a sudden qualitative or topological change 

can occur under the variation in a parameter of the system. These changes 

occurring in the dynamics of the system are called bifurcation.                        

Poincaré (1854-1912) originally introduced the term bifurcation, into nonlinear 

dynamics. In bifurcation representations, it is useful to consider a space formed 
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by using the state variable(s) and chosen control parameter(s), called the state-

control space. Locations at which bifurcations occur in this space are called 

bifurcation points. It is often desirable to know where in the parameter space 

nonperiodic motion exists. Bifurcation diagrams can be used to indicate such 

domains.  A bifurcation diagram provides a summary of the essential dynamics of 

systems and is therefore a useful way of observing nonlinear dynamic behaviour 

(Chang-Jian et.al., 2007). 

A periodic motion may become unstable if the control parameters are allowed to 

vary, a scenario signifying dynamic deterioration of stability that could lead to 

eventual chaos. In literature, there are various types of bifurcations, however, 

in the present analysis a period doubling bifurcation can mostly be observed and 

is analysed in the following sections in detail. It is a bifurcation in which the 

system’s behaviour changes at integer multiples of the periodicity of the original 

response. If the control parameter is further varied, the motion may become 

chaotic. Appearance of multi-periodic motion indicates the set-in of dynamic 

instability. Bifurcation helps in identifying instabilities in dynamical systems and 

provides theoretical and practical ideas for controlling these systems and 

optimizing their operation. 

In understanding the dynamics within the models in Chapter 3, the Dynamics 2 

software was used to plot the bifurcatory behaviour of the amplitude responses 

as a function of normalised excitation acceleration and the Lyapunov exponent, 

and these are illustrated in Figures 6-2 to 6-4. All data used for these plots are 

system parameters taken from the experimental rig and graphs are plotted using 

nondimensionalised parameters tabulated in Table 6-1. All the figures are 

plotted using certain necessary Dynamics 2 commands and are summarised in 

Table 6-2. 

For a full understanding of these commands, the reader is referred to the 

definitions of these commands in Appendix C and the text entitled “Numerical 

Explorations” by Nusse and Yorke (1998).   
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 SPC IPP PI BIFPI BIFD BIFV CON 

Time Plots 30 1 0 0 200 400 On 

Phase Planes 30 1 0 0 200 400 On 

Poincare Maps 30 30 0 0 200 400 Off 

Bifurcation diagrams 30 30 0 500 1000 1000 Off 

Lyapunov diagrams 30 30 0 500 1000 1000 On 

 

                                 Table 6- 2: Progra m command values for Dynamic 2 Plotting 
 

6.4 Lyapunov Exponents 

Lyapunov Exponent is named after the Russian scientist Aleksandr Mikhailovich 

Lyapunov (1857-1918), who introduced a bespoke method for providing ways to 

determine the stability of sets of ordinary differential equations. The Lyapunov 

exponent has proved to be a powerful diagnostic tool for chaotic systems. The 

Lyapunov exponents of a system are a set of invariant geometric measures which 

describe, in an intuitive way, the dynamical content of the system and can serve 

as a measure of how easy it is to perform prediction on the system. Lyapunov 

exponents quantify the average rate of convergence or divergence of nearby 

trajectories generally, in a global sense. A positive exponent implies divergence 

and a negative one convergence. Any continuous time-dependent dynamical 

system without a fixed point will have at least one zero exponent and a zero 

exponent indicates the continuous nature of a flow in time. Systems with 

positive exponents have positive entropies and their trajectories that were 

initially close together move apart overtime. The more positive the exponent, 

the faster they move apart. Any system containing at least one positive 

Lyapunov exponent is defined  to be chaotic or having a strange attractor, with 

the magnitude of the exponent reflecting the time scale on which systems 

dynamics become unpredictable. For systems with negative exponents, the 
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trajectories move together. Such systems exhibit asymptotic stability and the 

more negative the exponent the greater the stability. Systems with zero 

Lyapunov exponents are said to be in some sort of steady state mode and are 

conservative physically. The Lyapunov exponent, λ  is defined by taking the 

natural logarithm of the Lyapunov number (defined by the divergence ratio). 

  
( )

0

0

00

,1
lim
t
x

x X t
In

t x
λ

→∞
∆ →

∆
=

∆
                                          (6.2- 15) 

 

 

 

Figure 6- 1: Sketch of the change in distance betwe en two nearby orbits used to define 
Lyapunov exponent 
 

Figure 6-2 shows the normalised bifurcation diagrams of amplitudes 1x  and 2x  as 

a function of the excitation frequency Ω . Where, 1x  is the amplitude in the 

horizontal direction and 2x  is the amplitude in the vertical direction. The first 

mode is examined around the resonant region. It is evident that as the mass 

unbalance (mu) is increased from the values of Figure 6-2(a) to those of 6-2(d), 

the response amplitudes increase, hence broadly correlating with the multiple 

scales results of Figure 4-2. Figure 6-2 also shows the Lyapunov exponents 

plotted for the respective bifurcations of the various mass unbalances. Periodic 

motions are evident from the negative values of the Lyapunov exponents. It is 

again evident that the increase in mass unbalance makes the hardening effect 

more noticeable. 

6.5 Bifurcations as Functions of Excitation Accelerati on  

Figure 6-3 shows the Lyapunov exponent and Bifurcation diagrams of amplitude 

as controlled by the normalised excitation acceleration, when the excitation 

frequency is set equal to the first mode resonance frequency. In this thesis a 

weakly nonlinear system is being investigated, and for the physical system to 

0 0
x x+ ∆  

0
x  

 ( )0,x X t∆
  0x∆  
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become more intrinsically nonlinear the excitation acceleration and the 

nonlinear cubic coefficient values have to be increased either by increasing the 

mass unbalance or by making the shaft more flexible, or both. Therefore in 

order to obtain and investigate the situation when the system is more strongly 

nonlinear the mass unbalance value is artificially increased to various multiples 

of the actual value. This manipulation increases the excitation value to a high 

level driving the weakly nonlinear system into more nonlinear reaches of the 

response range making the effect of the nonlinear terms proportionally greater 

than they would otherwise be. This effect causes the system to show possible 

bifurcations to chaos. The periodic response for the case based on the smallest 

mass unbalance in Figure 6-3(a) (i.e. the most weakly nonlinear response in 

Chapters 4 to 6), bifurcates to chaos as the mass unbalance increases. Positive 

Lyapunov exponents for figures 6-3(a)-(d) respectively show clear indication of 

chaos, while the negative Lyapunov exponents show stable motion. Also from 

these graphs, as the response become chaotic, less excitation acceleration is 

required in each of the four cases successively. One finds that five kinds of 

system motion exits over the range of excitation acceleration values. These are 

stable single period motion, stable period two motion, stable period four 

motion, stable quasi-periodic or multiperiod motion, and chaotic motion.  

Figure 6-3(a) shows the bifurcation in the horizontal direction as controlled by 

the normalised excitation acceleration at a mass unbalance of 0.004um kg= , 

using the first mode resonance frequency value Ω  from Table 6-1. It appears 

that for normalised excitation acceleration values from 200 to 730, the iterates 

settle down onto a fixed point. This is considered to be period one motion. At 

the value of 730 the fixed point becomes unstable and the period doubles, i.e. 

the iterates visit two different values in turn. At this value the period one 

motion becomes unstable in favour of a stable period two motion. Figure 6-3(b) 

and (c) show the bifurcation in the horizontal direction as controlled by 

excitation acceleration for the mass unbalance values 3 um  and 4 um  respectively. 

By increasing the mass unbalance values the periodic response bifurcates to 

period doubling and finally to chaos. Negative Lyapunov exponents show stable 

motion, while the positive Lyapunov exponents show clear indication of chaos.  
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Period doubling bifurcation is observed with a further increase of mass 

unbalance value in Figure 6-3(d). Period two, period four and multiperiod 

motions can be found for the regions of excitation acceleration leading to chaos. 

Also shown is a period doubling bifurcation process leading to a second chaotic 

motion after the first chaotic motion. It can also be observed from Figure 6-3 

that any time the system bifurcates to higher multiples of periodic motion, a 

jump up to the zero level in the Lyapunov exponent plot occur, which is also an 

indication that the system moves to higher multiples of the period. 

Figure 6-4 shows the bifurcation as controlled by normalised excitation 

acceleration in the horizontal direction, and using the first mode resonance 

frequency value, when a parametric force term is included at a parametric 

frequency of twice the first mode resonance frequency value. By increasing the 

mass unbalance values, the periodic responses remain periodic. The bifurcation 

diagrams do not change qualitatively, while the negative Lyapunov exponents 

show stable periodic motion. This means upon introducing the parametric force 

terms into the system all the period doubling and chaotic motions present in the 

system, and observed in Figure 6-3, become stable. This indicates that the 

period doubling and chaotic motions, which is bounded by the bifurcation set, is 

automatically shifted resulting in stable periodic motions.  

Discrete excitation acceleration points in Figures 6-3 and 6-4 are selected for 

the plotting of phase planes, Poincaré maps and time plots for a more detailed 

understanding of the system’s dynamics in the next section. 
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                           (a) 0.004um =                                             (b) 3 um                                

 

                                                 

                  
                           
                                (c) 4 um                                                 (d) 5 um  
   

Figure 6- 2: Bifurcation diagrams showing amplitude  as a function of Ω (X-axis: Ω ,Y-
axis: 1x , 2x ), where  1 2x x x= = . 
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                               (a) um                                                        (b) 3 um                                

 

                                                                          

                                 
  
                                (c) 4 um                                                 (d) 5 um    

 

Figure 6- 3: Lyapunov exponent and Bifurcation diag rams of amplitude as a function of the 
normalised excitation acceleration in the horizonta l direction.     
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                               (a) um                                                        (b) 3 um                                

 

                                                                           

                                 
 
                               (c) 4 um                                                 (d) 5 um  
 

Figure 6- 4: Lyapunov exponent and Bifurcation diag rams of amplitude as a function of the 
normalised excitation acceleration for the Model wi th Parametric force term in the horizontal  
direction.     
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6.6 Phase Planes, Poincaré Maps and Time Plots 

The response of a dynamic system in general could be a fixed point, a periodic 

solution, or a non-periodic solution. By studying the geometric characteristics 

and flow paths of the solution trajectory in the state space, the stability near 

the trajectory can be determined using phase portraits. For a trajectory that 

follows a close orbit in the phase portrait and returns precisely to where it first 

started  after a period  T, the motion is periodic and the closed orbit is called a 

limit cycle. Chaotic motions, on the other hand, have orbits that never close or 

repeat. Thus, the trajectory of the orbits in the phase plane will tend to fill up a 

section of the phase space. Although wandering of orbits is a clue to chaos, 

continuous phase plots provide very little information and one must use a 

modified phase plane technique called Poincaré mapping. 

Poincaré map is a qualitative topological approach widely applied to the 

predictions of chaos and the study of stability in the phase space through 

exploring the geometric features of the sequence of points on a Poincaré 

section. A Poincaré section is a hypersurface in the state phase transverse to the 

flow of a system. In non-autonomous systems, points on the Poincaré sections 

represent the return points of the time series at a constant interval T, where T 

is the driving period of the existing force. The projection of all points in a 

Poincaré section to their image points by following trajectories until they first 

return to the Poincaré section is referred to as Poincaré map of the dynamic 

system. For a periodically forced, second-order nonlinear oscillator, a Poincaré 

map can be obtained by stroboscopically observing the position and velocity at a 

particular phase of the forcing functions. For quasi-periodic motion, the returns 

points in the Poincaré map form a closed curve. For a system undergoing chaotic 

motion, its associated Poincaré map shows specific shapes or many irregular 

points and features indicating the state and extent of bifurcation. For nT-

periodic motion, the return points in the Poincaré map are n discrete points. 
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6.6.1 Analysis of Phase Planes, Poincaré Maps and T ime Plots 

More detailed analysis of Figures 6-3 and 6-4 are extended to phase planes, 

Poincaré maps and time plots (i.e. Figures 6-5 to 6-11) at discrete excitation 

acceleration points. The phase plane and time plots are plotted at assumed 

steady-state conditions, taken to be during the interval t=995-1000 seconds. 

However, the Poincaré maps are plotted from the transient time (i.e. t=0 to 

1000 seconds) as most of them converge to a period one motion with just a 

point, therefore richer diagrams are preferred and so these maps converge to 

darker areas and finally to a point attractor. Those that are not in period one 

motion show irregular structures, or strange attractors, or a number of irregular 

points. A break-down of the observations for the sets of coupled equations with 

and without parametric terms is as follows. 

6.6.1.1 At Normalised Excitation Acceleration of 25 0 (Figure 6-5): 

• All the bifurcation diagrams for the different values of mass unbalance 

show periodic and stable motions with negative Lyapunov exponents as 

depicted in  Figures 6-3 (a) to (d). 

• The phase planes show a single closed orbit, showing only stationary, 

post-transient motion. The orbit is single and periodic, corresponding with 

the bifurcation diagrams. It indicates a period one motion. The solutions 

show regular patterns in the steady-state region of time t=995-1000 

seconds and are indicative of stable periodic solutions.  

• All the Poincaré maps converge into a single point (circled). As the maps 

consist of one point, which implies periodic motion, it indicates a period 

one motion with a stable attractor. 

• All the time plots show evidence of a periodic response. 
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6.6.1.2 At Normalised Excitation Acceleration of 40 0 (Figure 6-6): 

• The bifurcation diagrams in Figure 6-3(a) and (b) show period one motion 

whereas Figure 6-3 (c) and (d) show period two and period four motions, 

respectively. All the motions are stable, with negative Lyapunov 

exponents.  

• Their corresponding phase planes indicate the period doubling 

phenomena. Figures 6-6(a) and (b) show single closed orbits indicating a 

period one motion  and 6-6(c) show a closed orbit crossing itself, and 

depicts a period two motion as in their bifurcation diagrams. Figure 6-6(d) 

show a period four motion as in their bifurcation diagrams. The orbits 

show regular pattern indicating stable solutions. 

• The Poincaré maps consist of a finite number of points, implying periodic 

motions. In Figures 6-6(a),(b),(c) and (d), the maps converge to one, two 

and four distinct points  indicating stable period one, period two and 

period four motions, respectively. 

• All the time plots show evidence of periodic motions. 

6.6.1.3 At Normalised Excitation Acceleration of 46 0 (Figure 6-7): 

• The bifurcation diagrams for 5 um , in Figure 6-3(d), show chaotic motion 

with positive Lyapunov exponents, whereas that for 4 um , in Figure 6-3(c) 

shows period two motion with a negative Lyapunov exponent. All the 

others are in period one motion.  

• The phase planes underpin the above. For the chaotic motions densely 

filled phase planes are obtained. The plots have overlaid, complicated 

and repeated orbit cross-overs. Had the simulation been allowed to 

continue, the plane would be even more overlaid by repeated orbit cross-

overs. A complicated phase plot is one indicator of chaotic motion; 

however, motion that rides on a complicated looking orbit may very well 

be fully-predictable, and thus non-chaotic, because a phase plot with very 
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large numbers of degrees-of-freedom may look similarly complicated, 

even if the system is in fact linear and thus certainly non-chaotic. 

• In Figures 6-7(a) and (b) the Poincaré maps show one distinct point 

indicating stable period one motion, and in Figures 6-7(c), 2 distinct 

points are shown indicating stable period two motion, whereas in Figures 

6-7(d) the Poincaré map shows irregular shape and is that of chaotic 

motion, where more and more points are added to the map as the 

simulation time marches on, filling out the details of the strange attractor 

on which the chaotic motion rides, and therefore indicative of chaotic 

motion.  

• The time plots are in periodic motion, except for one in Figure 6-7(d) 

where the oscillations never repeat. This is another qualitative visual 

indicator of chaotic motions. 

6.6.1.4 At Normalised Excitation Acceleration of 50 5 (Figure 6-8): 

• Bifurcation diagrams in Figures 6-3(a) and (b) show period one and period 

two motions respectively with negative Lyapunov exponents, whereas 

Figure 6-3(c) show chaotic motions with positive Lyapunov exponents.  

• The phase planes underpin the above. For the chaotic motions densely 

filled phase planes are obtained. The plots have overlaid, complicated 

and repeated orbit cross-overs. Figures 6-8(a) and (b) show closed orbits 

indicating period one and period two motions respectively. 

• In Figures 6-8(a) and (b) the Poincaré maps show one and two distinct 

points respectively indicating stable period one and period two motions 

respectively, and in Figures 6-8(c) the Poincaré map shows an irregular 

shape and is that of chaotic motion.  

• The time plots in Figures 6-8(a) and (b) show stable motions, but the plot 

in Figure 6-8(c) is non-periodic, the oscillations do not repeat, indicating 

chaotic motion.  
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6.6.1.5 At Normalised Excitation Acceleration of 61 8 (Figure 6-9) and 840 
(Figure 6-10): 

• The phase planes, Poincaré maps and time plots for these discrete 

normalised excitation acceleration display periodic or chaotic motions 

corresponding with their bifurcation diagrams in Figure 6-3.  

6.6.1.6 Including Parametric Force Term (Figure 6-1 1): 

• All the bifurcation diagrams for models in Figure 6-4 show stable periodic 

motions with negative Lyapunov exponents.  

• By analysing the system at the excitation levels, Figure 6-11 shows the 

phase plane, Poincaré map and time plot for the discrete normalised 

excitation acceleration displaying stable periodic motions corresponding 

with their bifurcation diagrams and Lyapunov exponents. 
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                             Phase Plane                                  Poincaré Map                                        Time Plot 

                        t=995-1000 secs                               t=0-1 000 secs                                 t=995-1000  secs 

                   
 
                                                                   (a) um     

                                                         

                   
 
                                                                   (b) 3 um                                                             

 

                   
 
                                                        (c ) 4 um  

 

                  
 
                                                                   (d) 5 um             

Figure 6- 5: Dynamical analysis of response to norm alised excitation acceleration at 250 in 
the horizontal direction 
 



Chapter 6: Investigations of Systems Dynamics  
 

 

 
122 

                         Phase Plane                                  Poinca ré Map                                      Time Pl ot 

                          t=995-1000 secs                              t=0-1000 secs                                   t=995-1000 secs 

                   
 
                                                                (a) um  

 

                   
 
                                                            (b) 3 um  

 

                   
 
                                                            (c) 4 um  

 

                  
 
                                                                  (d) 5 um  

Figure 6- 6: Dynamical analysis of response to norm alised excitation acceleration at 400 in 
the horizontal direction 
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                    Phase Plane                                     Poi ncaré Map                                         T ime Plot 

                     t=995-1000 secs                                 t=0 -1000 secs                                      t=9 95-1000 secs 

                   
 
                                                      (a) um  

                   
 
                                                                 (b) 3 um  

                   
 
                                                                (c) 4 um  

                   
 
                                                     (d) 5 um  

Figure 6- 7: Dynamical analysis of response to norm alised excitation acceleration at 460 in 
the horizontal direction 
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                     Phase Plane                                       P oincaré Map                                    Time  Plot 

                       t=995-1000 secs                                  t= 0-1000 secs                                  t=995- 1000 secs 

                   
 
                                                      (a) um  

                   
 
                                                               (b) 3 um  

                                        

                   
 
                                                           (c) 4 um  

Figure 6- 8: Dynamical analysis of response to norm alised excitation acceleration at 505 in 
the horizontal direction 
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                    Phase Plane                                        Poincaré Map                                     Ti me Plot 

                     t=995-1000 secs                                    t=0-1000 secs                                    t= 995-1000 secs 

                   
 
 
                                                            (a) um  

                   
 
                                                        (b) 3 um  

 Figure 6- 9: Dynamical analysis of response to nor malised excitation acceleration at 618 in 
the horizontal direction 
 

                       Phase Plane                                       P oincaré Map                                 Time Pl ot 

                          t=995-1000 secs                                   t=0-1000 secs                               t=995-1000 secs 

                   
 
                                                                (a) um  

Figure 6- 10: Dynamical analysis of response to nor malised excitation acceleration at 840 in 
the horizontal direction 
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                                Phase Plane                                  Poinca ré Map                                   Time Plot 

                          t=995-1000 secs                              t=0-1000 secs                                  t=995-1000 secs 

                   
 

Figure 6- 11: Dynamical analysis of response to nor malised excitation acceleration of 
models with the parametric force term in the horizo ntal direction 
 

6.7 Numerical investigations in MathematicaTM code 

In this section the numerical investigations of the systems dynamics has been 

carried out by employing the NDSolve integrator within MathematicaTM for the 

integration and prediction of the dynamics of the flexible rotor system for given 

initial conditions. The program code developed for the analysis of phase planes, 

Poincaré maps and time plots is presented in Appendix C2. The method used in 

the code is the Runge-Kutta method. All the plots in Figures 6-12 to 6-16 show 

stable periodic motions. The phase planes indicate periodic orbits in which the 

solutions start at the centre and moves outward in an elliptical motion. 

Corresponding Poincaré maps are plotted from the transient times as they 

converge to a period one motion and to darker areas in the middle. From these 

results there are no clear indications of chaos in the flexible rotor system. 

More detailed analysis of Figure 6-3 are extended to phase planes, Poincaré 

maps and time plots at discrete normalised excitation acceleration points using 

the MathematicaTM program code and the results are presented in Figure 6-17.  

The program code is used for the prediction of chaos for the models by using the 

numerical data from table 6-1. Employing the NDSolve integrator within 

MathematicaTM in analysing the bifurcation plots in Figure 6-3 at normalised 

excitation accelerations of 618, 505, and 460 for 3 um ,4 um  and 5 um  respectively, 

the phase plane plots show overlaid, complicated and repeated orbit cross-

overs. Their corresponding Poincaré maps show irregular shapes and are 
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indicative of chaotic motion. The time plots are non-periodic, the oscillations do 

not repeat and all the results mirror those in Figures 6-7(d) and 6-8 (c) and 6-9 

(b) respectively. 
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Figure 6- 12: Poincaré maps for the Models from sol utions obtained from bespoke 
integration code in MathematicaTM. 
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Figure 6- 13: Phase planes and Time plots for m u from solutions obtained from bespoke 
integration code in MathematicaTM. 
 



Chapter 6: Investigations of Systems Dynamics  
 

 

 
130 

                                 Phase  Plane                                                          Time  Plot  
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Figure 6- 14: Phase planes and Time plots for 3m u from solutions obtained from bespoke 
integration code in MathematicaTM. 
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Figure 6- 15: Phase planes and Time plots for 4m u from solutions obtained from bespoke 
integration code in MathematicaTM. 
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Figure 6- 16: Phase planes and Time plots for 5m u from solutions obtained from bespoke 
integration code in MathematicaTM. 
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                   Phase Plane                         Poincare Map                                  Time Plot 
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                             (a) At normalised excitation acceleration of 618 fo r 3 um . 
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                            (b) At normalised excitation acceleration of 505 fo r 4 um . 
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                            (c) At normalised excitation acceleration of 460 fo r 5 um . 

                                           

Figure 6- 17: Dynamical analysis of response to nor malised  excitation acceleration at the 
various discrete points from solutions obtained fro m integration code in MathematicaTM 
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CHAPTER 7  

EXPERIMENTAL INVESTIGATIONS 

_________________________________________________ 

7.1 Controlling Flexible Rotor Vibration by means o f an                           

Antagonistic SMA/Composite Smart Bearing. 

7.1.1 Introduction 

The main themes of the research discussed in this chapter are the analysis and 

the testing of systems of integrated structural components and active actuators. 

In particular, systems are investigated comprising strategically designed and 

applied SMA and piezoelectric elements, i.e. SMA strips within glass/epoxy 

composites and piezoelectric stack actuators. Extensive recent research by śak 

et.al., (2003) and  Inman et.al., 2006 on the application of shape memory alloy 

(SMA) elements integrated within glass epoxy composite plates and shells has led 

to the design of a novel smart bearing based on the principle of antagonistic 

action. In a previous work by śak et.al., (2003), a sleeve ring composite host 

housing designed showed that a single SMA/composite active bearing could be 

very effective at both altering the natural frequency of the fundamental whirl 

mode as well as modifying the modal amplitude. The drawback of the single 

ended SMA/composite active bearing design is the disparity in the time constant 

between the relatively fast heating phase and the much slower cooling phase 

which is entirely reliant on externally supplied forced air cooling. This is 

principally because SMA can do no work when it is relaxing to its low 

temperature state, and so this was a significant limitation for the work as 

reported in the work of śak et.al., (2003). This has led to the antagonistic 

design in this thesis, in which each half of the new bearing has its separate 

heating as well as its own independent forced-air cooling system. The 

antagonistic design results in virtually equalising the time constants and giving 

faster responding push-pull loads on the centrally located bearing. This has the 

consequent knock-on effect of making the system generally more conducive to 

the control of resonant vibration.  
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It can often be useful to modify the frequencies of a rotor-shaft system. The 

main motivation in such cases is to avoid critical speeds whilst running up and 

running down rotors. The technique to be developed here is to use 

SMA/composite technology within bearing housings in rotating machinery in 

order to achieve optimal run-up and run-down of the rotor so that the effects of 

all significant resonances are modified. There are a number of ways in which 

variable pedestal properties may be devised to control the vibration levels and 

rotor stresses in a rotating machine.  One option is to vary pedestal and/or 

bearing properties in such a way as to minimise the time a rotor spends at, or 

near, a critical speed. During operation, vibration levels may be substantially 

reduced by appropriate changes to support stiffness, causing changes to critical 

speeds. 

The solution proposed here is to use the SMA effect to control the stiffness of a 

rotor bearing housing and hence manipulate the frequencies of the rotor system.  

The work proposed is an outgrowth of the previous work of śak et.al., (2003) 

and Segalman et. al., (1993) to use an SMA composite to actively change the 

stiffness of the rotor system.  This concept, attempted numerically in Segalman 

et.al, (1993) with basic models, is to avoid critical speeds during run up and was 

addressed by śak et.al., (2003) with improved modelling and experimental 

implementation. śak et. al., (2003), showed that for a laboratory rotor system 

supported on two bearings, one of which is an active component comprising a 

cylindrical sleeve with specially configured and integrated SMA strips, the 

critical speeds can be usefully shifted about their nominal values. The work 

shows how such an active bearing installation can be designed and discusses the 

many trade-offs required to optimise the performance in a useful way. It is 

shown that the principal trade-offs relate to stress in the composite host, the 

physical size and shape of this component, the quantity and distribution of SMA, 

and the local operating dynamics.  The basic SMA effect is up to an 8% change in 

strain as the material’s temperature is changed from the low temperature 

martensitic state to the high temperature austenitic state (Funakubo,1987). 

Usually, the SMA’s temperature can be controlled either by direct or resistive 

heating. Here use is made of resistive heating by passing a controlled current of 

up to 35 A (at 12 V DC) through the SMA strips bonded to the bearing housing.     
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In the previous work of śak et. al., (2003) a simple flexible rotor system has 

been investigated. Different types of boundary conditions for the rotor have 

been examined theoretically: simply supported at both ends, one end simply 

supported, one end clamped, and then finally clamped at both ends. The 

dynamic behaviour of the rotor in terms of its modes of natural vibration, 

resonant frequencies and forced vibration amplitudes due to imbalance, have all 

been studied.  The study showed conclusively that the dynamic response of a 

flexible rotor system could be substantially changed by adjusting the conditions 

at the shaft’s boundary. With any rotor system operating above its first critical 

speed there are a number of issues to be addressed, the first, and perhaps most 

important, is the vibration level at the operating speed.  The second issue to 

consider is the peak amplitude occurring during transient operation, such as run-

up or run-down.  A significant contribution to alleviating problems can be gained 

by varying the pedestal stiffness by the use of Shape Memory Alloys. A third area 

in which SMA technology can play an important role is in equalising the vertical 

and horizontal stiffness terms of a bearing support.  This is particularly relevant 

in machines where gyroscopic terms are important, and this implies, almost 

invariably, high speed, overhung rotors.   

7.1.2 Overview of the Experimental Rig 

The rotor is supported by a heavy frame in order to be sure that all the 

vibrations, that are present and are to be detected by other devices, are due to 

the rotor itself and not to support structure effects. The mechanical core of the 

rig is an unbalanced rotor such that a force at the excitation frequency is 

generated during rotation. The rotor is supported by a frame as shown in Figure 

7-3. The rotor-shaft is fixed on the left hand side by a normal ball bearing, 

whilst on the opposite side there is a special bearing comprising a composite 

tube fitted with axially equal-spaced SMA strips (Figure 7-2(a)). The shaft is 

located within a small ball bearing whose outer race is very tight press-fit into 

the composite tube. The electric motor (Figure 7-2(b)) is directly located within 

the lower part of the rig framework, and without the use of a special vibration 

damper to absorb vibration. The motion is transferred from the bottom of the rig 

to the top by a pulley-belt system (Figure 7-2 (c)) with a transmission ratio of 

one, so that shaft spin speed is equal to the electric motor speed. For 

monitoring the vibration produced, a laser vibrometer is used in connection with 
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a spectrum analyser. The SMA strip temperature is constantly kept under 

observation by means of thermocouples attached to the outer surface of the SMA 

strips. Thermocouples are used to detect the temperature of the strips and the 

room temperature. High current low voltage ohmic heating is used for SMA 

transformation, and the current levels are set by means of a series rheostat. 

High flow rate fans (Figure 7-2 (d)) are employed for the cooling of the SMAs. A 

special heater box designed such that switching on the heaters on one side of 

the antagonistic SMA/composite bearing automatically switches on the cooling 

fan on the other side and vice versa, is used to control the switching on and off 

of the heaters and the cooling fans.   

 

 

 

 

 

 

 

 

             Figure 7- 1: SMA Experimental set-up f or response measurements 
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                                (a) Antagonistic Bearing                     (b) Electric Motor                    

                    

                 (c) Pulley-belt system                                         (e) Cooling Fans                              

                            

Figure 7- 2: Schematic view of Instruments used for  the Antagonistic SMA/Composite Smart 
Bearing experiment 

         
 

 

                 Figure 7- 3: The Antagonistic SMA/ Composite Smart Bearing Test Rig 
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7.1.3 Active Bearing Concept 

The basic concept proposed here is the use of integrated SMA/composites in the 

form of a cylindrical bearing housing, whose lateral stiffness properties could be 

actively controlled by means of SMA activation. This follows directly from the 

concept reported in śak et.al., (2003).  However, one of the difficulties in using 

SMA as an actuator in a mechanical system is that SMA can do no work when it 

relaxes to its low temperature state.  This was a limitation of the results given in 

śak et.al., (2003) that is rectified here by employing a new design using an 

antagonistic pair of SMA composite bearing housings. This new system has 

improved bandwidth and provides more control over the dynamics of the rotor 

system. A schematic of the antagonistic bearing system is given in Figure 7-4 

where each end is actually fixed to ground. In this system a ball bearing is fitted 

halfway down a glass epoxy composite tube, entering through one end of the 

tube. The tube is divided into two regions, one on each side of the centrally 

located bearing. SMA strips are bonded in two independent sets of four, each set 

running axially along half the length of the tube and separated by 90 º around 

the tube. The four strips in each set are electrically connected in series. This 

provides a convenient and fast way of heating each set of SMA strips through the 

martensite-to-austenite transformation temperature, and provides a significant 

axial contraction load on the tube in either direction indicated in Figure 7-4.  

The SMA can only perform work when heated and it would normally cool at the 

natural rate of convection with the surrounding medium (air in this case). Thus 

the relaxing rate of the SMA is not very controllable.  To overcome this, two 

changes have been made. The first is to form the push-pull arrangement of 

Figure 7-4, which is termed antagonistic in this work.  By alternating the current 

between the SMA strips between the left and the right sides of the bearing, the 

SMA actuation can perform work in both directions as illustrated by the arrows.  

So, as the SMA on the right relaxes, the SMA on the left is activated, giving both 

greater control authority and improved bandwidth of operation for the active 

bearing system. The second change in the design that was implemented in śak 

et. al., (2003) is to introduce active cooling of the SMA strips. The relaxation 

time of each strip is controlled by the convective heat transfer coefficient, 

following Newton's law of cooling. This coefficient ranges over several orders of 
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magnitude depending on the nature of the surroundings. In particular, the 

coefficient increases by an order of magnitude from still air to moving air.  For 

example, for an SMA wire of 0.8mm, the heating time is about 50ms while the 

cooling time to 100% relaxation is about 1s under still air (Hunter et.al., 1991). 

However, studies carried out by Shahin et.al., (1994) showed that the time 

constant of relaxation improves up to four times if subjected to forced 

convection. Hence, an active cooling system was also added to the antagonistic 

active bearing system to achieve shorter relaxation times in the passive SMA. 

 

 

 

Figure 7- 4: Schematic of the antagonistic SMA/Comp osite bearing housing. 
 

7.1.4 Active Bearing Experiment 

The rotor-bearing system is set to the required excitation and the SMA elements 

are activated by passing a controlled current of up to 35A through them. The 

flexible rotor is stiffened by heating the outer SMA elements to about 120 oC and 

then returned to the original state, just as quickly, by switching on the inner 

elements instead and simultaneously air cooling the outer elements to room 

temperature. The switch-over is performed again by switching off the inner 

elements, air-cooling them, and switching on the outer elements. The vibration 

response of the rotor-bearing system is then measured by means of a Polytech 

Laser Vibrometer allowing the response to be identified and monitored. A multi-

channel data acquisition analyser is then used to analyse the responses. A series 

of timed tests is performed to assess the performance and average readings of 
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the amplitude values of the rotor system are taken. Sweep tests around the 

excitation frequency are performed, first without activating the SMA elements 

and then with the SMA elements activated. 

 

7.1.5   Experimental Results 

The results presented here are related to two states of the SMA strips. In the 

first state (not activated) it has been assumed that all the SMA strips are not 

activated, so no material properties are changed. In the second state 

(activated), however, when all the SMA strips on any one side are activated at 

the same time certain changes in the mechanical properties of the SMA material 

take place, namely Young’s modulus (see table 7-1 ). No recovery stresses or 

recovery strains generated during the activation of the SMA strips are considered 

here. Such an activation scenario corresponds to the Active Property Tuning 

(APT) method (i.e. where only changes in the material properties of the SMA 

components are utilised (Rogers et.al.,1989)). In this thesis the dynamic 

responses of the rotor system are presented in terms of changes in amplitudes of 

forced vibration. The frequency sweep responses with their corresponding 

amplitudes of vibration for the antagonistic case are presented in Figures   7-5 

and 7-6. As can be clearly seen from the results presented in Figures 7-5 and 7-6 

the antagonistic configuration of the SMA strips is a fundamental factor in 

maximising the dynamic performance. The dynamic performance is defined here 

in terms of changes in the resonant frequencies of the rotor and in terms of the 

amplitudes of the disk vibration due to the activation of the SMA strips. The 

experimental results for the forward-whirl amplitude in the flexible rotor have 

demonstrated that the stiffness can be influenced by the SMA. The measured 

responses of the rotor system from repeated tests are shown in Figures 7-5 and 

7-6. Resonant frequency shifts and amplitude reductions are observed when both 

the right hand and left hand sides of the SMA strips of the antagonistic bearing 

are activated. In the case of the unactivated SMA, an excitation frequency of the 

disk of 24 Hz is obtained, while the excitation frequency shifts to 24.2 Hz when 

the SMA is activated. It is thus shown that the first resonant frequency of the 

rotor is shifted by approximately 8% when the SMA strips are activated. At the 

same time the activation of the SMA strips reduces the amplitudes of the disk 

vibration by 19.4%.  



Chapter 7: Experimental Investigations  
 

 

 
142 

 

 

Property Value Property Value 

Martensite finish temperature MF 20.7oC Young’s Modulus EM 33.1 GPa 

Martensite start temperature MS 26.8oC Young’s Modulus EA 69.6 GPa 

Austenite start temperature AS 37.2oC Coefficient of thermal 

expansion Mα  

66.6 10 / oC−×  

Austenite finish temperature AF 47.0oC Coefficient of thermal 

expansion Aα  

51.1 10 / oC−×  

Stress influence coefficient CM 10.6 / oMPa C
 

Critical Stress Sσ  80.0 MPa 

Stress influence coefficient CA 9.7 / oMPa C  Critical Stress Fσ  155 MPa 

Maximum residual strain Lε  0.058   

 

Table 7- 1: Material properties of a typical SMA ma terial (Ni-Ti alloy), (http:www.sma-
inc.com). 
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                                            U- SMA unactivated, A- SMA  activated 

Figure 7- 5: The amplitudes of disc vibration versu s excitation frequency for the right hand 
side of the Antagonistic Bearing. 
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                                                            U- SMA unactivated, A- SMA activated 

Figure 7- 6: The amplitudes of disc vibration versu s excitation frequency for the left hand 
side of the Antagonistic Bearing.  
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7.2 Controlling Flexible Rotor Vibration by means of a  

Piezoelectric Stack Exciter.  

7.2.1 Introduction 

Unbalance forces are the main source of vibration in rotating machines, but  

perfect balance is almost impossible to achieve. Moreover the distribution of 

unbalance can change in time because of wear or depositions all machines are 

subjected to. Reduction of rotor vibration is very important for safe and 

efficient functioning of all rotating machines. This section proposes an active 

vibration control scheme for controlling transverse vibration of a rotor shaft due 

to mass unbalance and presents an experimental study. The use of piezoelectric 

actuators in active vibration control has been considered in the past by 

Palazzolo et.al., (1993) and Barret et.al., (1993). Yabuno et.al.,(2001) used a 

piezoelectric actuator to stabilize the parametric resonance induced in a 

cantilever beam and to control bifurcation resulting in the shift of the 

bifurcation set and the expansion of the stable region. Carmignani et.al.,(2001)  

developed an adaptive hydrodynamic bearing made up of a mobile housing 

mounted on piezoelectric actuators. In their work they showed that imposing a 

harmonic displacement on the mobile bearing, in two orthogonal directions, a 

rotating force, and a correcting moment can be produced on the shaft of a rotor 

system to reduce the bending caused by the unbalance. Das et.al.,(2007) 

proposed an active vibration control scheme for controlling transverse vibration 

of a rotor shaft due to unbalance. These authors worked on the vibration control 

of rotors due to unbalance by placing electromagnetic exciters, at convenient 

locations on the span of the rotor away from the bearings. They showed that, 

locations distant from discs are in general convenient for exciters as they do not 

interfering in any way with the rotor operation. The technique looks good 

economically, as no change in the choice or design of the existing bearing or 

support system of the shaft is needed. Similar electromagnetic exciters were 

conceptualised by Janik et.al., (1998) and were used to excite a rotor-shaft 

system for extracting the modal information by Janik et.al., (2000) and Irretier 

et.al., (2002).  

There are many natural phenomena in which excited parametric and self-excited 

vibrations interact with one another. Examples are flow-induced vibrations and 
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vibrations in forced rotor systems. The responses of nonlinear excited systems to 

parametric excitations have been investigated by many researchers. Several 

authors, including Skalak and Yarymovych (1960), Struble, (1963), Dugundji et. 

al.,(1970), Chester (1975) and Cartmell (1990) have studied the effects of 

combined parametric and forced vibrations in dynamic systems. Frolov, (1967) 

examined a mechanical system excited simultaneously by parametric and 

periodic forced excitations. Frolov, (1967) showed that the resonant amplitude 

can be reduced by random variation of the system parameters. Kotera et. 

al.,(1985) studied a beam subjected to a periodic axial force and simultaneously 

to a flow-induced vibration. Mustafa and Ertas,(1995) theoretically and 

experimentally examined the effect of a pendulum (attached to the tip of a 

parametrically excited cantilever beam) whose natural frequency is tuned to be 

commensurable with a frequency of the beam in order to generate 

autoparametric resonance. For chosen external and internal resonance 

combinations, where the excitation frequency is twice the natural frequency of 

the first beam mode, and the linearised pendulum frequency is one-half that of 

the first beam mode, the results showed that, in some parametric excitation 

frequency ranges, the pendulum acts as a vibration-absorbing device in the same 

manner as the pendulum attached to the main system under external excitation. 

Nguyen and Ginsberg (2001), studied vibration control of a simple pendulum 

using parametric excitation. They showed that with judicious selection of the 

parametric excitation, a parametric frequency that is very high relative to the 

highest contemplated excitation frequency can substantially reduce the forced 

vibration response at any lower excitation frequency. The above ideas have led 

to the design of the piezoelectric exciter and the deliberate introduction of 

parametric excitations into a flexible rotor-bearing system axially to moderate 

the response of the pre-existing mass-unbalance vibration inherent to the rotor. 

The idea here is to use a piezoelectric stack actuator to put axial excitations 

into the shaft to investigate the interactions between forced vibrations, which 

emanate from rotor unbalance, and parametric excitation which results from the 

periodic stiffness variation caused by a periodic axial excitations from the 

actuator. No attempt of vibration control of rotor systems by the use of an 

axially placed piezoelectric exciter has, however been reported to the author’s 

knowledge. Using the stability theory discussed in the previous chapters, a 

practically implementable strategy is proposed in which the inherent and 
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predominant instabilities in the flexible rotor-bearing system are manipulated in 

such a way that their effects on the overall performance of the rotor system can 

be effectively controlled. In justifying this work, a programme of experimental 

research has been carried out and the results show reductions in the resonant 

amplitudes for forward whirl in the flexible rotor-bearing system. 

 

7.2.2 Instrumentation 

 A commercial rotor-kit (Bently Nevada rotor kit RK4) and a piezoelectric exciter 

specifically developed during this research are used for this experiment. The 

rotor kit provided a rotor supported by bearings, an electrical drive to run the 

rotor with a separate control box from which the desired rotational speed is 

selected. The torque is transmitted from the electrical motor to the rotor by 

means of a solid coupling. Provided are displacement transducers to measure the 

movements of the rotor, and a rigid V-shaped base, to which any components 

could be easily attached. The rotor kit is equipped with the piezoelectric exciter 

designed for active vibration control. The critical parts of the exciter unit are, a 

piezoelectric actuator supported by a helical compression spring, all placed 

inside a linear sliding bearing, and an aluminium casing. The piezoelectric 

actuator is driven by a function generator through a piezoelectric actuator 

amplifier. To avoid direct contact between the shaft and piezoexciter, and to 

allow free rotation and movement of the shaft end, a small self-aligned bearing 

is fixed in between the shaft and the piezoexciter. The vibration response of the 

rotor is then measured by means of a Polytec Laser Vibrometer allowing the 

displacement responses to be identified and monitored by a multi-channel data 

acquisition analyser. Figures 7-7 and 7-8 show the experimental configuration for 

activating the flexible rotor system. The leading principle here is to control, 

axially, the vibrations of the rotor, supported on conventional bearings, by using 

the piezoelectric actuator. 
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                                Figure 7- 7 : Close -up of the Piezoelectric Exciter  
 

 

                                  Figure 7- 8: Asse mbly of the Piezoexciter Test Rig  
 

7.2.3 Design and Selection of Piezoexciter Componen t 

To select a suitable piezoelectric actuator there is the need to determine the 

likely force levels needed to excite the rotor parametrically, and suitable 

exciters which can provide this, at appropriate levels of displacement. As the 

rotor whirls there will be millimetre level axial contraction of the shaft leaving a 

gap which will have to be taken up in one way or another. Use was made of the 

mathematical model including the axial excitation force term developed in 

Chapter 3 to find the parametric excitation force that is actually needed for the 
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rig, in order to get parametric resonances and the displacement due to the axial 

contraction of the shaft. The NDSolve integrator within MathematicaTM code was 

employed to solve the set of differential equations. All other parameters were 

completely fixed and the parametric excitation force value was varied until a 

parametric plot was obtained and the value at which the response is predicted 

was taken as a threshold value for the parametric excitation force. The reader is 

referred to Appendix D.1 for the obtained parametric plot. The actuator only 

displaces by micrometres so there will be a potential gap between the actuator 

and the shaft-end when the rotor is whirling. The actuator will therefore have to 

follow the end of the shaft as it contracts, but because the other end of the 

actuator has to react against something, a spring is needed to provide sufficient 

reaction, and to take up the space left as the shaft contracts. Figure 7-9(a) 

shows the system when the rotor is either stationary or spinning without whirl. 

The design work shown in Figure 7-9 was initiated by the supervisor of this 

research, with the candidate completing it and then doing the numerical 

calculations. The shaft-end is fully to the right because the shaft has not 

contracted due to whirl. Therefore the spring is fully compressed and exerting 

its maximum force onto the shaft-end (through the actuator which is merely a 

solid object transmitting that force from one side to the other (right to left)). 

The maximum force available is given in equation (7.2-1),  

 
max 2S SF k δ=  (7.2- 1) 

 
where maxSF  is the maximum spring force, Sk is the spring constant, and 2δ  is the 

maximum spring compression. 

Figure 7-9(b) shows the shaft-end having displaced to the left as a consequence 

of whirl. The spring has extended to fill the gap, ∆ , and the remaining spring 

compression is 1δ . This is a pre-compression and is set up via equation (7.2-2) 

such that it satisfies the need for the minimum spring force ( minSF ) offered by 

the spring to equal at least the maximum force which the actuator is capable of 

( (max)actF ), meaning 
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                                         min (max) 1δ= =S act SF F k                                    (7.2- 2) 

where 1δ  is the ‘preload’ pre-compression. 

As the minimum spring force available must be enough to resist the maximum 

force generated by the actuator, the actuator then can transmit its force to the 

shaft-end, even when the shaft-end has travelled by its maximum contraction to 

the left. The free length of the spring is shown in Figure 7-9(c) it can easily be 

seen that the relationship between the pre-compression 1δ , the maximum 

compression 2δ  and the maximum shaft-end displacement, ∆ , is given by 

equation (7.2-3) 

                                                      1 2δ δ= − ∆                                          (7.2- 3) 

This means that the maximum spring force can be written as in equation (7.2-4). 

The reader is referred to Appendix D.2 for the calculated data. 

                                            ( )max 1S SF k δ= + ∆                                          (7.2- 4) 

A spring was chosen based on the maximum required spring force and hence the 

spring stiffness was obtained. 

7.2.4 Test Setup 

The objective of this work has been the design and construction of a test rig to 

verify the feasibility of active control of vibration in rotor dynamics using a 

piezoelectric actuator. In particular the possibility of reducing the amplitude of 

vibrations of a flexible dynamically unbalanced rotor within acceptable levels is 

investigated. This is carried out by designing a piezoexciter excited by a high 

frequency drive. The active piezoexciter comprises a sliding bearing which 

houses the piezoelectric stack actuator which is serially attached to a 

compression spring. Since the actuator operates only in expansion, with small 

displacement, the reaction spring is set up against it.  
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Figure 7- 9: (a) Shaft-end assembly when rotor is n ot whirling, (b) Shaft-end assembly when 
rotor is whirling at maximum amplitude and (c) Free  length of spring. 
 

The spring is adjusted to the required length by the spring compressor and 

voltage is applied through a piezoelectric voltage amplifier to the actuator 

which in turn develops the parametric excitation at a frequency of twice the 

first whirl frequency of the rotor system. The exciter is driven by a function 

generator through a high voltage amplifier. Activating the piezoelectric actuator 

at twice the excitation frequency of the rotor system generates the parametric 

excitation force to be introduced to the shaft, axially. The vibration response of 

the rotor-bearing system is then measured by means of the laser vibrometer.       

A multi-channel data acquisition analyser is then used to analyse the response.   

The compression spring of the exciter unit is compressed to the required length 

and the rotor-bearing system is set to its first whirl resonance frequency. The 

piezoelectric actuator is then activated, first at a frequency twice the first whirl 

frequency of the rotor system. It is again activated at a frequency less than 

twice the first whirl resonance frequency. A series of timed tests are performed 

and average readings of the amplitude values of the rotor system are taken. 
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Sweep tests around the first whirl frequency are then performed, first without 

activating the piezoexciter, and then with the exciter activated at the 

parametric excitation frequency, and at a frequency less than the parametric 

excitation frequency.  

 

 
Figure 7- 10: Schematic of the piezoelectric exciter. 
 

7.2.5 Experimental Results 

In order to investigate the performance of the test rig three different loading 

conditions for the piezoexciter components have been considered. The influence 

of the activation of the piezoexciter for the cases when the spring is compressed 

to the lengths of 20.2 mm, 25.2 mm and greater than 25.2mm were all 

systematically examined. In the first case, the spring is compressed to a length 

of 20.2mm, giving the maximum and minimum spring forces as 426.8N and 

426.4N respectively, with the minimum spring force acting as a ‘preload’ to the 

actuator. When the Piezoexciter is not activated, i.e. when no parametric 

excitation is applied to the shaft, and varying the shaft speed from 91.7 rad/s to 

437.3 rad/s, Figure 7-11(a) shows a peak amplitude value of 17.6 mm at the 

resonance frequency of 1 248.8Ω = rad/s or of 39.6 Hz. In Figure 7-11(b), 

activating the piezoexciter at a parametric frequency of 2 497.6Ω = rad/s, or 

79.2 Hz, i.e. at 2 12Ω = Ω , the amplitude of disk vibration reduces by 8.6% to 
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16mm. However, in Figure 7-11(c) activating the piezoexciter at an arbitrarily 

chosen parametric frequency of 450 rad/s i.e. at 2 12Ω < Ω increases the 

amplitude of the disk vibration by 10.4% to 19.3mm. 

In the second case, the spring is compressed to a length of 25.2mm, giving the 

maximum and minimum spring forces as 532.5N and 532N respectively,       

Figure 7-12(a) shows the peak amplitude of the disk vibration to be 15mm at the 

resonance frequency of 1 248.8Ω = rad/s, or 39.6 Hz. Activating the piezoexciter 

at the parametric frequency of 2 497.6Ω = rad/s, or 79.2 Hz, i.e. at 2 12Ω = Ω , 

Figure 7-12(b) shows that the amplitude of disk vibration reduces by 13% to 

13mm, which is a 4.4% increase in comparison with the previous case. Also 

activating the piezoexciter at an arbitrarily chosen parametric frequency of 450 

rad/s, i.e. at 2 12Ω < Ω , Figure 7-12(c) shows an increase in the amplitude of the 

disk by 10% to 16.5mm. 

In the third case when spring is compressed at lengths greater than 25.2 mm, 

activating the piezoexciter showed no visible changes in the amplitudes of 

vibrations. 

The experimental investigations show the same trend as explained in earlier 

chapters that the introduction of axial parametric excitation to a flexible rotor, 

which is also susceptible to mass unbalance, influences the amplitude of 

vibration of the disk. The greatest dynamic performance is obtained for the case 

when the spring is compressed to a length of 25.2mm, and on activating the 

piezoexciter, there was seen to be a reduction of 13% in the amplitude value at 

principal parametric resonance. On the other hand, an increase in amplitude 

value was observed when the exciter was activated at a parametric excitation 

frequency of less than twice the first whirl resonance frequency of the shaft. 

However, at a spring compression of 20.2mm, on activating the exciter, there 

was a reduction of 8.6% in amplitude at a parametric resonance of twice the 

resonance frequency of the shaft. Also, a higher increase in amplitude was 

observed when the exciter was activated at a parametric frequency less than 

twice the first whirl resonance frequency of the shaft at the spring length of 

20.2mm. Making the compression length more than 25.2mm had no visible effect 

on the amplitude of vibration. 
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7.2.6 Piezoelectric Exciter Applications 

It is desirable at this point to highlight the applications of this project. Although 

it is not common to find rotating machines equipped with exciters, there are a 

few special commercially available products such as the active magnetic bearing 

spindle, (Lee, et.al., 1992). The authors used the active magnetic bearing 

(AMB), a special form of electromagnetic actuator, as an excitation device for 

imposing forces to the rotating shaft of a tool dynamometer. (Lee, et.al., 1992) 

showed that vibrations of the rotating shaft can be drastically reduced by the 

electromagnetic exciter making the rotor operate right at the critical speed. 

This work discusses the benefits that can be derived by introducing exciters in 

rotating machinery. Although some investigations have been carried out with the 

possibility of introduction of exciters in machines either to control the machine 

vibration or to identify its system parameters by some authors like Lee, 

et.al.,(1992), it is likely that doubts would be raised about its practicality, 

particularly the cost of installation of such exciters in an existing machine. 

There is always a trade-off problem between the cost and benefits. However, if 

the benefits earned at the expense of installation of new exciters in a machine 

may even out the cost, such exciters will be considered as an important element 

of the machine.  

The piezoelectric exciter can be used in tackling real vibrational issues 

encountered by manufacturers in the design of new rotating machines amongst 

which hydraulic turbines and generators feature very importantly. In almost all 

production of electricity the rotating machines serve as an important part of the 

energy transformation system. In hydropower units, a hydraulic turbine 

connected to a generator converts the potential energy stored in the water 

reservoir into electrical energy in the generator. An essential part of this energy 

conversion is the rotating system of which the turbine and generator are part. 

During the last century the machines for electricity production have been 

developed from a few mega Watts per unit up to several hundreds mega Watts 

per unit. Hydroelectric power generation supplies about 20 percent of the 

world’s electricity and is the most important renewable energy converting 

industry. The installed capacity of hydroelectric power generation in 2000 was, 

according to the International Hydropower Association (2000) approximately 

700GW with a production of 2600TWh/year. The technically feasible potential of 
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hydropower is 14000TWh/year. Most of the feasible potential is in developing 

countries in Africa, Asia and South America (Karlsson (2008). Ability to meet 

voltage control, energy storage and high efficiency are valuable characteristics 

of hydroelectric power generation. The development and increase of size of the 

hydropower machines have also brought a need for new techniques. The most 

important developments are the increased efficiency, i.e. speed and 

performance, of the turbines and generators. However, increasing the efficiency 

of the rotating machines may result in excessive vibration which could end up 

damaging the machines. The vibrations can thus be reduced by making the rotors 

stiffer and this can be achieved through active control which presents the 

opportunity to artificially increase the stiffness and damping properties of the 

rotor (Inman D.J., 2001). One possibility of incorporating the necessary stiffness 

and damping properties into the machines could be through the use of the 

piezoelectric exciter. 
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        (a) Piezoexciter Unactivated                
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                                                          (b) Piezoexciter activated at 2 12Ω = Ω  
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                                                (c) Piezoexciter activated at 2 12Ω < Ω        

Figure 7- 11: The amplitudes of disc vibration vers us frequency with a spring compression 
length of 20.2mm. 
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                                                                  (a) Piezoexciter Unactivated                
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                                                     (b) Piezoexciter activated at 2 12Ω = Ω  
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                                                     (c) Piezoexciter activated at 2 12Ω < Ω        

Figure 7- 12: The amplitudes of disc vibration vers us frequency with a spring compression 
length of 25.2mm. 
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CHAPTER 8  

DISCUSSIONS OF RESULTS 

_________________________________________________ 

8.1 Introduction 

The theoretical and experimental analyses for the flexible rotor system have 

been presented in Chapters 3 to 7. The derivation of the mathematical models 

for the rotor system was discussed in Chapter 3. The analytical and numerical 

techniques, including the method of multiple scales and direct numerical 

integration by the use of MathematicaTM, for the prediction of the response of 

the presented models as shown in Figures 3-1 to 3-5 were presented in Chapter 

4. Chapter 5 presents a steady-state stability analysis of the rotor system via the 

Routh-Hurwitz stability criterion using the nonautonomous equations obtained 

from the multiple scales analysis in Chapter 4. A numerical study into the 

system’s dynamics was extended in Chapter 6, where a study of the bifurcations 

and stability of the solutions via phase planes, Poincaré maps, time plots, 

bifurcation diagrams and the Lyapunov exponent were summarised. Chapter 7 

summarised the novel methods of an antagonistic SMA/Composite bearing and a 

piezoelectric exciter for the control and reduction of vibration amplitudes in the 

flexible rotor system. The purpose of this chapter is to examine and extend the 

discussions where appropriate, the results from Chapters 3 to 7, allowing 

conclusions to be derived from the respective results. 

8.2 Analytical Results 

 Mathematical models for the rotor system are proposed for vibration analysis 

and control. In the following are summarised points from the studies: 

• Initially, the particular structure under investigation was a Jeffcott like 

flexible rotor system for which the systems kinematics are presented. The 

system equations were derived by first constructing the kinetic and strain 

energies of the rotor elements, followed by the formation of the virtual 
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work of external forces, including, bearing and axial forces.                        

Rayleigh-Ritz method and Lagrange’s equations were then applied to the 

obtained expressions resulting in coupled differential equations. 

• The axial force terms included in the equations of motion provide a means 

for axially directed harmonic force to be introduced into the system, 

noting that this is not a follower force and that it maintains the line of 

the undisturbed equilibrium axis. 

The analytical developments involved using the methods of multiple scales and 

direct numerical integration. In the following are summarised points which 

emerge from these studies: 

The results from the method of multiple scales in Figures 4-1 to 4-4 showed good 

conclusive results for the cases of not including parametric force terms but 

increasing the mass unbalance and the damping coefficient, and including 

parametric force terms. The effect of increasing the mass unbalance of the rotor 

system does indeed have a global effect on the nonlinear response of the overall 

system. The response amplitudes increase as the mass unbalance increases. 

Increasing the damping coefficient results in decreases in the amplitudes, but 

the decreases are very small and do not cause the elimination of the jump 

phenomena. 

Including parametric force terms in the equations tend to reduce the peak whirl 

amplitudes of the whirling motion by approximately 23% and eliminate the jump 

in the rotating speed. 

Numerically integrating the governing equations of motion (3.2-85) and (3.2-86) 

within MathematicaTM has produced results that corroborate those of the 

method of multiple scales. There is evidence of consistent phenomenon whereby 

both the responses in the first mode for 1q  and 2q  show a characteristic 

hardening effect and a jump phenomena, and reduction in the peak amplitudes 

when parametric excitation terms are introduced into the system. 
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The numerical integration results give the response for the first mode only 

whereas the method of multiple scales generates results related to the chosen 

resonance condition and around the region of perfect external tuning, by means 

of the detuning parameter, εσ (equation 4.2-41). 

8.3 Stability Analysis Results 

In performing the stability analysis, the governing differential equations were 

solved analytically using the method of multiple scales and the ensuing 

nonautonomous slow-time modulation equations were used to construct a 

stability matrix and the stability of the system was then analysed using the 

Routh-Hurwitz stability criterion. The results show that there are values of mass 

unbalance for which the system can be stable or unstable. 

Figures 5-1 and 5-2 and Table 5-1 give a summary of the stability of the steady-

state solutions as the mass unbalance is varied. The results show that at mass 

unbalances of 0.004=um kg  the system’s motion is stable and increasing the mass 

unbalances to 3 um , 4 um and 5 um the motion becomes unstable. Also, further 

increase of the mass unbalance values to 6 um and 7 um makes the motion stable 

again.  

From Figures 5-1 and 5-2, at mass unbalance values between zero and 0.006kg, 

the system shows stable motions. At mass unbalance values from 0.006 to 

0.022kg, the system is unstable and at mass unbalances greater than 0.022kg the 

system’s motion again becomes stable. 

The above results emphasize the intuitive expectation that mass unbalance 

affects the rotor system’s stability under certain conditions. 

8.4 Numerical Results 

The subsequent numerical analyses were undertaken by generating problem-

specific code within the public-domain software Dynamics 2. 
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Figure 6-2 gives plot of nondimensionalised bifurcatory behaviour of amplitude 

response as a function of the excitation frequency Ω . For the first response 

mode, it can be deduced that increase in the mass unbalance causes increase in 

the amplitude of vibration and shifts the amplitude peak more to the right 

mirroring the effects noticeable in the results of the multiple scales. 

The calculated Lyapunov exponent supports the notion that nonlinearities can 

generate undesirable responses like chaos, but only in cases of very a high 

excitation level. However, no route to chaos is indicated in the plots of Figure 6-

2. 

Figure 6-3 shows the bifurcatory behaviour of the amplitude response in the x-

direction as a function of nondimensionalised excitation acceleration, 

accompanied by its respective Lyapunov exponent. For the linear response from 

chapters 4 to 7, ( 0.004um kg= ), a periodic response for a wide range of 

excitation values is achieved. As the mass unbalance is increased, evidence of 

chaos surfaces.  

The results in Figures 6-3(b), 6-3(c) and 6-3(d) show period doubling bifurcations 

as mass unbalance increases. In addition, a jump up to the zero level in the 

Lyapunov exponent plots occur, and indicates that the system has moved to 

higher period multiples. 

Figure 6-4 shows the bifurcatory behaviour of the amplitude response in the x-

direction as a function of normalised excitation acceleration accompanied by its 

respective Lyapunov exponent for the case of the introduced parametric 

excitation term. The results show stable periodic motions, indicating that all the 

period doubling and unstable motions observed in Figure 6-3 have become stable 

motions with the introduction of the parametric excitation term at the principal 

parametric resonance. 

At discrete nondimensionalised excitation acceleration points of the  

bifurcations in Figures 6-3 and 6-4, phase planes, Poincaré maps and time plots 

are given in Figures 6-5 to 6-11. The following are general observations of the 

flexible rotor system as the mass unbalance is increased from um  to 5 um : 
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• The periodic orbits in the phase planes move away from each other as the 

effect of the predominant systems nonlinearity is increased by 

manipulation of the mass unbalance, thus by the excitation acceleration. 

And therefore, the phenomena behind this behaviour, as shown on the 

phase planes, could represent a bifurcation to chaos. 

• Complicated phase plots are obtained for higher values of mass 

unbalance, indicating likely chaotic motions as the system effectively 

becomes more nonlinear. 

• In Figures 6-7(d), 6-8(c) and 6-9(b) strange attractors are obtained for the 

Poincaré maps for higher values of mass unbalance, again indicating likely 

chaotic motions. 

• With the introduction of parametric excitation terms, the phase planes, 

Poincaré maps and time plots at the discrete nondimensionalised 

excitation acceleration points display periodic motions indicating stability 

or stable motions. 

Figures 6-12 to 6-17 show the nonlinear dynamic system analyses by the use of 

specialised code written in MathematicaTM as the mass unbalance increases from 

um  to 5 um : 

• For all the discrete mass unbalance values, the motion is stable and 

periodic in the flexible rotor system. 

• The Poincaré map converges to darker areas towards a point indicating a 

period one motion. 

• Using the NDSolve integrator within MathematicaTM in analysing the 

bifurcation plots in Figure 6-3 at nondimensionalised excitation 

accelerations of 618, 505 and 460 for mass unbalance values of 3 um , 4 um  

and 5 um  respectively, (i.e. for higher values of mass unbalance) 

complicated phase plots are obtained, and strange attractors are also 

obtained for the Poincaré maps (Figure 6-17), all indicating likely chaotic 

motions. 
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8.5 Experimental Results 

The following results were obtained from two experimental programmes carried 

out on different flexible rotor systems. Vibrations in industrial rotating 

machines, can, for certain rotational speed, be so violent that they can cause 

significant damage, and the following are the resultant effects of  introducing 

excitations axially into the shaft of such rotating machines using two types of 

smart material technologies, namely Shape Memory Alloys and Piezoactuators, in 

the forms of antagonistic SMA/Composite active bearing and Piezoelectric 

exciters respectively. 

• The antagonistic SMA effect was successfully applied to control stiffness 

of a rotor bearing housing, and to manipulate the natural frequencies of 

the rotor system. The experimental results for the forward-whirl 

amplitude in the rotor system have demonstrated that the stiffness can be 

usefully affected by the SMA, with around a 19.4% reduction in the critical 

whirl amplitude.  

• The piezoelectric exciter was successfully used to introduce parametric 

excitations into a second rotor system. The combined effects due to the 

existing forced vibration due to mass unbalance and also an additional 

parametric excitation in principal parametric resonance provided by the 

piezoexciter resulted in a more linear response than that provided by the 

rotor system alone. This has led to the moderation of the responses of the 

pre-existing mass unbalance vibration inherent to the rotor, with an 

approximately 13% reduction in the critical whirl amplitude. 

8.6 Conclusions 

The first three methods of investigating and identifying the response behaviour 

of rotor systems have all shown similar trends with regards to the effects of 

increasing the mass unbalance and introducing parametric force terms. 

Numerical studies have also indicated that chaos is evident as the system 

becomes more nonlinear due to the increase in mass unbalance and that with 

the introduction of parametric excitation terms the system’s motion becomes 
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periodic. Prototypical experimental results from tests on rotor systems conclude 

that the novel antagonistic bearing and piezoelectric exciter concepts could be 

successfully applied to industrial applications, particularly installations where 

axial loading on the rotor shaft is also an inherent part of the control actuation.                                                             
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CHAPTER 9  

CONCLUSIONS AND RECOMMENDATIONS FOR 
FURTHER WORK 

_________________________________________________ 

9.1 Summary 

The research described in this thesis has been concerned with the issue of 

dynamic response modifications within flexible rotor systems by the use of Smart 

Materials in the form of shape memory alloys and piezoelectric actuators. The 

techniques that have been developed are based on the exploitation of the 

mitigating effects of a SMA/composite antagonistic bearing and piezoelectric 

exciters on the over all system response. It has been shown theoretically that 

certain nonlinear effects can be advantageously neutralised with the novel 

methodologies of introducing axial forces parametrically and through an active 

bearing component. It has been demonstrated in two different experiments, 

using different flexible rotor systems that the stiffness of the shaft can be 

usefully influenced by SMA and piezoelectric actuators. For a laboratory rotor 

system supported on two bearings, one of which was a two sided active 

component comprising a composite tube with specially configured and 

integrated SMA strips termed “antagonistic” in this work, the critical speed was 

usefully shifted about its normal value and the whirling amplitude reduced 

drastically. The antagonistic SMA effect was successfully applied to control the 

stiffness of a rotor bearing housing, and hence to manipulate the natural 

frequency of the rotor system. It has also been demonstrated that fitting a 

piezoexciter for axial excitation of the rotor, has greatly influenced the overall 

nonlinear response of the rotor system. There are some limited references to 

such systems in the literature but there have not been many reported 

phenomena relating to the design and application of bespoke antagonistic 

SMA/composite active bearings and axial piezoelectric exciter for the control of 

vibration in flexible rotors. 
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In order to gain an understanding of the behaviour of the flexible rotor system 

subjected to excitations due to rotating mass unbalance, it was decided firstly 

to develop an analytical model of which axial forces could be introduced into 

the system through an axial force term, and the equations were derived in the 

form of the well known Duffing equation. This can be used to determine the 

critical whirling amplitude in the rotor system with and without the introduction 

of the axial forces. These equations were solved analytically, to second order 

approximation, and the nonlinear vibration solutions were investigated when it 

was subjected to transverse vibration, using the method of multiple scales, and 

they were also numerically integrated by the use of NDSolve within 

MathematicaTM. Interesting nonlinear and interactive behaviour was observed for 

the primary resonance condition, 1 εσ
ω
Ω = + , and for the parametric resonance 

condition, 2 2 εσ
ω
Ω = +  when parametric excitations were deliberately 

introduced into the rotor system, where, Ω  is the primary resonance frequency, 

2Ω  is the parametric excitation frequency and εσ  is the internal detuning 

parameter. In this research it has been shown conclusively by using a second 

order multiple scales approximation that the nonlinear characteristics of the 

steady-state responses to the nonautonomous modulation equations can be 

manipulated by altering the mass unbalance and also by the introduction of a 

parametric force term. In particular it was shown that the effect of increasing 

the mass unbalance increases the amplitude of vibration. Further more, it was 

found that increasing the damping coefficient gives a very small decrease in the 

whirl amplitude of vibration. In addition to this, including a parametric force 

term results in the decrease in the amplitudes of vibration, effectively 

linearising the sub-system response amplitudes (Figure 4-4), notwithstanding the 

fact that such numerical relationships are necessarily system-data specific. 

Stability of steady-state solutions analysis was performed for the rotor system. 

Nonautonomous equations taken from the multiple scales analysis were used for 

the analysis. Characteristics equation formed from the determinant of the 

equations was analysed using Routh-Hurwitz criterion for stability analysis. From 

the analysis a variety of stability information was extracted.  Stability table and 

plots were obtained for various mass unbalance values and it was observed that 
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for certain increased values of mass unbalance the system becomes unstable and 

as it increases further the system becomes stable. 

The effects were corroborated numerically and a further study of the 

bifurcations and stability of the solutions via phase planes, Poincaré maps, time 

plots, bifurcation diagrams and Lyapunov exponents showed that additional, and 

highly complex, dynamics could be observed, particularly in more strongly 

excited systems. A range of numerical results were obtained for both the second 

order analytical approximation and numerical integrations for the model of a 

rotor system in the physical co-ordinate space, and these underpinned the 

general finding that response amplitude characteristics could be effectively 

linearised and controlled for different combinations of data. This suggests that 

the useful mitigating effect might also be realisable in the more complex rotor 

system and so parallel programmes of experimental tests were carried out. 

The response characteristics of physical industrial applications were thus 

determined. A rotor system is considered a vibrating system in the classical 

sense, and its excitations can be due to rotating mass unbalance. A resonance 

condition exists when the frequency of excitation due to the mass unbalance 

coincides with the natural frequency, which tends to increase the amplitude of 

vibration of the system. To find a practical design solution to the effects of 

nonlinear responses, it was first necessary to change the frequencies of the shaft 

rotor system, to avoid critical speeds whilst running up and running down rotors, 

and to control the vibration levels or rotor stresses in a rotating machine. The 

effect of this response of building one of two bearings of the rotor system into 

an active SMA/Composite antagonistic bearing and also deliberately introducing 

parametric resonance axially into the shaft of a second rotor system were also 

assessed. It was found that in the case of the antagonistic bearing, the fact that 

the bearing was fitted within the tube, half-way along, introduced the local 

dynamics of the tube into the dynamic end conditions of the rotor, and these 

dynamics were controlled by means of the embedded SMA strips. The SMA effect 

was thus applied to control the stiffness of the rotor bearing housing, and hence 

to manipulate the natural frequencies of the rotor system, and used to reduce 

the critical whirl amplitude. In the case of introducing parametric excitations 

into a flexible rotor system by means of a piezoexciter, it was found that the 
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responses of the pre-existed mass unbalance vibration got moderated and 

resulted in the reduction of the critical whirl amplitude when the exciter was 

excited parametrically at the principal parametric resonance. 

This research provides some basic theory and understanding of how nonlinear 

and unstable rotor systems can be made more efficient and stable. The practical 

goal had been to try to control vibration, by reducing the whirl amplitude of the 

vibrating system. This was tackled by means of using (a) integrated 

SMA/composites in the form of a cylindrical antagonistic bearing housing 

component, who’s radial and stiffness properties could be actively controlled by 

means of SMA actuation, and together with an additional axial force component 

as a result of SMA action on the rotor, (b) piezoelectric exciter fitted to the 

shaft of the rotor for parametric axial excitation of the rotor whose effects may 

be used to moderate the responses of the pre-existing mass unbalance vibration 

inherent to the rotor.   

Engineers and scientists are encouraged to use these new approaches with prior 

understanding of the behaviour of rotating machines under the influence of mass 

unbalance. By obtaining a good basic understanding of each individual 

component, an ideal and robust overall linear and stable system can ultimately 

be configured and hence more reliable and efficient industrial systems can be 

designed. 

9.2 Recommendations for Further Work 

It would be good to develop a binary control strategy for the antagonistic active 

bearing and to check the performance for the flexible rotor at the first critical 

and possibly higher whirl speeds. 

Then to investigate how such binary control can be integrated within a model-

based controller (noting that the two-state behaviour is a fundamental feature 

of SMAs) so that the versatility of control is maximised both at critical speeds 

and above. This will require a minimised time constant for the antagonistic 

active bearing, which will, in turn, need maximised heating and cooling rates. 

This could introduce problems of thermal fatigue in the composite and 



Chapter 9: Conclusions and Recommendations for Further Work 
 

 

 
168 

particularly in the epoxy adhesive used to secure the SMA strips, and these will 

have to be investigated.  

The experimental test rig could be modified to an overhung configuration, in 

which gyroscopic forces will be highly significant, and then to see how backward 

travelling whirl can be mitigated at the first, and possibly higher, critical 

speeds, with attendant implications for the reduction of cyclic stress effects. 

The experimental test rig for the piezoexciter case could also be modified and 

parametric excitations introduced axially at both ends of the shaft into the 

system to examine the combination effects on the system. 
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A.1 Smart Material Force using Lagrange’s Equation.  

A disk of mass m  is attached to the middle of a shaft of length l2 , which is 

subjected to an initial tensile force denoted by the symbol vF  with the mass 

displaced a distance q  from its equilibrium position as indicated in Figure A.1-1. 

The q  is a theoretical generalised coordinate in the YZ plane on the system. In 

practice the lateral displacement of the shaft is given by two orthogonal 

coordinates 1q  and 2q , and this is due to the combined effect of the whirl 

dynamics of the shaft (driven by the two generalised forces )(1 tQ  and )(2 tQ  

which in turn are based on the physically defined unbalanced mass in the disk, 

which is parameterised by the eccentricity quantity d ), and the axial load due 

to the active bearing. 

 

  

 

 

 

                                        Figure A.1-  1: Model of the rotor  
 

Applying Lagrange’s equation of the form 
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where, T  is the total kinetic energy of the system; U  is the potential or strain 

energy. 
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Applying Lalanne and Ferraris methods in Rotor dynamics Prediction in 

Engineering, kinetic energy can be written as; 

 ( ) ( )2 2 2
1 2 2 1 2

1 1
sin 1.325

2 2 dyT m q q I IL a q qρ = + + Ω + − Ω 
 

ɺ ɺ ɺ  (A.1- 2) 
 

where, m is the mass; 21,qq  are the vertical and horizontal displacements 

respectively; Ω  is the angular velocity. 

Applying Lagrange’s equation (A.1-1) to the kinetic energy expression (A.1-2) we 

have 

 
( )1 5 2 2

1 1

d
1.325

dt

T T
mq a q Cos q

q q

 ∂ ∂− = − Ω ∂ ∂ 
ɺɺ ɺ

ɺ
 (A.1- 3) 

 

 
( )2 5 1 2

2 2

1.325
d T T

mq a q Cos q
dt q q

 ∂ ∂− = + Ω ∂ ∂ 
ɺɺ ɺ

ɺ
 (A.1- 4) 

 

The strain energy 

 
1 2U U U= +  (A.1- 5) 

 

where, 1U  is the strain energy in terms of lateral elasticity; 2U  is the strain 

energy in terms of elasticity in the axial direction. 

Using Timoshenko’s expression due to beam extension/compression 

 2 2

1

0
2

l
vF z x

U dy
y y

    ∂ ∂
 = +   ∂ ∂     
∫  (A.1- 6) 

 

where, vF  is the axial force; z  and x  can be related to 1q  and 2q  by a Galerkin 

representation, which separates the independent variables " "y  and "" t , on the 

basis that ( )tqq 11 =  and ( )tqq 22 = . 

Thus, ( ) )(1 tqyWz =  

( )tqyWx 2)(=  

(A.1- 7) 

(A.1- 8) 
 

where, ( )yW  is a deflection shape function. The  1q  and 2q  notations are 

functions of time t  whereas ( )yW  is a function of y .The deflection shape, ( )yW  
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as given by Timoshenko in the treatment of the theory of beams having a fixed 

end and freely supported at the other (approximation) 

 ( ) )
4

3
(

12
2

2

y
l

EI

Py
yW −=  (A.1- 9) 

 

where, P  is the applied load, E  is the Young’s Modulus of the material, I is the 

area moment of Inertia , l  is the length of the beam, y  is the distance of the 

applied load from the fixed end. Proceeding to normalise the deflection shape 

and a applying ( ) 1=yW  at 
2

l
y =  leads to 

 
1

48

3

=
EI

pl
 (A.1- 10) 

 

hence 

 ( )
3

343

l

y

l

y
yW norm −=  (A.1- 11) 

 

 
3

2123
)(

l

y

l
yW −=′  (A.1- 12) 

 

Substituting equations (A.1-7) and (A.1-8) into (A.1-6) we have 

 
( ) ( )22 2

1 1 2

0
2

l
vF

U q q W y dy ′= +   ∫  (A.1- 13) 
 

Substituting (A.1-12) into (A.1-13) and proceeding to integrate with respect to y  

and finally on evaluating within the limits of the integral, we get, 

 ( )2 2
1 1 2

14

2
vF

U q q
l

 = + 
 

 (A.1- 14) 
 

Let 14 vF

l
Η =  (A.1- 15) 

 

Therefore,                                                                           

 

( )2
2

2
11 2

qqU +Η=  (A.1- 16) 
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                                 Figure A.1- 2: Sch ematic of the shafts movements. 
 

Inspection of the geometry in Figure A.1-2, assuming C  is free to move (Implying 

A  is also free) then when shaft deflects through q  point C  moves to C ′ . So, 

axial displacement required at C ( )CC ′  is ∆=′CC  (Similarly at A ). 

Denoting horizontal length OC  as 1lCO =′ , the potential energy of the system 

can be written as  

 ( )2
1

2
2 2

1

2

1
llkkU −=∆=  (A.1- 17) 

 

Also from Figure A.1-2, 

 ( )2

1
22

1 qll approx −=  (A.1- 18) 
 

Therefore ( ) ( )
1 1

2 2 2 22 2
approxl l q l l q∆ = − − ≈ − −  (A.1- 19) 

 

where, llapprox ≈  

Simplifying (A.1-19) using binomial expansion of the form 

 ( ) ( )
...

!2

1 221 ba
nn

bnaaba nnnn −− −++=+  (A.1- 20) 
 

and letting 2la = , 2qb −=  and 
2

1=n , we have 

A 
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l 
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True l 
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( ) ( ) ( ) ( ) ( ) ( ) ...
1*2

2

1

2

1

2

1 222

3
222

1
22

1

2

1
22 2

+−







−








+−+=− −−
qlqllql  

l

q
l

2

2

−≈  

(A.1- 21) 
 

Therefore ( )
l

q

l

q
llqll

22

22

2

1
22 ≈+−≈−−  (A.1- 22) 

 

Thus from equation (A.1-22) equation (A.1-19) may be replaced with a simpler 

(but less accurate) equation by using the approximate relationship 

 

l

q

2

2

≈∆  (A.1- 23) 
 

Substituting equation(A.1-23) back into equation(A.1-17) we have, 

 22

2 22

1








=

l

q
kU  

(A.1- 24) 
 

For a shaft of length l , axial force vF  produces an extension ∆ . Force acts over 

cross-sectional area A , producing normal stress  

 vF

A
σ =  (A.1- 25) 

 

The compression produces normal strain  

 

l

∆=ε  (A.1- 26) 
 

Combining equations (A.1-25) and (A.1-26) yields relationship between force and 

extension: 

 
v

EA
F k

l
= ∆ = ∆  (A.1- 27) 

 

where k  is the shaft stiffness and 
l

EA
k = .  Substituting for k  and considering 

vertical and horizontal displacements (A.1-24) becomes  
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 ( )4
2

4
132 8

qq
l

AE
U +=  (A.1- 28) 

 

Substituting equations (A.1-16) and (A.1-28) into equation (A.1-5) we get 

 ( ) ( )4
2

4
13

2
2

2
1 82

qq
l

AE
qqU +++Η=  (A.1- 29) 

 

Therefore, 

 

3
131

1 2
q

l

AE
q

q

U +Η=
∂
∂

 (A.1- 30) 
 

And  

 

3
232

2 2
q

l

AE
q

q

U +Η=
∂
∂

 (A.1- 31) 
 

Substituting equations (A.1-30), (A.1-31), (A.1-3) and (A.1-4) into equation    

(A.1-1) we have  

 ( ) ( )3
1 5 2 2 1 1 13

1.325
2

AE
mq a q Cos q q q Q t

l
− Ω + Η + =ɺɺ ɺ  (A.1- 32) 

 

 ( ) ( )3
2 5 1 2 2 2 23

1.325
2

AE
mq a q Cos q q q Q t

l
+ Ω + Η + =ɺɺ ɺ  (A.1- 33) 

 

Substituting equation (A.1-15) into equations (A.1-32) and (A.1-33) gives 

 ( ) ( )3
1 5 2 2 1 1 13

14
1.325

2
vF AE

mq a q Cos q q q Q t
l l

− Ω + + =ɺɺ ɺ  (A.1- 34) 
 

 ( ) ( )3
2 5 1 2 2 2 23

14
1.325

2
vF AE

mq a q Cos q q q Q t
l l

+ Ω + + =ɺɺ ɺ  (A.1- 35) 
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A.2 Mathematica Validation of Equations (3.2-75) an d (3.2-76) 

T=1/2*m*((D[q1[t],t])2+(D[q2[t],t])2)+(Ω2*(Idy/2+ρ*I*L))-

(Ω*a2*(D[q1[t],t])*Sin[Υ*q2[t]]) 

U=1/2*k*((q1[t])2+(q2[t])2) 

FullSimplify[Expand[∂t H∂q1' @t DTL-∂q1@t DT+∂q1@t DU]]�0 

FullSimplify[Expand[∂t H∂q2' @t DTL-∂q2@t DT+∂q2@t DU]]�0 

Ω2 (� L ρ+�dy/2)-a2 Ω Sin[Υ q2[t]] q1′[t]+1/2 m (q1^′[t]2+q2^′[t]2) 

1/2 k (q1[t]2+q2[t]2) 

k q1[t]-a2 Υ Ω Cos[Υ q2[t]] q2′[t]+m q1′′[t]�0 

k q2[t]+a2 Υ Ω Cos[Υ q2[t]] q1′[t]+m q2′′[t]�0 

T=1/2*m*((D[q1[t],t])2+(D[q2[t],t])2)+(Ω2*(Idy/2+ρ*I*L))-

(Ω*a2*(D[q1[t],t])*(Υ*q2[t])) 

U=1/2*k*((q1[t])2+(q2[t])2) 

FullSimplify[Expand[∂t H∂q1' @t DTL-∂q1@t DT+∂q1@t DU]]�0 

FullSimplify[Expand[∂t H∂q2' @t DTL-∂q2@t DT+∂q2@t DU]]�0 

Ω2 (� L ρ+�dy/2)-a2 Υ Ω q2[t] q1′[t]+1/2 m (q1^′[t]2+q2^′[t]2) 

1/2 k (q1[t]2+q2[t]2) 

k q1[t]-a2 Υ Ω q2′[t]+m q1′′[t]�0 

k q2[t]+a2 Υ Ω q1′[t]+m q2′′[t]�0 
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A.3 Linear Viscous Damping Factor. 

A measurement of the rate of decay of free oscillations will be a convenient way 

to determine the amount of damping present in the system. If the damping is 

larger, the rate of decay will be greater. 

A damping vibration expression can be given by the general equation, 

 ( )φωξξω +−= − tSinXex t 21  (A.3- 1) 
 

Where, φ  is the phase angle. 

This is illustrated as in Figure A3-1 

 

 

 

 

 

 

 

                              A.3- 1: Graphical Rep resentation of Decay 
 

A term called logarithmic decrement is introduced which is defined as the 

natural logarithm of the ratio of any two successive amplitudes. The expressions 

for the logarithmic decrement then becomes 

X  

t  

1x  

2x  

dτ  
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 ( )
( ) ( )( )φτωξ

φωξ
δ

τξω

ξω

++−

+−
=








=

+−

−

d
t

t

tSine

tSine
In

X

X
In

d 2

2

2

1

1

1
 

(A.3- 2) 
 

And since the values of the sines are equal when the time is increased by the 

damping period, dτ , the above relation reduces to  

 
( ) dt

t
d

d
Ine

e

e
In ξωτδ ξωτ

τξω

ξω

=== +−

−

 (A.3- 3) 
 

Substituting for the damped period, 
21

2

ξω
πτ
−

=d , the expression for the 

logarithmic decrement becomes 

 
21

2

ξ
πδ
−

=  (A.3- 4) 
 

This is an exact equation. 

For a small damping ratio 21 xx ≈ , and 1<<δ , so that 

 

π
δξ
2

≅   (A.3- 5)
 

If 1x  and 2x  are so close in value that experimental distinction between them is 

impractical, the above analysis may be modified by using two observed 

amplitudes which are n cycles apart. The damping factor for the rig is found 

experimentally in the following section.  
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A.4 Damping Coefficient Estimation 

The damping coefficient is determined experimentally, and the objective is to 

determine the linear damping factor ξ  for the rig, and then estimate the 

damping coefficient c . The electric motor is switched off and the flexible rotor 

system is excited by striking the disk with a tapping hammer. The amplitudes 1X  

and 2X  for two conservative displacements which are measured at three cycles 

apart for the decaying oscillations are read off from the oscilloscope. This 

procedure is repeated several times and the average of the peak to peak values 

are taken. The peak to peak values of 1X  and 2X are 0.46 volts and 0.2 volts 

respectively. The calculation of the damping factor utilizes the derivation of 

logarithmic decrement equation (A.3-2), and upon substitution of values for 1X  

and 2X  gives 

 
1

2

1 1 0.46
0.276

3 0.2

X
In

n X
δ

   = = =   
  

   (A.3- 6) 
 

where, n is the number of cycles elapsed. 

To find the damping factor the logarithmic decrement value 0.276δ =  is back 

substituted into equation (A.3-5) giving 

 
0.044

2

δξ
π

= =  (A.3- 7) 
 

The damping coefficient is then calculated as  

 2 13.6 /c m Ns mξω= =  (A.3- 8) 
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A.5 Experimental Determination of the Value b  for the Nonlinear Cubic 
Stiffness Term.  

The objective of this experiment is to determine the value of b  for the cubic 

stiffness term. This experimentally based method of identifying cubic 

nonlinearities for nonlinear systems was first used by Wong in 1988. In the usual 

manner of carrying out the experiment, the rig was excited at its experimental 

nonlinear frequency of 39.6 Hz and with the aid of the spectrum analyser the 

amplitude in volts was obtained and recorded as 1A  with  ( )1nlω  as its resonance 

frequency. The next step forward was to shift the frequency of excitation 

slightly and new amplitude of vibration 2A  with its corresponding frequency 

( )2nlω  was recorded. This is repeated for several times and amplitudes of 0.12 

volts and 0.119 volts were obtained for  1A  and 2A  respectively. The voltages are 

then converted into metres and the values of ( )1nlω , ( )2nlω , 1A  and 2A  are 

substituted into equation  (3.2-93) to get 

 
( ) ( )( )

( ) ( )

2 2
2

1 2 9
2 22 2

1 2 1 21 2

4 4
5.05 10

33

nl nl F rad
b

A A A A s mA A

ω ω−
= − = ×

+−
 

(A.4- 1) 
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APPENDIX B 

___________________________________________ 

B.1 Simultaneous Solution of Amplitudes p, q, r, s-  without Parametric 
Force Term 

9Γ, ω, a 5
ˆ , Ω, cˆ, b

ˆ
= = 90.69, 1, 0.001, 248.8, 21.9, 8.15 ∗109=

Solve A9
i

k

jjjj−
cˆ∗p

2∗ ω
+

Ω∗a5
ˆ
∗r

2∗ω
+

cˆ2∗q

8∗ω2
−

Ω ∗cˆ∗a5
ˆ
∗s

4∗ω2
−

3∗Ω2∗a5
ˆ 2∗q

8∗ω2
−

3∗b
ˆ
∗p2∗q

2∗ω2
−

3∗b
ˆ
∗q3

2∗ω2

y

{

zzzz+0.164 
 0,

i

k

jjjj−
cˆ∗q

2∗ω
+

Ω∗a5
ˆ
∗s

2∗ω
+

cˆ2∗ p

8∗ ω2
−

Ω ∗cˆ∗a5
ˆ
∗r

4∗ω2
−

3∗Ω2∗a5
ˆ 2∗p

8∗ω2
−

3∗b
ˆ
∗q2∗p

2∗ω2
−

3∗b
ˆ
∗p3

2∗ω2

y

{

zzzz+0.94 
 0,

i

k

jjjj−
cˆ∗r

2∗ω
−

Ω∗a5
ˆ
∗p

2∗ ω
+

cˆ2∗ s

8∗ω2
+

Ω ∗cˆ∗a5
ˆ
∗q

4∗ω2
−

Ω2∗a5
ˆ 2∗ s

8∗ω2
−

3∗b
ˆ
∗r 2∗s

2∗ω2
−

3∗b
ˆ
∗s3

2∗ω2

y

{

zzzz +0.94 
 0,

i

k

jjjj−
cˆ∗s

2∗ω
−

Ω∗a5
ˆ
∗q

2∗ω
+

cˆ2∗ r

8∗ω2
+

Ω ∗cˆ∗a5
ˆ
∗p

4∗ω2
−

Ω2∗a5
ˆ 2∗ r

8∗ω2
−

3∗b
ˆ
∗s2∗r

2∗ω2
−

3∗b
ˆ
∗r 3

2∗ω2

y

{

zzzz +0.164 
 0=,

8p, q, r, s <E  
  
 {0.69`,1,0.001`,248.8`,21.9`,8.15`*^9} 
 
 {{p →-
0.00211902258821777`,q →0.00041952572031022116`},{p →0.0010603
879792571763` -0.0016899612702690975` �, 
    q →-0.00020473606482728724`+0.000254657775694461` 
�},{p →0.0010603879792571763` +0.0016899612702690975` �, 
    q →-0.00020473606482728724`-0.000254657775694461` 
�},{p →0.0075527239412491445` -0.04329451602546732` �, 
    q →-0.04330005477589113`-0.007550667319177746` 
�},{p →0.0075527239412491445` +0.04329451602546732` �, 
    q →-0.04330005477589113`+0.007550667319177746` �}, 
{r →-0.00016644670174246828`-0.00033437589022070584` �, 
    s →-0.0010630247650816708`-0.0016830682814302487` �}, 
{r →-0.00016644670174246828`+0.00033437589022070584` �, 
s→-0.0010630247650816708`+0.0016830682814302487` 
�},{r →0.00031931322453801616`,s →0.0021284184422404335`}, 
{r →0.04256287130820719` -0.007423398857843448` �, 
    s →0.007423493543825637` +0.04255585754269378` 
�},{r →0.04256287130820719` +0.007423398857843448` �, 
    s →0.007423493543825637` -0.04255585754269378` �}} 
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B.2 Simultaneous Solution of Amplitudes p, q, r, s-  with Parametric Force 
Term 

9Γ, ω, a 5
ˆ , Ω, Ω2, cˆ, b

ˆ
, F, φ= =90.69, 1, 0.001, 248.8, 497.6, 21.9, 8.15 ∗109, 19873.3, 0 =

Solve A

9
i

k

jjjj−
cˆ∗ p

2∗ ω
+

Ω∗a5
ˆ
∗r

2∗ω
+

cˆ2∗q

8∗ω2
−

Ω∗cˆ∗a5
ˆ
∗s

4∗ω2
−

Ω2∗a5
ˆ 2∗q

8∗ω2
−

3∗b
ˆ
∗p2∗q

2∗ω2
−

3∗ b
ˆ
∗q3

2∗ω2
+
i
k
jj F2

H8∗Ω22∗ω2L +H16∗Ω2∗ω3L
 q
y
{
zz +

i
k
jj
Γ

4
∗
i
k
jj1−

Ω∗a5
ˆ

2∗ω
y
{
zz∗Cos@φDy

{
zz −

i
k
jj

cˆ∗Γ

16∗ω
∗Sin @φDy

{
zz +

i
k
jji
k
jj

F

4∗ω2
∗p−

cˆ∗F

16 ∗ω3
∗q+

Ω∗a5
ˆ
∗F∗ s

16∗ω3

y
{
zz∗Sin @φDy

{
zz −

i
k
jji
k
jj

F

4∗ω2
∗q−

cˆ∗F

16∗ω3
∗p+

Ω∗a5
ˆ
∗F∗ r

16∗ω3

y
{
zz∗Cos@φDy

{
zz
y

{

zzzz 
 0,

i

k

jjjj−
cˆ∗q

2∗ω
+

Ω∗a5
ˆ
∗q

2∗ω
+

cˆ2∗ p

8∗ω2
−

Ω∗cˆ∗a5
ˆ
∗ p

4∗ω2
−

Ω2∗a5
ˆ 2∗ p

8∗ω2
−

3∗b
ˆ
∗q2∗p

2∗ω2
−

3∗b
ˆ
∗p3

2∗ω2
+
i
k
jj F2

H8∗Ω22∗ω2L +H16∗Ω2∗ω3L
 p
y
{
zz +

i
k
jj
Γ

4
∗
i
k
jj1−

Ω∗a5
ˆ

2∗ω
y
{
zz∗Sin @φDy

{
zz −

i
k
jj

cˆ∗Γ

16∗ω
∗Cos@φDy

{
zz −

i
k
jji
k
jj

F

4∗ω2
∗p−

cˆ∗F

16 ∗ω3
∗q+

Ω∗a5
ˆ
∗F∗ s

16∗ω3

y
{
zz∗Sin @φDy

{
zz +

i
k
jji
k
jj

F

4∗ω2
∗q−

cˆ∗F

16∗ω3
∗p+

Ω∗a5
ˆ
∗F∗ r

16∗ω3

y
{
zz∗Cos@φDy

{
zz
y

{

zzzz 
 0,

i

k

jjjj−
cˆ∗ r

2∗ω
−

Ω∗a5
ˆ
∗r

2∗ω
+

cˆ2∗ s

8∗ω2
+

Ω∗cˆ∗a5
ˆ
∗s

4∗ω2
−

Ω2∗a5
ˆ 2∗ s

8∗ω2
−

3∗b
ˆ
∗r 2∗s

2∗ω2
−

3∗ b
ˆ
∗s3

2∗ω2
+
i
k
jj F2

H8∗Ω22∗ω2L +H16∗Ω2∗ω3L
 r
y
{
zz +

i
k
jj
Γ

4
∗
i
k
jj1−

Ω∗a5
ˆ

2∗ω
y
{
zz∗Sin @φDy

{
zz +

i
k
jj

cˆ∗Γ

16∗ω
∗Cos@φDy

{
zz +

i
k
jji
k
jj

F

4∗ω2
∗p−

cˆ∗F

16 ∗ω3
∗q+

Ω∗a5
ˆ
∗F∗ s

16∗ω3

y
{
zz∗Sin @φDy

{
zz −

i
k
jji
k
jj

F

4∗ω2
∗q−

cˆ∗F

16∗ω3
∗p+

Ω∗a5
ˆ
∗F∗ r

16∗ω3

y
{
zz∗Cos@φDy

{
zz
y

{

zzzz 
 0,

i

k

jjjj−
cˆ∗s

2∗ω
−

Ω∗a5
ˆ
∗s

2∗ω
+

cˆ2∗ r

8∗ω2
+

Ω∗cˆ∗a5
ˆ
∗ r

4∗ω2
−

Ω2∗a5
ˆ 2∗ r

8∗ω2
−

3∗b
ˆ
∗s2∗r

2∗ω2
−

3∗ b
ˆ
∗r 3

2∗ω2
+
i
k
jj F2

H8∗Ω22∗ω2L +H16∗Ω2∗ω3L
 s
y
{
zz +

i
k
jj
Γ

4
∗
i
k
jj1−

Ω∗a5
ˆ

2∗ω
y
{
zz∗Cos@φDy

{
zz +

i
k
jj

cˆ∗Γ

16∗ω
∗Sin @φDy

{
zz −

i
k
jji
k
jj

F

4∗ω2
∗p−

cˆ∗F

16 ∗ω3
∗q+

Ω∗a5
ˆ
∗F∗ s

16∗ω3

y
{
zz∗Sin @φDy

{
zz +

i
k
jji
k
jj

F

4∗ω2
∗q−

cˆ∗F

16∗ω3
∗p+

Ω∗a5
ˆ
∗F∗ r

16∗ω3

y
{
zz∗Cos@φDy

{
zz
y

{

zzzz 
 0=,

8p, q, r, s <E  
 {0.69`,1,0.001`,248.8`,497.6`,21.9`,8.15`*^9,19873 .3`,0} 
 
 {{p →-894.7379882695416`-0.9729102385553624` �, 
q→-0.9779853527565429`+895.1785380877246` �}, 
{p →-894.7379882695416`+0.9729102385553624` �, 
q→-0.9779853527565429`-895.1785380877246` �}, 
{p →-0.0032642071606207228`-0.03256906353255708` �, 
q→-0.032617320406510907`-0.0027971079970158974` �}, 
{p →-0.0032642071606207228`+0.03256906353255708` �, 
q→-0.032617320406510907`+0.0027971079970158974` �}, 
{p →-0.000012132187738244567`,q →-0.00003742338553602895`}, 
{p →0.0033653530222304304` -0.03262057366766362` �, 
q→0.032651548148452246` -0.0026947631597000793` �}, 
{p →0.0033653530222304304` +0.03262057366766362` �, 
q→0.032651548148452246` +0.0026947631597000793` �}, 
{p →895.1553564118768` -0.982031010887873` �, 
q→0.9779698367073695` +895.178443007957` �}, 
{p →895.1553564118768` +0.982031010887873` �, 
q→0.9779698367073695` -895.178443007957` �}, 
 

 r →-0.0019614024487508972`,s →-0.019791428012050954`}, 

{r →-1.1174595304377865`*^-6,s →-0.00003513406798268923`}, 

{r →3.1667071803621055`*^-7-0.019786282522361136` �,s →-
0.00001753142221042751`-0.001714560160168787` 
�},{r →3.1667071803621055`*^-7+0.019786282522361136` �,s →-
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0.00001753142221042751`+0.001714560160168787` 
�},{r →0.001967245099456199`,s →0.01982653707275483`},{r →88038.13746949122
` -107213.08058734308` �,s →4145.347064433491`+4197.079934276428` 
�},{r →88038.13746949122` +107213.08058734308` �,s →4145.347064433491` -
4197.079934276428` �},{r →105938.7465238797` +0.` �,s →-4145.347046889566`-
4197.079931597161` �},{r →105938.7465238797`+0.`,s →-
4145.347046889566`+4197.079931597161` �}} 
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B.3 Coefficients of the Characteristic Equation 
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C.1 Screen Dump of the Code for the Analysis of the  Coupled Differential 
Equations 

 

Figure C- 1: Dynamics 2 Program Code for coupled Du ffing equations 
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C.2 Specialized Code written in MathematicaTM  

C.2.1 Numerical Integration 

( )32
1 1 5 2 2 1 1

2

ˆˆ ˆ[ ] * [ ] * * [ ]*cos[ * [ ]] * [ ] * [ ]

* * *sin[ * ]

eqns q t c q t a q t q t q t b q t

d t

γ ω

µ

′′ ′ ′= + − Ω + +

− Ω Ω
 

( )32
2 2 5 1 2 2 2

2

ˆˆ ˆ[ ] * [ ] * * [ ]*cos[ * [ ]] * [ ] * [ ]

* * *cos[ * ]

eqnt q t c q t a q t q t q t b q t

d t

γ ω

µ

′′ ′ ′= + − Ω + +

− Ω Ω
 

system= NDSolve[{eqns==0,eqnt==0, 1[0] 0q == , 2[0] 0q == , 1[0] 0q′ == , 

2[0] 0q′ == },{ 1q , 2q },{t,0,50},MaxSteps→ Infinity,AccuracyGoal→Automatic, 

PrecisionGoal →Automatic, WorkingPrecision →20] 

Plot[Evaluate[ 1q [t]/.system], {t,0,50}, Frame →True, FrameTicks→Automatic, 

GridLines→Automatic, FrameLabel→ {Time, 1q [t]}] 

Plot[Evaluate[ 1q′ [t]/.system], {t,0,50}, Frame →True, FrameTicks→Automatic, 

GridLines→Automatic, FrameLabel→ {Time, 1q′ [t]}] 

C.2.2 Plotting of Poincaré Map 
system=NDSolve[{eqns==0,eqnt==0, [0] 0x == , [0] 0u == , [0] 0v == ,{ x },{t,0,T}, 

Method→Runge-Kutta, 

 MaxSteps→ Infinity,AccuracyGoal→Automatic,PrecisionGoal→Automatic, 

WorkingPrecision →20] 

ParametricPlot[Evaluate[{ x [t],u [t]}/.system],{t,0,T},PlotRange→All,              

Frame →True, FrameLabel→ { x [t], u [t]}] Texternal=2 /π ω∗   

ParametricPlot[Evaluate[{ x [t], v [t]}/.system],{t,0,T},PlotRange→All,              

Frame →True, FrameLabel→ { x [t], v [t]}] Texternal=2 /π ω∗   
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tstart=10∗  Texternal    numperiods=20  

Poincarepts=Flatten [Table [Evaluate [{ x [timeperiod [i]], u [timeperiod [i]]} 

/.system],{i,0,numperiods}],1]ListPlot[Poincarepts,AspectRatio→1,            

ImageSize → {300,300},PlotRange→ {{ , },{ 2,2}π π− − }, 

PlotLable→StyleForm[“PoincaréSection”], AxesOrigin→ { ,0}π− , Axeslabel→ { x , 

u } , PlotStyle → {PointSize [0.015],RGBColour[1,0,0]}] 

C.2.3 Plotting of Time plots and Phase planes 
Solution[tmax]= NDSolve[{eqns==0, eqnt==0, [0] 0x == , [0] 0u == , [0] 0v == }, 

{ x ,u },{t,999.5,1000},Method→Runge-Kutta, 

MaxSteps→ Infinity,AccuracyGoal→Automatic,PrecisionGoal→Automatic, 

WorkingPrecision →20]; sol1=solution[1000]; 

{ x ,v },{t,999.5,1000},Method→Runge-Kutta, 

MaxSteps→ Infinity,AccuracyGoal→Automatic,PrecisionGoal→Automatic, 

WorkingPrecision →20]; sol1=solution[1000]; 

For time plots 

graph1[tmin_,tmax_]:=Plot[Evaluate [ ]x t /.sol1],{t,tmin,tmax},Frame→True]; 

graph[999.5,1000]; 

For phase planes 

graph[tmin_,tmax_]:=ParametricPlot[Evaluate [ ]x t , [ ]u t /.sol1],{t,tmin,tmax}, 

AxesStyle→ {AbsoluteThickness[1]},Frame→True]; graph[995,1000]; 

graph[tmin_,tmax_]:=ParametricPlot[Evaluate [ ]x t , [ ]v t /.sol1],{t,tmin,tmax}, 

AxesStyle→ {AbsoluteThickness[1]},Frame→True]; graph[995,1000]; 
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C.3 Dynamics 2 Commands 

C.3.1 General 
*                   : to get help with commands (e.g.*MM-help with menu) 

.                   : pause the program after plotting one dot. 

                       <space bar> returns the program to normal 

&                  : Cycle through the most important menus 

<Enter>         : Fetch previous menu 

<Esc>            : current routine terminates or fetches parent menu of current 

                      menu 

<space bar>  : removes menu and continues plotting 

<Tab>           : prints the speed (in dots per second) and a selection of parameter  

                      values. 

Dynamics      : Starts the program 

MM               : Main menu 

C                 : clear screen & core memory 

R                 : refresh screen 

C.3.2 Colour 
<F7>            : decrease colour number by 1 

<F8>            : increase  
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<F9>            : choose colour number 

CT               : displays colour table 

C.3.3 Change Parameters: 
PM                : Parameter Menu 

<+>               : increase PRM (e.g.RHO) by the amount PS (i.e. Parameter Step) 

<->               : decrease PRM by the amount PS 

<Home> or <Shift 3>         : halve PS 

<PgUp> or <Shift 4>          : double PS 

C.3.4 Plotting 
I                   : initialize y using y1 

II                  : initialize and iterate 

CON              : connects conservative dots 

PT                : toggle ‘Plot Time’ to have time on the horizontal axis 

T                  : plots the trajectory 

C.3.5 Storing Data 
DD               : Dump Data to disk 

FD                : retrieve picture from disk 

AFD              : add from disk-adds the old picture onto the screen 

TD                : save picture to disk 
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C.3.6 Lyapunov Plotting Commands 

L                  : sets number of Lyapunov exponents ( )0 2L≤ ≤ to be computed. 

LL                : prints the current values of the Lyapunov exponents, numbers and  

                      dimension on the screen. 

C.3.7 Bifurcation Plotting Commands 
BIFM             : Bifurcation Diagram Menu   

BIFD             : sets the number of dots to be plotted (per horizontal line). 

BIFPI            : sets the number of pre-iterates.   

BIFR             : specifying range of the bifurcation parameter (e.g.RHO). 

BIFS             : plots bifurcation diagram on screen.  

BIFV             : for higher quality picture 

PRM              : parameter to be varied     
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D.1 Parametric Plots 
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                                          Figure D-  1: Parametric Plots 
 

D.2 Calculation of Maximum Spring Force  

The axial loading relationship
AE

P
l

= ∆ is used in finding the maximum 

displacement ∆  , where the parameters for the calculation of spring are as 

follows: P  is the actuator force of 532N, 2A rπ= where r is the radius of the 

shaft, E is the modulus of elasticity of steel and l is the shaft length of 0.56m. 

Therefore 
0.018

Pl

AE
∆ = =  (D- 1) 

 

Now 
2 0 25.2nL L mmδ = − =  

 

(D- 2) 
 

Giving  
1 2 25.182mmδ δ= − ∆ =  (D- 3) 

 

Spring constant is 1min

1

21131S
S

F
k Nm

δ
−= =  (D- 4) 

 

Therefore  
max 2 532.5S sF k Nδ= =  (D- 5) 

 

 


