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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SIENCE AND MATHEMATICS

INSTITUTE OF SOUND AND VIBRATION RESEARCH

Doctor of Philosophy

DECENTRALISED VELOCITY FEEDBACK CONTROL FOR THIN

HOMOGENEOUS AND LIGHTWEIGHT SANDWICH PANELS
by Jens Rohlfing

This thesis presents theoretical and experimental studieson decentralised velocity feedback

control for thin homogeneous and lightweight sandwich panels. This research is motivated

by the increasing interest in lightweight design for fuel efficient transportation vehicles.

Lightweight sandwich panels are very appealing due to theirhigh stiffness to weight ratio

but also exhibit undesirable sound transmission properties which could cause problems with

vehicle interior noise. The aim of this work is to assess the performance of decentralised

velocity feedback control on lightweight sandwich panels.

The first part of this thesis presents the theoretical model used to predict the structural

response, sound radiation and sound transmission through active panels with decentralised

velocity feedback loops. The model is then used in simulation studies on the intrinsic

limitation of decentralised feedback control for thin homogeneous and sandwich active

panels under distributed deterministic and stochastic excitations in the whole audio

frequency range. The results suggest that decentralised velocity feedback control on

lightweight sandwich panels is more efficient and can be applied over wider range of audio

frequencies than for conventional thin homogeneous panels.

The second part of this thesis presents experimental and simulation studies on a control

system with five decentralised control units with proof-mass electrodynamic actuators,

installed on conventional aluminium panel and a honeycomb sandwich panel. This study

provides insight in the open and closed-loop response of thecontrol units and gives a good

understanding of the interaction between the panels and thecontrol system. The results

suggest that a practical control system that implements decentralised velocity feedback

can offset some of the undesired sound transmission properties of lightweight sandwich

structures by efficiently reducing structural vibration and sound power radiation in the mid

audio frequency range.
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Chapter 1

Introduction

1.1 Motivation

The decline of fossil fuel stock and global warming are forcing industries for air and surface

civil transportation to reconsider their strategies for the forthcoming generation of vehicles.

Besides ongoing long term efforts in developing efficient propulsion systems that run on

renewable energy, in the short term, weight reduction is a key factor to diminish fuel con-

sumption and thus CO2 emissions of vehicles.

Aircraft and car manufacturers have already started to investigate innovative lightweight

designs for the fuselage of aircraft and the body of cars. To improve the fuel consumption

efficiency and yet retain structural strength, new designs of aircraft fuselage and automobile

bodywork involve stiff and lightweight panels, which unfortunately have undesired acoustic

properties and efficiently transmit noise generated by external sources (i.e. jet noise or

reciprocating engine noise), by aerodynamic sources (e.g.turbulent boundary layer pressure

fields on aircraft skins or on car bodyworks) and by structure-borne paths (e.g. engine

induced vibrations or road induced vibrations) [1, 2, 3, 4].

In particular the airframe of the new generation of aircraftinvolves an increasingly higher

proportion of lightweight composite materials made from carbon fibres. Car manufacturers

have also begun to consider lightweight constructions, e.g. aluminium and carbon fibre car

bodies, and the use of stiff lightweight sandwich panels made from low cost materials such

as plastic or even paper for the core layer. The use of these new materials has a direct impact

on the structure-borne and air-borne sound transmission phenomena.

Passive treatments, such as stiffening, mass or damping treatments, can be used to reduce
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the undesired effects in the dynamic response of lightweight structures although, in many

cases, in order to be effective at low audio frequencies, they tend to be bulky and introduce

extra mass, which interferes with the new weight requirements for those vehicles [5, 6, 7].

Active control systems enable the design of lightweight smart panels that could satisfy both

the requirements for low weight and low vehicle interior noise levels.

This thesis presents a comprehensive study on the vibrationand sound transmission charac-

teristics of smart panels with decentralized velocity feedback control units. The passive and

active control properties for an aluminium panel and a honeycomb panel are investigated

in theoretical and experimental studies in order to assess the feasibility and advantages of

lightweight smart structures against conventional structures. The theoretical and practical

studies consider both deterministic and stochastic disturbances, such as acoustic diffuse

field and turbulent boundary layer aerodynamic excitations. Both the theoretical and exper-

imental work consider a wide audio frequency range to assessthe effectiveness of the smart

panels in the low frequency range where the response of the panels is dominated by discrete

resonant modes and in the mid to high audio frequency range where acoustic and convective

coincidence phenomena occur.

1.2 Technical background

1.2.1 Interior noise in vehicles

This section provides a brief introduction to the main sources and transmission mechanisms

that produce interior noise in transportation vehicles. More details about the mechanisms of

noise generation analysed here can be found in References [1,2].

Turbulent boundary layer (TBL) induced noise: The airflow over the outer surface of

moving vehicles can generate high levels of turbulent boundary layer (TBL) induced noise.

This is quite often the most significant source of interior noise for high travel speeds. For

all types of high-speed vehicle such as aircraft, high-speed trains and cars the airflow over

the outer surface is characterized by a turbulent boundary layer that generates a fluctuating

pressure field over the outer skin surface which excites the cabin partition structure. The

nature of these fluctuations is random both in the time and spatial domains. The pressure

field is convective in the direction of the airflow, where the convective speed is a function of
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the free air flow speed over the surface. The pressure fluctuations can be characterized by

pressure frequency spectra with characteristic wavenumbers in stream and span wise direc-

tions. Convective coincidence occurs at frequencies where the phase of the boundary layer

induced pressure fluctuations matches the phase of the transverse vibration of the vehicle‘s

outer skin in the stream wise direction. These phenomena result in efficient vibration exci-

tation of the cabin walls which then radiate sound into the cabin to generate an acoustic field

that is perceived as interior noise. A comprehensive reviewof research on the wavenumber-

frequency spectrum prior to 1996 is given by Bull [8] and more recently Hwang et al. [9]

reviewed and compared semi-empirical models that calculate the turbulent boundary layer

wall pressure frequency spectra for various models published from the late 1960s to 2004.

Propeller noise: Propeller noise is specific to aircraft and is generated by the periodic

interactions between the air and the rotating propeller blades. The noise produced by pro-

pellers can be considered to be deterministic because the generated interior sound field is

well correlated to the rotational speed of the propellers. Stochastic broad band contribu-

tions to the noise spectrum are generated by boundary layer turbulence in the airflow over

the blade surface; however these contributions are less important. The characteristics of

propeller noise are influenced by many factors: the power produced by the propeller, the

blade tip speed, the number of blades, the blade shape and theangle of attack which de-

termines uniformity of the airflow into the propeller. The frequency spectrum of propeller

noise is dominated by distinctive tones. The lowest tone is determined by the blade passing

frequency and the higher ones are higher harmonics of this. The highest excitation levels

on the outside of the fuselage skin occur in the plane of the propellers. The blade pass-

ing frequency can occur at very low frequencies particularly for large rotors as those of

helicopters.

Engine noise: In aircraft, jet engine noise is mainly generated by the turbulent flow of

high-speed and high temperature jet gases in the engines andtheir mixing with the airflow

behind the engine. The generated disturbance is stochasticand broad-band with a small

convective pattern in the direction of motion. Jet noise mainly affects the aircraft cabin

section behind the engines and is particularly strong during flight manoeuvers such as take-

off, climb, thrust reversing and landing. Jet mixing noise is efficiently reduced for high-

bypass jet engines that operate with higher flow volumes but reduced flow speed. However,

the inlet compressor of this type of jet engine generates tonal fan buzz saw noise, which is

radiated towards the front part of the aircraft.
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In some cases sound radiation from the engine cage outer surface could also affect the noise

levels inside the cabin. In the same way noise form reciprocating combustion engines in

cars is directly transmitted into the passenger compartment via the bulk head panels. The

noise from reciprocating engines is characterized by both deterministic tonal components

and stochastic broad-band contributions [1].

Structure borne noise: Reciprocating engines and jet engines are directly mounted to the

vehicle structure. Particularly aircraft engines are mounted to the wings or airframe using

rigid mounts for safety, reliability and durability reasons. The levels of structural excitation

can be very large particularly when the moving components ofthe engines, power train

and propulsion system rotate with unbalance. In particularthe vibration of a helicopter

gearbox and main rotor generates intense structural excitations at low frequencies which

are transmitted to the helicopter cabin via rigid struts andlargely contribute to the helicopter

interior noise levels. For propeller aircraft the front andtail wings are also excited by the

wakes detached from the propeller blades. For surface transportation vehicles a further

source of structure-borne sound originates from tyre-roador wheel-rail interaction which is

transmitted into the vehicle structure via the suspension system. Theses types of sources

for interior noise are referred to as structure-borne noisebecause the noise originates from

structurally transmitted excitation of the cabin structure. The characteristics of structure-

borne-noise depend on the specific generation mechanism so that it may be dominated by

deterministic tonal components but may also have stochastic broad-band contributions. In

general structure-borne noise is best controlled directlyat the source or in the transmission

path in close proximity to the source. Note that most structure-borne noise sources such

as engines, tyre-road and wheel-rail interactions are alsosources of airborne noise where

the dominance of the air-borne and structure-borne contribution towards interior noise level

varies with frequency [1].

Other sources of interior noise: There are many other sources of interior noise in vehi-

cles. For example tonal aerodynamic noise generated by elements that stick out of the main

vehicle body and disturb the passing airflow e.g. sensors, antennae, side mirrors. Noise

can also be generated from the operation of hydraulic or pneumatic systems that are used to

position flaps, release landing gear and control braking mechanisms. Another contribution

to interior noise in vehicles is generated by the operation of air conditioning systems that

provide fresh air supply to the passengers.
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The interior noise sources for transportation vehicles discussed above can be categorized

into two groups: those that predominantly produce deterministic tonal disturbance and those

that produce stochastic broad-band disturbances. As described in the following section,

the source characteristics determine which control strategies are appropriate for specific

applications.

1.2.2 Active control approaches

In this section a brief review of some existing active approaches for the global control of

interior noise levels is presented [4]. The aim is to briefly outline recent progress and the

current state of research, development and practical application of active control systems,

and also to point out the strength and weaknesses of existingcontrol technologies compared

with smart panels for the reduction of structural vibrationand sound transmission. Initially

the control strategies may be divided into active and semi-active approaches.

Semi-active approaches aim to improve the performance of passive devices by adapting the

physical properties of a passive control treatment to the changes in the excitation charac-

teristics and in the dynamic response of the structure undercontrol. Tuned passive devices

such as arrays of vibration neutralisers, tunable vibration absorbers (TVA), or arrays of

Helmholtz resonators can be used to control vibration and radiated noise from aircraft fuse-

lages or car body sections. However these devices are only particularly suited for the control

of tonal disturbances unless a very large number of units areused, which can be randomly

tuned to cover a wider frequency range [6, 7]. Semi-active approaches allow the tuning

frequency of an ’active tunable vibration absorber’ (ATVA)to be continuously matched to

the dominant tonal component of the primary disturbance. For example, for the control of

aircraft interior noise, ATVAs have been tuned to minimize acost function that estimates

the sound level in an aircraft cabin. The absorbers are therefore effectively tuned to rear-

range the fuselage vibration to minimise the sound radiation rather than the overall vibration

level [10]. However, the principal function of the ATVAs in this semi-active control strategy

remains passive rather than active.

The development of purely active control systems for the control of interior noise has gone

through a development cycle considering different controlstrategies [4]. With respect to the

objectives in this thesis the control strategies can be subdivided into two principal groups.
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The first group of systems implements a centralised feed-forward control strategy for the

direct control of the global sound field. This approach has been implemented as ’active noise

control’ (ANC) and ’active noise and vibration control’ (ANVC) systems. ANC systems

are implemented using a set of loudspeakers that are driven by a multi-channel feed-forward

controller to produce a secondary acoustic field that destructively interferes with the acoustic

sound field in the cabin produced by the primary noise sources[11]. ANVC systems are

implemented using structural actuator transducers in order actively to alter the vibration of

the fuselage skin in order to minimise the overall interior sound levels in the cabin [12].

ANC systems use exclusively acoustic error sensors (microphones), whereas for ANVC

systems both acoustic and structural sensors are employed.In both cases the signals from

the error sensors are used to define a global cost function andthe centralised feed-forward

controller drives the actuators in order to minimise the overall interior noise level in the

cabin [11]. Significant global reduction of the overall interior noise levels can be achieved

for low frequencies where the acoustic wavelength is long orof similar length as the cabin

interior dimensions such that the acoustic field is dominated by a small number of discrete

acoustic modes. As frequency increases the acoustic wavelength reduces and the acoustic

field inside the cabin is formed by an increasing number of overlapping modes. Global

control at high frequencies therefore requires more complex control systems with unfeasibly

high numbers of error sensors and actuators. For a feed-forward strategy it is also necessary

to obtain a causal and well-correlated reference signal to the primary disturbance, such

as for example the rotational speed of a propeller rotor shaft. If the dominating primary

excitation is stochastic and broad-band, such as those induced by jet noise and turbulent

boundary layers, it is rather difficult to obtain a correlated reference signal since a large

array of sensors should be used and the time advance of the measured signal would be very

short. Therefore it would be particularly challenging to build a causal controller [13].

This first group of control systems allows efficient control of the sound field in a confined

acoustic space, such as the interior of an aircraft cabin or the passenger compartment of a

car, if the interior noise is dominated by a tonal deterministic disturbance for which a well

correlated control signal is available. Drawbacks of theseapproaches are the rather com-

plex architecture of the centralised controller particular when a large number of actuators

and sensors are employed. Also the amount of wiring requiredfor data and power cables

for these centralised systems introduces considerable additional weight and additional in-

stallation and maintenance costs.
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As an alternative the second group of control systems implement control exclusively em-

ploying structural sensor and actuator pairs on the fuselage skin or the trim panels. This

strategy alters and reduces the structural vibration and sound radiation from the fuselage

panels and hence reduces the overall fuselage vibration andnoise transmission into the

cabin interior. Both feed-forward and feedback strategies have been investigated [14].

In contrast to feed-forward strategies, no reference signal is required for feedback control

approaches. Therefore feedback control systems are bettersuited to control stochastic pri-

mary excitations with broad-band excitation spectra. Depending on the sensor and actuator

arrangements feedback control approaches can be classifiedinto single input single output

(SISO) feedback control strategy via a single distributed actuator-sensor pair and decen-

tralised multi-input multi-output (MIMO) feedback control via a large number of localised

actuator-sensor pairs. Also hybrid approaches with modular distributed MIMO feedback

strategies have been investigated where the signals of a group of local sensors is used to

create the input signals to a group of local actuators [15, 16].

With decentralised feedback architectures a rather large number of control units can be used

so that the frequency range over which the control system is effective can be extended to

higher frequencies. This is because the systems are modularand can be integrated with the

panel so that no extensive wiring and no complex central controller unit is required. Also the

modal density for the panel structures is increasing with a much lower rate (it is constant

for thin homogeneous panels) than the modal density of a three dimensional sound field

and thus for a given number of control units, larger control effects would be produced than

with decentralised acoustic systems. The principal issue of decentralised feedback control

strategies is the stability of feedback loops with practical sensor-actuator pairs. In particular

undesired cross-coupling effects within larger arrays of practical feedback control units may

lead to instabilities even for low control gains.

Centralised ANC feed-forward control systems have been successfully implemented, mainly

with application to commercial aircraft. Control systems that directly act on the fuselage

skin or inner trim panel promise solutions to a wide range of practical problems. However,

this type of systems has not yet reached the stage of development for use in commercial

applications. In recent years much research effort has beenput towards the investigation of

modular systems with local sensor-actuator pairs with distributed and decentralised feed-

back control strategies. As result a number of practical demonstrators in the form of smart

panels were produced. The next section focuses on a review ofsome of the important steps
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in the development of these smart panels.

1.2.3 ASAC and AVC for smart panels

In this section some important steps in the development of smart panels with ’active vibra-

tion control’ (AVC) and ’active structural acoustic control’ (ASAC) systems are reviewed

in order to provide a comprehensive overview of the smart panel technology that leads to

the specific scope and objectives of this thesis.

About twenty years ago researchers started to investigate the possibility of reducing the re-

sponse and sound radiation of thin structures using vibration control systems where sensors

and actuators are embedded in the structure itself [17, 18, 19]. At the beginning feed-

forward controllers were developed, which are set to minimise the total sound power radi-

ated by the structure. This early work led to the formulationof the sound radiation problem

in terms of so called ”radiation modes” [20], which, in contrast to structural modes, radi-

ate sound independently [17, 18, 19]. In this way it has been possible to identify vibration

control strategies that lead to the reduction of the sound radiation. As a result this control

approach was named ’active structural acoustic control’ (ASAC) [17].

In order to detect and excite radiation modes precisely, distributed transducers should be

used. This has led to the development of smart structures with thin distributed piezoelectric

transducers whose electrodes could be shaped in such a way that they detect or act upon

the specific structural modes to be controlled [21]. In general, below the acoustic criti-

cal frequency the first radiation mode is by far the most efficient radiator [19]. Moreover,

for frequencies such that the acoustic wavelength is largerthan the dimensions of the thin

structure, the first radiation mode corresponds to the net volumetric displacement of the

structure [22]. As a result, a simple single channel controlsystem could be implemented

with a distributed and matched piezoelectric sensor-actuator pair embedded in the structure

itself. The close location of the sensor and actuator transducers also allows the implementa-

tion of feedback control, which would enable the control of frequency broad-band random

disturbances that affect interior noise in vehicles [18, 19, 22, 23]. Practical demonstrators

have been developed but research in this type of control system has come to a halt due to un-

resolved issues with control stability related to undesired in-plane coupling effects between

sensor and actuator piezoelectric sensors.

Recent research work has shown that decentralised MIMO feedback ‘active vibration con-
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trol’ (AVC) may provide a simple and effective alternative approach for the control of broad-

band vibration and sound radiation by structures, particularly in the low frequency range

where the response of the panels is dominated by well-separated resonant modes. With

these systems multiple actuators and sensors are arranged in closely spaced pairs, ideally

collocated, so that simple local feedback control loops canbe implemented around each

pair. If the sensors and actuators are chosen such that the sensor and actuator output signals

form power conjugated pairs, e.g. transverse velocity and transverse force, then a single

feedback loop and also an array of such local control loops, can be shown to be uncondi-

tionally stable [24, 25]. This is true even for large changesin the response of the structure

or the failure of individual control units.

Over the recent few years there has been some controversy whether decentralised AVC ap-

proaches can perform as well as approaches implementing centralised or distributed control.

A comparative study has shown that decentralised AVC control systems can perform as well

as centralised and distributed control strategies if the objective is to achieve broad-band re-

ductions in structural vibration and sound radiation [26].Centralised and distributed AVC

strategies were shown to be more efficient if the objective isto control a narrow band of

frequencies. Hence, for the control of structures excited by broad-band stochastic excita-

tion, both approaches are expected to show similar performance. In fact if the centralised

controller is set to minimise the overall vibration of a panel due to a broad-band excitation,

the off-diagonal terms of the fully populated control matrix vanish so that the control sig-

nals are dominated by the output of the collocated sensor andhence decentralised control is

implemented.

The decentralised AVC approach has the advantage of being relatively simple and modu-

lar. The simplest type of local control is velocity feedbackwith a collocated force actuator,

which is physically equivalent to adding a point damper to the system [19]. For structures

with a low modal density, where the response at any one frequency is dominated by a single

mode, adding ”point dampers” can be very effective, both in terms of controlling structural

response and sound radiation. This strategy has recently been successfully adopted in the

control of sound radiation and transmission by thin structures. In this case two-dimensional

arrays of decentralised velocity feedback control units have been used to generate active

damping in the structure [27, 28, 29, 30, 31, 32, 33, 34]. Alsodecentralised velocity feed-

back control has been used to control the sound transmissionthrough a double panel by

controlling the relative velocity between the source paneland the radiating panel [35, 36].
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The principal open problem in AVC strategies is the design ofstable control units with dual

and collocated senor-actuator pairs which produce power conjugated outputs, i.e. transverse

force and transverse velocity. In practice the sensing and actuation transducers that could

be embedded in lightweight panels are characterised by stability issues introduced by the

electrodynamic responses of the transducers [19, 37].

1.2.4 Sensors and actuator for decentralised AVC

This section provides a brief review of recent research workon various practical sensor

and actuator configurations for decentralised velocity feedback control on thin panels with

reference to stability issues.

Strain actuators and sensors: Flexural vibration on thin panels can be generated by

strain transducers that are rigidly bonded to the surface. Normally piezoelectric strain trans-

ducers are used which are composed of thin piezoelectric laminas polarised along the thick-

ness and with thin metal electrodes on the opposite faces. When a driving voltage is applied

to the transducers, an electric field is generated across thepiezoelectric material and be-

cause of the piezoelectric effect the transducer deforms inthe plane of the lamina and also

in the transverse direction, although the latter is comparatively small [19, 38]. When these

piezoelectric actuators are bound to a thin panel, an in-plane stress field is generated, which

causes the panel to bend, twist and stretch. Complex distributions of the stress field can

be produced by shaping the electrodes or shading the poling of the piezoelectric lamina ac-

cording to specific spatial functions [19, 38]. In reverse, piezoelectric patches can also be

used as sensors where the piezoelectric effect produces a voltage output proportional to the

transverse and in-plane vibration of the panel structure. Large distributed sensor-actuator

pairs could be used to sense and control volumetric radiation modes with a SISO feedback

ASAC strategy [39]. However, due to undesired in-plane coupling of the distributed sensor

and actuator patches this type of sensor-actuator arrangement gives poor control stability.

Therefore small piezoelectric patches that produce comparatively low in-plane deformation

amplitude are used as actuators for decentralised MIMO feedback AVC approaches. For ex-

ample, small square piezoelectric patches with seismic accelerometer sensors in their cen-

tres that are distributed over the surface of a panel implement AVC by producing localised

bending moments [19]. Triangular shaped transducers with accelerometer sensors located

at their tip, that are arranged along the periphery of a panelwith clamped edges, can also be
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employed to produce localised control excitation [31, 32].Hong and Elliott [40, 41] investi-

gated decentralised feedback AVC with square piezoelectric-actuator accelerometer-sensor

pairs specifically for the control of sound radiation from honeycomb sandwich structures.

Stability issues with localised piezoelectric-actuator and accelerometer-sensor pairs occur at

relatively high frequency. This is due to two main reasons. Firstly with increasing frequency

the piezoelectric patches couple more efficiently with the bending waves of the panel and

secondly the lightly damped resonance of the seismic accelerometers which cause a 180◦

phase shift in the open loop response function [19]. Also at high frequencies the non-duality

and non-perfect collocation of the sensor-actuator pairs results in further phase lag in the

feedback open loop response functions. An improvement of the control performance could

be achieved by employing low-pass filters and appropriate compensators. For sandwich

panels local coupling effects between the sensors and actuators allows for higher gain mar-

gins. However, relatively poor global performance is achieved because of localization of

reduction around the position of the sensor-actuator pair [41].

Electrodynamic proof-mass actuators: One way to generate a ’sky-hook’ transverse

force excitation on structures is to use electrodynamic voice coil actuators which react off a

resiliently suspended proof mass [19]. For example Paulitsch et al. [42, 43, 44] developed a

compact lightweight proof-mass electrodynamic actuator and produced a prototype specif-

ically designed for feedback AVC purposes. The prototype consists of an electrodynamic

linear motor with the voice coil assembly fixed to the base of the actuator and the perma-

nent magnet, which forms part of the proof-mass, suspended from the base via three soft

circular springs. Gonźalez D́ıaz et al. [33, 34, 45] produced four identical control unitsand

developed a five channel decentralised velocity feedback AVC system. Collocated feedback

loops are formed using seismic accelerometer sensors whichare mounted in the footprint of

the actuators on the opposite side of the panel.

The main stability issue for feedback loops with proof-masselectrodynamic-actuator and

accelerometer-sensor pairs occurs around the actuator fundamental resonance frequency

which causes an 180◦ phase shift in the open loop frequency response function [19]. An

important factor for the gain margin is the ratio between theresonance frequencies of the

first volumetric bending mode of the panel and the fundamental resonance of the actuator.

Supposing the fundamental actuator resonance is sufficiently damped, a high frequency ratio

(low actuator resonance frequency and high panel volumetric mode resonance) allows for
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a high gain margin. This has motivated the feasibility studypresented in this thesis, where

the stability and performance of this control approach is contrasted for conventional thin

homogeneous and stiff lightweight sandwich panels.

In this section some recent research work on various practical sensor and actuator config-

urations for decentralised velocity feedback control on thin panels has been reviewed with

particular emphasis on inherent limitations for control stability. All practical sensor-actuator

arrangements reviewed are only conditionally stable sincesensors and actuators are not per-

fectly dual and collocated [24]. Out of the configurations reviewed, the system employing

velocity feedback loops with proof-mass electrodynamic actuators seems to be the most

promising for the implementation of decentralised AVC on stiff lightweight panels.

1.2.5 Lightweight sandwich panels

It is well known that lightweight composite panels, and stiff lightweight sandwich panels

in particular, have undesirable sound transmission properties [19] and that the design of

structures made from these panels must be carefully optimised to obtain acceptable sound

transmission loss properties.

There are two main effects that cause problems with sound transmission through structures

constructed with lightweight sandwich panels. Firstly, the partitions have a lower mass per

unit area. This results in a reduction of the transmission loss in the frequency range were

the sound transmission is mass-controlled [19].

Secondly the high stiffness-to-weight ratio of lightweight sandwich structures generates rel-

atively long transverse wavelengths than those observed for conventional thin homogeneous

panels. As a result acoustic and convective coincidence effects shift down in frequency. For

example the acoustic critical frequency [19] for conventional thin aluminium panels (thick-

ness less than 2 mm) occurs at the upper end of the audio frequency range and is not an

issue for most practical noise control applications. For a stiff lightweight sandwich panel,

the acoustic critical frequency shifts down into the mid audio frequency range. Around the

acoustic critical frequency the panels radiate and transmit sound efficiently so that a parti-

tion constructed from sandwich panels may transmit more sound over a wide range of audio

frequencies even if it has the same mass per unit area as a conventional construction.

In summary, stiff lightweight sandwich structures are veryappealing for the design and

construction of lightweight vehicles. However these panels have undesirable sound trans-
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mission properties that are difficult to address with passive measures without diminishing

the desired weight benefit. However the dynamic properties of lightweight sandwich panels

may enable the use of decentralised feedback AVC systems in order to control the interior

noise in future generations of lightweight vehicles.

1.3 Scope and Objectives

This thesis presents a theoretical and experimental study on AVC with decentralised velocity

feedback loops for thin homogeneous and lightweight sandwich panels.

The general aim of this work is to provide an initial study on the feasibility of a lightweight

structure with velocity feedback control using small lightweight proof-mass electrodynamic

actuator units that can operate both at low and mid audio frequencies.

The specific objectives of this thesis can be summarised as follows:

1. To investigate the intrinsic limitations of decentralised velocity feedback control via

ideal sensor-actuator pairs for thin homogeneous and sandwich panels under dis-

tributed deterministic and stochastic excitation in the whole audio frequency range.

2. The analysis of the stability requirements and performance of a single control unit

with reference to its open-loop and closed-loop base impedance.

3. The investigation of the stability and performance of a practical vibration control sys-

tem, comprising five proof-mass electrodynamic-actuator accelerometer-sensor pairs,

on a thin homogeneous aluminium panel and a honeycomb sandwich panel.

The first objective is addressed with a simulation study on decentralised velocity feedback

control via ideal sensor actuator pairs on

• a thin homogeneous panel and

• a sandwich panel with equal static stiffness but four times lower mass per unit area.

Both panels are subjected to

• deterministic acoustic plane wave (APW) excitation and

• stochastic excitations, i.e.

– Acoustic diffuse field (ADF)

– Turbulent boundary layer (TBL)
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For the second objective the open loop and closed loop base response of one control unit

is investigated both theoretically and experimentally taking into account the sensor, actua-

tor and controller components. The aim is to characterise the control unit in terms of the

impedance function it exerts on the structure where it is mounted. Also, the intention is to

provide a physical interpretation of a) the control effectsthat can be generated by the control

unit and b) the intrinsic stability limits of the feedback loop.

For the third objective the study focuses on the practical implementation of velocity feed-

back control via a set of five proof-mass electrodynamic actuators with accelerometer sen-

sors at their footprints. The control system is installed on

• a thin homogeneous aluminium panel and

• a honeycomb sandwich panel with equal weight but significantly higher static stiff-

ness.

The smart panels have been installed in a sound transmissionsuite. The control stability

of the system is analysed with respect to the open loop frequency response functions of the

control loops and in terms of eigenvalues analysis of the control systems’ open loop transfer

function matrix. The control performance is assessed in terms of reductions in panel kinetic

energy and radiated, i.e. transmitted, sound power.

The smart panels are subjected to

• a point force excitation via an electrodynamic shaker and

• an acoustic excitation produced by a loudspeaker.

The experimental measurements have been compared with simulation results from a fully

coupled model of the panels with the five proof-mass inertialactuators used in the experi-

mental study.

1.4 Structure and Organisation

This thesis is organised in six chapters.

Chapter 1 provides a brief introduction on motivation and technical background for active

vibration control for two-dimensional structures. Also the objectives and structure of this

dissertation are outlined and the original contributions of this research are highlighted.
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Chapter 2 introduces a general, element-based model, for the structural response and ra-

diated sound power of passive and active panels with feedback control. The expressions

for discrete and distributed deterministic transverse excitation, and distributed stochastic

transverse excitation are reviewed. In addition

• Appendix A summarises the expressions used to derive the natural frequencies, natu-

ral modes and point and transfer mobilities of thin homogeneous isotropic panels.

• Appendix B gives the formulations for panel kinetic energy and radiated sound power

for deterministic and stochastic excitations which are derived from first principles.

Chapter 3 presents the simulation studies on decentralised velocityfeedback control via

ideal sensor-actuator pairs for different types of distributed deterministic and stochastic ex-

citation. Section 3.1 introduces the basic model used to capture the dynamic characteristics

of a sandwich panel within the general model framework. The characteristic differences be-

tween the structural response of thin homogeneous and sandwich panels are discussed with

respect to the real wavenumber solutions of the governing equations. Resulting problems

for interior noise are discussed with respect to excitationand radiation coincidence effects.

In this study both panels have equal static stiffness but thesandwich panel has a four times

lower mass per unit area. The simulated response and radiated sound power of the two

panels with and without feedback control are presented for acoustic plane wave (APW) ex-

citation for different angles of incidence and for stochastic acoustic diffuse field (ADF) and

turbulent boundary layer (TBL) excitation.

Chapter 4 describes experimental and simulation studies on the open and closed loop base

impedance of a practical control unit consisting of proof-mass electrodynamic-actuator

accelerometer-sensor pair and realistic integrator and amplifier controller circuits. In ad-

dition

• Appendix C provides the derivation of the open and closed loop base impedance for

current and voltage driven control units.

Chapter 5 discusses the results of the transmission chamber experimental studies on a thin

aluminium panel and a honeycomb sandwich panel with a control system consisting of five

decentralised control units with proof-mass electrodynamic-actuator accelerometer-sensor

pairs. The experimental results for the two panels are contrasted with respect to the control

stability and the measured responses and radiated sound power for shaker and loudspeaker

excitation. The experimental results are also compared with the corresponding simulation
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results for the model implementing the practical feedback control model described in Chap-

ter 4. In addition

• Appendix D provides background information on the experimental studies on the

structural parameters of the anisotropic honeycomb test panel, and

• Appendix E provides further background information on the transmission chamber

experimental set-up.

Chapter 6 summarises the findings of this thesis and also presents suggestions for future

work.

1.5 Contributions

The original contributions of this thesis can be organised in three groups.

1. Modelling: The first group of contributions concerns the development ofa general

two port model for the structural response, sound radiationand sound transmission through

panels equipped with decentralised velocity feedback control units. The model is based

on an elemental approach, which enables the formulation in aconsistent framework of the

following physical effects:

• Discrete and distributed deterministic transverse excitation (e.g. point forces and

acoustic plane waves)

• Distributed stochastic transverse excitation (e.g. rain on the roof, acoustic diffuse

field and Turbulent Boundary Layer)

• Passive and active effects of open/closed loop control units

The passive and active effects of the decentralised controlunits are modelled in terms of

their open and closed loop base impedances. This has enabledthe investigation and physical

interpretation of decentralised feedback control in termsof the impedance effect the control

units produce on the structure at the mounting location.

The model can be easily extended to capture other physical effects such as for example fluid

loading and flexible boundaries as reported in Reference [46].

2. Simulation studies on idealised control loops:The second group of contributions con-

cerns the theoretical study of decentralised velocity feedback control with idealised velocity
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sensor and force actuator pairs on a homogeneous aluminium panel and a lightweight sand-

wich panel with significantly different dynamic responses.

This study introduces a comprehensive analysis on how the control performance of decen-

tralised velocity feedback control depends on

• the frequency range where the response of the panels are characterised by well sepa-

rated resonance peaks of low order modes;

• the frequency range where the acoustic and convective excitation coincidence effects

occur and

• the frequency range where sound radiation coincidence occurs.

3. Simulation and experimental work on a practical control set up: The third group of

contributions is focused on the implementation of modular control units on a homogeneous

aluminium panel and a honeycomb sandwich panel. Each control unit is formed by a proof-

mass electrodynamic actuator with an accelerometer sensorat its footprint.

At first the behaviour (control stability and performance) of a feedback control unit has been

investigated both theoretically and experimentally with respect to its base impedance, thus

independently from the coupled response with the structure.

Secondly the performances of a set of five control units mounted on the two panels have

been investigated. The feasibility of velocity feedback control over low and mid audio

frequency bands for stiff lightweight smart structures compared to more flexible standard

homogeneous panels has been verified.
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Chapter 2

Modelling sound transmission through

passive and active panels using the

elemental approach

This chapter introduces a general model for the structural response and radiated sound

power of passive and active panels with feedback control loops, which is based on an ele-

mental approach. The expressions for point and distributeddeterministic transverse excita-

tion (e.g. point forces and acoustic plane wave), and distributed stochastic transverse excita-

tion (e.g. Turbulent Boundary Layer (TBL) aerodynamic pressure fluctuations and Acoustic

Diffuse Field (ADF)) are reviewed. The numerical simulation results for the transmission

coefficient for acoustic plane wave excitation are validated by comparison with results from

approximate analytic solutions. Also experimental validations have been obtained for point

force and acoustic excitation considering the test panels discussed in Chapter 5. The aim of

this chapter is to introduce the models used to generate the simulation results presented in

Chapters 3 and 5 of this thesis.

Elliott and Johnson [20, 22] predict the spatially averagedresponse and the total sound

power radiation from a panel using the so called ’elemental approach’ [19]. In 2004 Gardo-

nio and Elliott [23] presented a theoretical study using this approach to predict and compare

the sound transmission through different types of smart panels with active feedback control

systems. With the elemental approach the surface of the panel is subdivided into a uniform

grid of elements. The time-averaged panel kinetic energy and the time-averaged total sound

power radiated by the panel is derived in terms of the panel velocity at the element centre
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positions. Thus the spatial integrals in the expressions for the kinetic energy and sound

power radiation are replaced by sums over the grid of elements.

Following the work presented in References [20, 22, 23], thischapter first describes the

element-based modelling approach for the structural vibration and sound radiation by pas-

sive thin rectangular panels with a given set of point force excitations. Then the formulation

is expanded in such a way as to consider distributed deterministic excitation, i.e. Acoustic

Plane Wave excitation (APW) and distributed stochastic excitation, i.e. Acoustic Diffuse

Field (ADF) and Turbulent Boundary Layer excitation (TBL).

The effect of multichannel feedback control with point actuator and sensor transducers is

also integrated in the elemental model. The elemental and feedback control models are cast

into a matrix formulation that can be graphically represented in terms of a two-port block

diagram with a multi-channel feedback loop.

This chapter presents the principal steps and equations of the model. A detailed summary

of the expressions used in the formulation are given in Appendices A and B. In particular:

• Appendix A summarises the expressions used to derive the thenatural frequencies,

natural modes and point and transfer mobilities of thin homogeneous isotropic panels.

• Appendix B gives the formulations for panel kinetic energy and radiated sound power

for deterministic and stochastic excitations which are derived from first principles.

In this study the point and transfer mobility functions between the locations on the panel

are derived from finite modal expansion formulations which are given in Appendix A. The

particular model problem studied in this thesis is shown in Figure 2.1 and resembles a

rectangular panel mounted in an infinite baffle. The geometryand physical properties for

the homogeneous aluminium panel considered for the simulation studies in this chapter and

Chapter 3 are given in Table 2.1 and represents a typical panelin an aircraft fuselage.
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Figure 2.1: Model problem: rectangular panel in an infinite baffle, where the panel is subdivided in a uniform
grid of elements.

Table 2.1: Geometry and physical parameters of the aluminium panel used in the simulation studies.

Parameter Symbol Value Unit

x-dimension lx 278 mm
y-dimension ly 247 mm
Thickness h 1.6 mm
Mass density ρ 2720 kg m−3

Young’s modulus E 70 GPa
Poisson’s ratio ν 0.33 –
Modal loss factor η 0.02 –

2.1 Panel response to point and distributed excitations

In this section the formulations for the passive response ofa panel excited by point forces

and distributed deterministic disturbances are introduced. At first the formulation for the

response of a single panel element is considered, which is then cast into a matrix expression

for the determination of the overall panel response and sound radiation considering the

contributions from all panel elements.
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2.1.1 Deterministic excitation

Point force excitation

As shown in Figure 2.2, in this subsection the response at thecentres of the panel elements

due to a set of point forces is determined.

Z

Y

X

Z

Y

X
Receiver sideSource side

Elemental velocitiesPoint force excitations

Z

Y

X
Receiver side

Elemental velocities

Figure 2.2: Panel model with point force excitation.

The steady-state response of the panel elements is expressed assuming time-harmonic ex-

citation of the formRe{exp (jωt)} whereω is the angular frequency andj =
√
−1. For

brevity the time-harmonic termexp (jωt) will be omitted in the formulation which will be

given in complex form. Therefore, the time-harmonic velocity ẇ(t) = Re{ ˜̇w(ω) exp (jωt)}
and force F (t) = Re{F̃ (ω) exp (jωt)} will be replaced by the frequency-dependent com-

plex velocity and force phasorṡ̃w(ω) and F̃ (ω). Throughout the thesis̃ will be used to

identify complex, frequency-dependent functions.

Assuming the system is linear, the velocity at the centre of thee-th element due toNp point

forces can be determined from the following summation.

˜̇we(ω) =

Np
∑

p=1

Ỹe,p(ω)F̃p(ω), (2.1)

whereỸep are the transfer mobilities between the primary excitationforces at the excitation

positionp and the velocity at the centre of the elemente. As shown schematically by the

block diagram in Figure 2.3, the set ofNe elemental velocities due toNp point forces can
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be determined with the following matrix expression,

˜̇we(ω) = Ỹep(ω)F̃p(ω), (2.2)

epY%pF% ew%&

Figure 2.3: Block diagram for passive response of a panel elements to a discrete primary excitation.

where ˜̇we is a [Ne × 1] vector containing the elemental velocities
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andF̃p(ω) is the[Np × 1] vector of discrete primary excitation forces,

F̃p(ω) =
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The [Ne ×Np] mobility matrix Ỹep(ω) contains the transfer mobilities between the centres

of the panel elements and the primary excitation locations.The formulation presented above

is general and not restricted to thin rectangular plates. Thus it can be used for other struc-

tures such as curved shells provided expressions for the structural point and transfer mobil-

ities are available, i.e. expressions for the natural frequency and modes of the structure. In

this study the response of the panel is described using thin plate theory. The expressions

given in Appendix A for the natural frequencies and natural modes of thin rectangular plates

are taken from references [47, 48].

The total number of elementsNe is given by the product of the number of elements along

the x and y-axis Nex × Ney. The number of elements along each axis depends on the

shortest bending wavelength of the panel at the highest frequency of interest. At least two

elements per wavelength are needed to describe the panel motion uniquely, i.e. to avoid
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spatial aliasing. For adequate spatial sampling, at very least three elements per wavelength

are used in this study. A convergence study on the element resolution with respect to the

estimated panel total kinetic energy is presented in Reference [46].

Distributed deterministic excitation

As shown in Figure 2.4 a distributed disturbance is represented by equivalent discrete forces

acting on the element centres.
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distributed excitation
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Figure 2.4: Panel model discretised distributed excitation.

Thus the set ofNe elemental velocities can be derived with the matrix expression in Equa-

tion (2.2), where the terms̃Fp andỸep(ω) are replaced by the[Ne × 1] vector of element

excitation forces̃Fe(ω) and the[Ne ×Ne] matrix of element point and transfer mobilities

Ỹee(ω) so that

˜̇we(ω) = Ỹee(ω)F̃e(ω). (2.5)

As an example of a deterministic disturbance, an Acoustic Plane Wave (APW) excitation

is considered. The wave is defined by its sound pressure amplitude and by the angles of

incidenceθ (taken from the normal to the panel surface) and the angleϕ (given in the (x, y)-

plane, measured from thex-axis) as shown in Figure 2.5.
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Figure 2.5: Angle of incidence for acoustic plane wave.

Assuming time-harmonic pressure fluctuations, the incident sound pressurep(x, y, t) acting

on the source side of the panel is given as

p(x, y, t) = Re{p̂(ω)ej(ωt−kxx−kyy)}, (2.6)

wherep̂(ω) is the pressure amplitude of the incident wave. The wavenumbers in thex and

y directions,kx andky, are given by

kx(ω) = k0(ω) sin θ cosϕ, (2.7)

ky(ω) = k0(ω) sin θ sinϕ, (2.8)

wherek0(ω) = ω/c0 is the wavenumber of sound in the surrounding fluid. The fluid proper-

ties of air used throughout the simulation studies are givenin Table 2.2 below. The pressure

amplitudep̂(ω) is set to unity. The angle of incidenceϕ is set to 45◦ while different values

for the angleθ are considered.

Table 2.2: Acoustical parameters of air

Parameter Symbol Value Unit

Speed of sound c0 343 m/s
Density ρ0 1.21 kg/m3

Specific impedance Z0 = c0ρ0 415 Ns/m3

In order to predict the response due to a plane wave excitation, the panel needs to be sub-

divided into an appropriate number of equally spaced and sized elements. The minimum
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element resolution is determined by the shortest wavelength at the maximum frequency con-

sidered in the simulation. Below the acoustic critical frequency [19] the acoustic wavelength

is longer than the bending wavelength on the panel, thus the minimum element resolution is

determined by the bending wavelength on the panel. Above theacoustic critical frequency

the acoustic wavelength is shorter than the bending wave length on the panel; thus the min-

imum element resolution is given by the acoustic wavelengthat the maximum frequency

considered in the simulation.

In order to characterise the pressure field produced by an acoustic plane wave at any angle

of incidence and to sample the excitation of the bending structural modes of a panel, ideally

at least four elements per shortest acoustic or structural wavelength should be used [46].

Increasing the element resolution yields more accurate results. However a simulation study

on the effect of resolution has shown that an increase of the element resolution above four

elements per shortest wavelength only marginally affects the results at the upper end of the

observed frequency range but produces a considerable increase of the computation time.

The elements of the vector̃Fe(ω) for APW excitation are given by

F̃ei(ω) = 2Aep̂(ω)e
−j(kxxi+kyyi), (2.9)

whereAe is the area of a single element and the factor 2 accounts for the assumption of

blocked pressure on the panel surface [19]. The resulting[Ne × 1] vector of complex forces

is then used as the excitation term in Equation (2.5).

Panel kinetic energy

The response of the panel is assessed in terms of its total kinetic energy, which gives an

indicator for the spatially averaged vibration and also of the near field sound radiation.

For harmonic excitations, the time-averaged kinetic energy of a thin rectangular panel with

uniform mass per unit area is given by [19]

E(ω) =
ρh

4

lx
∫

0

ly
∫

0

∣

∣ ˜̇w(x, y, ω)
∣

∣

2
dx dy, (2.10)

where the additional factor 1/2 arises from the conversion from peak to RMS values. In the

elemental approach the surface integral in Equation (2.10)is replaced by a sum over the

25



element velocities [19]. Utilizing matrix algebra this summation can be calculated from the

inner Hermitian product of the element velocity vectors. This yields the total kinetic energy

as [see Appendix B, Equations (B.21) to (B.32)]

E(ω) =
Me

4
˜̇w

H

e (ω) ˜̇we(ω), (2.11)

whereH denotes the Hermitian transpose andMe is the mass of an individual element.

Substituting Equation (2.5) into Equation (2.11) gives thetotal kinetic energy with reference

in terms of the vector of elemental forces

E(ω) =
Me

4
F̃H

e (ω)
(

ỸH
ee(ω)Ỹee(ω)

)

F̃e(ω). (2.12)

Figure 2.6 shows the spectrum of the kinetic energy of a simply supported aluminium panel

normalised to the pressure amplitude of a plane acoustic wave incident at an angleθ=45◦

andϕ=45◦ in the frequency range between 50 Hz and 20 kHz. The panel dimensions and

material properties are summarised in Table 2.1.

At frequencies below 1500 Hz, the response of the panel is characterised by well-separated

resonances which are controlled by low-order resonant modes. Above 1500 Hz the response

is increasingly controlled by overlapping clusters of modes and rolls off following a mass

law. Between 10 and 20 kHz there is a wide-band peak due to the acoustic coincidence

effect. In fact the acoustic coincidence for theθ=45◦ plane wave occurs around 15 kHz.

Radiated sound power

The sound radiated by the panel is expressed in terms of the total sound power radiated

which gives an indication of the far field, spatially-averaged, sound radiation. The time-

averaged total sound power radiated on one side of the panel is given by [19]

P (ω) =
1

2

lx
∫

0

ly
∫

0

Re
{

˜̇w
∗

(x, y, ω) p̃(x, y, ω)
}

dx dy, (2.13)

where ∗ denotes the complex conjugate and the factor 1/2 arises fromthe conversion from

peak to RMS values. Considering radiation into free space, foran ideally planar panel, the

Rayleigh integral [19] is used to rewrite the acoustic pressure on the surface in terms of the
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surface velocities and radiation impedance. Utilising matrix algebra Equation (2.13) can be

cast in the form [see Appendix B, Equations (B.33) to (B.41)]

P (ω) = ˜̇w
H

e (ω)Rrad(ω) ˜̇we(ω), (2.14)

Substituting Equation (2.5) into Equation (2.14) gives thetotal sound power radiated in

terms of the vector of the elemental forces

P (ω) = F̃H
e (ω)Ỹ

H
ee(ω)Rrad(ω)Ỹee(ω)F̃e(ω), (2.15)

whereRrad(ω) in Equations (2.14) and (2.15) is the[Ne × Ne] radiation matrix with the

elements [see Appendix B, Equations (B.43) to (B.46)]

Rradi,j =
ω2ρ0A

2
e

4πc0

sin (k0Ri,j)

k0Ri,j

. (2.16)

In this equationk0 is the acoustic wavenumber on the receiving side of the paneland

Ri,j =
√

(xi − xj)2 + (yi − yj)2 is the distance between the centres of the elementsi and

j. The distanceRi,i is zero, thus the radiation termsRradi,i on the main diagonal of the

radiation matrix are undefined. However, using L’ Hôpital’s rule [49] it is found that

lim
R→0

sin (k0R)

k0R
= lim

R→0

k0 cos (k0R)

k0
= 1. (2.17)

Figure 2.6 also shows the spectrum of the total sound power radiated by the panel considered

above in the frequency range between 50 Hz and 20 kHz for planeacoustic wave excitation

incident at an angleθ=45◦ and angleϕ=45◦, normalized to an acoustic pressure amplitude

of 1 Pascal. At low frequencies the spectrum of the radiated sound power is dominated by

the response of the principal panel mode. The resonance peaks of low order modes with low

radiation efficiency (even, symmetric panel modes) are small compared with those of modes

with higher radiation efficiency (odd, asymmetric panel modes). As found for the vibration

response of the panel, above 1500 Hz the total sound power radiated is characterised by

overlapping clusters of modes and rolls off following a masslaw. However, in this case,

the sound power starts to rise again from about 5 kHz since thesound radiation becomes

increasingly effective above the acoustic critical frequency, which for this panel is at about

7.5 kHz. Moreover, between 10 kHz and 20 kHz there is a wide frequency band peak due

to the coincidence effect of the acoustic wave incident atθ=45◦.
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Figure 2.6: Panel kinetic energy (solid) and radiated sound power (faint) normalized to the pressure am-
plitude of a plane wave incident at an angleθ=45◦ and angleϕ=45◦ for the panel with pinned boundary
conditions specified in Table 2.1.

Sound transmission

The sound transmission coefficientτ is definer [19] as the ratio between the radiated sound

power in the far field of the radiating side of the panelPrad and the sound power of the

incident plane wave on the source side of the panelPin.

τ(ω) =
Prad(ω)

Pin(ω)
. (2.18)

Note that the definition of the transmission coefficientτ considers only the component of

the power in an infinitely extended incident plane wavePin incident on the panel area and

not the total power on the source side of the panel, which is determined by the interaction

of the incident, reflected and back-radiated acoustic wavesover the area of the panel. The

power in the incident acoustic plane wave is given by [50, 23]

Pin(ω) = p̂2(ω)
Ap cos(θ)

2ρ0c0
. (2.19)

As for most acoustical quantities it is convenient to express the transmission coefficientτ in

logarithmic terms to give the sound transmission index in decibels
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T (ω) = 10 log10 (τ(ω)). (2.20)

The sound transmission loss or sound reduction index in decibels is calculated from the

reciprocal of the transmission coefficient and is expressedas follows:

TL(ω) = 10 log10

(

1

τ(ω)

)

. (2.21)

Approximate solutions for the sound transmission coefficient are widely discussed in the lit-

erature. In Reference [5] Fahy discusses an approximate formulation that allows the trans-

mission coefficient to be evaluated for infinite thin panels due to plane wave excitations

depending on the out-of-plane incidence angleθ

τ(θ) =

(

2Z0

ωm′′

)2
sec2(θ)

[

(

2Z0

ωm′′

)

sec2(θ) + η
(

k0
kb

)4

sin4(θ)

]2

+

[

1−
(

k0
kb

)4

sin4(θ)

]2 , (2.22)

wherekb is the bending wavenumber,m′′ is the mass per unit area of the panel andη is

the damping loss factor. Fahy [51] also gives an approximation for the sound transmis-

sion coefficient through a thin unbounded panel mounted upona viscously damped elastic

suspension. This is a first order approximation for the fundamental mode of a large finite

panel. The formulation is derived for an acoustic plane waveexcitation normal to the sur-

face (θ = 0). For non-identical media on both sides of the panel, the transmission coefficient

τ0 is given as

τ0 =
4n

[

ωm′′−
s
ω

Z2

]2

+
(

ω1,1m′′η

Z2
+ n+ 1

)2 , (2.23)

wheren is the ratio between the specific impedance of the fluid on the source sideZ1 and the

specific impedance of the fluid on the receiving side of the panel Z2 so that

n = Z1/Z2 = ρ1c1/ρ2c2 ands is the stiffness per unit area at the fundamental panel bending

mode given bys = m′′ω2
1,1. In the case that the fluid on both sides of the panel is air, the

sound transmission coefficient well above the first natural frequency of the panelω1,1 can

be approximated as [51]

τ0 =

(

2Z0

ωm′′

)2

. (2.24)
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This indicates that the transmission coefficient is dropping by 6 dB per frequency doubling

i.e. 20 dB per decade and is known as the ’mass law’.

Figures 2.7 and 2.8 show the sound transmission index predicted using the elemental ap-

proach and the approximate solutions from Equations (2.22)and (2.23). The results for an

acoustic plane wave incident at an angleθ=0◦ (normal to the panel) in Figure 2.7 show that

at low frequencies, up to 800 Hz, the modal response of the panel controls the transmission

coefficient and the agreement is poor between the elemental approach and the analytical

approximations. Above 800 Hz the results from the elementalapproach and both the results

for τ(θ = 0) from Equation (2.22) andτ0 from Equation (2.23) are in good agreement up

to about 5000 Hz. Above 5000 Hz the transmission index predicted from the elemental

approach is higher due to acoustic radiation coincidence effects which are not captured in

the analytical solutions. These coincidence effects are further discussed in Chapter 3.

Figure 2.8 shows the results for an acoustic plane wave incident at an angleθ=45◦ and

ϕ=45◦. At low frequencies, up to 1000 Hz, the modal response controls the transmission

coefficient. Again poor agreement is found between the elemental approach and the analyti-

cal approximations. Above 1000 Hz the results from the elemental approach and the results

for τ(θ = 45◦) from Equation (2.22) converge asymptotically up to about 5000 Hz. Above

5000 Hz the transmission loss predicted from the elemental approach exhibits radiation co-

incidence effects and excitation coincidence effects. Theradiation coincidence effects are

not captured in the analytical solutions from Equation (2.22). However the formulation in

Equation (2.22) captures the excitation coincidence effect due the projection of the incident

plane wave, which occurs around 15 kHz. In this coincidence frequency region both the

analytical and the numerical results from the elemental approach are in good agreement,

which validates the numerical results. Excitation and acoustic radiation coincidence effects

are further discussed in Chapter 3.

It is interesting to note that, at the fundamental natural frequency of the panel, the elemental

approach predicts transmission coefficients higher than zero. This effect is investigated in

Reference [52]. In effect the resonant panel is excited by an sound field that is large than

its own surface. Due to the existence of a panel resonance with low impedance, energy is

attracted by diffraction from the incident sound field well beyond the immediate surface of

the panel. Further discussion on the modelling of the structural response and the radiated

and transmitted sound power through fluid loaded panel with flexible boundaries is provided

in Reference [46].
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Figure 2.7: Transmission coefficient for an acoustic plane wave excitation incident at an angleθ=0◦ and
ϕ=45◦ for the panel with pinned boundary conditions specified in Table 2.1. Elemental approach (solid),
approximate analytical resultτ(θ = 0◦) (dotted) andτ0 (dashed).

10
2

10
3

10
4

−60

−50

−40

−30

−20

−10

0

10

T
ra

ns
m

is
si

on
 c

oe
ffi

ci
en

t T
 [d

B
]

Frequency [Hz]

Figure 2.8: Transmission coefficient for an acoustic plane wave excitation incident at an angleθ=45◦ and
ϕ=45◦ for the panel with pinned boundary conditions specified in Table 2.1. Elemental approach (solid),
approximate analytical resultτ(θ = 45◦) (dotted) andτ0 (dashed).
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2.1.2 Stochastic excitation

For many practical vibro-acoustic problems, the excitation is not deterministic. For instance

acoustic diffuse sound fields (ADF) or turbulent boundary layer (TBL) pressure fields, pro-

duced by the interaction of a turbulent flow of fluid and a structure, are often encountered

in vehicles such as aircraft, high speed trains and cars. Analytical formulations for the sta-

tistical properties of the excitation fields produced by ADFand TBL are available. These

formulations describe disturbances in terms of power spectral density and spatial correlation

functions. The response and sound radiation induced by suchrandom excitation fields are

also expressed in terms of power spectral densities. In particular the response is expressed in

terms of the power spectral density for the total kinetic energy, which for a panel structure,

is given by [see Appendix B, Equations (B.47) to (B.49)]

SE(ω) =
ρh

2

lx
∫

0

ly
∫

0

lim
T→∞

E

[

1

T
˜̇w
∗

(x, y, ω) ˜̇w(x, y, ω)

]

dx dy, (2.25)

where ˜̇w is the finite Fourier transfor oḟw(t). Considering the matrix formulation for the el-

emental approach, Equation (2.25) can be reformulated to give [see Appendix B, Equations

(B.49) to (B.62)]

SE(ω) =
Me

2
trace

(

ỸH
ee S̃fefe(ω) Ỹee

)

. (2.26)

whereS̃fefe is the [Ne × Ne] matrix of cross-spectral densities between the forces acting

on the centres of panel elements. The matrix of cross-spectral densities of the elemental

excitation due to a disturbance which is stochastic over time and space has the form

S̃fefe(ω) = A2
e Ψ(ω) C̃ee(ω), (2.27)

whereAe is the area of an element,Ψ(ω) is the time-averaged power spectrum of the distur-

bance per unit area and̃Cee is the[Ne ×Ne] spatial cross-correlation matrix of the excitation

disturbance calculated at the element centre locations. The sound radiation is expressed in

terms of the power spectral density of the sound power radiated into an infinite half-space

on the receiving side of the panel, which is given by
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SP (ω) = Re







lx
∫

0

ly
∫

0

lim
T→∞

E

[

1

T
˜̇w
∗

(x, y, ω)p̃(x, y, 0, ω)

]

dx dy







. (2.28)

Considering the elemental formulation, Equation (2.28) canbe reformulated to give [see

Appendix B, Equations (B.63) to (B.71)]

SP (ω) = 2 trace
[(

ỸH
ee S̃fefe Ỹee

)

Rrad

]

, (2.29)

whereRrad is the element radiation matrix with the elements defined in Equation (2.16).

2.1.3 Acoustic diffuse field

The acoustic diffuse field (ADF) is a widely used model to describe the excitation from

a reverberant sound field which is produced by random acoustic plane waves incident to

a surface for all angles. The cross-spectral density for an acoustic diffuse field excitation

has been discussed by Shorter and Langley [53]. The power spectral density of an acoustic

diffuse field is given by

ΨADF (ω) = 4E [p̃ p̃∗] = 4〈p̃2〉 (2.30)

where〈p̃2〉 denotes the farfield mean square pressure. The factor of 4 arises from the pres-

sure doubling at a rigid surface (and from the relationship between the pressure magnitude

and mean square value). The spatial correlation function for an acoustic diffuse field on the

surface of a rigid infinite plane is given by [53]

CADFi,j
(ω) =

sin (k0 Ri,j)

k0 Ri,j

, (2.31)

wherek0 is the acoustic wavenumber on the source side of the panel andRi,j is the distance

between the centres of the elementsi and j. It is interesting to note that the correlation

function for an ADF disturbance has the same spatial characteristics as the radiation matrix

defined in Equation (2.16).

33



2.1.4 Turbulent boundary layer

Turbulent boundary layer (TBL) disturbance models are widely used to describe the exci-

tation produced on a surface by a turbulent fluid flow. Models for the spatial correlation of

TBL disturbances have been discussed in References [54] and [55]. The most common ex-

pression for TBL cross spectral density is given by Corcos [56]. The parameters that define

the model of the spatial correlation of a fully developed TBL on the panels considered in

this study, are given in Table 2.3, where the flow speed is chosen to represent typical aircraft

cruising speeds. The flow direction is assumed parallel to they-axis. The spatial correlation

function in thex-direction (span-wise) andy-direction (stream-wise) is given by

C̃TBLi,j
(ω) = exp

(

−|Rxi,j
|

Lx(ω)

)

exp

(

−|Ryi,j |
Ly(ω)

)

exp

(−jωRyi,j

Uc

)

, (2.32)

where|Rxi,j
| = |xi − xj| and |Ryi,j | = |yi − yj| are the distances between the centres of

elementi andj in thex- andy-directions andLx andLy are the correlation lengths inx and

y, given by

Lx(ω) =
αxUconv

ω
, (2.33)

Ly(ω) =
αyUconv

ω
, (2.34)

whereαx andαy are empirical constants taken from [54, 55] andUconv is the convection

velocity. The convection velocity is a function of frequency [56, 57], but can be approx-

imated as a fixed fraction of the free flow velocity. Since thishypothesis is equivalent to

assuming that the cross-correlation function is independent of the boundary layer thickness,

it overestimates the correlation length at very low frequency. Comprehensive reviews on

TBL excitation models and research on the wavenumber-frequency spectrum are given by

Bull [8], by Cousin [57] and more resent by Hwang et al. [9]. In general, the power spec-

tral density of the surface pressure fluctuations due to a turbulent boundary layer decreases

with increasing frequency. The results presented in this thesis do not reflect this depen-

dency but only compare the panel response to different disturbances with respect to their

frequency-dependent spatial correlation.
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Table 2.3: Parameters for the turbulent boundary layer disturbance.

Parameter Symbol Value Unit

Free-stream velocity U∞ 225 m/s
Convection velocity Uconv 0.6×U∞ m/s
Empirical constant1 αx 1.2 –
Empirical constant1 αy 8 –
1 taken from Ref. [54]

2.1.5 Element resolution

The required element grid density depends on (a) the disturbance characteristics, (b) the

flexural response of the panel and (c) the radiation properties of the panels, which are given

by the radiation matrix. For frequencies below the convective and acoustic coincidence fre-

quencies the bending wavelength is shorter than the acoustic wavelength; thus the required

mesh density is determined by the bending wavelengthλb = cb(f)/f on the panels. For

frequencies above the acoustic coincidence frequency, it is the acoustic wavelength that is

shorter than the bending wavelength on the panel; thereforethe element density is deter-

mined by the acoustic wavelengthλ0 = c0/f . For TBL disturbance, the element density in

the stream-wise direction for frequencies above the convective coincidence is determined

by the convective wavelengthλconv = Uconv/f . In the span-wisex-direction the correlation

function in Equation (2.32) is exponentially decaying, thus a low resolution of the element

grid inx-direction results in an overestimation of the structural response but does not change

its general characteristics. In general at least two elements per shortest wavelength are re-

quired to avoid spatial aliasing. Numerical convergence studies showed that four elements

per shortest wavelength, at the highest frequency of interest, ensures convergence at high

frequencies and accurate predictions for the entire observed frequency range [46].

2.2 Decentralised velocity feedback control

This section introduces the formulations for decentralized multi-input multi-output (MIMO)

feedback loops with idealized feedback forces and point velocity sensors as shown in Figure

2.9. The formulations are cast in the framework of element matrix expressions introduced in

previous sections. The formulations are developed considering a distributed excitation. The

feedback loops discussed are unconditionally stable if perfectly collocated feedback force

and velocity sensor pairs are considered [24].
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Figure 2.9: Schematic of panel model. (a) Panel with 16 discrete decentralised velocity feedback loops and
(b) “two port” block diagram of the panel model with decentralised MIMO feedback control.

As shown in Figure 2.9(a), the decentralised feedback control system is formed by a 4×4

grid of velocity feedback loops using collocated point velocity sensors and point force ac-

tuators. The closed loop response of the panel can be modelled with the two ports block

diagram in Figure 2.9 (b). Assuming the system is linear thisindicates that the response at

both the element centres and the control positions result from the linear superposition of the

vibration induced by the primary excitation, produced by the pressure field over the surface

on the source side of the panel, and the secondary excitationproduced by the control point

forces, which depend on the control velocities via the feedback control gains. Thus the

velocity response at the centres of the panel elements is given by

˜̇we = ỸeeF̃e + ỸecF̃c, (2.35)

whereF̃c is the[Nc × 1] vector of feedback control forces

F̃c(ω) =































F̃c1(ω)

F̃c2(ω)
...

F̃cNc
(ω)































. (2.36)

andỸec is the[Ne × Nc] matrix of transfer mobilities between the control locations an the

centres of the panel elements. As for theỸee matrix, the mobility functions in thẽYec

matrix are derived using the finite modal summation formula given in Appendix A. As

shown in the block diagram in Figure 2.9(b), for direct velocity feedback control, the vector

36



of control forces is given by

F̃c = −H̃c
˜̇wc, (2.37)

whereH̃c is the[Nc ×Nc] diagonal matrix of control gains anḋ̃wc is the[Nc × 1] vector of

velocity sensor outputs at the control locations

˜̇wc(ω) =































˜̇wc1(ω)

˜̇wc2(ω)
...

˜̇wcNc
(ω)































. (2.38)

According to the “two port” block diagram in Figure 2.9(b), the vector of control point

velocities is given by

˜̇wc = ỸceF̃e + ỸccF̃c, (2.39)

whereỸcc is the [Nc × Nc] matrix of point and transfer mobilities between the control

locations and̃Yce is the[Nc × Ne] matrix of transfer mobilities between the centres of the

panel elements and the control locations. Substituting Equation (2.37) into Equation (2.39)

gives

˜̇wc = ỸceF̃e − ỸccH̃c
˜̇wc (2.40)

An explicit formulation for ˙̃wc can hence be derived as

˜̇wc =
(

Ic + ỸccH̃c

)

−1

ỸceF̃e, (2.41)

whereIc is a[Nc×Nc] unit matrix. The control forcẽFc in Equation (2.37) can subsequently

be found as

F̃c = −H̃c

(

Ic + ỸccH̃c

)

−1

ỸceF̃e. (2.42)

Substituting Equation (2.42) into Equation (2.35) and rearranging for ˜̇we finally gives the
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vector of element velocities as

˜̇we =

[

Ỹee − ỸecH̃c

(

Ic + ỸccH̃c

)

−1

Ỹce

]

F̃e = G̃eeF̃e, (2.43)

whereG̃ee = Ỹee−ỸecH̃c(Ic+ỸccH̃c)
−1

Ỹce is the panel element mobility matrix with active

control. Thus, when an active panel is considered, the spectrum (or power spectral density)

of the total kinetic energy and total sound power radiated can be derived respectively from

Equations (2.12) or (2.26) and Equations (2.15) or (2.29) bysimply replacing the matrix

Ỹee with G̃ee.

2.3 Summary

In this chapter an element-based approach for the modellingof structural response and radi-

ated sound power for passive panels and active panels with decentralised feedback control

has been introduced. The expressions for transverse point force and distributed deterministic

excitations, and transverse distributed stochastic excitations have been reviewed to provide

background information for the models used to generate the simulation results presented in

Chapters 3 and 5.

Preliminary simulation results have shown that the transmission coefficient of a baffled pas-

sive panel derived with the elemental approach is in good agreement with the corresponding

analytical solutions in the frequency range for which the analytical results are valid.

The next chapter discusses the structural response and sound radiation of baffled panels due

to APW excitations at different angles and stochastic ADF and TBL excitations in further

detail and also contrasts the response and radiated sound power for a thin homogeneous

aluminium panel with those of a lightweight sandwich panel.
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Chapter 3

Comparison between thin homogeneous

and lightweight sandwich passive and

active panels

This chapter presents the results of a simulation study considering a thin homogeneous

active panel and a lightweight sandwich active panel for different types of distributed de-

terministic and stochastic excitations. The objectives ofthis simulation work are twofold.

Firstly, to investigate and contrast the structural response and the sound radiation in the

audio frequency range produced by homogeneous and lightweight sandwich panels subject

to deterministic and stochastic distributed excitations.Secondly, to study and compare the

control effects produced by an array of idealized velocity feedback control loops on homo-

geneous and lightweight sandwich panels.

The elemental approach introduced in Chapter 2 is used to predict the structural response

and sound radiation of the two smart panels excited by (a) an Acoustic Plane Wave (APW)

at different angles of incidence, (b) a stochastic AcousticDiffuse Field (ADF) and (c) a

Turbulent Boundary Layer (TBL). The first panel is made of aluminium while the second is

a composite sandwich panel with equivalent static stiffness but four times lower mass per

unit area. As shown in Figure 2.9, the panels are equipped with sixteen decentralised ve-

locity feedback control loops using idealized point force actuators and collocated idealized

velocity sensors [27, 23]. In this way the intrinsic limits of decentralised feedback control

are investigated independently from the electrodynamic response of the control units.
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• Section 3.1 specifies the models used to capture the dynamic characteristics of the

thin homogeneous and the lightweight sandwich panels.

• Section 3.2 discusses the characteristic differences between the structural response of

these two panels are with respect to (a) the real wavenumber solutions of the govern-

ing equations, (b) modal density, (c) modal overlap factor and (d) both excitation and

radiation coincidence effects.

• Section 3.3 presents the results from simulation studies onthe panels without control

in order to contrast the structural response and sound radiated by the two panels under

the different distributed excitations.

• Section 3.4 then presents the results from simulations studies on the two panels with

16 ideal velocity feedback loops. The control performance for the two smart panels is

discussed with respect to modal density, structural point mobility function and control

position and also with respect to excitation and radiation acoustic coincidence effects.

3.1 Panel models

This section introduces the dynamic models considered for the modelling of the thin

homogeneous and the lightweight sandwich panel consideredin this simulation study. The

sandwich panel is designed to have a four times lower mass perunit area than the thin

homogeneous panel which is modelled using the material properties of aluminium. The

panel parameters of both panels are chosen to yield an equivalent static panel stiffness.

3.1.1 Thin homogeneous panel

The rectangular aluminium panel has been modelled as a thin homogeneous and isotropic

panel with all sides simply supported. The mass-normalisedmode shapes [47] are given by

[see Appendix 2, Section A.2]

φr(x, y) = 2 sin

(

mr πx

lx

)

sin

(

nr πy

ly

)

, (3.1)

where andmr andnr are the mode orders of moder in thex- andy-direction of the panel.

The natural frequencies are given by
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ωr =

√

D

m′′

[

(

mr π

lx

)2

+

(

nr π

ly

)2
]

, (3.2)

wherem′′ = ρh is the panel mass per unit area andD = Eh3/12(1 − ν2) is the bending.

Also E is the Young’s modulus of elasticity andν is the Poisson’s ratio of the panel mate-

rial. The panel geometry and material properties of the aluminium panel considered in the

theoretical simulation studies are given in Table 2.1 of Chapter 2.

3.1.2 Sandwich panel

The dynamic response of the sandwich panel is modelled usinga basic theory [19, 58]

which considers pure bending of the cross-section and the faceplates and pure transverse

shear of the core. The panel is assumed to have the same material properties in thex- and

y-directions. The relationship between the transverse wavenumberk and the wavenumbers

corresponding to pure bending and to pure shear of a sandwichpanel is given by

1 +

(

ks
kb

)2(
k

kb

)2

−
(

k

kb

)4

−
(

kb
kbf

)4(
ks
kb

)2(
k

kb

)6

= 0, (3.3)

whereks is the shear wavenumber in the absence of transverse bendingforces,kb is the

overall cross-section bending wavenumber in the absence ofshear distortion andkbf is the

bending wavenumber for faceplate bending alone. These wavenumbers are given as

(a) k2
s =

m′′ω2

Gd
, (b) k4

b =
m′′ω2

D1

, (c) k4
bf =

m′′ω2

2D2

, (3.4)

wherem′′ is the total panel mass per unit area andG is the transverse core shear modulus.

As shown in Figure 3.1,d is the distance between the faceplate neutral axes, which assuming

thatd is much larger than the thickness of the faceplates is also used to represent the core

thickness.D1 is the bending stiffness of the cross-section andD2 is the bending stiffness of

an individual faceplate. These flexural stiffness terms aregiven by

(a) D1 =
Ed2hf

2 (1− ν2)
, (b) D2 =

Eh3
f

12 (1− ν2)
. (3.5)

wherehf << d is the faceplate thickness. The physical parameters used tomodel the

composite sandwich panel are given in Table 3.1. The parameters are chosen to yield a
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panel with equal static stiffness but a four times lower massper unit area than that of the

homogeneous 1.6 mm thick aluminium panel specified in Table 2.1. Equation (3.3) has one

real and two imaginary pairs of axi-symmetric solutions. For simplicity the sandwich panel

is assumed to have the same mode shapes as a corresponding thin simply supported panel

given in Equation (3.1) and that (a) the equivalent flexural rigidity D, (b) wavenumber at

resonancekr and (c) natural frequenciesωr are given by

(a)D =
ω2m′′

k4
, (b) kr =

√

(

mrπ

lx

)

+

(

nr π

ly

)

, (c) ωr =

√

k4r
D1

m′′ + k6r
2D2D1

Gdm′′

1 + k2r
D1

Gd

, (3.6)

where the wavenumberk in Equation (3.6)(a) corresponds to the real wavenumber solu-

tion of Equation (3.3), which corresponds to travelling waves. The imaginary wavenumber

solutions to Equation (3.3) correspond to decaying near field waves, which are neglected.

The highest mode order of interest is calculated using the equivalent flexural rigidity at the

highest frequency of interest. The acoustic coincidence frequency is found by reformulating

Equation (3.3) as an implicit function inωc. Settingω = ωc andk = kc = ωc/c0 Equation

(3.3) results in the following relationship

ω4
c

(

2D2D1

Gdm′′c60

)

+

(

D1

m′′c40
− D1

Gd c20

)

− 1 = 0. (3.7)

This basic model captures the principal characteristics ofa sandwich panel and is thought

to be suitable for an initial comparison between the structural response and radiated sound

power of thin homogeneous and sandwich active panels. A morecomplex model, consid-

ering near field waves and the cross-section dynamics of the sandwich structure, may be

needed for more detailed investigations. In particular, the near field wave effect could play

an important role in the stability of the feedback control loops when realistic sensor and

actuator transducers are considered.
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Table 3.1: Cross section geometry and physical properties for the composite sandwich panel.

Parameter Symbol Value Unit

Thickness of face-plate hf 0.3 mm
Core depth d 3.0 mm
Mass density face-plates ρf 1000 kg m−3

Mass density core ρc 180 kg m−3

Panel mass per unit area1 m′′ 1.086 kg m−2

Young’s modulus face plates E 17.7 GPa
Poisson’s ratio ν 0.33 –
Shear modulus core G 80 MPa
Loss factor η 0.02 –
1 m′′ = 2hfρf + (d− hf )ρc

d

totalh fh

Figure 3.1: Sketch of sandwich panel cross section geometry.

3.1.3 Element resolution and mode range

As discussed in Chapter 2 the required panel element resolution depends on

• the flexural response of the panels as described in subsections 3.1.1 and 3.1.2 above,

• the radiation properties of the panels, which are given by the radiation matrix as de-

fined in Chapter 2, Equation (2.16) and

• the disturbance characteristics, given in Chapter 2, Sections 2.1.1, 2.1.3 and 2.1.4.

Table 3.2 summarizes the frequency range, element distribution and criteria used to define

the element grid density in the prediction models.

Table 3.2: Frequency range and element grid definition.

Excitation maximum No. of elements Total No. Criterion
frequency x y of elements x y

APW 20 kHz 57 51 2907 ∆x ≤ λ0/3.5 ∆y ≤ λ0/3.5
ADF 12 kHz 39 35 1365 ∆x ≤ λ0/4 ∆y ≤ λ0/4
TBL 12 kHz 35 77 2695 ∆x ≤ λ0/3.5 ∆y ≤ λconv/3.5
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In this study modes with natural frequency up to twice the observed frequency range were

considered in the model of the panels, i.e. up to 40 kHz for APWexcitation and up to 24

kHz for ADF and TBL excitation. All modes were considered dynamically with stiffness

damping and mass parts (see Appendix A). For the APW excitation the total number of

modes are 527 for the aluminium panel and 1425 for the sandwich panel. For the ADF and

TBL excitation the total number of modes considered are 313 for the aluminium panel and

558 for the sandwich panel.

3.2 Panel characteristics

The most significant difference between the thin homogeneous and sandwich panels is the

frequency dependence of the propagating transverse wavenumbers. For thin homogeneous

panels the transverse wavenumber increases with
√
ω for all frequencies. The transverse

wavenumber of a sandwich structure has distinct ‘low’, ‘mid’ and ‘high’ frequency be-

haviour. At low frequencies the transverse wavenumber is dominated by the cross-section

bending and increases with
√
ω. With increasing frequency the transverse response is in-

creasingly dominated by non-dispersive shear wave distortion due to the sandwich core

material. In the shear-controlled region the transverse wavenumber is controlled by the core

shear and hence increases in proportion toω. At high frequencies the rate of increase of

the transverse wavenumber is limited by the wavenumberkbf which corresponds to pure

faceplate bending so that a
√
ω dependence again occurs.

The structural response and sound radiation of panels are strongly affected by the coinci-

dence phenomena [19]. Acoustic coincidence occurs in the frequency range between the

acoustic critical frequency where the acoustic wavelengthmatches the transverse structural

wavelength and about twice the acoustic critical frequencywhere the projected wavelength

of a plane acoustic wave incident at an angle ofθ=45◦ matches the structural transverse

wavelength.

At acoustic coincidence structural modes are efficiently excited by acoustic fields and also

radiate sound very efficiently. The three wavenumber frequency bands described above play

an important role for the forced structural response and sound radiation of a sandwich panel.

In particular it is the magnitude of the non-dispersive shear wavenumber that determines the

bandwidth and extent of the coincidence effect. As shown in Figure 3.2 three cases may be

considered [19].

44



a) If the shear wavenumberks = ω
√

m′′/(Gd) is higher than acoustic wavenumberk0 =

ω/c0 then acoustic coincidence does not occur until very high frequencies where even-

tually kbf = k0.

b) If the shear wavenumberks is similar or in the extreme case equals the acoustic wavenum-

berk0 then acoustic coincidence occurs over a wide frequency bandso that, potentially,

a large number of modes are efficiently excited at resonance and also efficiently radiate

sound.

c) If the shear wavenumberks is much lower then the acoustic wavenumber then acoustic

coincidence occurs at relatively low frequencies wherekb = k0. In this case too sound

radiation from the sandwich panel will be higher than that from a corresponding homo-

geneous panel since the wavenumber curves intersect at a small angle so that the panel

transverse and acoustic wavenumber remain in close proximity over a wider range of

frequencies.

lo
g

(W
a

v
e

n
u

m
b

e
r)

Log(Frequency)

(a) (b) (c)

Acoustic wave number

Figure 3.2: Schematic graph of sandwich panel transverse wavenumbers for three different cases of core shear
stiffness, (a)ks > k0, (b) ks ≈ k0 and (c)ks < k0.

Additionally to acoustic coincidence effects convective coincidence occurs for TBL excita-

tion when the transverse wavenumber in the direction of the air flow on the panel equals the

convective wavenumber of the turbulent boundary layer.
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3.2.1 Wavenumbers and coincidence frequencies

Figure 3.3 shows the positive propagating bending wavenumber as a function of frequency

for (a) the aluminium panel and (b) the composite sandwich panel considered in this sim-

ulation study. The circles represent the modal wavenumber components along thex- and

y-directions. The wavenumber components satisfy the relationshipkn =
√

k2
x,n + k2

y,n. The

convective and acoustic wavenumber are given bykconv = ω/Uconv andk0 = ω/c0 respec-

tively.

At frequencies below 11 kHz the transverse wavenumber of thecomposite sandwich panel,

shown in Figure 3.3(b), is lower than that for the aluminium panel, shown in Figure 3.3(a).

As discussed above, the transverse wavenumber of the aluminium panel is increasing pro-

portional to
√
ω over the entire frequency range. At low frequencies the transverse wavenum-

ber of the sandwich panel is also increasing proportional to
√
ω. In this frequency range the

transverse wavenumber of both panels at a given frequency isproportional to 4

√

m′′/D.

Both panels have equal static stiffness but the aluminium panel has a four times higher mass

per unit area. Thus, for low frequencies the bending wavenumbers for the aluminium panel

are
√
2 higher than those for the composite sandwich panel. With increasing frequency

the non-dispersive transverse shear distortion of the corelayer results in a more rapid in-

crease in the transverse wavenumber of the sandwich panel which becomes proportional to

ω for high frequencies. The limiting effect due to faceplate bending at high frequencies

falls outside the observed frequency range. At about 11 kHz both panel models have similar

wavenumbers.

The lower wavenumbers on the composite sandwich panel at lowfrequencies result in lower

coincidence frequencies than for the aluminium panel. For the aluminium panel the acoustic

critical frequency occurs at about 7.5 kHz. For the composite sandwich panel the acoustic

critical frequency occurs at about 5.5 kHz. Efficient radiation modes that resonate around

coincidence produce high structural response and sound radiation effects. Thus, according

to the wavenumber plots in Figure 3.3, the composite sandwich panel is likely to radiate

sound more efficiently than the aluminium panel for a wider range of audio frequencies.

For thin aluminium panels, the effect of acoustic coincidence often is not a problem for

practical engineering applications since it occurs at the upper end of the audio frequency

range where the structural response has already rolled off due to the mass effect and due to

effective passive treatments. For lightweight sandwich structures the coincidence frequency
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potentially occurs in the mid audio frequency range where the response of the panel is still

controlled by discrete clusters of modes. This might cause an undesired increase in sound

radiation, since at low and mid audio frequencies the response of the panel has not rolled

off due to the mass effect and passive control measures may not work so effectively.

Assuming the TBL excitation with the parameters defined in Table 2.3, the convective co-

incidence frequency for the aluminium and composite sandwich panels occurs at 1169 Hz

and 609 Hz respectively. This is representative for a fully developed TBL on the outside

of an aircraft fuselage at a cruising speed of about 810 km/h.Due to the low coincidence

frequency and the directionality of the disturbance field, only a few structural modes of the

composite sandwich panel resonate in the vicinity of the convective coincidence frequency.

This indicates a potential for active structural control which tends to be particularly effec-

tive at controlling low frequency resonances. The effect ofthe convective coincidence is

discussed in more detail in Section 3.3. The acoustic critical and coincidence frequencies

and the convective coincidence frequency for the two panelsare summarised in Table 3.3.

It should be noted that the convective coincidence directlydepends on the free flow velocity.

The convective coincidence therefore shifts towards higher frequencies for increasing flow

speeds and towards lower frequencies for decreasing flow speeds. Hence the convective

coincidence effects may occur over a relatively wide low to mid audio frequency range

during a typical operation cycle of an aircraft.

1

2

3

[1,1]

[3,1]

[2,1]

[1,2]

[2,2]

Figure 3.3: Propagating transverse wavenumber (solid) of the (a) aluminium and (b) composite sand-
wich panel; acoustic wavenumber (dashed) and convective wavenumber (dash − dotted). Wavenumber
components of structural modes in span-wisex-direction (black circles) and in stream-wisey-direction
(white circles).
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Table 3.3: Coincidence frequencies.

Panel Acoustic critical Excitation coincidence Convectivecoincidence
frequency [Hz] frequency [Hz] frequency [Hz]

for APW θ=45◦ for TBL disturbance

Aluminium 7,544 15,087 1,169
Sandwich 5,489 190,663 609

3.2.2 Modal density and modal overlap

As shown in Figure 2.6, at low frequencies the response of thealuminium panel and radiated

sound power of the aluminium panel is characterised by well-separated resonances which

are controlled by low order resonant modes. With increasingfrequency, the panel response

and radiated sound power are increasingly controlled by overlapping clusters of modes.

A statistical measure to describe the distribution of natural frequencies in the frequency

domain is the so-called ‘modal density’. One definition of this quantity at any frequency is

“the inverse of the expected (or averaged) interval betweenneighbouring natural frequencies

local to that frequency” [19]. If the modal density is given asn(f) it is defined as “the

number of natural frequencies per Hz”. For bending waves on thin homogeneous panels the

modal density is constant with frequency and given by Craik [59] as

n(f) =
Ap

2

√

m′′

D
(3.8)

whereAp is the panel surface area,m′′ is the panel mass per unit area andD is the bending

stiffness. For high frequencies this expression represents an expected value of the modal

density for a population of grossly similar panels with slight differences in aspect ratios and

boundary conditions. For a sandwich panel the modal densityis limited by three asymptotes

related to cross-section bending, core shear, and face plate bending:

(a) n(f) =
Ap

2

√

m′′

D1

(b) n(f) = 2πfAp
m′′

Gcd
(c) n(f) =

Ap

2

√

m′′

2D2

(3.9)

Clarkson and Ranky [60] have derived an explicit expression for the modal density of sand-

wich panels. The notations in the formulations given by Clarkson and Ranky [60] have been

adapted to the notations for the sandwich panel parameters defined in Section 3.1 to give
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n(f) =
πm′′Apf

gD1



1 +
m′′ω2 + 2g2D1

√

(m′′ω2)2 + 4m′′ (gω)2 D1



 , (3.10)

where the parameterg is given as

g =
2Gc

dE hf

. (3.11)

It should be noted that Equation (3.10) neglects the limiting case of pure faceplate bending

which would result in a constant modal density asymptote at high frequencies. As shown

in Figure 3.4 this is not an issue for the sandwich panel considered in this simulation study

since even at the upper end of the observed frequency range the structural response and

hence the modal density is clearly shear-controlled. The modal density curves shown in

Figure 3.4 are derived from Equations (3.8) to (3.11) while the and lines and circles repre-

sents the specific density of the natural modes of the panels considered in this simulation

study, which for each natural frequency have been calculated from

n(f1) =

(

f1 +
f2 − f1

2

)

−1

and n(fr) =

(

fr+1 − fr−1

2

)

−1

(3.12)

wherefr is ther-th natural frequency of the panels. The modal density of thealuminium

panel, shown in Figure 3.4(a), is constant with frequency and has a value of 0.0137 [per Hz].

For low frequencies the modal density of the composite sandwich panel shown in Figure

3.4(b) has a lower modal density than the aluminium panel. With increasing frequency the

modal density rises and reaches the same value as for the aluminium panel at about 6150 Hz.

In this frequency range the structural response of the sandwich panel is shear controlled and

the modal density increases linearly with frequency. Both the asymptotic limit in Equation

(3.9) and the results from Equation (3.10) are in generally good agreement with the specific

density of modes for the panels estimated from Equation (3.12). The high variation between

the modal density and the specific frequency spacing betweennatural modes of the panels

illustrates that the modal density is a statistical parameter which is only valid for the average

over either an assemble of similar panels or the average overan assemble of neighbouring

modes in a wider frequency band.
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Figure 3.4: Statistical and numerical modal density for (a)the homogeneous aluminium panel and (b) the
composite sandwich panel. Numerical results (circles − dotted), statistical results (solid) and asymptotic
limits for the sandwich panel (faint− dashed).

The modal overlap factor gives the ratio of the half-power bandwidth to the local average

interval between natural frequencies [19] and is given by

M(f) = fηn(f) (3.13)

wheref is the frequency in Hz,η is the material loss factor andn(f) is the modal density.

For modal overlap factors below unity the response of a structure is characterised by well-

separated resonant modes with narrow peaks at their naturalfrequencies which are separated

by broad troughs. AsM approaches unity, the individual modal responses begin to overlap

and, as it increases beyond unity, neighbouring modes combine to form broad overlapping

clusters of modes separated by narrow dips. The modal overlap factor therefore plays a

major role in the analysis of high frequency response based on probabilistic models such as

Statistical Energy Analysis (SEA) [19, 59].

Velocity feedback control systems introduce active damping effects on a panel, which are

particularly effective at resonance frequencies. Thus themodal overlap factor is of great

importance in this study since it provides an indication of the frequency band where the

response of a structure is controlled by individual resonant modes and thus active damping

could be efficiently employed to reduce the response and sound radiation of the structure.

The modal overlap factor for the aluminium panel in Figure 3.5 is increasing linearly with

frequency and exceeds unity for frequencies above 3623 Hz. At low frequencies the modal

overlap factor for the composite sandwich panel in Figure 3.5 is lower than that of the
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aluminium panel and exceeds unity at a higher frequency of about 4500 Hz. For frequencies

above 1000 Hz the response of the sandwich panel is increasingly influenced by shear effects

which results in a more rapidly rising modal overlap. In the shear controlled frequency

region the modal overlap increases proportional toω2.
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Figure 3.5: Modal overlap factor for the homogeneous aluminium panel (solid) and the composite sandwich
panel (dashed).

The results for the modal density and modal overlap indicatethat the response of the sand-

wich panel is controlled by individual resonant modes over awider range of low and mid

audio frequencies than the aluminium panel. This implies that the response of the composite

sandwich panel can be efficiently controlled by means of active velocity feedback control

over a wider range of audio frequencies.

With control systems comprising evenly spaced discrete velocity feedback loops not all

modes can be efficiently controlled and the frequency range over which control effects are

guaranteed is a function of the total number of discrete feedback loops and the frequency de-

pendent total mode count. The statistical mode count is given by integral of the modal den-

sity in the interval between 0 Hz and the observation frequency, while for specific systems

the mode count is simply given by the number of natural modes with resonance frequencies

below the observation frequency. Due to the lower modal density and hence lower mode

count of the sandwich panel, control effects due to a finite number of velocity feedback

loops are expected to extend to higher frequencies than for the aluminium panel.
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3.3 Structural response and sound radiation

At first the structural response and sound radiation of the aluminium panel and the compos-

ite sandwich panel due to deterministic and stochastic disturbances are investigated without

active control. Significant differences in the panel response and sound radiation are ob-

served for different types of disturbances. The structuralresponse of the panels is assessed

in terms of the panel kinetic energy which also gives an indication of the acoustic field in

the close proximity of the panel. The sound transmission through the panels is assessed in

terms of the far field radiated sound power for a unit pressureamplitude of the pressure fluc-

tuation on the source side of the panel. Since radiation losses and fluid loading effects have

been neglected, the spectrum of panel kinetic energy only depends on the characteristics of

the disturbance and the panel structural response. The spectra of the radiated sound power

also include the radiation characteristics of the panels.

3.3.1 Acoustic plane wave

Figure 3.6 shows the frequency spectrum of panel kinetic energy (left hand side) and ra-

diated sound power (right hand side) of the aluminium panel (solid) line and composite

sandwich panel (faint) line for a plane wave excitation. Three different angles ofinci-

dence are considered:θ=0◦ (normal incidence),θ=45◦ andθ=90◦ (grazing incidence). The

in-plane excitation angle isϕ = 45◦ for all cases, where relevant.

APW with θ = 0◦ (normal incidence):

Figure 3.6(a) and (b) show the structural response and radiated sound power for both panels

due to a plane wave excitation at normal incidence. Even structural modes are not excited.

This is because the excitation field is uniform over the surface of the panel. Odd modes

however are efficiently excited. Since the plane wave is incident normal to the panel surface

no excitation coincidence effects are present in the kinetic energy and radiated sound power

spectra. Above the first few resonances of the panel, the kinetic energy follows the mass law

[19] and rolls off at a rate of 6 dB per octave, i.e. 20 dB per decade. In this mass-controlled

frequency band the panel kinetic energy of the composite sandwich panel is about 6 dB

higher than that of the aluminium panel. This is because the aluminium panel has a four

times higher mass per unit area. Corresponding low order resonant modes for the two panels

have a similar response magnitude but are shifted in frequency by a factor of 2.

52



10
2

10
3

10
4

−120

−110

−100

−90

−80

−70

−60

−50

−40
(a) APW θ = 0° (normal incidence)

P
an

el
 K

in
et

ic
 e

ne
rg

y 
[d

B
 r

el
. 1

 J
/P

a2 ]

Frequency [Hz]
10

2
10

3
10

4
−100

−90

−80

−70

−60

−50

−40

−30

−20
(b) APW θ = 0° (normal incidence)

R
ad

ia
te

d 
so

un
d 

po
w

er
 [d

B
 r

el
. 1

 W
/P

a2 ]

Frequency [Hz]

10
2

10
3

10
4

−120

−110

−100

−90

−80

−70

−60

−50

−40
(c) APW θ = 45°

P
an

el
 K

in
et

ic
 e

ne
rg

y 
[d

B
 r

el
. 1

 J
/P

a2 ]

Frequency [Hz]
10

2
10

3
10

4
−100

−90

−80

−70

−60

−50

−40

−30

−20
(d) APW θ = 45°

R
ad

ia
te

d 
so

un
d 

po
w

er
 [d

B
 r

el
. 1

 W
/P

a2 ]

Frequency [Hz]

10
2

10
3

10
4

−120

−110

−100

−90

−80

−70

−60

−50

−40
(e) APW θ = 90° (grazing incidence)

P
an

el
 K

in
et

ic
 e

ne
rg

y 
[d

B
 r

el
. 1

 J
/P

a2 ]

Frequency [Hz]
10

2
10

3
10

4
−100

−90

−80

−70

−60

−50

−40

−30

−20
(f) APW θ = 90° (grazing incidence)

R
ad

ia
te

d 
so

un
d 

po
w

er
 [d

B
 1

 W
/P

a2 ]

Frequency [Hz]

Figure 3.6: Panel kinetic energy and radiated sound power ofthe 1.6 mm aluminium panel (solid) and the
composite sandwich panel with equivalent static bending stiffness (faint) for a acoustic plane wave incident
at θ = 0◦, 45◦ and 90◦. Vertical lines mark the acoustical critical frequency of the aluminium panel (solid),
composite sandwich panel (dashed) and theθ = 45◦ excitation coincidence frequency for the aluminium panel
(dash− dotted).

The radiated sound power for the two panels is the same at frequencies well below the

first panel resonance. This is because the radiated sound power in this frequency band is

determined by the static bending stiffness which is equal for both panels. Above the first

panel resonance, the radiated sound powers are mass-controlled up to frequencies close to

the acoustic critical frequencies [19] of the two panels. Inthe mass-controlled region, the

radiated sound power of the composite sandwich panel is 12 dBhigher than that of the
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aluminium panel. The radiated sound power of the aluminium panel follows the mass law

up to 5 kHz. Around the acoustic critical frequency at about 7.5 kHz, the radiated sound

power increases because of the acoustic coincidence effectin the radiation properties of the

panel [19]. The radiated sound power of the composite sandwich panel follows the mass

law only up to 2 kHz. Around the critical frequency at bout 5.5kHz the radiated sound

power increases because of the radiation acoustic coincidence effect. Around 5.5 kHz, the

radiated sound power spectra of the composite sandwich panel is more than 20 dB higher

than that of the aluminium panel.

The radiation acoustic coincidence frequency range for thecomposite sandwich panel is

wider than that for the aluminium panel. This is due to the transition from bending to

shear response which produces acoustic coincidence conditions over an extended frequency

band. This effect can be visualised in the wavenumber plots of Figure 3.3. The lines for

the acoustic wavenumber and the flexural wavenumber for the aluminium panel intersect

at a rather wide angle at the critical frequency. In contrastthe acoustic wavenumber and

the transverse wavenumber lines for the composite sandwichpanel intersect at a more shal-

low angle and remain in close proximity to each other above the critical frequency so that

the radiation acoustic coincidence effect extends over a wider frequency band. It is also

interesting to note that, at low frequencies, the spectra ofthe radiated sound power of the

aluminium panel are characterised by resonance and anti-resonance effects. This occurs

between two structural resonances that interfere destructively, causing a cancellation of the

modal contributions to the radiated sound power.

APW with θ = 45◦

Figure 3.6(c) and (d) show the panel response and radiated sound power for a plane wave in-

cident at an angleθ=45◦. In this case all structural modes are efficiently excited. Above the

first resonance frequency, the structural response of the aluminium panel follows the mass

law up to about 10 kHz. Around this frequency the spectrum of the panel kinetic energy

shows a wide frequency band crest composed of a series of resonance peaks. This is because

the projection of the acoustic excitation wave onto the panel surface for an angleθ=45◦ is
√
2 longer than the acoustic wavelength. Thus, since the bending wavenumber is propor-

tional to
√
ω an excitation coincidence effect occurs at twice the critical frequency, that is

about 15 kHz. Around this coincidence frequency the response of the panel is dominated by

resonances of efficiently excited modes whose responses arecontrolled by structural damp-
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ing. Above this coincidence frequency the panel response isstiffness and mass controlled

and rolls off rapidly at a rate of 36 dB per octave.

The structural response of the composite sandwich panel does not exhibit this excitation co-

incidence effect, which occurs at 190 kHz and is therefore outside the observed frequency

range. This is because the structural wavenumber of the sandwich panel in the shear tran-

sition region is higher than the projected wavenumber of theacoustic excitationω/(
√
2c0).

The response of the composite sandwich panel at high frequencies exhibits mass-controlled

behaviour. However the roll off rate is lower than 6 dB per octave.

The radiated sound power of the aluminium panel is mass-controlled up to 5 kHz. Above

5 kHz the radiated sound power spectra of the aluminium panelshows the combined effect

of the radiation acoustic coincidence around the acoustic critical frequency at 7.5 kHz, and

the excitation coincidence at 15 kHz. The radiated sound power spectra of the compos-

ite sandwich panel exhibits these radiation and excitationacoustic coincidence effects in

the frequency range between 2 and 10 kHz. At 5.5 kHz the radiated sound power of the

composite sandwich panel is about 25 dB higher than that of the aluminium panel.

In comparison to the kinetic energy spectra, below the critical frequency, some resonant

peaks are significantly reduced in the spectrum of the radiated sound power. This is because

the surface pressure fluctuations caused by even modes counteract each other and are not

efficiently radiated into the far field [19].

APW with θ = 90◦

Figure 3.6(e) and (f) show the panel response and radiated sound power for a plane wave

incident at an angleθ=90◦ (grazing incidence). At this angle the plane wave excites all

structural modes. For grazing incidence both the excitation acoustic coincidence and the ra-

diation acoustic coincidence occur at the critical frequency. This is because the wavelength

of the acoustic excitation projects directly onto the panelsurface. The response of the pan-

els around the critical frequency is dominated by discrete efficiently excited modes whose

responses are controlled by structural damping. Above the critical frequency the panel re-

sponse is stiffness and mass controlled and rolls off rapidly. The response of the aluminium

panel rolls off at a rate of 36 dB per octave. The response of the composite sandwich panel

rolls off at a lower rate of about 16 dB per octave. This difference is caused by the shear

distortion in the transverse wavenumber of the sandwich panel which results in a decrease
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of the transverse stiffness and thus results in an increase of the modal density.

The spectra of the radiated sound power for frequencies up to1 kHz are very similar to

those for the plane wave incident atθ=45◦. For higher frequencies, both panels show the

overlaying acoustic coincidence effect in the excitation and the radiation characteristics.

Around critical frequency, the sound power spectra is dominated by individual efficiently

radiating resonant modes. Above coincidence the radiated sound power of both panels

rolls off rapidly with frequency. Around the acoustic critical frequency of the composite

sandwich panel at 5.5 kHz the radiated sound power of the sandwich panel exceeds that

of the aluminium panel by about 30 dB. Also in this case, below the critical frequencies

the amplitudes of the resonance peak of even modes are rathersmall because of their low

radiation efficiency.

3.3.2 Stochastic disturbances

Figure 3.7 shows the predicted panel kinetic energy (left hand side) and radiated sound

power (right hand side) of the aluminium panel (solid) line and composite sandwich panel

(faint) line for acoustic diffuse field (top row) and turbulent boundary layer (bottom row)

disturbances. The spectra are normalised to the power spectral densities of equivalent acous-

tic plane wave with a pressure amplitude of 1 Pa at all frequencies.

For very low frequency the correlation function for ADF and TBL excitations tend to unity

and the wavelength of an acoustic plane wave becomes large compared to the panel dimen-

sions. Therefore all disturbance types show very similar normalised response levels at low

frequencies. Differences in the response spectra at higherfrequencies are due to the spatial

excitation characteristics with respect to structural response of the panels.

Acoustic diffuse field

Figures 3.7(a) and (b) show the structural response and radiated sound power of the alu-

minium panel and the composite sandwich panel for an acoustic diffuse field disturbance.

Compared with Figure 3.6(c) and (d) it can be seen that the low frequency structural re-

sponse and radiated sound power of both panels up to 1 kHz is very similar to the response

to an acoustic plane wave with incidence anglesθ = 45◦ andϕ = 45◦.
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Figure 3.7: Panel kinetic energy and radiated sound power for the 1.6 mm aluminium panel (solid) and
the composite sandwich panel with equivalent static bending stiffness (faint) for ADF and TBL stochastic
disturbances. Vertical lines mark the acoustical criticalfrequencies and aerodynamic coincidence frequencies
of the aluminium panel (solid) and the composite sandwich panel (dashed).

Figure 3.7(a) shows that, at higher frequencies the structural response of the aluminium and

composite sandwich panel are characterised by the excitation acoustic coincidence effect,

which, for diffuse acoustic excitation, occurs around the acoustic critical frequencies at 7.5

kHz for the aluminium panel and 5.5 kHz for the composite sandwich panel. The panel

response in the coincidence region is characterised by resonating modes, but the response

of individual modes is less pronounced than for the cases of APW excitation shown in

Figure 3.6. Above the coincidence region the kinetic energyspectrum of both panels rolls

off at a lower rate than for the cases of APW excitation. Thesedifferences in the response

spectra can also be explained by the fact that the ADF excitation is formed by acoustic

waves at arbitrary random angles of incidence. Figure 3.7(b) shows the spectrum of the

radiated sound power of the panels for an acoustic diffuse field disturbance. As for the

acoustic plane wave excitation at grazing angle in Figure 3.6(e), the spectrum of radiated

sound power in Figure 3.7(b) shows the combined effect of acoustic excitation coincidence

and radiation coincidence, which cause a considerable increase of radiated sound power

around the acoustic critical frequency.
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Turbulent boundary layer

Figures 3.7(c) and (d) show the structural response and radiated sound power of both panels

for the TBL disturbance. In the frequency range below 2 kHz theresponse of both panels

is dominated by resonances of low order modes. For the aluminium panel the convective

coincidence occurs at 1169 Hz, while for the composite sandwich panel it occurs at 609 Hz.

The panel response therefore depends on how efficiently specific modes are excited by the

TBL disturbance. Above the convective coincidence region, the response of the aluminium

panel drops off at a rate of 9 dB per octave. The roll off rate for the composite sandwich

panel is slightly lower. This is due to the increasing modal density.

In order to discuss the response of low order structural modes to TBL disturbance it is

necessary to recall the properties of the correlation function for the TBL disturbance in

Equation (2.32). Since the correlation function for the TBL in thex-direction (span-wise) is

characterised by a monotonically decaying exponential function, there are no coincidence

effects along thex-direction of the panels. Therefore only structural modes with a modal

wavenumber component in they-direction which is close to the convective wavenumber are

characterised by a coincidence effect.

Table 3.4 gives the panel modes that are efficiently excited by coincidence with the TBL

downstream convective field. Bold mode orders indicate efficiently radiating modes, modes

in brackets indicate a group of modes that cannot be distinguished as individual resonance

peaks in Figure 3.7(c) and (d) and the dashed horizontal lines mark the convective coin-

cidence frequency. The comparison between the two panels shows that for the aluminium

panel more modes are efficiently excited by the TBL disturbance than for the composite

sandwich panel. A comparison of the results in Table 3.4 withFigure 3.3 shows that ef-

ficiently excited modes indeed have a wavenumber component in they-direction (stream-

wise) that is close to the convective wavenumber.

The radiated sound power spectrum in Figure 3.7(d) shows that odd order modes radiate

sound efficiently. Although even modes generally have a low radiation efficiently, the even

(2,4) mode of the aluminium panel and the (1,2) mode of the composite sandwich panel also

show high resonant peaks in the radiated sound power spectrain Figure 3.7(d). Comparison

with Figure 3.3 shows that both modes have a wavenumber component in thex-direction

which is close to the acoustic wavenumber, which results in ahigh radiation efficiency.
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Table 3.4: Modes efficiently excited by TBL.

Aluminium panel Composite sandwich panel
Mode number Frequency mode orderMode number frequency mode order

[Hz] (nx, ny) [Hz] (nx, ny)

1 114 (1,1) 1 225 (1,1)
2 266 (2,1) 3 588 (1,2)
3 306 (1,2) - - - - - - - 609 - - - - - - -
4 457 (2,2) 4 862 (2,2)
6 626 (1,3) 6 1155 (1,3)
7 710 (3,2)
8 777 (2,3)





10
11
12









1029
1063
1073









(3,3)
(4,2)
(1,4)





- - - - - - - 1169 - - - - - - -
13 1224 (2,4)
16 1477 (3,4)
18 1648 (1,5)
19 1800 (2,5)
26 2351 (1,6)

3.4 Decentralised velocity feedback control

In this section the structural response and sound radiationof the aluminium panel and the

composite sandwich panel with active structural control for deterministic and stochastic

distributed disturbances are considered. As shown in Figure 2.9(b) and Figure 3.8, the

panels are fitted with 16 decentralised ideal velocity feedback control loops.

Figures 3.9 and 3.10 show the structural response and total radiated sound power for the

aluminium panel (left hand side) and the composite panel (right hand side) with feedback

gains in the range from 5 to 80. As discussed by Gardonio and Elliott [23], velocity feed-

back control introduces active damping. This allows the response of modes at resonance

to be controlled. Away from resonance frequencies, active damping is not effective. For

low feedback gains, the resonant peaks are initially rounded and anti-resonances in the ra-

diated sound power spectra disappear. For increasing feedback gains, new resonance peaks

start to develop. For the composite sandwich panel this occurs for control gains above 20

and for the aluminium panel for gains above 40. This difference relates to the structural

impedances of the panels. Only with high feedback control gains are the resonances of low

order modes completely cancelled by the sixteen feedback loops. In the high frequency

region, the control is limited by the large number of modes that contribute to the response

at each frequency.
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Figure 3.8: Spatial distribution of control loops across the panel.

For all disturbances, the controllable frequency range forthe composite sandwich panel ex-

tends to higher frequencies than for the aluminium panel. This is predominantly due to the

lower modal density [19] on the composite sandwich panel butalso due to the lower con-

vective and acoustic coincidence frequencies. At coincidence, the response of the panels

is dominated by the response of discrete resonant modes. These resonances can be effec-

tively reduced by means of active velocity feedback. As shown in Figure 3.9 considerable

reductions in the structural response of the aluminium panel can be achieved up to about 1.5

kHz for the APW (θ=45◦), up to 2 kHz for the ADF and up to 3 kHz for TBL disturbance.

For the composite sandwich panel, considerable reductionsof the response can be achieved

for frequencies up to twice as high. As shown in Figure 3.10 considerable reductions in

radiated sound power of the aluminium panel can be achieved up to 1 kHz for the APW

(θ=45◦) and ADF disturbances, while for the TBL disturbance considerable reductions are

achieved up to 3 kHz. As found for the kinetic energy, for the composite sandwich panel

considerable reductions of the radiated sound power can be obtained for frequencies up to

twice as high as for the aluminium panel.

The predicted control performance for the structural response and radiated sound power for

the TBL disturbance is much higher than those for acoustic excitations. This is because

the kinetic energy and radiated sound power spectra are dominated by a smaller number

of resonant modes for which theky structural wavenumber coincides with the convective

wavenumber of the TBL disturbance. The response and sound power radiation for APW

and ADF disturbances are instead characterized by a large number of resonant modes, for
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which either thekx or ky structural wavenumbers components coincide with the acoustic

wavenumber. Thus a large number of feedback control units would be required to obtain

the same bandwidth as for the TBL excitation.
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Figure 3.9: Kinetic energy of a 1.6 mm aluminium panel (left column) and a composite sandwich panel
with equivalent static bending stiffness (right column) with 16 discrete idealized velocity feedback loops for
APW (θ=45◦) excitation and ADF and TBL stochastic disturbances. Passive panel (solid), feedback gain of
5 (dashed), 10 (dash − dotted), 20 (dotted), 40 (faint) and 80 (faint − dashed). Vertical lines mark the
acoustical critical frequency (dashed) and convective coincidence frequency (solid).
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Figure 3.10: Radiated sound power from a 1.6 mm Aluminium panel (left column) and the composite sand-
wich panel with equivalent static bending stiffness (rightcolumn) with 16 discrete idealized velocity feedback
loops for APW (θ=45◦) excitation and ADF and TBL stochastic disturbances. Passive panel (solid), feedback
gain of 5 (dashed), 10 (dash−dotted), 20 (dotted), 40 (faint) and 80 (faint−dashed). Vertical lines mark
the acoustical critical frequency (dashed) and convective coincidence frequency (solid).

Figure 3.11 shows the spectrum of the radiated sound power ofthe aluminium panel excited

by an ADF disturbance from Figure 3.10(c) on a linear frequency scale. The vertical line

marks the acoustical critical frequency at 7.5 kHz. It is shown that, in the coincidence

region around 7.5 kHz, with a feedback gain of 80 significant reductions of up to 7 dB can

be achieved. This is because the panel response and radiatedsound power around acoustic

coincidence is dominated by the damping-controlled response of those resonant modes that
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Figure 3.11: Radiated sound power from the 1.6 mm aluminium panel with 16 discrete idealized velocity
feedback loops for a ADF disturbance and with a feedback gainof 5 (dashed), 10 (dash − dotted), 20
(dotted), 40 (faint) and 80 (faint − dashed). The vertical line marks the acoustical critical frequency
(dashed).

are efficiently excited by the coincident acoustic field.

At these high frequencies, the bending wavelength on the panel is shorter than the distances

between the control loops. One may therefore expect that thecontrol performance for single

modes will depend on the spatial distribution of the controlunits with respect to the shape of

the modes. However, for stochastic disturbances a wide range of structural modes is excited

at coincidence so that some reductions may still be expectedfor even distributions of the

control loops. Reductions of the response and radiated soundpower in the coincidence

region of thin aluminium panels may not be of practical interest because this effect occurs

at the upper end of the audio frequency range and can be efficiently controlled by means

of passive damping treatments. For composite sandwich panels the coincidence occurs at

much lower frequencies and affects low order modes. In this case decentralised velocity

feedback control is thought to be a promising control approach.

Figure 3.12 shows the reductions of both panels kinetic energy (left hand side) and radiated

sound power (right hand side) for a feedback gain of 20. The graphs are plotted against

wavenumber. Setting the spectra scale to the wavenumber corresponds to a normalisation

of the stiffness to mass ratio of the two panels. The difference in the response is then

given by the square root of the mass ratio. Since the aluminium panel is four times heavier

than the composite panel, the control effort for similar reductions of the response of equal

order modes is twice as high. For all disturbance cases the control reductions obtained for

low order modes of the composite sandwich panel are significantly higher than those for

corresponding modes of the aluminium panel. As shown in Figures 3.12(b) and (d), for the
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acoustic disturbances, considerably higher reductions inthe radiated sound power of the

composite sandwich panel are achieved for modes resonatingaround the acoustic critical

wavenumber of the composite sandwich panel at 100 rad/m.
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(a) APW 45° ; Aluminium H=20 ; Composite H=20
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(b) APW 45° ; Aluminium H=20 ; Composite H=20
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(c) ADF ; Aluminium H=20 ; Composite H=20
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(d) ADF ; Aluminium H=20 ; Composite H=20
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(e) TBL ; Aluminium H=20 ; Composite H=20
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(f) TBL ; Aluminium H=20 ; Composite H=20

Figure 3.12: Changes in panel kinetic energy and radiated sound power plotted over the structural wavenum-
ber, for a 1.6 mm aluminium panel with feedback gain of 20 (solid) and the composite sandwich panel with
feedback gain of 20 (faint) with 16 discrete idealized velocity feedback loops for APW(θ = 45◦) ADF and
TBL disturbance. Vertical lines mark the acoustical critical (dashed) and convective coincidence frequency
(solid).
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Figure 3.13 shows the reduction of the the A-weighted panel kinetic energy (left hand side)

and total sound power radiated (right hand side) averaged inthe frequency band between

20 Hz and 12 kHz. This is thought to be a fair approach to assessthe overall control perfor-

mance of the two panels over this wide range of audio frequencies, although the considered

forcing spectra are flat. The achieved reductions in the panel kinetic energy are generally

higher than those for the radiated sound power. This is because the reductions in all res-

onant structural modes are reflected in the overall reductions in panel kinetic energy but

only reductions in efficiently radiating modes affect the overall reduction in radiated sound

power.

Considering the acoustic (APW and ADF) disturbance cases, for low feedback gains higher

reductions are achieved for the smart composite sandwich panel than for the smart homo-

geneous aluminium panel. Optimal control performance for the composite sandwich panel

is achieved for a feedback gain of 20. As shown in Figures 3.9 and 3.10, for higher feed-

back gains new resonance behaviour starts to develop which diminishes the overall control

performance. For higher feedback gains the predicted reductions for the aluminium panel

are higher than those for the composite sandwich panel; for the kinetic energy this is for

gains above 40 and for the radiated sound power this is for gains above 80. The greatest

reductions for the aluminium panel are achieved for a feedback gain of 80. The better con-

trol performance for the composite sandwich panel is due to the control of the efficiently

radiating modes in the mid audio frequency range.

In the case of the TBL excitation significant reductions in thestructural response and radi-

ated sound power are predicted for both panels. This is because the TBL excitation excites

predominantly low order structural modes whose wavenumberin they-direction coincides

with that of the stream-wise convective field. These modes can be efficiently controlled

with decentralised velocity feedback loops. The high response of low order modes shifts

the optimal control gain for both panels towards higher values.

The predicted reductions for the composite sandwich panel are up to 10 dB higher than

those of the aluminium panel. This is partly because only a small number of low order

structural modes of the composite sandwich panel are efficiently excited by the TBL (see

Table 3.4), and because for equal feedback gains the response of low order structural modes

of the composite sandwich panel are controlled more effectively than those of the aluminium

panel (see Figure 3.12).
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(f) TBL

Figure 3.13: Overall reductions in A-weighted panel kinetic energy and radiated sound power for the panels
with 16 discrete idealized velocity feedback loops. Aluminium panel (solid line / blanc sqares), composite
sandwich panel (faint line / black circles) for a APW (θ = 45◦), ADF and TBL disturbance.

In practice it is difficult realise high feedback gains because control systems are often only

conditionally stable and can also cause control spill-overeffects at low or high frequencies,

depending on the type of actuator. The lower optimal feedback gain for the composite sand-

wich panel may therefore be beneficial for practical applications. Currently active control

systems are mainly considered for low frequency noise applications up to 1 kHz. The re-

sults of this study indicate that for stiff lightweight sandwich panels it might be possible to

extend the operative frequency range of active control systems up to mid audio frequencies.
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In this case active control systems could balance the poor sound transmission properties of

lightweight sandwich structures to an extent that would justify the additional expense and

additional installed mass of an active control system. Thismay lead to a new design ap-

proach for vehicles where the use of active vibration control systems is considered at the

design stage and the choice of the geometry and material of the structure is not only based

on structural and operational constraints. Such an approach would also have to take into

account the benefits and drawbacks of active vibration control systems.

3.5 Summary

This Chapter presented the results of a simulation study considering a thin homogeneous

panel and a lightweight sandwich panel for different types of distributed deterministic and

stochastic excitations with and without active control. The objectives were twofold. Firstly,

to investigate and contrast the structural response and thesound radiation in the audio fre-

quency range produced by homogeneous and lightweight sandwich panels subject to deter-

ministic and stochastic distributed excitations. Secondly, to study and compare the control

effects produced by an array of idealized velocity feedbackcontrol loops on homogeneous

and lightweight sandwich panels.

Due to the low modal density and lower convective and acoustic coincidence frequencies the

response of the composite sandwich panel is dominated by discrete resonant modes over a

wide range of audio frequencies. This indicates a high potential for the application of active

damping treatments to reduce the panel kinetic energy and radiated sound power.

It has been demonstrated that for low feedback gains decentralised velocity feedback control

produces better control performance on the lightweight sandwich panel than on the homoge-

neous aluminium panel. This is particularly the case for TBL excitation where the structural

response is dominated by low order resonant modes. Discretevelocity feedback is efficient

in controlling the resonant response of low order resonant modes and also in controlling the

response of individual modes resonating at acoustic coincidence in the mid and high audio

frequency range.

These results suggest that decentralised velocity feedback control is efficient in reducing

the structural response and radiated sound power of a lightweight sandwich panel in the low

and mid audio frequency range. In this case active control systems could balance the poor

sound transmission properties of lightweight sandwich structures to an extent that would
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justify the additional expense and additional installed mass of an active control system.

In this simulation study basic structural models and ideal velocity sensor actuator pairs have

been considered. The following chapters present the results from theoretical and experi-

mental studies considering an active vibration control system with practical actuator-sensor

pairs on aluminium and honeycomb sandwich test panels.
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Chapter 4

Open and closed-loop base impedance of

proof-mass electrodynamic actuators

This chapter presents the results from simulation and experimental studies on the open and

closed loop base response of a practical control unit. As shown in Figure 4.1 the control unit

comprises a proof-mass electrodynamic-actuator accelerometer-sensor pair and a controller

with integrator and amplifier electronic circuits. The firstprototype of this control unit was

developed by Paulitsch et al. [42, 43, 44]. González D́ıaz et al. [33, 34] then produced four

more identical control units and developed a five channel decentralised velocity feedback

analogue controller.

Figure 4.1: (a) actuator unit mounted on panel, (b) control unit schematics and (c) five channel feedback
controller.

The proof mass electro-dynamic actuator is used to generatea ‘sky-hook’ force excitation

on the structure where they are mounted. The inertial actuation mechanism is obtained

by fixing the coil assembly to the base of the actuator on whichthe permanent magnet is
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mounted via three soft circular springs and acts as a proof-mass. For frequencies above

the fundamental resonance frequency of the actuator (fres ≈ 1/2π
√

ks/m2 = 23.2 Hz for

the actuator used in this study) the magnitude of the generated blocked force per unit input

current is frequency independent. Therefore this type of actuator can be used as a ‘sky-

hook’ force actuator provided its fundamental resonance frequency is well below that of

the structure under control [19]. As shown in Figure 4.1(b) the input signal to the control

actuator is generated by measuring the acceleration at the footprint of the control actuator

base on the opposite side of the panel using an piezoelectricinertial accelerometer. An

analogue controller is then used to integrate and amplify the acceleration signal to generate a

velocity proportional input signal to the control actuator. Although the controller is assumed

to produce an ideal output current, the response of the control unit for both current- and

voltage-driven actuators are investigated in this study.

In contrast to previous work [33, 34], the experimental and simulation studies presented

in this chapter aim to describe the control units in terms of their open and closed-loop

base impedances that are exerted to the structure where theyare mounted. In this way it

is possible to provide a straight-forward physical interpretation for both the stability and

control effect produced by the control units.

For this study the five actuators have been fully refurbished. Particular attention has been

given to the fabrication of new circular springs and the mounting of the suspension magnet

on the guiding stinger so that elastic and damping non-linear effects are minimised.

This chapter is organised in three main sections.

• Section 4.1 presents results from experimental and simulation studies on the actuator

blocked force response. A Monte Carlo simulation is used to fitthe parameters of a

lumped parameter electromechanical model of the actuatorsto experimental results.

• Section 4.2 presents experimental results on the open and closed loop response of a

representative control unit.

• Section 4.3 presents simulation results that provide physical interpretation of the con-

trol unit closed loop response considering both ideal and practical frequency response

functions of the controller.

In addition, Appendix C provides the derivation of the formulations for the open and closed

loop base impedance of control units with current and voltage driven proof-mass electrody-

namic actuators.
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4.1 Actuator blocked force frequency response function

This Section presents results from the experimental and simulation studies on the blocked

force response function of the five electrodynamic proof-mass control actuators. A Monte

Carlo simulation is used to fit the parameters of a lumped parameter electromechanical

model of the actuators to experimental results.

As shown in Figure 4.2, the blocked force response functionsare measured using a B&K

type 8001 impedance head which is directly attached to a block of steel with a mass of

8.5 kg. All bonds are realized using thin layers of adhesive wax. The actuators are driven

with a white noise signal in the frequency range from 0 Hz to 25600 Hz. The blocked

force response functions are measured in terms of the transfer function between the force

measured by the impedance head and the voltage across the voice coil of the actuator.

Figure 4.2: Set-up for blocked force measurement.

The Bode diagram in Figure 4.3 shows the measured blocked force response function for

all five actuators and the mean of these five responses. The maxima of the response func-

tions occur at the actuator fundamental resonance frequency at about 25 Hz. The results

indicate that for all actuators this fundamental resonanceis heavily damped. For frequen-

cies below this resonance, the blocked force drops rapidly with decreasing frequency. For

frequencies above the actuator resonance, up to about 250 Hz, the magnitude of the blocked

force remains approximately constant while above 250 Hz it rolls off under the effect of coil

inductance.
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Figure 4.3: Measured blocked force per unit input voltage for all five actuators (faint − black), average
blocked force for per input voltage (solid− red).

At low frequencies the phase is about 180◦, which indicates that the blocked force at the

base of the actuator is out of phase with the driving electricsignal. However around the

actuator fundamental resonance there is a 180◦ phase shift such that above this resonance

frequency the blocked force is in phase with the driving signal. However, above 250 Hz

there is a gradually increasing phase lag due to the electrical inductance of the coil.

The comparison between the blocked force response functionof the different actuators

shows a good overall agreement. Around the actuator resonance frequency, the blocked

force response functions are dominated by internal dampingof the actuators which appears

to rather different for each unit.

For frequencies above 5000 Hz the response functions of all actuators show a series of three

resonance peaks and anti-resonance troughs, which are due to the mounting resonances of

the measurement set-up that can be described as a series of three mass spring systems (i.e.

the impedance head mass on wax layer, actuator bases mass on wax layer and actuator

proof-mass suspended on the circular springs).
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Figure 4.4: Actuator schematics.

Model of actuator blocked force response

As shown schematically in Figure 4.4 the blocked force of a voltage-driven electrodynamic

proof-mass actuator can be modelled as

F̃c

Ũa

=
Ψ

Z̃e

(

1−
Z̃s +

Ψ2

Z̃e

Z̃m2
+ Z̃s +

Ψ2

Z̃e

)

, (4.1)

whereŨa is the voltage across the actuator voice coil,Ψ is the voice coil coefficient and

Z̃e = Re + jωLe is the electrical impedance of the voice coil. AlsoZ̃s = cs + ks/(jω) and

Z̃m2
= jωm2 are the actuator suspension and proof-mass impedances. This formulation

includes all mechanical and electrodynamic parameters of the actuator. The corresponding

formulation for the blocked force produced by a current-driven electrodynamic proof-mass

actuator is independent of the electrical impedance of the voice coil and is given by

F̃c

Ĩa
= Ψ

(

1− Z̃s

Z̃m2
+ Z̃s

)

, (4.2)

where Ĩa is the current through the actuator voice coil. The expressions are derived in

Appendix C.

A Monte Carlo simulation is used to fit the model parameters in Equation (4.1) to the rep-

resentative mean blocked force per unit input voltage response function in Figure 4.3 in

order to minimise the sum of the squared errors in the frequency range between 10 Hz and

2000 Hz. The resulting simulation results for the blocked force response functions from

Equations (4.1) and (4.2) are shown in Figure 4.5. Note that the mechanical model of the
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actuator assumes a rigid connection between the blocking mass and the base of the actuator.

Hence the effects of mounting resonances due to the spring-damper-mass effects of the thin

bonding layer of adhesive wax and the actuator resonant mass-spring-damper-mass system

are not captured in this model, but the agreement up to 2 kHz isgood.

A comparison between the predicted blocked force response function for the voltage-driven

actuator from Equation (4.1) and that for the current-driven actuator from Equation (4.2)

show that the blocked force for 1 A current is greater than theblocked force for 1 V voltage.

Also above the actuator fundamental resonance, the magnitude and phase of the blocked

force per unit current is constant with frequency while the magnitude and phase of the

control force per unit voltage drops for increasing frequency because of the frequency-

dependent electrical impedance of the voice coil.

The estimated parameters used to model the actuators are summarised in Table 4.1, where

the values initalic font are estimated using the Monte Carlo simulation and the values in

bold font are measured average masses of the control unit components which are assumed to

be known with high accuracy. The estimated actuator parameters and the model parameters

previously considered by Paulitsch [42] and González D́ıaz [45], which are also given in

Table 4.1 are in good agreement for the assumed actuator baseand proof masses. However,

the estimated spring stiffness is a factor of 3.8 to 5.9 timeshigher than the ones previously

considered. Also the estimated coil electrical conductance is a factor of 2 smaller. The

coil resistance used in Reference [45] is an order of magnitude higher than that considered

in Reference [42] and that estimated as in this study. These discrepancies are due to two

principal factors: first the actuators used in this study have been fully refurbished and the

suspension spring and coil windings replaced; second the parameters used in References

[42] and [45] have been derived from static and simple dynamic analysis (i.e. static deflec-

tion and natural frequency) rather than the Monte Carlo best fit procedure used here.
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Figure 4.5: Measured average blocked force per input voltage (solid− black), predicted blocked force for per
input voltage (dash− dotted− red) and predicted blocked force per input current (dashed− blue).

Table 4.1: Parameters for control actuator model.

Parameter Symbol Values Units
This study Ref. [42] Ref. [45]

Base mass m1 11+2 10 8 g
Proof mass m2 24 20.3 22 g
Suspension stiffness ka 511 135 86.85 Nm−1

Suspension damping coefficient ca 1.99 1 2.76 Nsm−1

Coil electrical resistance Re 2.7 1.8 20 Ω
Coil electrical inductance Le 0.0006 0.0014 0.002 H
Voice coil coefficient Ψ 2.16 2.5 2.6 N A−1

4.2 Experimental studies on the control unit response

This section presents the results from experimental studies on the open and closed loop base

impedance of a representative control unit. For the open loop base impedance the actuator is

passive while for the closed loop base impedance the feedback control system is activated.
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4.2.1 Open loop base impedance

As shown in Figure 4.6(a), in the set-up for the open loop response measurements the actua-

tor was mounted horizontally on a B&K type 8001 impedance headwhich was rigidly cou-

pled to an LDS 201 electrodynamic shaker. The bond between the actuator and impedance

head was realised using a thin layer of adhesive wax. As shownin Figure 4.6(b) and (c)

the same set-up was also used to measure the impedance of two lumped masses, where a 11

gram lumped mass represents the base mass of the actuator units including the voice coil

and a 35 gram lumped mass represents the total mass of the actuator. The base mass of

the actuator when mounted on a panel also includes the weightof the accelerometer sensor

which is about 2 grams. The mass of the impedance head below the force gauge is 2.2

grams and the B&K mounting stud has a mass of about 1.2 grams. The slight differences in

the base masses are assumed to be negligible for the purpose of this study and no mass cor-

rection has been applied in the data post processing. The primary shaker was driven with a

white noise signal in the frequency range from 0 Hz to 25600 Hz. The apparent mass of the

actuator base for different excitation levels was measuredas the transfer function between

the force and acceleration output of the impedance head, which was post-processed to yield

the actuator open loop base impedance.

c)

b)

a)

Figure 4.6: Set-up for passive base impedance measurements; a) passive actuator b) equivalent base mass; c)
equivalent total mass.

The Bode diagram in Figure 4.7 shows the modulus and phase of the open-loop actuator

base impedance of a representative control actuator for various excitation levels. Also the

measured impedances of the equivalent base and total lumpedmasses are presented as ref-

erences. For low frequencies the magnitude and phase of the base impedance of the actuator

unit corresponds to that of the equivalent total lumped massof the actuator. This is because
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below the actuator resonance the base and proof masses of theactuator move in phase.

For high frequencies the actuator base impedance convergesto that of the equivalent base

mass because the base and proof masses are effectively decoupled well above the actuator

fundamental resonance.

In the transition region around and above the actuator fundamental resonance the open loop

actuator base impedance is controlled by internal damping and has a considerable positive

real part. This indicates that in this frequency band the actuator dissipates power from

the structure were it is mounted. The measured open loop baseimpedance of the actuator

indicate that in this transition region the response is non-linear and depends on the excitation

level. For low excitation levels the actuator base impedance produces damping effects over

a wide frequency range up to 3000 Hz. As the excitation level increases the transition

region between total mass and base mass behaviour shifts towards lower frequencies, and

the transition occurs over a narrower frequency band.

As discussed in Section 4.1, each actuator has a different amount of internal damping, which

results in a high variance in the actuator responses in this transition region. During the

experiments it was also found that the dynamic response of the actuators in the damping-

controlled frequency region had a low reproducibility and varied considerably when units

were tested again after remounting on the impedance head or after making minor adjust-

ments of the springs.

For frequencies above 5000 Hz the actuator base impedance exhibits a series of two reso-

nance peaks and an anti-resonance dip. In this frequency range, the reference impedances

of two lumped masses both exhibit a distinct resonance whichis due to the mass-spring-

damper system induced by the wax mounting and the corresponding mass. A comparison

between the frequency response functions of these two lumped masses and the actuator sug-

gests that the higher frequency resonance and anti-resonance behaviour of the actuator base

impedance is due to the wax mounting conditions which results in a two degree-of-freedom

resonant system.

Figure 4.8 shows the Nyquist plot of the open loop base impedances, where Figure 4.8(a)

shows locus of the base impedance over the entire observed frequency range while Figure

4.8(b) magnifies the region around the origin. Over almost the entire observed frequency

range the locus of the actuator base impedance is real positive. This is also seen from the

phase in Figure 4.7, which lies between±90◦. Thus the open loop actuator resonant system

is unconditionally stable, as one would expected for a passive system.
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Figure 4.7: Bode diagram of the measured open loop base impedances of a representative actuator for different
levels of base excitation: minimal level (dashed − red), intermediate levels (faint − black − lines)and
maximal level (solid− blue); for reference: impedance of 35 gram lumped mass (solid− black) and 11 gram
lumped mass (dashed− black).

a) b)

Figure 4.8: Nyquist diagram of the measured open loop base impedances of a representative actuator for
different levels of base excitation; (a) for the entire frequency range investigated and (b) magnifying the region
around the origin. Minimal level (dashed− red), intermediate levels (faint− black− lines), maximal level
(solid− blue); 35 gram lumped mass (solid− black)and 11 gram lumped mass (dashed− black).

78



4.2.2 Closed loop base impedance

As for the measurement of the open loop base impedance (passive actuator response), in the

set-up for the measurement of the closed loop base impedance(feedback control activated),

the actuator was mounted horizontally on a B&K type 8001 impedance head which was

rigidly coupled to an LDS 201 electrodynamic shaker. As shown in Figure 4.9, the feedback

control loop was installed by adding a PCB type A352C67 accelerometer to the actuator

base. The PCB accelerometer signal was fed into a PCB type 481A03 signal conditioner

and then into channel 1 of the feedback controller, which consists of an integrator and an

amplifier unit. The bonds between the actuator and the impedance head and between the

actuator and the PCB accelerometer were realised using a thinlayer of adhesive wax. This

set-up closely represents the control units when mounted ona panel except that, in the

control set-up, the accelerometer would be mounted in the centre of the actuator footprint

on the opposite side of the panel.

Figure 4.9: Set-up for active base impedance measurement.

The shaker was driven with a white noise signal in the frequency range from 0 Hz to 25600

Hz. The applied excitation level falls in the upper range of excitation levels used in the

investigation of the open loop base impedance in Section 4.2.1. The apparent mass of the

control unit base is measured as the transfer function between the force and acceleration

output of the impedance head and post-processed to yield thecontrol unit open loop base

impedance. The mass of the impedance head below the force gauge transducer, the mass

of the mounting stud and the mass of the control accelerometer add to the base mass of

the actuator. For the purpose of this study, however, these mass effects are assumed to be

negligible.

The Bode diagram in Figure 4.10 shows the magnitude and phase of the open and the closed

loop base impedance of a representative control unit for a range of feedback control gains.

Also the measured impedances of the equivalent base and total lumped masses are presented

as references. Considering first the magnitude of the base impedance it can be seen that for
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frequencies below 10 Hz the actuator base response corresponds to that of the lumped total

mass of the actuator as before. For increasing feedback gains the impedance shows a dip

just below 20 Hz followed by a sharp rise at the actuator resonance at about 25 Hz. Between

25 and 500 Hz the response for higher feedback gains is relatively flat. Above 500 Hz the

magnitude of the base response for all feedback gains converges towards the impedance of

the actuator base mass as before.

At frequencies above 5000 Hz, as discussed with respect to the open loop base impedance

in Figure 4.7, the response of the control units is characterised by resonance peaks and anti-

resonances troughs due to the mounting conditions. Additional resonances for the closed

loop actuator set-up are introduced by rocking motions due to mass of the PCB control

accelerometer which is attached to the actuator asymmetrically.

Focusing now on the phase, it can be seen that for frequenciesbelow 10 Hz the phase is 90◦

for all feedback gains, which corresponds to the impedance of a pure mass. At about 20 Hz

the phase of the active base impedance changes rapidly. For all feedback gains the phase

initially drops below 90◦. Around the actuator fundamental resonance, for low feedback

gains, the phase then increases rapidly and then falls below90◦ for frequencies above 40

Hz. In contrast, for higher feedback gains the phase furtherdrops rapidly by 360◦ and falls

below -270◦ for frequencies above 40 Hz. Above 40 Hz the closed loop response of the

control units has a phase between 90◦ and 0◦, i.e. -360◦ and -270◦, which indicates that the

control unit base impedance has a considerable positive real part and behaves like a damper.

With further increase in frequency the phase of the control unit response converges to 90◦

or -270◦, which indicates an increasingly mass-like behaviour. At higher frequencies phase

changes occur due to the mounting resonance and anti-resonance behaviour.

The locus of the closed loop control unit base impedance, shown in the Nyquist plots in

Figure 4.11 is positive real for all frequencies except those around the actuator fundamental

resonance in the frequency range between about 20 Hz and 40 Hz. In this frequency band the

locus for the closed loop base impedances form a circle in theleft half-plane of the Nyquist

plots. This indicates that the closed loop control unit injects power into the structure, it

is mounted to, rather than absorbing power from it. The behaviour around the actuator

fundamental resonance indicates that the feedback loops are only conditionally stable up

to a maximal feedback gain. The maximal feedback gain that guarantees stability for the

feedback loop also depends on the impedance of the structures that the control units are

mounted to.
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Figure 4.10: Bode diagram with the measured open and closed loop base impedance for a representative
actuator unit with attached accelerometer sensor for a range of feedback gains; open loop (dash − red),
intermediate gains (faint−black−lines), closed loop maximal gain (solid−blue); for reference: impedance
of 35 gram lumped mass (solid− black) and 11 gram lumped mass (dashed− black).

a) b)

Figure 4.11: Nyquist diagram with the measured open and closed loop base impedance for a representative
actuator unit with attached accelerometer sensor, (a) for the entire observed frequency range and (b) magnify-
ing the region around the origin; open loop (dash− red),intermediate gains (faint− black − lines), closed
loop maximal gain (solid− blue)
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4.2.3 Sensor-actuator open loop response function

During the experimental study on the closed loop base impedance of the control units only

relatively small feedback gains could be applied before thecontrol loops became unstable.

In order to investigate the stability of the feedback control units the open-loop frequency

response function (OL-FRF) between the input to the control board that drives the corre-

sponding actuator and the control accelerometer output hasbeen investigated. The principal

set-up is the same as that shown in Figure 4.9 except that for this measurement the primary

shaker is passive and it is only the control actuator that drives the system. To guarantee

stability the OL-FRF must not encircle the Nyquist instability point at (-1,0j) [13].

Figure 4.12 shows the OL-FRF for the feedback control unit mounted on the shaker as

shown in Figure 4.9. At about 30 Hz the magnitude of the OL-FRF in Figure 4.12(a) shows

a single repose maxima this indicates that both the control unit and the shaker fundamen-

tal resonances are in close proximity and that both are heavily damped. An analysis of

the shaker dynamic response showed that the fundamental resonance of the shaker with

mounted impedance head and total actuator mass is 30 Hz. Considering the impedance

head and actuator base mass this increases to 35 Hz.

The close proximity of the control actuator and shaker resonance peaks results in a high

magnitude of the OL-FRF around the actuator fundamental resonance frequency. This pro-

duces a large circle in the left half-plane of the Nyquist plot of the OL-FRF, shown in

Figure 4.12(b). This sets a stringent limit for the applicable feedback gain. Also at frequen-

cies above 3000 Hz the phase of the OL-FRF tends to fall below -540◦, which results in

low magnitude circles on the left half-plane of the Nyquist plot. This effect is assumed to

be caused by out of phase motion of the actuator base and PCB control accelerometer as

an result of mounting resonances, which further limits the stability of the feedback loop,

although in practise the relatively low magnitude of these loops implies they are unlikely to

be critical.
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a) b)

Figure 4.12: Bode (a) and Nyquist (b) plots of the OL-FRF for feedback control unit mounted on a shaker.

In this experimental set-up the control accelerometer is directly attached to the base of the

actuator. For the implementation on the panels, the actuators and control accelerometers

are separately mounted on the source and receiving sides of the panel. This may introduce

additional dynamic effects at higher frequencies, especially for a sandwich panel, which

are not considered in this experimental set-up. However, asdiscussed in Chapter 5, it is

found that similar mounting resonance effects arise which produce high frequency spill-over

effects and also impose high frequency stability limits forthe control units when mounted

on two test panels.

An uncertain factor in the measured OL-FRF is the difference between the output impedance

of the accelerometer signal conditioner and the output impedance of the analyser signal

generator. This may have an effect on the output current per input voltage of the controller

board. This has so far been assumed to be a minor issue but should be further investigated to

yield a better understanding of the dynamic interaction of all electric circuits in the control

loop.
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4.3 Physical interpretation of the control unit response

This section presents the results of simulation studies on the open and closed loop con-

trol unit base impedance for the cases of current and voltage-driven actuators considering

both ideal and practical controller frequency response functions (FRF). The study aims to

give a physical interpretation of the control units closed loop base impedance which was

determined experimentally in Section 4.2.2. Considering the lumped parameter model de-

picted in Figure 4.4, the closed loop base impedance of a control unit with current-driven

electrodynamic proof-mass actuator is given by

Z̃aI = Z̃s + Z̃m1
− Z̃2

s

Z̃m2
+ Z̃s

+ C̃gΨ

(

1− Z̃s

Z̃m2
+ Z̃s

)

, (4.3)

whereg is the applied feedback gain,̃C is the gain-normalised controller FRF, andΨ is the

voice coil coefficient. AlsoZ̃s = cs + ks/(jω) , Z̃m1
= jωm1 andZ̃m2

= jωm2 are the

actuator suspension, base mass and proof mass impedances asbefore. The corresponding

formulation for the base impedance of a closed loop voltage-driven electrodynamic proof-

mass actuator is given by

Z̃aU = Z̃s + Z̃m1
+

Ψ2

Z̃e

−

(

Z̃s +
Ψ2

Z̃e

)2

Z̃m2
+ Z̃s +

Ψ2

Z̃e

+
C̃gΨ

Z̃e

(

1−
Z̃s +

Ψ2

Z̃e

Z̃m2
+ Z̃s +

Ψ2

Z̃e

)

, (4.4)

whereZ̃e = Re + jωLe is the electrical impedance of the voice coil. The parameters used

to model the actuators were summarised in Table 4.1. These expressions are derived in

Appendix C.
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4.3.1 Ideal controller response

Considering first the results for a frequency-independent controller FRF with unit gain,

Figures 4.13 and 4.14 show the Bode and Nyquist plots of the predicted open and closed

loop base impedance for a current-driven actuator with feedback gainsg between 0.1 and

250. Comparison with Figures 4.10 and 4.11 shows a generally good agreement with the

measured base impedance response functions. However, evenfor high feedback gains the

predicted impedance functions do not exhibit the 360◦ phase shift around the actuator fun-

damental resonance. Also, for frequencies below the actuator fundamental resonance, the

predicted impedance functions show an increase in magnitude and a positive phase shift

of up to 90◦ relative to the passive system, which is not observed in the measured base

impedances.

Figures 4.15 and 4.16 show the Bode and Nyquist plots of the predicted closed loop base

impedances for a voltage-driven actuator with feedback gains between 0.1 and 250. These

results are quite similar to the results for a current-driven actuator. As discussed in Section

4.1, the actuator blocked force for 1 A input current is higher than the blocked force for 1

V input voltage. Also, above the actuator fundamental resonance, the magnitude and phase

of the control force per unit current is constant with frequency while the magnitude and

phase of the control force per unit voltage drops with increasing frequency because of the

frequency-dependent electrical impedance of the voice coil. Hence, for the same feedback

gain the magnitude of the base impedance of the control unit with voltage-driven actuator

tends to be lower than that for the control unit with current-controlled actuator. Also, above

the actuator fundamental resonance the magnitude and phaseof the base impedance for con-

trol units with voltage-driven actuators falls with increasing frequency. For high feedback

gains, the phase of the base impedance for the control unit with voltage-driven actuator falls

below0◦ and in the frequency range between 1000 and 2000 Hz the magnitude of the closed

loop base impedance drops below that of the actuator base mass. For higher frequencies the

closed loop control unit base impedance converges towards the impedance of the actuator

base mass which increases in proportion toω.
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Figure 4.13: Predicted base impedance for closed loop, current controlled actuator for an ideal controller re-
sponse; 0 feedback gain (solid), feedback gains between 0.1 and 250 (faint), 35 gram lumped mass (dashed)
and 11 gram lumped mass (dash− dotted).

a) b)

Figure 4.14: Nyquist diagrams of the predicted base impedance for closed loop, current controlled actuator
for an ideal controller response; 0 feedback gain (solid), feedback gains between 0.1 and 250 (faint).
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Figure 4.15: Predicted base impedance for closed loop, voltage controlled actuator for an ideal controller re-
sponse; 0 feedback gain (solid), feedback gains between 0.1 and 250 (faint), 35 gram lumped mass (dashed)
and 11 gram lumped mass (dash− dotted).

a) b)

Figure 4.16: Nyquist diagrams of the predicted base impedance for closed loop, voltage controlled actuator
for an ideal controller response; 0 feedback gain (solid), feedback gains between 0.1 and 250 (faint).
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4.3.2 Practical controller response

A practical feedback controller does not exhibit an ideal flat frequency response, which

therefore affects the spectrum of the resulting closed loopbase impedance of the control

unit. Each channel of the practical controller used in the experimental studies presented

in Chapter 5, Section 5.3, consists of an integrator and an amplifier unit with analogue

electronic circuits.

Measurements of the frequency response function of the controller boards showed that the

integrator circuit can be readily modelled as the combination of a second order high pass

filter for DC decoupling and a first order low pass filter which implements integration. To

replicate the measured frequency responses both filters aremodelled with a corner frequency

of 14.5 Hz. The amplifier FRF was found to have the characteristics of a first order band-

pass filter and has been modelled with upper and lower corner frequencies of 5 Hz and 9000

Hz respectively.

Figure 4.17 shows the predicted magnitude and phase of the controller FRF, where the

dashed line represents the resulting FRF arising from a combination of integrator and am-

plifier FRFs and the solid line represents the same controllerresponse function corrected by

an ideal integration term. The corrected controller FRF represents the controller response

with respect to an ideal velocity sensor as assumed in the formulations for the closed loop

control unit base impedances in Equations (4.3) and (4.4).
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Figure 4.17: Controller frequency response function; as implemented in the electric circuits (dashed) and
corrected by an ideal integration term (solid).
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It should be noted that this model does not consider the response characteristics of the

accelerometer sensor, which at high frequencies is characterised by a sharp peak around the

accelerometer internal resonance. This resonance occurs at very high frequencies where

the closed loop base impedance of the actuator is dominated by the passive impedance of

the actuator base mass and mounting resonance effects. It istherefore assumed that the

accelerometer output signal is ideally flat in the frequencyrange over which the response of

the control units could become unstable.

Figures 4.18 and 4.19 show the predicted closed loop base impedance for a current-driven

actuator with feedback gains between 0.1 and 250, considering the practical controller FRF

shown in Figure 4.17. Comparison with the measured closed loop base impedance in Fig-

ures 4.10 and 4.11 shows a very good general agreement between measured and predicted

results.

Around 20 Hz the predicted base impedance of the control unitwith practical controller

FRF captures the 360◦ phase shift and the corresponding dip in magnitude of the impedance,

which is observed in the measured results in Figure 4.10. This phase shift is due to the rapid

change in phase of the controller FRF which results from the combined responses of the

integrator and amplifier FRF functions. Well below the actuator fundamental resonance,

in contrast to the base impedance with the flat controller FRF,no positive phase change is

predicted while the increase in magnitude is more gradual. This is due to the third order low

pass filer characteristics of the controller FRF at very low frequencies. For high frequen-

cies, the closed loop base impedance tends to decrease slightly with increasing frequency

which is due to the low pass filter characteristics of the controller FRF which has a corner

frequency of 9000 Hz.

Figures 4.20 and 4.21 show the predicted closed loop base impedance for a voltage-driven

control unit with feedback gains between 0.1 and 250 considering the practical controller

FRF shown in Figure 4.17. As for the predicted impedances withideal flat controller re-

sponse, the base impedance for voltage and current control give similar results. However,

the results in the Nyquist diagram in Figure 4.21(a) indicate that for frequencies above 2000

Hz, for high feedback gains the locus of the base impedance migrates into the left half plane,

i.e. the phase of the base impedance for voltage-control rises slightly above -270◦. This re-

sults in a base impedance with a small negative real part which indicates the possibility of

control instability and control spillover problems at highfrequencies.
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Figure 4.18: Predicted base impedance for closed loop, current controlled actuator for a practical controller re-
sponse; 0 feedback gain (solid), feedback gains between 0.1 and 250 (faint), 35 gram lumped mass (dashed)
and 11 gram lumped mass (dash− dotted).

a) b)

Figure 4.19: Nyquist diagrams of the predicted base impedance for closed loop, current controlled actuator
for feedback for a practical controller response; 0 feedback gain (solid), feedback gains between 0.1 and 250
(faint).
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Figure 4.20: Predicted base impedance for closed loop, voltage controlled actuator for a practical controller re-
sponse; 0 feedback gain (solid), feedback gains between 0.1 and 250 (faint), 35 gram lumped mass (dashed)
and 11 gram lumped mass (dash− dotted).

a) b)

Figure 4.21: Bode plot (a) and Nyquist diagram (b) of the predicted base impedance for closed loop, current
controlled actuator for a practical controller response; 0feedback gain (solid), feedback gains between 0.1
and 250 (faint).
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The controller integrator circuit is assumed to act as a voltage source with infinite input

impedance and zero output impedance. The controller amplifier circuit is assumed to act as

a current source with infinite input impedance and infinite output impedance. However from

this present study it is not completely clear how close the actual controller circuits resemble

the ideal input and output impedances. The controller therefore may not enforce an ideal

current signal on the actuator voice coil. Further studies should be conducted to understand

more fully the interaction between all electrical circuitsinvolved in the control system.

4.4 Summary

In this chapter the results from experimental and simulation studies on the open and closed

loop response of control units with electrodynamic proof-mass actuators and accelerometer-

sensor pairs has been presented. In contrast to previous work these experimental and sim-

ulation studies characterise the control units in terms of the open and closed loop base

impedances they exert on panels onto which they are mounted.

• Section 4.1 presented experimental and simulation studieson the actuator blocked

force frequency response function.

– The blocked response of the five actuators are similar in the lower and upper lim-

its of the observed frequency range. Around the actuator fundamental resonance

frequency the response of the actuators is dominated by internal damping, which

differs between the units. However the actuators can be sufficiently represented

by a mean response averaged over all actuators.

– The blocked force of proof-mass electrodynamic actuators can be readily mod-

elled using a basic electromechanical model with empirically estimated input

parameters. However, for frequencies above 5000 Hz the response of the actu-

ators is characterised by mounting resonance effects whichare not captured in

the electromechanical model.

• Section 4.2 presented experimental studies on the open and closed loop base

impedance of a representative control unit.

– At low frequencies the base impedance of the actuator corresponds to the

impedance of the total actuator mass while at high frequencies it converges to

the impedance of the actuator base mass. In the transition region the open loop
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response of the actuators is non-linear and depends on the base excitation level.

– The closed loop control unit base impedance shows the same low and high fre-

quency characteristics as in the open loop case. In the transition region, around

and above the actuator fundamental resonance frequency, the response of the

control unit is dominated by the feedback force generated bythe actuator voice

coil.

– Around the actuator fundamental resonance, the control unit base impedance

has a negative real part which indicates a negative damping effect. This results

in conditional stability of the closed feedback loop.

• Section 4.3 presented simulation studies on the closed loopbase impedance of the

control units in such a way as to give physical interpretation of the measured control

unit responses.

– The simulated base impedance with ideal controller FRF showsa generally good

agreement but fails to capture some of the characteristics that are apparent in the

measured responses.

– The simulated base impedance with practical controller FRF shows a good agree-

ment with the measured base impedance and captures all response characteris-

tics apparent in the measured control unit responses.

– For frequencies well below the actuator fundamental resonance the control unit

base impedance corresponds to that of the total actuator mass. For frequencies

around actuator resonance the combined response characteristics of the actuator

dynamics and the controller frequency response function result in a dip in the

magnitude of the control unit base impedance. For low feedback gains this hap-

pens alongside an increase in phase by up to 90◦; for higher feedback gains the

phase shifts by -360◦. For very high feedback gains the simulation studies in-

dicate that this phase shift occurs within an increasingly narrow frequency band

and the dip in the magnitude of the base impedance disappears. For increasing

frequency the magnitude of the base impedance forms a plateau and the phase is

between 90◦ and 0◦ or -270◦ and -360◦. This indicates that the closed loop con-

trol units produce considerable active damping effects. For high frequencies,

for high feedback gains, the phase of the base impedance drops below -360◦,

which is due to the low pass filter cut-off of the control unit response. At very
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high frequencies, for all feedback gains, the base impedance of the closed loop

control units converges to that of the actuator base mass.

The basic electromechanical model with controller FRF function readily describes the closed

loop control unit base impedance in the frequency range of interest. It can therefore be used

to investigate new designs of both electro-mechanical actuator and electrical controller in

order to optimise the stability and control performance properties. For example future stud-

ies could investigate the implementation of an analogue phase compensator in the controller

FRF which would increase the stability of the control unit feedback loops when mounted

on flexible panels.

Resonance effects due to the actuator and sensor mounting conditions are not captured by

the current model. An extended model should capture these multiple degree of freedom

resonance effects to characterise the control unit response at higher frequencies.

The open loop response of the actuators has been found to be non-linear. Further studies

could investigate the closed loop control unit response forlow base excitation levels and

non-flat excitation spectra. However, the effort to measurethese responses and to implement

non-linearity in the electrodynamic response model may be disproportionate to the benefits

since the non-linear characteristics of the response is only specific to the prototype actuator

design investigated in this study.

The following chapter presents the results from experimental studies on the control stability

and performance of the system with five decentralised control units mounted on a homo-

geneous aluminium panel and a lightweight honeycomb sandwich panel. Also the results

from simulation studies on the control stability and performance are presented where the

feedback control loops are modelled using the expressions for control units with current-

controlled actuators from Equation (4.3).
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Chapter 5

Simulation and experimental studies of

practical control set-ups

This chapter presents the results of experimental and simulation work on a thin aluminium

panel and a honeycomb sandwich panel with decentralised velocity feedback control. The

control system consists of five decentralised control unitswith proof-mass electrodynamic

actuator - accelerometer sensor pairs as described in Chapter 4.

Both the experimental and simulation studies consider the control stability and performance

in terms of panel kinetic energy and far field radiated sound power of the two panels. In

the experimental study the panels are either excited mechanically by a shaker or by the

acoustic field produced by a loudspeaker. In the simulation study these two excitations are

modelled as a point force excitation and an acoustic plane wave excitation. The response

of the two panels to stochastic acoustic diffuse field (ADF) and turbulent boundary layer

(TBL) disturbances is also simulated but not investigated experimentally.

The aluminium panel considered in this study is shown in Figure 5.1(a). The panel is 1.6

mm thick and modelled as a thin homogeneous panel using the same material properties as

for the aluminium panel considered in the simulation studies in Chapter 3.

The honeycomb test panel considered in this chapter is shownin Figure 5.1(b). In contrast

to the honeycomb panel considered in the theoretical studies in Chapter 3 this panel has a

similar mass per unit area to the aluminium test panel but a much higher static stiffness.

Moreover, both panels have larger dimensions than the panels considered in Chapter 3. The

decision to use a stiffer honeycomb panel was mainly based onthe availability of the test

specimen. Nevertheless, it is believed that the honeycomb test panel more closely represents
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lightweight sandwich panels that could be used in the construction of transportation vehi-

cles. Also the frequency range for the studies in this chapter has been restricted to 6400 Hz,

which represents the frequency range of interest for most interior noise control applications.

a) b)

Figure 5.1: Thin homogeneous aluminium test panel (a) and stiff lightweight honeycomb sandwich test panel
(b).

This chapter is organized in three main sections:

• Section 5.1 discusses the dynamic characteristics of the two panels. In particular the

implication of frequency dependent anisotropic behaviouron the response of the stiff

lightweight honeycomb panel is discussed with respect to (a) the wavenumbers of

propagating waves, (b) the modal density, (c) the modal overlap factor and (d) both

excitation and radiation coincidence effects.

• Section 5.2 presents simulation studies on the implementation of a practical control

system with decentralised feedback control units using electrodynamic proof-mass

actuators as described in Chapter 4. The model parameters arechosen to replicate

approximately the experimental set-ups with the aluminiumand honeycomb panels.

The control performance and stability of the decentralisedcontrol system is assessed

for both panels. The control performance is analysed in terms of the time-averaged

total kinetic energy and total sound power radiated by the panel, for excitation by (a)

a point force, (b) an acoustic plane wave.

• Section 5.3 presents measurements on the two panels withoutcontrol units and with

open and closed loop feedback control units. These are carried out in a sound trans-

mission suite facility. The control performance and stability properties of the decen-

tralised control system are assessed for both panels. Also in this case the control

performances are analysed in terms of the-time averaged total kinetic energy and total

sound power radiated by the panels when subjected to mechanical excitation via an
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electrodynamic shaker and an acoustic field generated by an loudspeaker. With these

experiments the simulation results in Section 5.2 can be validated.

In addition

• Appendix D provides background information on the experimental studies for the

estimation of the structural parameters of the anisotropichoneycomb test panel, and

• Appendix E provides further details on the sound transmission suite facility and the

experimental set-ups.

5.1 Test panel characteristics

This section discusses the dynamic characteristics of the aluminium and the honeycomb

test panels. First the panel models are introduced. As in Chapter 3, the specific dynamic

characteristics of the two panels are then discussed with respect to (a) the wavenumbers of

propagating transverse waves, (b) the modal density, (c) the modal overlap factor and (d)

both excitation and radiation coincidence effects.

5.1.1 Panel models

This subsection introduces the dynamic models considered for the modelling of the thin

homogeneous and the lightweight honeycomb sandwich test panels used in the simulation

studies of this chapter. The honeycomb sandwich panel, considered in this chapter, has a

significantly higher static stiffness than the homogeneousaluminium panel. However, both

panels have a very similar mass per unit area.

Aluminium test panel: As in Chapter 3, the aluminium test panel has been modelled as a

thin homogeneous and isotropic plate. In order to replicateapproximately the experimental

set-up, it is assumed that all edges are subjected to clampedboundary conditions. The panel

dimensions are chosen aslx=477 mm andly=381 mm. This replicates the inner dimensions

of the test frame, which is specified in Appendix E. The formulations given in References

[47, 48] are used to express the natural frequencies and modeshapes for a clamped panel.

These are summarised in Appendix A. The dimensions, cross-section geometry and material

properties of the aluminium test panel are summarised in Table 5.1.
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Table 5.1: Geometry and physical parameters of the aluminium test panel.

Parameter Symbol Value Unit

x-dimension lx 477 mm
y-dimension ly 381 mm
Thickness h 1.6 mm
Mass density ρ 2720 kg m−3

Young’s modulus E 70 GPa
Poisson’s ratio ν 0.33 –
Modal loss factor η 0.02 –

Honeycomb sandwich test panel: For practical sandwich panels the transverse dynamic

stiffness is often anisotropic with respect to thex and y-axes [61]. The most sensitive

structural parameters for an accurate modelling are the out-of-plane shear modulus of the

sandwich coreGx andGy [62]. In contrast to the model used in Chapter 3, the frequency

dependent transverse stiffness of the honeycomb sandwich panel is therefore modelled in-

dependently in thex- andy-directions using the formulations in Equations (3.3) to (3.6)(b).

The anisotropic behaviour of the honeycomb panel is modelled using a formulation given

by Blevins [63], where the natural frequencies are expressedwith the formula:

ωm,n =
π2

√
m′′

√

Dx

(

Gm

lx

)4

Dy

(

Gn

ly

)4

+
2JmJn + 2ν(HmHn − JmJn)

(lxly)2
α
√

DxDy. (5.1)

In the above equation, the parametersG, J andH depend on the mode order inx and

y-directions, denoted bym andn respectively, and the boundary conditions [47, 48] (see

Appendix A). The parameterα is adjusted to give good agreement between predicted and

measured natural frequency for the [rocking, rocking] modeof the panel when it is freely

suspended [61].

As in the simulation studies in Chapter 3, the modeshapes in the x− andy-directions are

considered to be those of an equivalent thin homogeneous beam with pinned boundary con-

ditions, which gave the best agreement with the measured responses of the honeycomb

panel mounted in the test frame [see Appendix E, Section E.1.2]. For a sandwich panel

the bending stiffnessesDx andDy are frequency-dependent and need to be evaluated at

ω = ωm,n. A Regular-Falsi root search algorithm [49] is employed to estimate the panel

natural frequencies that satisfy the relationship
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0 = ω2 − π4

m′′

(

Dx(ω)

(

Gm

lx

)4

Dy(ω)

(

Gn

ly

)4

+
2JmJn + 2ν(HmHn − JmJn)

(lxly)2
α
√

Dx(ω)Dy(ω)

)

.

(5.2)

The honeycomb sandwich panel considered in this study comprises two face plates which

are made from three plies of carbon reinforced resin. The faceplates are bound to the

core honeycomb structure, which is made from fibreglass-reinforced Phenolic Honeycomb

(HRP) with a cell size of 3/8 inch.

The principal structural parameters of the panel where estimated in an experimental study

when the panel was freely suspended in a test frame. A shaker with attached force gauge

was used to excite the panel at a corner location. A laser vibrometer was used to mea-

sure the panel point mobility and a 24x18 uniform grid of panel transfer mobilities. The

test panel response along thex- andy-axis was analysed by identifying isolated beam-like

modes from the grid of measured transfer mobilities. This also gave the specific sequence

of panel modes. Knowledge of the panel geometry, manufacturer material specifications,

experimental natural frequencies and modes allowed to the parameters to be determined

using the anisotropic sandwich panel model described above.

The simulated response for a panel with all sides free gave good agreement with the mea-

sured structural response of the honeycomb panel in the observed frequency range up to

5000 Hz. Further details on the panel model and the experimental studies on the freely sup-

ported honeycomb panel are provided in Appendix D. The cross-section geometry and the

material parameters used to model the honeycomb panel are summarised in Table 5.2. The

panel dimensions are the same as those of the aluminium panelspecified in Table 5.1.
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Table 5.2: Cross-section geometry and physical parametersfor the honeycomb sandwich test panel.

Parameter Symbol Value Unit

x-dimension lx 477 mm
y-dimension ly 381 mm
Thickness of face plate hf 0.86 mm
Core depth d 23.09 mm
Mass density face plates ρf 1250 kg m−3

Mass density core ρc 96 kg m−3

Panel mass per unit area1 m′′ 4.28 kg m−2

Young’s modulus face-platesx-axis Ex 48 GPa
Young’s modulus face-platesy-axis Ey 43 GPa
Shear modulus corex-axis Gx 82 MPa
Shear modulus corey-axis Gy 155 MPa
Poisson’s ratio face plates νf 0.33 –
Poisson’s ratio sandwich plate ν 0 –
Loss factor η 0.015 –
Anisotropic factor α 0.035 –
1 m′′ = 2hfρf + (d− hf )ρc

5.1.2 Wavenumbers

Figure 5.2 shows the spectra of the propagating bending wavenumbers of the aluminium

panel and the propagating transverse wavenumbers of the honeycomb panel in thex- and

y-direction. Figure 5.2 also shows the spectra of the acoustic wavenumber in air and the

convective wavenumber for the TBL disturbance, with the parameters specified in Table 2.3.

Note that in contrast to Figure 3.3 the results circles and squares do not indicate wavenumber

components of structural modes but only indicate the natural frequencies.

At low frequencies the wavenumbers of the honeycomb panel are dominated by the high

bending stiffness of the sandwich cross-section and are hence much lower than that of the

aluminium panel. At frequencies above 1000 Hz the transverse stiffness of the honeycomb

panel is increasingly shear-controlled and the wavenumberin this region converges towards

ks = ω(m′′/Gd)1/2 [19].

The acoustic critical frequency, where the acoustic wavelength equals the transverse wave-

length of the panels, occurs at about 400 Hz for the honeycombpanel and at 7540 Hz for

the aluminium panel. Assuming the TBL excitation with the parameters defined in Table

2.3, the convective coincidence occurs at about 56 Hz for thehoneycomb panel (thus at

very low audio frequency) and at about 1170 Hz for the aluminium panel (thus at mid audio

frequency).
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The squares and circles mark the resonance frequencies of the panels, which are estimated

from the models described in Section 5.1.1. The fundamentalresonance of the clamped

aluminium panel occurs at 82 Hz, thus below the acoustic coincidence. Therefore there are

many structural modes which do not radiate sound efficientlyand which are also not effi-

ciently excited by acoustic fields [19]. The predicted fundamental frequency of the honey-

comb panel is 579 Hz and hence above the acoustic coincidence. Thus all structural modes

of the honeycomb panel are efficient radiators of sound and are also efficiently excited by

acoustic fields.

As discussed in Chapter 3, the response of a finite panel depends on the specific dimensions

and boundary conditions (i.e. the specific natural frequencies of resonant modes) in rela-

tion to the excitation and radiation coincidence wavenumbers. Therefore all dimensions and

boundary conditions are important for the prediction of thenarrow band sound transmission

through a finite panel. For example, a honeycomb panel with larger dimensions than the

panel considered here, may have resonant modes at frequencies below the acoustic critical

frequency these would be characterised by lower excitationand radiation efficiencies. How-

ever such a panel would also have a higher number of structural modes per unit frequency

bandwidth. It is therefore possible that specific modes willresonate around coincidence,

which may result in high excitation sensitivity and radiation efficiency in that frequency

band, depending on where exactly these modes are.
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Figure 5.2: Predicted dispersion curves of the propagatingtransverse wavenumber and resonant frequencies of
the aluminium and honeycomb test panels (see legend in graph), acoustic wavenumber in air (faint−dashed)
and convective wavenumber (faint− dash− dotted).
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5.1.3 Modal density and modal overlap

As discussed in Chapter 3 the modal density of the thin aluminium panel is constant with

frequency as, shown in Figure 5.3(a). Due to the higher panelsurface area, the modal

density of the aluminium test panel is 0.0362 [per Hz] and therefore 2.66 times higher than

that of the aluminium panel considered in the simulation studies in Chapter 3. As for the

smaller panel, there is a good general agreement but high variability between the statistical

modal density calculated from Equation (3.8) and the specific density of resonant modes

along the frequency axis.

As for the sandwich panel considered in Chapter 3, the modal density of the honeycomb

test panel, shown in Figure 5.3(b) is frequency-dependent and increases with frequency.

This is because above 1000 Hz the response of the honeycomb panel is increasingly shear

controlled. However, the modal density of the honeycomb panel remains below that of the

aluminium panel over the entire observed frequency range between 0 and 6400 Hz. There

is a good agreement between the modal densities estimated from Equations (3.9) and (3.10)

and the specific density of resonant modes along the frequency axis. It should be noted

that the modal densities of the honeycomb panel were calculated using equivalent isotropic

Young’s and Shear moduli,E =
√

ExEy andG =
√

GxGy respectively.
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Figure 5.3: Modal density for (a) the thin homogeneous aluminium panel and (b) the honeycomb sandwich
panel. Modal density (solid line), asymptotic limits for sandwich panel (faint− dashed lines) and specific
density of resonant panel modes (dotted line with circles).

102



The modal overlap factor of the two panels is shown in Figure 5.4. The modal overlap factor

for the aluminium panel exceeds unity for frequencies above1390 Hz. At low frequencies,

the modal overlap factor for the honeycomb panel is much lower than that of the aluminium

panel and only exceeds unity for frequencies above 6290 Hz which is at the upper end of

the observed frequency range.
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Figure 5.4: Modal overlap factor for the thin homogeneous aluminium panel (solid) and for the honeycomb
sandwich panel (dashed).

5.2 Simulation studies on decentralised velocity feedback

AVC with practical control units

This Section presents simulation results for the stabilityand control performance of a control

system with five decentralised velocity feedback loops, as shown in Figure 5.5(a), when

installed on the thin aluminium and honeycomb sandwich panels introduced in Section 5.1.

The panel response and far field radiated sound power due to a point force excitation and

an acoustic plane wave (APW) excitation withθ=45◦ are estimated using the elemental

approach as described in Chapter 2.

As indicated in the block diagram in Figure 5.5(b), the control loops are modelled in terms

of the open or closed loop base impedanceZ̃a which is applied to the structure where the

control units are mounted. First the model parameters are specified and then the results of

the simulation studies for the two panels are compared with respect to control stability and

performance.
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Figure 5.5: (a) Schematic view of the five channel decentralised velocity feedback control system mounted on
the panels and (b) corresponding block diagram.

5.2.1 Model parameters

The two panels are modelled using the parameters specified inSection 5.1. As discussed

before, the simulations have been carried out assuming thatthe aluminium panel is clamped

on all edges and the honeycomb sandwich panel is pinned on alledges. As shown in Figure

5.6, the element grid was chosen to consist of 20 elements along thex-axis and 16 elements

along they-axis of the panels. This resembles the measurement grid forthe laser vibrom-

eter scans in the experimental studies presented in Section5.3. This grid density satisfies

a spatial resolution of at least two elements per transversewavelength on the panels at the

highest frequency of interest, which is 6400 Hz. Simulations with a higher element resolu-

tion showed that the chosen grid yields reliable results with a negligible overestimation of

the spectra at the upper end of the observed frequency range.

In this study modes with natural frequency up to five times theobserved frequency range

were considerd in the model of the panels, where modes up to twice the observed frequency

range (up to 12.4 kHz) were considered as dynamic modes with their stiffness damping and

mass parts and modes between twice and five times the observedfrequency (up to 32 kHz)

were considered as residual modes with stiffness and damping parts only (see Appendix A).

For the aluminium panel a total of 1097 modes were included inthe model, 427 dynamic

and 670 residual. For the honeycomb panel a total of 955 modeswere included in the model,

165 dynamic and 790 residual.
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As shown in Figure 5.6, one of the five control loops is placed in the centre of the panel while

the other four are arranged symmetrically on the panel diagonals. The exact locations of the

control loops and the position of the primary point force excitation are shown in Figure

5.6 and specified in Table 5.3. The control loops are implemented in terms of the open or

closed loop base impedances of the control units, which are applied to the structure where

the control units are mounted. As indicated in the block diagram in Figure 5.5, the diagonal

matrix of base impedances̃Za replaces the feedback gain matrix̃H in the formulations

given in Chapter 2. The impedance formulations that describethe response of the feedback

loops are those for voltage and current-driven control units with proof-mass electrodynamic

actuator and practical feedback controller FRF as specified in Section 4.3. In this study a

uniform feedback gain is considered, i.e. the same gain is applied to all five feedback loops.

Table 5.3: Control point (CP) coordinates and primary excitation (PE) location on the test panels.

PE CP1 CP2 CP3 CP4 CP5

x [mm] 101 347 347 130 130 238.5
y [mm] 240 277 104 104 277 190.5

x−axis

y−
ax

is

Figure 5.6: Sketch of panel with element grid, control points (circles) and primary excitation location
(diamond).
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5.2.2 Stability analysis

Open loop frequency response functions

In order to analyse the stability of the control system, the open loop frequency response

functions (OL-FRFs) of the control system are calculated in frequency range between 10

Hz and 25600 Hz. In order to assess the stability of the individual feedback loops, the OL-

FRFsH̃11, H̃22, H̃33, H̃44 andH̃55 of the five feedback loops are analysed. The OL-FRFs

functions for control units with current-driven control units are given by

H̃Iii =
Ỹcii C̃ Ψ

(

1− Z̃s

Z̃m2
+Z̃s

)

1 + Ỹcii

(

Z̃s + Z̃m1
− Z̃2

s

Z̃m2
+Z̃s

) , (5.3)

whereg is the applied feedback gain,̃C is the gain-normalised controller FRF, andΨ is the

voice coil coefficient. AlsoZ̃s = cs + ks/(jω) , Z̃m1
= jωm1 andZ̃m2

= jωm2 are the

actuator suspension, base mass and proof mass impedances asbefore. The corresponding

formulation for the OL-FRFs functions for control units withvoltage-driven control units

are given by

H̃Uii
=

Ỹcii C̃
Ψ
Z̃e

(

1− Z̃s+
Ψ
2

Z̃e

Z̃m2
+Z̃s+

Ψ2

Z̃e

)

1 + Ỹcii

(

Z̃s + Z̃m1
+ Ψ2

Z̃e
−

(

Z̃s+
Ψ2

Z̃e

)

2

Z̃m2
+Z̃s+

Ψ2

Z̃e

) , (5.4)

whereZ̃e = Re + jωLe is the electrical impedance of the voice coil. The parameters used

to model the actuators were summarised in Table 4.1. These expressions are derived in

Appendix C. To guarantee stability for an individual controlloop, the OL-FRF must not

encircle the Nyquist stability point at (-1,0j) [13].

Aluminium panel: Figures 5.7 and 5.8 show (a) the Bode diagrams and (b) Nyquist plots

of the OL-FRFsH̃11 to H̃55 for the feedback control loops on the aluminium panel. Figure

5.7 corresponds to current control and Figure 5.8 to voltagecontrol. Only two curves are

visible in each plot because the control positions 1, 2, 3 and4 are located symmetrically

with respect to the centre of the panel, and therefore yield identical simulation results.

Considering first the case of current driven control actuators in Figure 5.7, it can be seen

that the control loops are only conditionally stable due to the presence of circles in the left
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half-plane. The gain margins for the control loops are limited by the 180◦ phase shift which

is due to the actuator fundamental resonance in combinationwith the FRF of the feedback

controller. At low frequencies this produces a circle on theleft half-plane of the Nyquist plot

so that the feedback loops would become unstable when the feedback gains are increased

beyond the stable gain margin.

Even if small control gains that guarantee stability are implemented, the part of the OL-

FRFs that falls within the unit circle around the Nyquist stability point at (-1,0j) results in

an enhancement of the structural response in that frequencyband. This effect is known as

low frequency control spillover [13, 19].

For frequencies above the actuator resonance frequency, the circles of the OL-FRFs migrate

into the right half-plane quadrants of the Nyquist plot. This indicates that, for frequencies

well above the fundamental resonance frequency of the actuator, the velocity feedback loops

reduce the structural response of the panel by means of active damping. The magnitudes of

the circles indicate how efficiently the response of the structural modes is attenuated at the

corresponding resonance frequencies.

At very high frequencies the circles of the OL-FRFs migrate back into the left half-plane

of the Nyquist plot. In this frequency range the magnitudes of the OL-FRFs are very small

compared with that of the low frequency circle due to the actuator fundamental resonance;

hence these parts of the OL-FRFs do not pose stability limits.Control spillover effects in

this high frequency band occur, although they are of smalleramplitude than that around the

fundamental resonance of the actuator.

For the case of voltage-driven control actuators in Figure 5.8, the feedback loops are also

only conditionally stable. As discussed above, the gain margins for the control loops are

limited by the 180◦ phase shift around the actuator fundamental resonance. TheBode dia-

gram in Figure 5.8(a) shows that compared with the current-controlled feedback loops, the

resonant peak around the actuator fundamental resonance frequency is more highly damped

due to the back electromotive force (backemf ) effect. At very high frequencies the phase

and magnitude of the OL-FRFs roll off at a higher rate than those of the current-controlled

feedback loops shown in Figure 5.7. Therefore the circles ofthe OL-FRFs migrate more

rapidly back into the left half-plane of the Nyquist plot andmultiple loops of the OL-FRFs

cross the negative real axis in the frequency range between 3000 and 4000 Hz.
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The differences between voltage- and current-driven control units can be readily explained

by the differences between the blocked force spectra for voltage- and current-driven control

actuators, as discussed in Section 4.1. The blocked force produced by the control actors for

1 V input voltage is considerably lower than that for 1 A inputcurrent.

a) b)

Figure 5.7: Simulated OL-FRFs of thecurrent -controlled feedback loops on thealuminium panel. Thick
solid lines in the Nyquist plot mark the FRFs in the frequencyrange from 0 Hz to 100 Hz and the (dashed)
line marks the unit circle around the Nyquist stability point.

a) b)

Figure 5.8: Simulated OL-FRFs of thevoltage-controlled feedback loops on thealuminium panel. Thick
solid lines in the Nyquist plot mark the FRFs in the frequencyrange from 0 Hz to 100 Hz and the (dashed)
line marks the unit circle around the Nyquist stability point.
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Honeycomb panel: Figures 5.9 and 5.10 show (a) the Bode diagram and (b) the Nyquist

plots of the OL-FRFsH̃11 to H̃55 for the feedback control loops on the honeycomb panel.

Considering first the case of current-driven control actuators in Figure 5.9, it can be seen

that the OL-FRFs of the feedback loops on the honeycomb panel show the same 180◦ phase

shift around the actuator fundamental resonance frequencyand the resulting low frequency

circle in the left half-plane of the Nyquist plot. However, compared with the OL-FRFs

of the feedback loops on the aluminium panel in Figure 5.9, inthis frequency range the

magnitudes of the OL-FRFs of the feedback loops on honeycomb panel are very low and

hence allow for high gain margins. This is because the first panel mode is much higher in

frequency than the actuator resonance.

a) b)

Figure 5.9: Simulated OL-FRFs of thecurrent -controlled feedback loops on thehoneycombpanel. Thick
solid lines in the Nyquist plot mark the FRFs in the frequencyrange from 0 Hz to 2000 Hz and the (dashed)
line marks the unit circle around the Nyquist stability point.

a) b)

Figure 5.10: Simulated OL-FRFs of thevoltage-controlled feedback loops on thehoneycombpanel. Thick
solid lines in the Nyquist plot mark the FRFs in the frequencyrange from 0 Hz to 2000 Hz and the (dashed)
line marks the unit circle around the Nyquist stability point.
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For the case of voltage-driven control actuators in Figure 5.10, the resonant peak around

the actuator fundamental resonance frequency is more highly damped due to the back elec-

tromotive force (backemf ) effect. At very high frequencies the Bode diagram in Figure

5.10(a) shows that the phase and magnitude of the OL-FRFs rolloff at a more rapid rate

than that of the current-controlled feedback loops. Therefore the circles of the OL-FRFs

migrate more rapidly back into the left half-plane of the Nyquist plot and cross the negative

real axis in the frequency range between 3000 and 4000 Hz. In this frequency range the

magnitude of the OL-FRFs has not yet rolled off significantly since it is controlled by the

low order resonant modes of the honeycomb panel. Therefore the maximal stable feedback

gain is given by these high frequency circles of the OL-FRFs inthe left half-plane of the

Nyquist plot.

Table 5.4 summarises the stable gains for the two panels withvoltage- and current-driven

feedback loops. In the cases where the feedback gain is limited by the actuator resonance,

and the resulting low frequency loops in the left half-planeof the Nyquist plots, it is the

OL-FRFH̃55 of the feedback loop located in the centre of the panel that limits the maximal

feedback gain. This is because the feedback loop of the control unit located in the centre of

the panels experiences the highest velocity response of thefundamental bending mode of

the panels. For the aluminium panel the maximal stable gain for current-controlled feedback

loops is 28 while that for voltage-driven feedback loops is 76. As discussed in Chapter 4,

this can be explained by the difference in the blocked force response of the actuator due

to input voltage and input current. For the honeycomb panel,the maximal feedback gains

are significantly higher than for the aluminium panel. For the current-controlled feedback

loops, the maximal gain is 2134. For the voltage controlled feedback loops, the maximal

gain is 642, due to the high frequency circles of the OL-FRFs onthe left hand side quadrants

of the Nyquist plot. The maximal stable feedback gain for thelow frequency loop around

the actuator fundamental resonance in isolation is 6215 andwould therefore be much higher.

Table 5.4: Maximal stable feedback gain of the feedback looplocated in the centre of the panels.

Panel Maximal stable feedback gain
Current Voltage

Aluminium panel 28∗ 76 ∗

Honeycomb panel 2134∗ 642∗∗ 6215∗

∗ limit due to response around actuators fundamental resonance.
∗∗ limit due to high frequency spillover.
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System eigenvalues

As discussed by Gonzalez Diaz et al. [45, 33, 34] and Baumann and Elliott [64], the stable

gain margin for a feedback control system with multiple proof-mass electrodynamic actua-

tors reduces with increasing number of feedback loops. Thisis due to cross-talk, i.e. cross

excitation effects between the actuators. Hence, to assessthe stability of the multiple input

multiple output (MIMO) control system with five decentralised control loops, it is necessary

to evaluate the eigenvalues of the fully populated [5× 5] matrix of OL-FRFs between the

output of the five control sensors and the actuator input signals,
















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



H̃1,1 H̃1,2 H̃1,3 H̃1,4 H̃1,5
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
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















. (5.5)

Expressions for the OL-FRFs matrices̃HI and H̃U for current- and voltage-control are

derived in Appendix C. To guarantee stability, the eigenvalues of the OL-FRF matrix must

satisfy the generalised Nyquist stability criterion [13].For each frequency the eigenvalues of

the OL-FRF matrix are calculated using the MatLab command eig. However, this does not

yield the matrix eigenvalues in a consistent order, so that it is necessary to sort the resulting

eigenvalues with respect to the eigenvectors to yield five consistent open loop frequency

eigenvalue functions (OL-FEVF).

Figures 5.11 and 5.12 show (a) the Bode diagrams and (b) the Nyquist plots with the eigen-

values of the fully populated OL-FRF matrices for installation on the aluminium panel.

Figure 5.11 shows the results for current-driven feedback loops and Figure 5.12 for voltage

driven feedback. In contrast to the plots of the OL-FRF in Figures 5.7 and 5.8, the OL-FEVF

exhibit five curves, each representing one of the system eigenvalue functions. The results

exhibit similar characteristics to the OL-FRFs for the individual feedback loops. However,

the loops are slightly expanded, which results in a decreasein the stable gain margin.

The eigenvalue functions of the control system on the honeycomb panel are shown in Fig-

ures 5.13 and 5.14. These also show similar effects to the corresponding OL-FRFs in Fig-

ures 5.9 and 5.10. As discussed above, the circles of the OL-FEVFs are inflated which

results in lower gain margins.
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a) b)

Figure 5.11: Simulated Eigenvalues of the OL-FRFs of the control system withcurrent -controlled feedback
loops on thealuminium panel. Thick solid lines in the Nyquist plot mark the FRFs in the frequency range
from 0 Hz to 100 Hz and the (dashed) line marks the unit circle around the Nyquist stability point.

a) b)

Figure 5.12: Simulated Eigenvalues of the OL-FRFs of the control system withvoltage-controlled feedback
loops on thealuminium panel. Thick solid lines in the Nyquist plot mark the FRFs in the frequency range
from 0 Hz to 100 Hz and the (dashed) line marks the unit circle around the Nyquist stability point.

Table 5.5 summarises the maximal stable gains for the control system on the two panels for

both current- and voltage-driven feedback loops. The system stability is limited by the OL-

FEVF that forms the largest circle crossing the negative real axis in the Nyquist plot. For

the results shown on the aluminium panel the system gain for current-controlled feedback

loops is reduced by 28.5% and that for voltage driven feedback loops is reduced by about

30%. For the honeycomb panel the system gain for the current-controlled feedback loops

is reduced by 42% and for voltage-controlled feedback loopsthe gain is reduced by 26.5%,

for the high frequency gain limit and by 42% for the low frequency gain limit.
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Table 5.5: Maximal stable uniform feedback gains for the control system.

Panel Maximal stable uniform feedback gain
Current Voltage

Aluminium panel 20∗ 53 ∗

Honeycomb panel 1244∗ 471∗∗ 3620∗

∗ limit due to response around actuators fundamental resonance.
∗∗ limit due to high frequency spillover.

a) b)

Figure 5.13: Simulated Eigenvalues of the OL-FRFs of the control system withcurrent -controlled feedback
loops on thehoneycombpanel. Thick solid lines in the Nyquist plot mark the FRFs in the frequency range
from 0 Hz to 2000 Hz and the (dashed) line marks the unit circle around the Nyquist stability point.

a) b)

Figure 5.14: Simulated Eigenvalues of the OL-FRFs of the control system withvoltage-controlled feedback
loops on thehoneycombpanel. Thick solid lines in the Nyquist plot mark the FRFs in the frequency range
from 0 Hz to 2000 Hz and the (dashed) line marks the unit circle around the Nyquist stability point.
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5.2.3 Control performance

The performance of the control system is assessed considering control units with current-

driven actuators and a controller with a practical FRF as given in Equation (4.3). This

closely represents the practical control system investigated in the experimental study pre-

sented in the next part of this chapter. The response of the panel, without control units, to

a point force excitation and to a plane wave excitation withθ=45◦ andϕ=45◦, is calculated

using Equation (2.5). The response with decentralised velocity feedback control units is

calculated using Equation (2.43). The panel kinetic energyand total sound power radiated

are then calculated using Equations (2.11) and (2.14) respectively. The panel dimensions,

control locations and the coordinates of the primary point force excitation are those shown

in Figure 5.6 and specified in Table 5.3.

Point force

Figure 5.15 shows the predicted panel kinetic energy and radiated sound power for the alu-

minium panel (left hand side) and the honeycomb panel (righthand side) for point force

excitation. Considering first the plain panels, without control units, the kinetic energy spec-

tra for both panels, shown in Figures 5.15(a) and (b), are characterised by a set of well

separated resonances of low order modes of the panels; thoseof the aluminium panel occur

between the fundamental resonance at 82 Hz and about 500 Hz, while those of the hon-

eycomb panel occur between the fundamental resonance at 579Hz and about 2000 Hz.

Above these two frequency bands, the kinetic energies of thetwo panels are characterised

by smoother spectra since, as discussed in Section 5.1.3, the number of modes significantly

excited at any one frequency, i.e. the modal overlap factor,increases with frequency. The

spectrum of the honeycomb panel kinetic energy shows a dip between 3000 Hz and 3800

Hz, which is due to the location of the force position relative to the edge and also due to

the uneven frequency distribution of resonance frequencies of the anisotropic honeycomb

panel. For frequencies below 4000 Hz the kinetic energy of the plain aluminium panel

is much higher than that of the plain honeycomb panel. Above 4000 Hz the response of

aluminium and honeycomb panel are of comparable level.

Considering next the sound radiation from the aluminium and honeycomb plain panels,

shown in Figures 5.15(c) and 5.15(d), in contrast to the result for the kinetic energy, above

the fundamental resonance frequency at 579 Hz the honeycombpanel sound radiation levels
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are slightly higher than those for the aluminium panel. Thisis due to the fact that, as

discussed in Section 5.1, the two panels have significantly different radiation efficiencies

for low and mid audio frequencies. The aluminium panel is characterised by many resonant

modes at low and mid audio frequencies (the fundamental resonance is at 82 Hz) which,

however, poorly radiate sound below the acoustic coincidence frequency at 7544 Hz. In

contrast the honeycomb panel is characterised by comparatively fewer modes at low and

mid audio frequencies (the fundamental resonance is at 579 Hz), which on the other hand

efficiently radiate sound since they all resonate above the acoustic coincidence frequency at

around 400 Hz.

Figure 5.15 also shows the predicted responses and sound radiation spectra of the two panels

with open and closed loop velocity feedback. The mass effectof the open loop control units

shifts down the resonance frequencies of the low order modesof the panels. Also, passive

damping effects of the open loop control units reduce the amplitude of the resonant peaks

over a wide frequency band. The amplitudes of low order resonances are reduced by up to

15 dB for the aluminium panel and up to 7 dB for the honeycomb panel.

For the aluminium panel, when the feedback loops are closed with progressively higher

control gains, 10 to 15 dB additional reductions of both kinetic energy and radiated sound

power are predicted in the frequency range from 50 Hz to 300 Hz. In the frequency region

between 30 and 50 Hz, as the feedback gains are increased the panel response and radiated

sound power are enhanced, since, as discussed in Chapter 4, the control units insert power

into the structure rather than absorbing it from the structure. This effect is normally reported

as low frequency control spillover. As discussed in Section5.2.2, the response of the control

units around the actuator fundamental resonance frequencyresults in a conditionally stable

MIMO feedback control system, which is stable only up to a maximal feedback gain.

For the honeycomb panel, when the feedback loops are closed with progressively higher

control gains, 20 to 30 dB additional reductions of both kinetic energy and radiated sound

power are predicted in the frequency range from 400 Hz to 2000Hz. Below 400 Hz the hon-

eycomb panel response is stiffness-controlled and drops rapidly with decreasing frequency.

As a result, there is nearly no low frequency control spillover produced by the actuators.

Figure 5.16 shows the broad-band reductions in panel kinetic energy and radiated sound

power for a range of feedback gains, which are set to be uniform over all feedback loops.

Both the results for the aluminium and the honeycomb panel show a typical performance

curve with a single control optimum [23, 19].
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Figure 5.15: Predicted panel responses and radiated sound powers forpoint force excitation. Aluminium
panel left hand side, honeycomb panel right hand side; panelkinetic energy top row, radiated sound power
bottom row.
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Figure 5.16: Predicted changes in broad band panel responses and radiated sound power forpoint force
excitation. (a) aluminium panel and (b) honeycomb panel. Panel kineticenergy (solid) and radiated sound
power (faint). Gain of highest reductions (squares) and maximal stable stable gain (circles)
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The plot in Figure 5.16(a), for the aluminium panel, shows that the reductions achieved in

panel kinetic energy are larger than those in radiated soundpower. This is because not all

resonant modes are efficient radiators of sound. Reduction inthe response of non-radiating

modes contribute the overall reduction in kinetic energy but not to the reduction of radiated

sound power. Also as shown in Figure 5.15(c) the efficiently radiating modes occur at high

frequencies where feedback control is not effective.

The results also show that the control system becomes unstable for lower gains than those

that would produce optimal control performance. The results in Figures 5.15(a) and (c) are

those for the optimal/stable uniform feedback gain of 14 that can be applied to the control

units when installed on the aluminium panel. This gain is chosen to be slightly lower than

the maximal stable gain, given in Table 5.5, since the control system with maximal stable

uniform feedback gain produces already produces high low frequency control spillover.

The plot in Figure 5.16(b), for the honeycomb panel, shows that the broad-band reductions

of kinetic energy and radiated sound power produced by the decentralised control system

are similar to each other. This is because all modes of the honeycomb panel resonate at

frequencies above the acoustic coincidence frequency, so that all resonant modes radiate

sound efficiently. A reduction of the response of any mode therefore contributes similarly to

the broad-band reduction of kinetic energy and radiated sound power. The plots also show

that the control optimum is achieved for feedback gains which are below the maximum

stable gain of the control system (see Table 5.5). Thereforein Figures 5.15(b) and (d) the

response spectra for both optimal and maximum stable feedback control gains are shown.

When the maximum stable feedback control gains are applied, significant low frequency

spillover effects are produced by the control system.

For the aluminium panel, only relatively small broad-band reductions of the response and

radiated sound power are achieved. This is because the low frequency control spillover be-

tween 30 and 50 Hz counter-balances the active control reductions between 50 and 300 Hz.

Significantly higher broad-band reductions, up to 15 dB, are achieved on the honeycomb

panel since the low frequency spillover effects produced bythe control units are small for

the optimal gain.
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Acoustic plane wave

Figure 5.17 shows the predicted panel kinetic energy and radiated sound power for the alu-

minium panel (left hand side) and the honeycomb panel (righthand side) excited by an

acoustic plane wave withθ=45◦ andϕ=45◦. The spectra of the kinetic energy and radiated

sound power of the plain panels are similar to those shown in corresponding plots for the

point force excitation in Figure 5.15. However, for the aluminium panel the spectra are char-

acterised by a smaller number of well-separated resonances. This is due to the fact that the

distributed acoustic field does not efficiently excite all low order modes of the aluminium

panel, even modes having a lower radiation efficiency. In contrast all modes of the hon-

eycomb panel are well excited due to its low acoustic coincidence frequency. The spectra

for both panels tend to roll off at a higher rate as the frequency rises. This is because the

excitation strength of the acoustic wave tends to decrease with rising frequency.

Comparing the plots in Figure 5.15 and Figure 5.17, it is notedthat for both panels the

narrow-band effects produced by the control units with openand closed feedback loops are

very similar for both point force and acoustic plane wave excitations.

Figure 5.18 shows the broad-band reductions of panel kinetic energy and radiated sound

power for a range of feedback gains, set uniform for all feedback loops. The results for both

the aluminium and the honeycomb panel show a typical performance curve with a single

control optimum. In contrast to the broad-band reductions for the point force excitation in

Figure 5.18, much higher reductions are achieved for the plain wave excitation, particularly

on the aluminium panel. This is because the spectra are dominated by the responses of low

order structural modes which are efficiently reduced by means of active damping, produced

by the velocity feedback loops.
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Figure 5.17: Predicted panel responses and radiated sound powers forAPW 45◦ excitation. Aluminium panel
left hand side, honeycomb panel right hand side; panel kinetic energy top row, radiated sound power bottom
row.

10
−2

10
0

10
2

10
4

10
6

−20

−15

−10

−5

0

5
a)

gain

B
ro

ad
ba

nd
 c

ha
ng

es
 [d

B
]

10
−2

10
0

10
2

10
4

10
6

−20

−15

−10

−5

0

5
b)

gain

B
ro

ad
ba

nd
 c

ha
ng

es
 [d

B
]

Figure 5.18: Predicted changes in broad band panel responses and radiated sound power forAPW 45◦ exci-
tation. (a) aluminium panel and (b) honeycomb panel. Panel kineticenergy (solid) and radiated sound power
(faint). Gain of highest reductions (squares) and maximal stable stable gain (circles)
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Stochastic excitation

Figure 5.19 shows the simulation results for the structuralresponse and radiated sound

power of both panels for ADF and TBL stochastic disturbances.For comparison the re-

sults for APW, which have been given in Figure 5.17 are also presented in Figures 5.19(a)

and (b). The results plotted with continuous lines are thosefor the plain aluminium and the

plain honeycomb panels. The results plotted with dashed lines are those for the panels with

closed feedback control loops. The results for the aluminium panel with control are those

for optimal/stable feedback gains of 14. The results the honeycomb panel with control for

acoustic APW and ADF disturbances are those for feedback gains of 255. The results for

the TBL disturbance are those for feedback gains of 180.

The results for the stochastic ADF and TBL disturbances on thehoneycomb panel have not

been simulated for as many values of feedback gain as the deterministic APW and point

force excitations. However, the results presented correspond closely to optimal control

performance. It should also be noted that the number of elements in they-direction of the

panel has been increased from 16 to 55 for simulations with TBLexcitation. This is to

guarantee at least three elements per convective wavelenght at 6400 Hz, i.e.∆y ≤ λconv/3.

The panel responses and radiated sound power for all types ofexcitation reflect the specific

excitation characteristics discussed in Chapter 3 and also the specific structural dynamics

and radiation characteristics of the two test panels discussed in the previous sections of this

chapter. The response characteristics of the two panels to acoustic excitation have already

been discussed. However, the simulation results for the response of the panels to TBL

excitation gives interesting new results.

For the honeycomb panel the convective coincidence frequency occurs at 56 Hz, well below

the fundamental resonance frequency at 579 Hz. Therefore none of the structural modes of

the panel are excited at coincidence. As shown in Figure 5.19(e), the structural response of

the honeycomb panel to TBL excitation is therefore lower thanthat of the aluminium panel

over the entire observed frequency range, particularly around the convective coincidence of

the aluminium panel which occurs at 1169 Hz. Above the honeycomb panel fundamental

resonance frequency the radiated sound power spectra of thetwo plain panels, shown in

Figure 5.19(f), exhibit relatively similar levels. The results with closed feedback loops indi-

cate that for TBL excitation the panel response and radiated sound power of the honeycomb

panel could be significantly reduced below the levels of the aluminium panel over a wide

range of mid audio frequencies.
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Figure 5.19: Panel kinetic (left− column) and radiated sound power (right− column) from the aluminium
panel (faint) and the honeycomb panel (thick) without active control (solid) and with active control using
current controlled actuators and optimal/stable feedbackgain (dashed). For APW (θ=45◦) (top−row) , ADF
(centre− row) and TBL (bottom− row) excitation.

The results of this study also highlight that, in contrast tothe maximum stable feedback

gain, which only depends on the control units and panel coupled dynamics, the optimal

control gain is also a function of the specific excitation andradiation characteristics of the

panels. As previously discussed in Section 3.4, the optimalfeedback gain therefore varies

with changes in the excitation characteristics. During operation a vehicle may go through

specific operation cycles, e.g. landing, climb, cruise, approach and landing of an aircraft or

other variations such as changes in speed. It seems desirable therefore to develop a control
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system with adaptive (possibly self-sensing and tuning) feedback loops that can optimise

the feedback gain in order to achieve optimal control reductions. This idea seems to be

more promising for the application on a stiff honeycomb panel than on a thin aluminium

panel since the results in this study indicate that the optimal feedback gain for the control

system on the honeycomb panel can be significantly lower thanthe stability limits.

In addition to the simulations carried out in this study, more investigations should be con-

ducted to investigate the possibility to optimise further the control stability and performance

by applying individual non-uniform feedback gains to each feedback loop. Also the possi-

bility should be investigated to enhance the stability of the single feedback loops by modify-

ing the frequency response function of the feedback controller with appropriate compensator

circuits that can shift the actuator fundamental resonancetowards lower frequencies.

5.3 Experimental studies

This section presents results of experimental studies on the control stability and active con-

trol performance when a decentralised velocity feedback control system is mounted on a

thin homogeneous aluminium panel and a stiff lightweight honeycomb sandwich panel. The

properties of the panels are those described in Section 5.1.The control system is the MIMO

decentralised feedback control system with five proof-masselectrodynamic-actuator sensor

pairs that is described in Chapter 4.

5.3.1 Experimental set-ups

For the experimental studies, the aluminium and honeycomb panels were clamped in a test

frame and placed in the window of a sound transmission suite,as shown in Figure 5.20. The

edge dimensions of the panels in the test frame arelx=477 mm,ly=381 mm. The resulting

boundaries for the honeycomb panel were found to be between pinned and clamped condi-

tions. Also, it has been found that the aluminium panel was affected by in-plane loads due

to in-perfect mounting conditions and panel curvature effects which shifted the measured

resonance frequencies above those predicted for an ideal flat panel with clamped boundary

conditions.

The five control actuators are mounted on the source side of the panels using a thin layer

of adhesive wax. The control locations are those specified inTable 5.3. The accelerometer
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sensors are mounted in the footprint of the control actuators on the opposite side of the

panels (receiving side) also using a thin layer of adhesive wax. Together the five control

units (excluding the controller) add a mass of 0.185 kg to thepanels with a mass of 0.785

kg, which is an increase by 23.5%.

As shown in Figure 5.20, on the source side, the panels were excited (a) mechanically using

a shaker and (b) by the direct acoustic field generated by a loudspeaker placed in front of

the panels at about 80 cm distance. The excitation point for the shaker excitation is that

specified in Table 5.3. In the case of shaker excitation the input force applied to the panel

was measured and used as the reference excitation signal. For the acoustic excitation, the

voltage input to the loudspeaker was measured and used as thereference excitation signal.

The effects introduced by the loudspeaker and by the source room responses have been

considered by correcting the measured responses on the receiver side of the panel with the

magnitude of the transfer function between the loudspeakerinput voltage and the spatially

averaged sound pressure measured in close proximity to the panel surface on the source

side.

a) b)

Figure 5.20: Set-ups for shaker excitation (a) and loudspeaker excitation (b).

As shown in Figure 5.21(a), on the receiver side a laser vibrometer was used to measure the

response of the panel on a grid of 16x20 points. The panel kinetic energy and radiated sound

power are estimated from these measurement using the formulations for the ’elemental ap-

proach’ described in Chapter 2. The panel is assumed to be subdivided into a uniform grid

of elements and the grid of measured panel velocities represents the velocities at the centres

of these elements. The panel kinetic energy and radiated sound power are then estimated

using Equations (2.11) and (2.14) respectively.
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As shown in Figure 5.21(b), the radiated sound power was alsoestimated from sound pres-

sure measurements made on a hemispherical array with nine microphones under semi-

anechoic conditions in the receiving room. The procedure employed followed those de-

scribed in the relevant ISO standard [65]; it should be notedhowever that the receiving

room used does not meet the strict standard requirements andthat the chosen microphone

arrangement is also different from that described in the ISOstandard as the microphones

are at a distance of only 60 cm from the centre of the panel.

a) b)

Figure 5.21: Set-up for (a) laser vibrometer measurements and (b) microphone array measurements.

The radiated sound power obtained from the laser vibrometermeasurements and from the

microphone array measurements were found to be in good agreement with each other. At

frequencies below 250 Hz, the acoustic measurements were found to be slightly contam-

inated by the resonant response of the receiving room. This is an expected effect as the

30 cm deep foam wedges used to treat the surfaces in the receiving room are only efficient

above about 250 Hz where the wedge depth exceeds a quarter of the acoustic wavelength.

The laser vibrometer measurements are largely independentfrom any background noise or

from the properties of the receiving room. Also the honeycomb panel was found to have a

strong radiation directivity so that a sampling using nine microphones may not yield suffi-

cient resolution. For this reason only the results from the laser vibrometer measurements

are presented and discussed in the thesis. The results from the microphone measurements

are presented in Appendix E, together with a more detailed description of the experimental

arrangements.
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5.3.2 Stability analysis

The stability of the control system is experimentally investigated by measuring the open-

loop frequency response functions (OL-FRFs) between the voltage input to the integrator

of each control channel and the five voltage outputs of the sensor signal conditioner. As

discussed in Section 5.2.2, in order to guarantee stabilityof each control loop, the OL-FRF

must not encircle the Nyquist instability point at (-1,0j) and to readily assess the stability

of the MIMO control system with the five decentralised control loops the eigenvalues of the

fully populated [5× 5] matrix of OL-FRFs between the five input signals to each control

channel and the five sensor output signals must satisfy the Nyquist stability criteria [13].

Open loop response functions:

To assess the stability of the control system, the gain for each control loop is normalised

to guarantee a 6 dB gain margin, i.e. they are set to half the maximum stable gain. The

OL-FRFs for the five channels of the control system when mounted on the aluminium panel

and the honeycomb panel are shown in Figures 5.22 and 5.23 respectively.

As noted in the simulation study presented above, the gain margins for the control loops

on the aluminium panel are limited by the actuator fundamental resonance, which for low

frequencies produces a circle on the left half-plane of the Nyquist plot in Figure 5.22(b).

The parts of the OL-FRFs that fall in the unit circle around theNyquist stability point at

(-1,0j) are expected to result in enhancement of the structural response in that frequency

range, i.e. to cause control spillover.

For frequencies above the actuator resonance frequency, the circles of the OL-FRFs migrate

into the right half-plane of the Nyquist plot. It is therefore expected that, for frequencies

above the fundamental resonance frequency of the actuator,the velocity feedback loops re-

duce the structural response of the panel by means of active damping. The relatively large

magnitudes of the circles in the right half-plane compared with that on the low frequency cir-

cle in the left half-plane of the Nyquist plot indicate that the response of low order structural

modes of the aluminium panel are attenuated efficiently around their resonance frequencies.

At very high frequencies the circles of the OL-FRFs migrate back into the left half-plane

of the Nyquist plot. In this frequency range the magnitudes of the OL-FRFs are very small

compared with that of the low frequency circle due to the actuator fundamental resonance;

hence these parts of the OL-FRFs do not pose stability limits,but are expected to cause

125



small control spillover effects at high frequencies.

a) b)

Figure 5.22: Open-loop FRFs of the control units on the aluminium panel. Thick solid lines in the Nyquist
plot mark the FRFs in the frequency range from 0 Hz to 150 Hz andthe (dashed − red) line marks the unit
circle around the Nyquist stability point.

a) b)

Figure 5.23: Open-loop FRFs of the control units on the honeycomb panel. Thick solid lines in the Nyquist
plot mark the FRFs in the frequency range from 0 Hz to 3000 Hz and the (dashed− red) line marks the unit
circle around the Nyquist stability point.

As noted in the simulation studies, the Nyquist plot of the OL-FRFs of the control loops on

the honeycomb panel in Figure 5.23(b) shows the same low frequency circle on the left half-

plane as those of the aluminium panel in Figure 5.22(b). The magnitudes of the OL-FRFs in

this frequency range are very small and would hence allow forhigh gain margins. However,

for frequencies above about 3000 Hz, the circles of the OL-FRFs with high magnitude

migrate onto the left half-plane of the Nyquist plot and posea more stringent limit on the

gain margin of the control loops. Thus higher control spillover effects occur at these high

frequencies than around the fundamental resonance of the actuator.
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The Bode diagrams in Figures 5.22(a) and 5.23(a) with the OL-FRFs for the control sys-

tem on both the aluminium and the honeycomb panel show resonance and anti-resonance

behaviour in the frequency range between 7 kHz and 9 kHz. Those resonances occur in

the same frequency range for both panels; it is therefore assumed that these resonances

are specific to the control system. A comparison with measurement results in Chapter 4

strongly suggests that they are due to mounting resonances of the actuator and accelerome-

ter units. For the control system on the honeycomb panel other high frequency problems at

high frequencies may occur due to resonances of the honeycomb cross-section [66].

The results in Figures 5.22 and 5.23 correspond well to the simulation results for the control

system with current-controlled feedback loops in Figures 5.7 and 5.9 respectively. The panel

model with closed loop feedback control seems to capture allimportant features of the sys-

tem except the control unit mounting resonances. For the control system on the honeycomb

panel it is these mounting resonances that impose the stability limit of the system and for

further studies different mounting methods rather than adhesive wax should be investigated.

Eigenvalues of open loop FRF matrix

Figures 5.24 and 5.25 show the eigenvalues of the fully populated OL-FRFs matrices for

the control system mounted on the aluminium and honeycomb panels respectively. The re-

sults for the control system mounted on the aluminium panel given in the Nyquist plot in

Figure 5.24(b) show the same low frequency characteristicsas the OL-FRFs for the indi-

vidual feedback loops in Figure 5.22. However, all circles are slightly inflated and the low

frequency circle of one of the system eigenvalues crosses the negative real axis close to the

Nyquist stability point. This shows that although all individual control loops have a gain

margin of 6 dB, the resulting control system with five decentralised control loops is only

just stable.
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a) b)

Figure 5.24: Eigenvalues of the open-loop FRF matrix of the control system on the aluminium panel. Thick
solid lines in the Nyquist plot mark the FRFs in the frequencyrange from 0 Hz to 150 Hz and the (dashed−
red) line marks the unit circle around the Nyquist stability point.

a) b)

Figure 5.25: Eigenvalues of the open-loop FRF matrix of the control system on the honeycomb panel. Thick
solid lines in the Nyquist plot mark the FRFs in the frequencyrange from 0 Hz to 3000 Hz and the (dashed−
red) line marks the unit circle around the Nyquist stability point.

The eigenvalues for the control system mounted on the honeycomb panel given in Figure

5.25(b) show similar characteristics to the OL-FRFs for the individual feedback loops in

Figure 5.23. The low frequency circles on the left hand side of the Nyquist plot are slightly

inflated. However this may be due to numerical instability caused by the low magnitude of

the measured OL-FRFs of the control system in this frequency range. As discussed for the

OL-FRFs of the individual feedback loops in Figure 5.22, it isthe high frequency circles of

the system eigenvalues, which limit the gain margin and determine the control spillover. The

high frequency circles of the OL-FEVF in the Nyquist plot in Figure 5.25(b) are only very

slightly inflated compared with those in Figure 5.23(b), which indicates only little cross-
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talk between the individual feedback loops at those high frequencies. Thus the dynamic

response of the honeycomb structure tends to mask cross-talk effects between neighbouring

actuators so that multiple feedback loops can be implemented with control gains close to

those that would implemented if the control units were operating in isolation.

During the experiments it was found that for the control system on the aluminium panel, un-

stable control gains result in self-excitation of the control loops at low frequencies. For the

system on the honeycomb panel excessive control gains resulted in high frequency whistling

of control units. This observation is in good agreement withsimulated and measured stabil-

ity properties of the control system on the two test panels.

5.3.3 Control Performance

This section presents the measured narrow-band spectra of the panel kinetic energy and

radiated sound power for the aluminium and the honeycomb panel. The results presented are

those for the plain panels, the panels with open loop controlunits and for the active panels

with manually tuned feedback control gains. On the aluminium panel the feedback gain for

each control unit was individually tuned to the maximum gainthat guaranteed the system to

be stable. As expected from the stability analysis in Section 5.3.2 unstable feedback gains

resulted in self excitation of the control units around the actuator fundamental resonance

frequency. On the honeycomb panel, as discussed in Section 5.3.2, the stability of the

feedback loops is limit due to conditional stability at highfrequencies. Unstable feedback

gains resulted in self excitation of the control units, which caused a clearly audible high

frequency buzzing sound. The feedback gain were individually tuned to the maximum level

for which this buzzing sound was inaudible.

Shaker excitation: The plots in Figure 5.26 show the measured narrow-band spectra of

the panel kinetic energy and radiated sound power for the aluminium panel (left hand side)

and the honeycomb panel (right hand side) with shaker excitation. Figure 5.27 shows the

corresponding changes in panel kinetic energy and radiatedsound power in 1/3 octave bands

for the panels with passive control units and with closed feedback loops with reference to

the spectra of the plain panels. Figure 5.28 shows the differences in panel kinetic energy and

radiated sound power between the plain aluminium panel and the honeycomb panel without

control system and with open and closed loop feedback control units in 1/3 octave bands.
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Considering first the narrow-band kinetic energy spectra forthe plain panels under shaker

excitation in Figures 5.26(a) and (b), it can be observed that for low and mid frequency

bands the spectra for both panels are characterised by a set of well-separated resonances of

low order modes; those of the aluminium panel occur between the fundamental frequency

of 117 Hz and about 500 Hz, while those of the honeycomb panel occur between the funda-

mental resonance at 735 Hz and about 2000 Hz.

For higher frequencies, the kinetic energies of the two panels are characterised by more

complex spectra resulting from the response of a number of overlapping modes. The kinetic

energy spectrum of the honeycomb panel shows a dip between 3000 Hz and 3750 Hz, which

is due to the uneven frequency distribution of resonance frequencies of the anisotropic hon-

eycomb panel and the location of the force position, which also occurs in the simulation

results. As in the simulations, for frequencies below 3750 Hz the kinetic energy of the plain

aluminium panel is much higher than that of the plain honeycomb panel.
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Figure 5.26: Measured response and sound power radiated forshakerexcitation. Aluminium panel (left) and
Honeycomb panel (right); Panel kinetic energy (top) and radiated sound power (bottom).
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The measured response of the honeycomb panel in this frequency range is even lower than

the simulation result in Figure 5.15. The response of the honeycomb panel indicates con-

siderable structural damping which is introduced by the mounting conditions of the panel in

the test frame. Above 3750 Hz the response of aluminium and honeycomb panels approach

similar level, which can also be seen from the direct comparison of the 1/3 octave band

spectra in Figure 5.28(a).

Moving to the shaker-induced sound radiation spectra shownin Figures 5.26(c) and (d), in

contrast to what is found for the kinetic energy, above the fundamental resonance frequency

of the honeycomb panel at 735 Hz, both panels show more similar sound radiation levels,

which can also be seen from the 1/3 octave band spectra in Figure 5.28(b). This is due to

the fact that the two panels have significantly different radiation efficiencies at low and mid

audio frequencies, which combined with the different response levels at these frequencies

give rise to similar sound radiation levels.
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Figure 5.27: Change in the panel kinetic energy and radiatedsound power forshaker excitation, evaluated in
1/3 octave bands. Aluminium panel (left) and Honeycomb panel (right); Ekin (top) and Prad (bottom).
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As found in the simulation study presented above, the measured sound radiation spectrum of

the aluminium panel is characterised by many resonances peaks and anti-resonances troughs

which are due to the superposition of contributions of low order structural modes that poorly

radiate sound below the acoustic critical frequency at about 7500 Hz. In contrast at low and

mid audio frequencies the sound radiation of the honeycomb panel is characterised by a few

well separated low order resonances, which are efficiently radiating modes, since they all

resonate above the acoustic critical frequency of about 400Hz.

The plots in Figure 5.26 also show the measured responses andsound radiation spectra of

the two panels with attached open loop and closed loop velocity feedback control units. The

passive effects of the open loop control units shift the resonance frequencies of low order

modes downwards, due to the added point masses. Also, the amplitudes of the resonant

modes are significantly reduced over a wide frequency range due to passive damping effects.

Above the fundamental resonance of the actuators, the magnet proof-mass acts as an inertial

reference so that both mechanical and electrical damping effects are produced. Mechanical

damping is caused by the air being squeezed in and out the ringcavity in the magnet mass

by the vibration of the coil. Electric damping is induced by the back e.m.f. effect in the

coil. The shift of low frequency resonances and the broad-band damping effects due to the

passive action of the control actuators can also be seen in the 1/3 octave band spectra in

Figure 5.27.

The simulated responses for panels with open loop control loops in Figure 5.15 do not

exhibit considerable high frequency broad-band reductions due to damping effects. It is

believed that the high broad-band damping effects measuredexperimentally may be due to

the non-linear response of the open-loop control units as shown in Figure 4.6. The model

of the control units does not capture these non-linear effects and further studies on the

base response of the control units would be necessary to get abetter understanding of this

phenomenon.

As shown on the left hand side of Figures 5.26 and 5.27, for thealuminium panel with closed

feedback loops, additional reductions of both kinetic energy and radiated sound power are

achieved in the frequency range from 80 Hz to 200 Hz. In particular, in the 125 Hz 1/3

octave band containing the panel fundamental resonance frequency, the kinetic energy and

radiated sound power is reduced by more than 10 dB to give a total reduction due to active

and passive effects of more than 20 dB. In the frequency regionbetween 20 and 63 Hz,

feedback control results in enhancement of the panel response and radiated sound power;
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particularly in the 50 Hz 1/3 octave band the panel kinetic energy and radiated sound power

are increased by about 10 dB. As discussed in Sections 5.2.2 and 5.3.2, this is due to the

control spillover effects around the fundamental resonance of the actuators.

As shown on the right hand side of Figures 5.26 and 5.27, for the honeycomb panel with

closed-loop feedback control units, additional reductions of both kinetic energy and radiated

sound power are achieved in the frequency range between 630 Hz to 1600 Hz. In particular

in the 800 Hz 1/3 octave band that contains the panel fundamental resonance frequency,

the kinetic energy and radiated sound power are reduced by about 4 dB to give a total

reduction, due to passive and active effects, of more than 10dB. Below 500 Hz the response

of the honeycomb panel is stiffness-controlled and drops rapidly as frequency decreases. As

discussed in Sections 5.2.2 and 5.3.2, in this case, little low frequency control spillover is

produced by the closed-loop control units.

Figure 5.28 shows the difference between the panel kinetic energy and radiated sound power

spectra of the plain aluminium panel and of the honeycomb panel with the control units im-

plementing the manually tuned feedback gains. This comparison shows that the honeycomb

panel is characterised by much lower kinetic energy at low and mid audio frequencies and

much lower radiated sound power at low audio frequencies. The levels of radiated sound

power at mid audio frequencies are similar for both plain panels. In this frequency region

the radiated sound power of the honeycomb panels is considerably reduced by the feedback

control units so that the honeycomb panel with active control radiates less sound than the

plain aluminium panel. As shown in Figure 5.27, in the mid audio frequency range the

response and radiated sound power of the aluminium panel with control units is also con-

siderably reduced, predominantly due to the control unit passive effects. It can therefore

be concluded that for shaker excitation, in the mid audio frequency range, both panels with

installed feedback control units radiate similar levels ofsound power. Above 4 kHz the

honeycomb panel radiates more sound than the aluminium panel for each configuration.
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Figure 5.28: Differences in the response of the plain aluminium panel and those of the honeycomb panel
without control units (faint), with passive control units (dashed−red) and with closed loop feedback control
(solid− blue) for shaker excitation, evaluated in 1/3 octave bands. (a) Ekin and (b) Prad.

Loudspeaker excitation: The plots in Figure 5.29 show the measured narrow-band spec-

tra of the kinetic energy and radiated sound power for the aluminium panel (left hand side)

and the honeycomb panel (right hand side) with loudspeaker excitation. Results are pre-

sented for the plain panels, the panels with open loop control units and for the active panels

with manually tuned feedback control gains. Figure 5.30 shows the changes in panel kinetic

energy and radiated sound power in 1/3 octave bands. Figure 5.31 shows the difference in

panel kinetic energy and radiated sound power between the plain aluminium panel and the

honeycomb without control system and with open and closed loop feedback control units in

1/3 octave bands.

Considering the narrow-band kinetic energy of the panels forloudspeaker excitation, the

spectra in Figures 5.29(a) and (b) show similar characteristics to those for the shaker exci-

tation, although the spectra are characterised by a smallernumber of well-separated reso-

nances and also tend to roll off at a higher rate as frequency rises. This is due to the fact

that the distributed acoustic field does not efficiently excite all low order modes and also the

excitation strength tends to decrease with increasing frequency, which is in good agreement

with the simulation results in Figure 5.17. Compared with theresults for shaker excitation,

below 3750 Hz the kinetic energy of the plain honeycomb panelexcited by the loudspeaker

is closer to that for the aluminium panel, which can also be seen from the 1/3 octave band

difference spectra in Figure 5.31(a). This is because at a given frequency lower order struc-

tural modes exist the honeycomb panel which are more efficiently excited by the acoustic

field produced by the loudspeaker.
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Figure 5.29: Measured response and sound power radiated forloudspeakerexcitation. Aluminium panel
(left) and honeycomb panel (right); panel kinetic energy (top) and radiated sound power (bottom).

The narrow-band radiated sound power spectra for loudspeaker excitation in Figures 5.29

(c) and (d) show that above 735 Hz the radiated sound power of the plain honeycomb panel

exceeds that of the aluminium panel. This confirms the predicted combined effect of higher

radiation efficiency and higher sensitivity to acoustic disturbance of the honeycomb panel

resonant modes.

As shown in Figures 5.29 and 5.30, for loudspeaker excitation, the sound radiation from the

aluminium panel above 400 Hz is only marginally changed by the addition of the control

unit systems. This is because the radiated sound power spectrum is mass-controlled and not

dominated by resonant modes.

The comparison of the changes in kinetic energy and radiatedsound power in Figures 5.27

and 5.30 show that the reductions achieved for both types of excitation are otherwise gener-

ally very similar. The experimental studies confirm that thereductions achieved depend on

the number of modes that are efficiently excited at resonanceand, for the sound power, the

number the radiate sound efficiently.
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Figure 5.30: Change in the panel kinetic energy and radiatedsound power forloudspeaker excitation,
evaluated in 1/3 octave bands. Aluminium panel (left) and Honeycomb panel (right); Ekin (top) and
Prad(bottom).

Figure 5.31 shows the differences in radiated sound power between the loudspeaker-excited

plain aluminium panel and the plain honeycomb panel withoutcontrol system and with

open and closed loop feedback control units. As in the case ofshaker excitation, shown

in Figure 5.28, this comparison shows that the honeycomb panel is characterised by much

lower kinetic energy at low and mid audio frequencies and much lower radiated sound power

at low audio frequencies, although the differences are lesssignificant.

In the case of loudspeaker excitation, for frequencies above 800 Hz the radiated sound

power from the plain honeycomb panel exceeds that from the plain aluminium panel; par-

ticularly in the 800 Hz 1/3 octave band, where it is about 11 dBhigher despite having

similar mass. The results with open loop control units and closed feedback control loops

show that the sound radiation from the honeycomb panel in thefrequency range between

800 Hz and 2500 Hz is efficiently reduced to similar levels as those for the plain aluminium

panel. As discussed above, in this frequency range, only small reductions due to passive

and active effects of the control units are achieved on the aluminium panel. This indicates

136



that for acoustic excitations the aluminium and honeycomb active panels show a similar

performance in the mid audio frequency range between 800 Hz and 2500 Hz, although in

this frequency band the sound radiation from the plain honeycomb panel is considerably

higher than that from the aluminium panel.
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Figure 5.31: Differences in the response of the plain aluminium panel and those of the honeycomb panel
without control units (faint), with passive control units (dashed−red) and with closed loop feedback control
(solid− blue) for loudspeakerexcitation, evaluated in 1/3 octave bands. (a) Ekin and (b) Prad.

Effect of lumped masses: Additional measurements with lumped masses were conducted

in order to contrast the passive inertia effects produced bysmall blocks of steel and the pas-

sive and active effects produced by the control units. The control actuators were replaced

with lumped masses of either 11 grams or 35 grams, where the 11gram masses represent

the mounting mass of the actuators including the voice coil and the 35 gram mass represents

the total mass of an actuator. The results showed that the added lumped masses shift the

resonances of low order structural modes towards lower frequencies but do not introduce

damping. At low frequencies this results in a shift of kinetic energy and radiated sound

power spectra in frequency. The 1/3 octave band spectra indicate that at higher frequencies

the added lumped masses does not produce a significant net reduction of the panel response

and radiated sound power. For completeness the results for the measurements with equiva-

lent lumped masses are presented in Appendix E.
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5.4 Summary

This chapter presented simulation and experimental results of studies on a thin aluminium

panel and a honeycomb sandwich panel with decentralised velocity feedback control. The

control system was implemented considering the five decentralised control units with proof-

mass electrodynamic actuator - accelerometer sensor pairsas described in Chapter 4.

Simulation and experimental measurements have been carried out in order to assess and

compare the control stability and performance, in terms of panel kinetic energy and radiated

sound power, of the two panels. In the experimental study thepanels were either excited me-

chanically by a shaker or by the acoustic field produced by a loudspeaker. In the simulation

study these two excitations were modelled as point force excitation and an acoustic plane

wave excitation. Further simulation results have been presented for the panels excited by

random broad-band ADF and TBL disturbances. The two panels are characterised by a very

similar mass per unit area, but the honeycomb panel has a muchhigher bending stiffness

than the aluminium panel. This results in considerably different fundamental resonance and

acoustic coincidence frequencies.

• It was found in Section 5.1 that the bending wave numbers on the Honeycomb panel

are significantly lower than those of the aluminium panel in the entire frequency range

of interest. This results in a much lower modal density and lower modal overlap for

the honeycomb panel and also in much lower convective and acoustic coincidence

frequencies.

• Section 5.2 presented the simulation results for the implementation of a practical con-

trol system with decentralised feedback control units as described in Chapter 4, where

the model parameters were chosen to replicate the experimental set-up.

Due to its lower fundamental resonance frequency, the response and radiated sound

power of the aluminium panel at low audio frequencies are much higher than those of

the honeycomb panel. In the mid audio frequency range, all modes of the honeycomb

panel are efficient radiators of sound and are also efficiently excited by an acoustic

source, which results in higher levels of radiated sound power than for the aluminium

panel.

The control system on the honeycomb panel performs better interms of both control

stability and also of control performance, which, depending on the type of excita-

tion, allows the response of the honeycomb panel to be controlled in the mid audio
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frequency range to similar or even lower levels than those ofthe aluminium panel.

• Section 5.3 presented the results from experimental studies in a transmission chamber

on the two panels with and without AVC system.

The results show that considerable broad-band reductions of kinetic energy and radi-

ated sound power are produced by the passive and active effects of the control units.

For the aluminium panel, significant reductions are achieved in the low audio fre-

quency range between 80 Hz and 250 Hz. For the honeycomb panel, considerable

reductions are achieved in the mid audio frequency range between 500 Hz and 1600

Hz.

The results from the experimental study validated the simulation results. The active

panel model used in the simulation study captures all important physical effects. The

effects that are not captured in the model are the non-linearactuator dynamics that

produce broad-band damping with the open loop control unitsand also the control

unit mounting resonance, which imposes the current stability limits for the control

system on the honeycomb panel.

Further studies are needed to optimise the high frequency stability of the control sys-

tem on the honeycomb panel and to yield a better understanding of the considerable

broad band damping effects of the passive control units.
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Chapter 6

Summary, conclusions and

recommendations for further work

This final chapter summarises the findings of this thesis, andalso emphasises suggestions for

future research work on decentralised velocity feedback control. A more detailed summary

of the conclusions is provided at the end of each chapter.

6.1 Summary

Chapter 1 provided a brief introduction on motivation and technical background for ac-

tive vibration control on panels. Also the objectives and structure of this dissertation were

outlined and the original contributions of this research were highlighted.

Chapter 2 introduced the general, elemental based, model for the structural response and

radiated sound power for passive and active panels with feedback control. The expressions

for discrete and distributed deterministic transverse excitation, and distributed stochastic

transverse excitation were reviewed. It has been shown thatthe transmission coefficient of

a baffled passive panel derived with the elemental approach is in good agreement with the

corresponding simplified analytical solutions.

Chapter 3 presented the simulation studies on decentralised velocity feedback control via

ideal sensor actuator pairs for different types of distributed deterministic and stochastic ex-

citation. The objectives of this study were twofold. Firstly, to investigate and contrast the

structural response and the sound radiation in the audio frequency range produced by homo-

geneous and lightweight sandwich panels subject to deterministic and stochastic distributed
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excitations. Secondly, to study and compare the control effects produced by an array of ide-

alized velocity feedback control loops on homogeneous and lightweight sandwich panels.

The principal differences between the structural responseof thin homogeneous and the sand-

wich panels were discussed with respect to: (a) the real wavenumber solutions of the gov-

erning equations, (b) the modal density, (c) the modal overlap and (d) both excitation and

radiation coincidence effects.

Then the structural response and sound radiated of the two panels due to (a) acoustic plane

wave, (b) stochastic acoustic diffuse field and (c) turbulent boundary layer disturbances

were contrasted.

Simulation studies on the two panels with 16 ideal velocity feedback loops were conducted

in order to compare the control effects on both panels and to investigate the intrinsic limi-

tations of decentralised velocity feedback control. In contrast to most previous studies on

active panels, the analysis in this study has been extended to the upper end of the audio

frequency range.

Chapter 4 presented experimental and simulation studies on the open and closed loop base

impedance of practical control units with proof-mass electrodynamic actuator-accelerometer

sensor pairs and controller FRF of realistic integrator and amplifier electronic circuits. The

experimental studies have been performed on prototype actuators specifically developed for

this study.

Experimental studies on the actuator blocked force frequency response function allowed to

fit parameters to an electromechanical model that describesthe open and closed loop base

impedance of the control units.

Experimental and simulation studies on the closed loop baseimpedance of the control units

were conducted to give physical interpretation of the measured closed loop control unit base

impedance.

Chapter 5 presented simulation and experimental results of studies on a thin aluminium

panel and a honeycomb sandwich panel with decentralised velocity feedback control consid-

ering five decentralised control units with proof-mass electrodynamic-actuator accelerome-

ter sensor pairs.

The two panels are characterised by a very similar mass per unit area, but the honeycomb

panel has a much higher static bending stiffness than the aluminium panel. This results in
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considerably different fundamental resonance and acoustic coincidence frequencies. Both

simulation and experimental studies have been carried out for the two panels in order to

investigate the stability and performance of the control system.

In the experimental study the panels were either excited mechanically by a shaker or by the

acoustic field produced by a loudspeaker. In the simulation study these two excitations were

modelled as point force excitation and an acoustic plane wave excitation. The response of

the two panels to distributed stochastic ADF and TBL disturbances was also simulated but

not investigated experimentally.

The results from the experimental study validated the simulation results. The active panel

model used in the simulation study captures all important parameter. The effects that are

not captured in the model are the non-linear actuator dynamics that produce the broad band

damping with the open loop control units and also the controlunit mounting resonance

which impose the stability limits for the control system on the honeycomb panel.

6.2 Conclusions

The results in this study show thatdecentralised velocity feedback controlof a panel is

efficient in controlling the response of low order structural modes at resonance and also

in controlling the response of individual modes resonatingat acoustic coincidence in the

mid and high audio frequency range. Decentralised velocityfeedback control is particularly

efficient on panels under TBL excitation where the structuralresponse is dominated by low

order resonant modes.

The base impedance of the closed loop control unitscan be readily described by a basic

electromechanical model with a controller FRF. Therefore this model can be used to inves-

tigate new designs of both electro-mechanical actuator andelectrical controller in order to

optimise the stability and control performance properties.

It was found that around the actuator fundamental resonance, the control unit base impedance

has a negative real part, which indicates a negative dampingeffect. This results in con-

ditional stability of the closed feedback loop and control spillover effects at frequencies

around the fundamental resonance of the actuator. The simulations showed that it is impor-

tant to include the controller FRF in the model in order to capture the principal characteris-

tics of the base impedance of the closed loop control units.
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At high frequencies the response of the actuators is characterised by mounting resonance

effects which are not captured in the electromechanical model. It was also found that the

response of the actuators built for the experimental studies is non-linear and depends on the

amplitude of the excitation at the base of the actuators. These two characteristics are not

captured in the model, which assumes a linear response and ideal mounting conditions.

Lightweight sandwich panelscomprise a high stiffness-to-weight ratio and therefore ex-

hibit lower modal density and lower convective and acousticcoincidence frequencies than

thin homogeneous panels with corresponding mass per unit surface area or correspond-

ing static stiffness. Therefore the structural response and radiated sound power of stiff

lightweight sandwich panels is dominated by discrete resonant modes over a wider range of

audio frequencies than for thin homogeneous aluminium panels.

The results in this thesis indicate high potential for the application of velocity feedback

control to reduce the kinetic energy and radiated sound power of stiff lightweight sandwich

panels, which, due to the lower modal density, is efficient upto mid audio frequencies, while

for thin aluminium panels it was found to be limited to low audio frequencies.

It has also been demonstrated that the high stiffness-to-weight ratio of the sandwich panels

results in an enhancement in both the stability and the control performance of decentralised

velocity feedback control systems compared with the case when the control system is im-

plemented on a thin homogeneous aluminium panel.

The results in this thesis suggest that decentralised velocity feedback control is efficient

in reducing the structural response and radiated sound power of stiff lightweight sandwich

panels in the low and mid audio frequency range. Therefore active control systems could

balance the poor sound transmission properties of lightweight sandwich structures to such

extent that this would justify the additional expense and additional installed mass of an

active control systems.

6.3 Future work

In this section suggestions for future research on decentralised velocity feedback control for

panels are summarised. The suggested research includes further experimental and theoreti-

cal studies on the improvement of control stability and performance.
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6.3.1 Suggested experimental studies

The stability of the velocity feedback control units with proof-mass electrodynamic actua-

tors and accelerometer sensors may be enhanced if more rigidmounting conditions for the

control unit components are realised. More rigid mounting conditions will shift the mount-

ing resonance effects further up in frequency and may allow for higher feedback gains when

the control units are installed on stiff lightweight honeycomb sandwich panels. This study

could also clarify whether the stability of the control system is also affected by the cross-

section resonances of the honeycomb panel.

The stability of the velocity feedback control units studied here could be efficiently en-

hanced by applying an appropriate electrical compensator that cancels out the actuator me-

chanical resonance. Simulation and experimental studies on the closed loop responses of

the actuators should be conducted to development appropriate compensator circuits.

An uncertain factor in the measured OL-FRFs is the differencebetween the output impedance

of the accelerometer signal conditioner and the output impedance of the analyser signal gen-

erator. This may have an effect on the output current per unitinput voltage of the controller

board. This should be further investigated to yield a betterunderstanding of the dynamic

interaction of all electric circuits in the control loop.

The open loop response of the prototype actuators used in this study has been found to be

non-linear. Further studies could investigate the closed loop control unit response for low

base excitation levels and non-flat excitation spectra. However, the effort to measure these

responses and to implement non-linearity in the electro-mechanical response model may be

disproportionate to the expected benefits since the non-linear characteristics of the response

are only specific to the prototype actuator design investigated in this thesis.

The simulation results for TBL excited panels gave interesting results and it would be de-

sirable to design an experimental set-up to simulate TBL primary disturbances. One possi-

bility could be to emulate the pressure field produced by a TBL disturbance using an array

of loudspeakers that can reproduce the TBL complex pressure correlation function [54].

The AVC system could also be installed and tested on other types of panels, i.e. different

types of honeycomb sandwich panels, and on other structuresthat more closely represent

lightweight car body or fuselage sections.
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6.3.2 Theoretical studies

In this thesis a basic model was used to simulate the structural response of sandwich panels.

This basic model captures the principal characteristics ofa sandwich panel and was found

to be suitable in the scope of the presented comparative studies. A more complex model,

considering near-field waves and the cross-section dynamics of the sandwich structure, may

be needed for more detailed investigations.

In the simulation studies presented in this thesis, the panels were ideally restrained along the

edges. For idealised mutually dual and collocated sensor-actuator pairs the feedback control

loops are unconditionally stable regardless of the boundary conditions of the structure. This

may not be the case for feedback loops with practical actuator-sensor pairs. Further studies

should be conducted to investigate the effect of flexible boundary conditions on the stability

and control performance of systems with practical actuatorsensor-pairs. The implementa-

tion of flexible boundaries in the elemental approach is outlined in Reference [46].

For the simulation studies in this thesis the control gains were set to be uniform over all

feedback loops. The results showed that for decentralised velocity feedback control with

proof-mass electrodynamic actuators the feedback loop of the control unit in the centre of

the panel had the lowest gain margin. Further studies shouldinvestigate if the stability

and performance of the control system can be improved by allowing variations between the

gains of the individual feedback loops.

The optimal feedback control gain is a function of the characteristics of the primary dis-

turbance. It should therefore be investigated how-self sensing and self-tuning control units

could be implemented in order to design adaptive feedback control systems.

It may also worth studying the optimal actuator placement onthe panels in order to in-

vestigate how a given number of control units should be distributed, i.e. if they should be

positioned randomly or in a regular pattern, if they should be evenly distributed or arranged

in clusters.

Future generations of feedback control units with proof-mass electrodynamic actuators may

also implement control in more than one degree of freedom. The control performance of

simultaneous transverse force and moment feedback could beinvestigated in simulation

studies considering feedback control on thin restrained beams and/or plates.

The above idea of multiple degree of freedom feedback may be particularly appealing for
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the implementation of active boundary impedances close to the edges of restrained panels.

This type of control system could aim to replicate boundaries that emulate infinite panels

with minimal resonant response.

6.3.3 Component development

For further studies, although the non-linear response of the control units have some advan-

tages, it would be beneficial to develop control units with more linear response characteris-

tics. This would require the proof-mass suspension to be redesigned and also the actuator

manufacturing tolerances to be reduced.

The size and weight of future feedback control units could beeffectively reduced, par-

ticularly if microelectronic circuits were to be used for the local controllers and micro-

mechanical technologies were to be used for the sensors and also for specific components

of the miniaturised actuators.

Future research should also explore further the possibility of multi-functional control units

that can also be used for fatigue monitoring, power harvesting or provide other complemen-

tary functional features.

For all of the three points above, the involvement of industrial partners would be beneficial.

Firstly these partners could provide specialist know-how in high precision manufacturing

of high quality transducers. Secondly they could help to specify industrial requirements for

practical control units. This would push the application readiness level of these control units

further towards practical industrial implementation.

This is desirable since active panel really are a promising way to deal with interior noise in

aircraft and other vehicles particularly in combination with lightweight honeycomb sand-

wich panels.
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Appendix A

Modal formulations for the response of

thin rectangular panels

This Appendix summarises the expressions used to derive thenatural frequencies, natural

modes and point and transfer mobilities of thin homogeneousisotropic panels; it is organ-

ised in two sections.

The first section describes how the panel point and transfer mobility terms are derived from

finite modal summations considering dynamic and residual modal contributions and how

these formulations are cast into vector and matrix expressions to calculate point and transfer

mobilities for multiple points on the panel.

The second section gives the formulations for the geometricand dynamic properties of thin

homogeneous isotropic panels and summarizes the relevant formulations for the natural

frequencies, natural modes, and receptance terms for different boundary conditions as given

by Gardonio and Brennan [47].

A.1 Panel mobility derived from finite modal expansion

The structural response of the panel model introduced in Chapter 2 is expressed in terms

of point and transfer mobilities̃Yi,j(ω) which are derived from finite modal summation

[47]. In order to model accurately the response of a panel, the contribution of higher order

modes with natural frequencies beyond the observed frequency range must be taken into

account. Only then can near-field effects of point forces canbe be modelled accurately.

This is of particular importance for the modelling of panelswith point control forces espe-
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cially if high feedback gains are applied such that the contributions of lower order modes is

largely cancelled. Simulation studies [23] showed that a large number of modes with natu-

ral frequencies up to 50 times the highest observation frequency are required to describe the

response of panels with feedback control forces adequately. Preumont [38] suggested that

the point and transfer responses on a structure can be calculated from the sum of dynamic

and residual terms which implies that the mobility can be expressed as

Ỹi,j(ω) = jω
(

G̃dyni,j
(ω) + G̃resi,j

)

, (A.1)

whereG̃dyni,j
andG̃resi,j are the dynamic and residual point and transfer receptancesbe-

tween the panel locationsi andj. The expansion formulation for the dynamic receptance is

given by

G̃dyni,j
(ω) =

Ndyn
∑

r=1

φr (xi, yi)φr (xj, yj)

M (ω2
r (1 + jη)− ω2)

, (A.2)

whereNdyn is the total number of dynamic modes considered in the summation, ωr is the

rth natural frequency andφr(xi, yi) andφr(xj, yj) are therth natural mode at the panel

locationsi andj respectively. AlsoM is the total mass of the panel. The dynamic recep-

tance is a function of the excitation frequencyω; it is therefore calculated for the entire

range of observation frequencies. Hence the computationaleffort increases with the num-

ber of observation frequencies and also with the number of dynamic modes considered in

the summation. For modes with natural frequencies well above the highest observation

frequency, only the stiffness and damping terms are of importance for the response of the

panel, while the mass terms can be neglected. Thus the modal expansion formulation for

the residual panel element receptance is given by

G̃resi,j =
Nres
∑

r=Ndyn+1

φr (xi, yi)φr (xj, yj)

M (ω2
r (1 + jη))

. (A.3)

Since the term under the sum in the residual receptanceG̃resi,j is independent of the excita-

tion frequency, it only needs to be computed once for each panel location, which can reduce

the computational effort. For convenience the formulations for the velocity response of a

number of locations on the panel can be cast into a vector/matrix expression. For example

the mobility matrixỸee containing point and transfer mobility functions is given by
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Ỹee(ω) = jω
(

G̃ee,dyn(ω) + G̃ee,res

)

. (A.4)

Considering Equation (A.2), the dynamic receptance matrixG̃ee,dyn(ω) is calculated from

the diagonal frequency-dependent matrixΩ̃dyn(ω) and the fully populated frequency in-

dependentΦe,dyn matrix of the dynamic mode shapes at the element centre positions, so

that

G̃ee,dyn(ω) = Φe,dynΩ̃dyn(ω)Φ
T
e,dyn. (A.5)

The diagonal matrix̃Ωdyn(ω) is assembled from the terms

Ω̃rdyn(ω) =
1

M (ω2
r (1 + jη)− ω2)

, (A.6)

where the mode indexr ranges fromr = 1 to the maximum number of dynamic modes

r = Ndyn. ThereforeΩ̃dyn(ω) is a square diagonal matrix with dimensions[Ndyn ×Ndyn].

The matrix of dynamic natural modes at the element centre locationsΦe,dyn is assembled

from

Φi,rdyn = φr (xi, yi) , (A.7)

where the mode indexr ranges fromr = 1 to the maximum number of dynamic modes

r = Ndyn and the element indexi ranges fromi = 1 to i = Ne to yieldΦe,dyn as a matrix of

dimensions[Ne, Ndyn]. The residual receptance matrix̃Gee,res is calculated from the diago-

nal frequency-independent residual matrixΩ̃res and the fully populated residual modeshape

matrixΦe,res

G̃ee,res = Φe,resΩ̃resΦ
T
e,res, (A.8)

where the residual matrix̃Ωres is assembled from terms

Ω̃rres =
1

M (ω2
r (1 + jη))

. (A.9)

Here the mode indexr ranges fromr = (Ndyn + 1) to the maximum number of residual

modes consideredr = Nres. ThereforeΩ̃res is a square diagonal matrix of dimensions

[(Nres −Ndyn)× (Nres −Ndyn)]. Analogous to equation (A.7) the natural mode matrix
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Φe,res is assembled from the terms

Φi,rres = φr (xi, yi) , (A.10)

where the mode indexr ranges fromr = (Ndyn + 1) to the maximum number of residual

modes consideredr = Nres and the element indexi ranges fromi = 1 toNe to yieldΦe,res

as a matrix of dimensions[Ne × (Nres −Ndyn)].

A.2 Formulations for the natural frequencies and modes

of thin isotropic panels

In this section the formulations for the natural modes, natural frequencies and modal ex-

pansion terms for the point and transfer receptances of thinrectangular panels used in this

thesis are summarised [47, 48].

A.2.1 Definition of panel geometric and dynamic properties

The geometric and dynamic properties of the panel are given as:

• Panel surfaceAp [m2]:

Ap = lxly, (A.11)

• Panel mass per unit area:m′′ [kg/m2]:

m′′ = ρh, (A.12)

• Panel massM [kg]:

M = Apm
′′, (A.13)

• and bending stiffnessB [N m]:

B =
Eh3

12(1− ν2)
, (A.14)

wherelx andly are the panel dimensions inx andy-direction,h is the panel thickness. Also

ρ, E andν are the mass density, Young’s modulus and Poisson ratio of the panel material.
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A.2.2 Natural frequencies and modes

The natural frequenciesωr [rad/s] for rectangular plates for any type of boundary are given

by [48]

ωr(m,n) =

√

B

m′′

(

π

lx

)2

qr(m,n) (A.15)

where the factorqr(m,n) is given by

qr(m,n) =

√

G4
m +G4

n

(

lx
ly

)4

+ 2

(

lx
ly

)2

[νHmHn + (1− ν)JmJn] (A.16)

The constantsG, H, J are given in Table A.1. The mass-normalised modeshapesφr(m,n)

are given by

φr(m,n) = φmφn (A.17)

where mass-normalised characteristic beam mode functionsφ are given in Table A.2. It

should be noted that Equation (A.17) is an approximation unless the panel is pinned a at

least two opposite edges.
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Table A.1: Constants for the the variablesG, H andJ for plates with pinned, clamped and free boundary
conditions on each edge; taken from [47].

Boundary
conditions

n G H J

P-P-P-P
(all side pinned)
w(0) = 0
w′′(0) = 0
w(L) = 0
w′′(L) = 0

1,2,3,... n n2 n2

C-C-C-C
(all side clamped)
w(0) = 0
w′(0) = 0
w(L) = 0
w′(L) = 0

1 1.506 1.248

2, 3, 4... n+ 1
2

(

n+ 1
2

)2 ×
[

1− 4
(2n+1)π

]

F-F-F-F
(all sides free)
w′′(0) = 0
w′′′(0) = 0
w′′(L) = 0
w′′′(L) = 0

even 0 0 0

rocking 0 0 12/π2

1 1.506 1.248 5.017

2, 3, 4... n+ 1
2

(

n+ 1
2

)2

×
[

1− 4
(2n+1)π

]

(

n+ 1
2

)2

×
[

1 + 12
(2n+1)π

]

Note that the first values forγ in Table A.2 can be determined using numerical root-finding

methods, where it is important to yield results with a high precision. For values larger than

10 the numerical methods can fail to determine the roots correctly. Fori greater than 10,γi

is given by

γi =
(4i+ 1)π

2
for tan

(γi
2

)

− tanh
(γi
2

)

= 0, (A.18)

and as

γi =
(4i− 1)π

2
for tan

(γi
2

)

+ tanh
(γi
2

)

= 0 (A.19)

respectively.
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Table A.2: Characteristic beam functions for a plate with pinned, clamped and free boundary conditions on
all edges; taken from [47].

Boundary
conditions

φ1,3,5...(x) with i = (n+ 1)/2 φ2,4,6...(x) with j = (n/2)

P-P-P-P
(all side pinned)
w(0) = 0
w′′(0) = 0
w(L) = 0
w′′(L) = 0

φn(x) =
√
2 sin

(

nπx
lx

)

C-C-C-C
(all side clamped)
w(0) = 0
w′(0) = 0
w(L) = 0
w′(L) = 0

φn(x) =
√
2
{

cos
[

γi

(

x
lx
− 1

2

)]

+kn cosh
[

γi

(

x
lx
− 1

2

)]}

φn(x) =
√
2
{

sin
[

γi

(

x
lx
− 1

2

)]

+kn sinh
[

γi

(

x
lx
− 1

2

)]}

kn =
sin ( γi

2
)

sinh ( γi
2
)

with

tan
(γi
2

)

+ tanh
(γi
2

)

= 0

kn = −
sin

(

γj

2

)

sinh
(

γj

2

)

with

tan
(γj

2

)

− tanh
(γj

2

)

= 0

F-F-F-F
(all side free)
w′′(0) = 0
w′′′(0) = 0
w′′(L) = 0
w′′′(L) = 0

φeven(x) = 1

φrocking(x) =
√
3(1− 2x

l )

φn(x) =
√
2
{

cos
[

γi

(

x
lx
− 1

2

)]

+kn cosh
[

γi

(

x
lx
− 1

2

)]}

φn(x) =
√
2
{

sin
[

γi

(

x
lx
− 1

2

)]

+kn sinh
[

γi

(

x
lx
− 1

2

)]}

kn = − sin ( γi
2
)

sinh ( γi
2
)

with

tan
(γi
2

)

+ tanh
(γi
2

)

= 0

kn =
sin

(

γj

2

)

sinh
(

γj

2

)

with

tan
(γj

2

)

− tanh
(γj

2

)

= 0
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Appendix B

Formulations for kinetic energy and

radiated sound power

This Appendix gives the formulations for panel kinetic energy and radiated sound power for

deterministic and stochastic excitations. The formulations are derived from first principles

and then cast into modal and elemental approach formulations.

• Section B.1 introduces the notation for the time-harmonic excitation and vibration

velocity response of a rectangular panel.

• Sections B.2 and B.3 derive the panel response and sound radiation for panels under

deterministic excitation in terms of total panel kinetic energy and total sound power

radiated.

• Sections B.4 and B.5 derive the panel response and sound radiation for panels under

stochastic excitation in terms of power spectral densitiesof total kinetic energy and

radiated sound power

B.1 Notations for the time harmonic response of the panel

First the notation for the time-harmonic excitation and vibration velocity response of a rect-

angular panel, as shown in Figure 2.1 are introduced. This notation is then used to derive the

formulations for the panel structural response and sound radiation for time harmonic and

stochastic disturbances. Assuming time-harmonic behaviour, of the formRe{exp(jωt)},

whereω is the angular frequency andj =
√
−1, the transverse force excitation and the
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transverse velocity response of a panel can be expressed as

f(x, y, t) = Re
{

f̃(x, y, ω)ejωt
}

, (B.1)

ẇ(x, y, t) = Re
{

˜̇w(x, y, ω)ejωt
}

, (B.2)

where f̃ and ˜̇w are frequency-dependent complex phasors of the force and the velocity

response.

B.1.1 Modal formulation

The time-dependent velocity response, can be expressed in terms of the following infinite

modal summation

ẇ(x, y, t) = Re

{

∞
∑

r=1

φr(x, y)ȧr(t)e
jωt

}

, (B.3)

whereφr(x, y) is the modeshape of ther-th natural mode anḋ̃ar(ω) is the complex modal

velocity. Thus the complex frequency-dependent velocity response is given by

˜̇w(x, y, ω) =
∞
∑

r=1

φr(x, y)˜̇ar(ω). (B.4)

The frequency-dependent complex modal velocities˜̇ar(ω) can be expressed as the product

of a resonant term and a modal or generalised excitation term:

˜̇ar(ω) = Ω̃r F̃r(ω). (B.5)

Considering a hysteretic damping model, the mass-normalised resonant term is given by

Ω̃r =
jω

Mr [ω2
r(1 + jη)− ω2]

(B.6)

whereωr is ther-th natural frequency,η is the modal damping loss factor andMr is the

modal mass for ther-th natural mode, which is given by
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Mr = ρh

lx
∫

0

ly
∫

0

[φr(x, y)]
2 dx dy, (B.7)

whereρ is the panel mass density andh is the panel thickness. If the panel is simply

supported, the natural modeshape functionφr(x, y) can take the form

φr(x, y) = 2 sin

(

mrπx

lx

)

sin

(

nrπy

ly

)

(B.8)

where,mr is the modal order in thex-direction andnr is the modal order in they-direction

for ther-th mode. In this caseMr = ρh lx ly = M , whereM is the total mass of the panel.

The corresponding modal excitation term is given by

F̃r(ω) =

lx
∫

0

ly
∫

0

φr(x, y) f̃(x, y, ω) dx dy. (B.9)

Mode truncation

If the modal summation in Equation (B.4) is truncated to the sum over the firstN modal

terms, so that

˜̇w(x, y, ω) ≈
N
∑

r=1

φr(x, y)˜̇ar(ω), (B.10)

after substituting Equation (B.5), the velocity at an arbitrary point of the panel can be cast

into the following matrix form

˜̇w(x, y, ω) = Φ ˜̇a = ΦΩ̃ F̃, (B.11)

where

Ω̃ =











Ω̃1

. ..

Ω̃N











(B.12)

is a diagonal matrix containing the firstN resonant terms from Equation (B.6),
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Φ =
[

φ1(x, y) φ2(x, y) · · · φN(x, y)
]

, (B.13)

is a row vector containing the firstN natural modes,

˜̇a =
[

˜̇a1 ˜̇a2 · · · ˜̇aN

]T

, (B.14)

is a column vector containing the firstN modal velocities and

F̃ =
[

F̃1 F̃2 · · · F̃N

]T

(B.15)

is a column vector containing the firstN modal excitations. Note that the modal formulation

involves the evaluation of the spatial integrals in Equation (B.9).

B.1.2 Elemental approach

In the elemental approach the panel surface is subdivided ina uniform grid ofNe panel

elements of dimensions∆x×∆y. The element excitation and response is defined at the

element centres. This allows the integration over the paneldimensions in Equation (B.9) to

be replaced by a finite sum over element contributions to give

F̃r(w) ≈
Ne
∑

i=1

φr(xi, yi) f̃(xi, yi, ω)∆x∆y. (B.16)

Therefore a vector of complex element velocities

˜̇we =
[

˜̇we1
˜̇we2 · · · ˜̇weNe

]T

(B.17)

can be derived from equation (B.11) as follows

˜̇we(ω) = Φe
˜̇a = ΦeΩ̃ΦT

e F̃e (B.18)

whereΦe is a [Ne × N ] matrix with Ne rows each containing the firstN natural modes at

the centres of the panel elements
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Φe =











φ1(x1, y1) · · · φN(x1, y1)
...

. ..
...

φ1(xNe
, yNe

) · · · φN(xNe
, yNe

)











(B.19)

andF̃e is theNe-dimensional vector of discrete excitation forces at the centres of the panel

elements

F̃e =
[

F̃e1 F̃e2 · · · F̃eNe

]T

. (B.20)

The approximation of the surface integrals in Equation (B.9)by the sum over element con-

tributions simplifies the analysis of panels with arbitraryboundary conditions and arbitrary

spatial excitation fields that lead to complex mode functions and complex pressure distribu-

tion functions that should be considered in the integral in Equation (B.9).

B.2 Time-averaged total panel kinetic energy

The instantaneous total kinetic energy of the panel is givenby the product of the panel mass

per unit area and the squared panel velocity integrated overthe panel surface [19]:

E(t) =
1

2

lx
∫

0

ly
∫

0

ρh ẇ2(x, y, t)dx dy, (B.21)

wherelx andly are the dimensions of a rectangular panel in thex and they-directions,ρh

is the panel mass per unit area andẇ(x, y, t) is the transverse panel velocity. Assuming the

panel mass per unit area is constant, Equation (B.21) can be rewritten as

E(t) =
ρh

2

lx
∫

0

ly
∫

0

ẇ2(x, y, t)dx dy. (B.22)

The time-averaged total panel energy is given by [67, 68]:

E =
ρh

2

lx
∫

0

ly
∫

0

1

T

T
∫

0

ẇ2(x, y, t)dt dx dy (B.23)
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whereT is a suitable period of time over which the mean square velocity is estimated; e.g.

for time-harmonic vibration ,T is the period. Assuming time-harmonic vibration as given

in Equation (B.2), the time-average integral can be rewritten in terms of the magnitude of

the complex panel velocitẏ̃w(x, y, ω) to give

1

T

T
∫

0

ẇ2(x, y, t)dt =
1

2

∣

∣ ˜̇w(x, y, ω)
∣

∣

2
, (B.24)

which yields the time-averaged total kinetic energy of the panel as

E = E(ω) =
ρh

4

lx
∫

0

ly
∫

0

∣

∣ ˜̇w(x, y, ω)
∣

∣

2
dx dy. (B.25)

B.2.1 Modal formulation

Using the vector notation for the truncated modal summationof the transverse velocity of

the panel given in Equation (B.11), the total panel kinetic energy in Equation (B.25) can be

rewritten as

E(ω) =
ρh

4

lx
∫

0

ly
∫

0

˜̇a
H
(ω)ΦT Φ ˜̇a(ω) dx dy,

=
ρh

4
˜̇a
H
(ω)

lx
∫

0

ly
∫

0

ΦT Φ dx dy ˜̇a(ω), (B.26)

whereH denotes the Hermitian transpose. The orthogonality property gives

lx
∫

0

ly
∫

0

φr(x, y)φs(x, y) dx dy = 0, r 6= s (B.27)

and
lx
∫

0

ly
∫

0

φr(x, y)φr(x, y)dx dy = lxly, (B.28)

wherelxly is the total surface area of the panel. Thus the integration over the panel surface

159



in Equation (B.26) results in

E(ω) =
ρh

4

[

˜̇a
∗

1
˜̇a
∗

2 · · · ˜̇a
∗

N

]











∫ ∫

φ1φ1 · · ·
∫ ∫

φ1φN

...
. ..

...
∫ ∫

φNφ1 · · ·
∫ ∫

φNφN





















˜̇a1
...

˜̇aN











=
ρh

4

[

˜̇a
∗

1
˜̇a
∗

2 · · · ˜̇a
∗

N

]











lxly
. ..

lxly





















˜̇a1
...

˜̇aN











, (B.29)

which can be expressed in terms of the modal velocities vector defined in Equation (B.14):

E(ω) =
ρh lxly

4

[

˜̇a
∗

1 · · · ˜̇a
∗

N

]











˜̇a1
...

˜̇aN











=
M

4
˜̇a
H
(ω) ˜̇a(ω), (B.30)

whereM represents the total mass of the panel.

B.2.2 Elemental approach

In the elemental approach the spatial integral in Equation (B.25) is replaced by a summation

over a grid of elements to give

E(ω) =
ρh

4

Ne
∑

n=1

Ae | ˜̇w(xn, yn, ω)|2

=
Me

4

Ne
∑

n=1

| ˜̇w(xn, yn, ω)|2. (B.31)

whereAe andMe the area and mass of a single panel element. Using the matrix notation

for the element approach in Section B.1.2, Equation (B.31) canbe written as
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E(ω) =
Me

4

[

˜̇w
∗

1 · · · ˜̇w
∗

Ne

]











˜̇w1

...

˜̇wNe











=
Me

4
˜̇w

H

e (ω) ˜̇we(ω). (B.32)

B.3 Time-averaged total radiated sound power

The instantaneous total sound power radiated is given by theproduct of panel velocity and

acoustic pressure on the panel surface, integrated over thedimensions of the panel [19]:

P (t) =

lx
∫

0

ly
∫

0

ẇ(x, y, t) p(x, y, 0, t)dx dy, (B.33)

whereẇ(x, y, t) is the panel velocity andp(x, y, 0, t) is the surface sound pressure on the

radiating side of the panel. The time-averaged total radiated sound power is given by [67,

68]

P =

lx
∫

0

ly
∫

0

1

T

T
∫

0

ẇ(x, y, t) p(x, y, 0, t) dt dx dy (B.34)

whereT is a suitable period of time over which to estimate the mean radiated sound

power. Assuming time-harmonic vibration, the time-average integral can be rewritten in

terms of the complex panel velocitẏ̃w(x, y, ω) and complex surface pressure fluctuations

p̃(x, y, 0, ω)

P = P (ω) =
1

2

lx
∫

0

ly
∫

0

Re
{

˜̇w
∗

(x, y, ω) p̃(x, y, 0, ω)
}

dx dy. (B.35)

The complex surface pressurep̃(x, y, 0, ω) for time-harmonic vibrations of a planar surface

is given by the Rayleigh integral [19]

161



p̃(x, y, 0, ω) =
jωρ0
2π

lx
∫

0

ly
∫

0

˜̇w(x′, y′, ω)
e−jk0R

R
dx′ dy′ (B.36)

whereR =
√

(x− x′)2 + (y − y′)2 is the distance between two points on the panel,k0 is

the acoustic wavenumber in the surrounding medium andρ0 is the mass density of the

surrounding medium on the radiating side of the panel. Thus substituting Equation (B.36)

into Equation (B.35) gives

P (ω) =
1

2
Re











lx
∫

0

ly
∫

0

˜̇w(x, y, ω)∗
jωρ0
2π

lx
∫

0

ly
∫

0

˜̇w(x′, y′, ω)
e−jk0R

R
dxdy dx′ dy′











=
1

2
Re











lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

jωρ0
2π

[

cos(kR)− j sin(kR)

R

]

˜̇w
∗

(x, y, ω) ˜̇w(x′, y′, ω) dx′ dy′ dx dy











=
ωρ0
4π

lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

sin(kR)

R
˜̇w
∗

(x, y, ω) ˜̇w(x′, y′, ω) dx′ dy′ dx dy

=
ω2ρ0
4πc0

lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

sin(kR)

kR
˜̇w
∗

(x, y, ω) ˜̇w(x′, y′, ω) dx′ dy′ dx dy (B.37)

B.3.1 Modal formulation

Substituting the modal expression for the transverse velocity of Equation (B.4) into Equa-

tion (B.37) gives

P (ω) =
ω2ρ0
4πc0

lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

sin(kR)

kR

∑

r=1

φr(x, y)˜̇a
∗

r

∑

s=1

φs(x
′, y′)˜̇as dx

′ dy′ dx dy

=
∑

r=1

∑

s=1

˜̇a
∗

r
˜̇as

ω2ρ0
4πc0

lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

φr(x, y)
sin(kR)

kR
φs(x

′, y′)dx′ dy′ dx dy (B.38)

Considering the vector notation for modal truncation to the firstN terms in Section B.1.1,

Equation (B.38) can be cast in the following matrix formulation [19]
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P (ω) =
[

˜̇a
∗

1 · · · ˜̇a
∗

N

]











A1,1 · · · A1,N

...
. . .

...

AN,1 · · · AN,N





















˜̇a1

· · ·
˜̇aN











= ˜̇a
H
A ˜̇a, (B.39)

whereA is the power transfer matrix with the elementsAr,s given by

Ar,s =
ωρ0
4π

lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

φr(x, y)
sin (k0R)

R
φs(x

′, y′) dx′ dy′ dx dy. (B.40)

B.3.2 Elemental approach

In the elemental approach the spatial integrals in Equation(B.37) are replaced by summa-

tions over the uniform grid of panel elements. According to the notations defined in Section

B.1.2, this gives

P (ω) =
ω2ρ0
4πc0

Ne
∑

i=1

Ne
∑

j=1

sin(kRi,j)

kRi,j

˜̇w
∗

(xi, yi, ω) ˜̇w(x
′

j, yj,
′ ω) dx′ dy′ dx dy,

which can be cast in the following matrix expression

P (ω) =
[

˜̇w
∗

1 · · · ˜̇w
∗

Ne

]











Rrad1,1 · · · Rrad1,Ne

...
. . .

...

RradNe,1
· · · RradNe,Ne





















˜̇w1

...

˜̇wNe











(B.41)

= ˜̇w
H

e Rrad
˜̇we (B.42)

where ˜̇we denotes the vector of element velocities given in Equation (B.17) andRrad de-

notes the element radiation matrix with the elementsRradi,j(ω) given by [19]:

Rradi,j(ω) =
ω2ρ0A

2
e

4πc0

sin (k0Ri,j)

k0Ri,j

, (B.43)

where the diagonal terms of the radiation matrixRi,i(ω) reduce to
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Rradi,i(ω) =
ω2ρ0A

2
e

4πc0
. (B.44)

Note that the radiation matrix is proportional to the radiation resistance matrix, i.e. propor-

tional to the real part of the radiation impedance matrix

Rrad(ω) =
Ae

2
Re
{

Z̃rad

}

, (B.45)

where the elements of the elemental radiation impedance matrix Z̃rad are given by

Z̃radi,j(ω) =
jωρ0Ae

2π

e−jk0Ri,j

Ri,j

. (B.46)

B.4 Power spectral density of total kinetic energy

It can be demonstrated [11], that the power spectral densityof x(t) is given by

Sxx(ω) = lim
T→∞

E

[

1

T
X̃∗(ω)X̃(ω)

]

, (B.47)

whereX̃(ω) is the finite Fourier transform ofX(t):

X̃(ω) =
1

2π

T
∫

0

X(t)e−jωt dt (B.48)

andE[ ] denotes the expectation for an infinite sample length. Thus considering the general

formulation for the instantaneous total kinetic energy in Equation (B.21), the power spectral

density of the total kinetic energySE, due to a time and spatial stochastic disturbance over

the panel surface, can be written as [67]:

SE(ω) =
1

2

lx
∫

0

ly
∫

0

ρh lim
T→∞

E

[

1

T
˜̇w
∗

(x, y, ω) ˜̇w(x, y, ω)

]

dx dy, (B.49)
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B.4.1 Modal formulation

Substituting the modal expression for the transverse velocity of Equation (B.4), into Equa-

tion (B.49) gives

SE(ω) =
1

2

lx
∫

0

ly
∫

0

ρh lim
T→∞

E

[

1

T

∞
∑

r=1

φr(x, y)˜̇a
∗

r(ω)

∞
∑

s=1

φs(x, y)˜̇as(ω)

]

dx dy

=
1

2

lx
∫

0

ly
∫

0

ρh

∞
∑

r=1

∞
∑

s=1

φr(x, y)φs(x, y) lim
T→∞

E

[

1

T
˜̇a
∗

r(ω)˜̇as(ω)

]

dx dy. (B.50)

Assumingρh=constant and considering the orthogonality conditions inEquations (B.27)

and (B.28) results in

SE(ω) =
1

2
ρh

∞
∑

r=1

∞
∑

s=1

lx
∫

0

ly
∫

0

φr(x, y)φs(x, y)Sȧr ȧsdx dy

=
1

2
ρh

∞
∑

r=1

lx
∫

0

ly
∫

0

φr(x, y)
2dx dy Sȧr ȧr

=
M

2

∞
∑

r=1

Sȧr ȧr , (B.51)

whereSȧr ȧr is the power spectral density of modal velocities

Sȧr ȧr(ω) = lim
T→∞

E

[

1

T
˜̇a
∗

r(ω)˜̇ar(ω)

]

= lim
T→∞

E

[

1

T

∣

∣˜̇ar(ω)
∣

∣

2
]

(B.52)

andM is the mass of the panel. Substituting Equation (B.5) into Equation (B.52) gives

Sȧr ȧr(ω) = lim
T→∞

E

[

1

T
Ω̃∗

r(ω)F̃
∗

r (ω)Ω̃r(ω)F̃r(ω)

]

= lim
T→∞

E

[

1

T

∣

∣

∣Ω̃r(ω)
∣

∣

∣

2

F̃ ∗

r (ω)F̃r(ω)

]

=
∣

∣

∣
Ω̃r(ω)

∣

∣

∣

2

lim
T→∞

E

[

1

T
F̃ ∗

r (ω)F̃r(ω)

]

.
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Substituting the formulation for the modal excitation terms in Equation (B.9) then gives

Sȧr ȧr
(ω) =

∣

∣

∣
Ω̃r(ω)

∣

∣

∣

2

lim
T→∞

E







1

T

lx
∫

0

ly
∫

0

φr(x, y) f̃
∗(x, y, ω) dx dy

lx
∫

0

ly
∫

0

φr(x
′, y′) f̃(x′, y′, ω) dx′ dy′







=
∣

∣

∣Ω̃r(ω)
∣

∣

∣

2

lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

φr(x, y)φr(x
′, y′) lim

T→∞

E

[

1

T
f̃∗(x, y, ω) f̃(x′, y′, ω)

]

dx dy dx′ dy′

=
∣

∣

∣Ω̃r(ω)
∣

∣

∣

2

lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

φr(x, y)φr(x
′, y′) S̃ff (x, y, x

′, y′, ω)dx dy dx′ dy′, (B.53)

whereS̃ff (x, y, x
′, y′, ω) is the cross-spectral density of the stochastic disturbance between

positions(x, y) and(x′, y′), which can be expressed as the product of the power spectral

densityΨ(ω) and the spatial correlation functioñC(x, y, x′, y′, ω) of the disturbance so that

S̃ff (x, y, x
′, y′, ω) = Ψ(ω) C̃(x, y, x′, y′, ω). (B.54)

Both the power spectral densityΨ(ω) and spatial correlation functioñC(x, y, x′, y′, ω) are

specific properties of the disturbance. Formulations that describe the the spatial correlation

functions for ADF and TBL excitation are given in Chapter 2, Section 2.1.2. Substituting

Equation (B.53) back into Equation (B.50) gives the final expression for the power spectral

density of total kinetic energy due to a disturbance which isstochastic in time and space as

SE(ω) =
M

2

∞
∑

r=1

∣

∣

∣
Ω̃r(ω)

∣

∣

∣

2
lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

φr(x, y)φr(x
′, y′) S̃ff (x, y, x

′, y′, ω)dx dy dx′ dy′. (B.55)

B.4.2 Elemental approach

According to the notations in Section B.1.2, the spatial integral in Equation (B.49) can be

replaced by a summation of element contributions, so that the power spectral density of the

total kinetic energy due to time and spatial stochastic disturbances is given by
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SE(ω) =
1

2

Ne
∑

i=1

ρhAe lim
T→∞

E

[

1

T
˜̇w
∗

(xi, yi, ω) ˜̇w(xi, yi, ω)

]

(B.56)

whereAe denotes the area of a single panel element and˜̇w(xi, yi, ω) is the transverse ve-

locity of thei-th element. Using the vector formulation for the elementalvelocities given in

Equation (B.18) the expression for the power spectral density becomes

SE(ω) =
Me

2

Ne
∑

i=1

lim
T→∞

E

[

1

T
˜̇w
∗

i (ω) ˜̇wi(ω)

]

=
Me

2
trace











lim
T→∞

E











1

T











˜̇w1

...

˜̇wNe











[

˜̇w
∗

1 · · · ˜̇w
∗

Ne

]





















=
Me

2
trace

(

lim
T→∞

E

[

1

T

[

˜̇we
˜̇w

H

e

]

])

=
Me

2
trace

(

lim
T→∞

E

[

1

T

[

Φe
˜̇a ˜̇a

H
ΦT

e

]

])

=
Me

2
trace

(

Φe lim
T→∞

E

[

1

T

[

˜̇a ˜̇a
H
]

]

ΦT
e

)

=
Me

2
trace

(

ΦeS̃ȧȧ(ω)Φ
T
e

)

, (B.57)

whereS̃ȧȧ(ω) is the [N × N ] matrix of power and cross-spectral densities of the modal

velocities. According to Equation (B.18) the vector of modalvelocities is given by

˜̇a = Ω̃ΦT
e F̃e, (B.58)

thusS̃ȧȧ(ω) can be written as

S̃ȧȧ(ω) = lim
T→∞

E

[

1

T

[

˜̇a ˜̇a
H
]

]

= lim
T→∞

E

[

1

T
Ω̃HΦT

e F̃eF̃
H
e ΦeΩ̃

]

= Ω̃ΦT
e lim

T→∞

E

[

1

T
F̃eF̃

H
e

]

ΦeΩ̃
H

= Ω̃ΦT
e S̃fefe(ω)Φe Ω̃

H , (B.59)
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whereS̃fefe(ω) is the [Ne×Ne] matrix containing the power and cross-spectral densitiesof

the element excitation forces, which has the form

S̃fefe =











S̃f1,f1 · · · S̃f1,fNe

...
. . .

...

S̃fNe ,f1
· · · S̃fNe ,fNe











(B.60)

with the elements

S̃fifj(ω) = S̃ff (xi, yi, xj , yj , ω) , (B.61)

as defined in Equation (B.54). Substituting the final expression in Equation (B.59) back into

the Equation (B.57) gives

SE(ω) =
Me

2
trace

(

Φe Ω̃ΦT
e S̃fefe(ω)Φe Ω̃

H Φe

)

=
Me

2
trace

(

ỸeeS̃fefe(ω)Ỹ
H
ee

)

, (B.62)

whereỸee = ΦeΩ̃ΦT
e is the [Ne ×Ne] matrix of element point and transfer mobilities.

B.5 Power spectral density of total sound power radiated

Considering the general formulation for the instantaneous total radiated sound power given

in Equation (B.33) and considering the relationship for the spectral density given in Equa-

tion (B.47), the power spectral density of the total sound power radiated due to disturbances

which are stochastic in time and space is given by

SP (ω) = Re







lx
∫

0

ly
∫

0

lim
T→∞

E

[

1

T
˜̇w
∗

(x, y, ω)p̃(x, y, 0, ω)

]

dx dy







. (B.63)

Substituting the Rayleigh integral expression forp̃(x, y, 0, ω) from Equation (B.36) gives
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SP (ω) = Re











jωρ0
2π

lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

e−jk0R

R
lim

T→∞

E

[

1

T
˜̇w
∗

(x, y, ω) ˜̇w(x′, y′, ω)

]

dx′ dy′ dx dy











. (B.64)

B.5.1 Modal formulation

Substituting the modal expression for the transverse velocity of Equation (B.4) into Equa-

tion (B.64) gives

SP (ω) = Re











jωρ0
2π

lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

e−jk0R

R
lim

T→∞

E

[

1

T

∞
∑

r=1

φr(x, y)˜̇a
∗

r(ω)
∞
∑

s=1

φs(x
′, y′)˜̇as(ω)

]

dx dy dx′ dy′











= Re











jωρ0
2π

lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

∞
∑

r=1

∞
∑

s=1

φr(x, y)
e−jk0R

R
φs(x

′, y′) lim
T→∞

E

[

1

T
˜̇a
∗

r(ω)˜̇as(ω),

]

dx dy dx′ dy′











=
∞
∑

r=1

∞
∑

s=1

Re











jωρ0
2π

lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

φr(x, y)
e−jk0R

R
φs(x

′, y′) S̃ȧr ȧs
dx dy dx′ dy′











, (B.65)

where S̃ȧr ȧs denotes the spectral densities of the the modal velocities.Substituting the

formulation for the modal velocities of Equation (B.5) gives

Sȧr ȧs(ω) = lim
T→∞

E

[

1

T
˜̇a
∗

r(ω)˜̇as(ω)

]

= lim
T→∞

E

[

1

T
Ω̃∗

r(ω)F̃
∗

r (ω)Ω̃s(ω)F̃s(ω)

]

= Ω̃r(ω)Ω̃
∗

s(ω) lim
T→∞

E

[

1

T
F̃ ∗

r (ω)F̃s(ω)

]

. (B.66)

Substituting the formulation for the modal excitation terms in Equation (B.9) then gives
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Sȧr ȧs
(ω) = Ω̃r(ω)Ω̃

∗

s(ω) lim
T→∞

E







1

T

lx
∫

0

ly
∫

0

φr(x, y) f̃
∗(x, y, ω) dx dy

lx
∫

0

ly
∫

0

φs(x
′, y′) f̃(x′, y′, ω) dx′ dy′







= Ω̃r(ω)Ω̃
∗

s(ω)

lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

φr(x, y)φs(x
′, y′) lim

T→∞

E

[

1

T
f̃∗(x, y, ω) f̃(x′, y′, ω)

]

dx dy dx′ dy′

= Ω̃r(ω)Ω̃
∗

s(ω)

lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

φr(x, y)φs(x
′, y′) S̃ff (x, y, x

′, y′, ω)dx dy dx′ dy′. (B.67)

Finally, substituting this expression for the spectral density of the the modal velocities back

into Equation (B.65) gives

SP (ω) =
N
∑

r=1

N
∑

s=1

Ω̃r(ω)Ω̃
∗

s(ω)

×Re











jωρ0
2π

lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

φr(x, y)
e−jk0R

R
φs(x

′, y′) dx dy dx′ dy′

×
lx
∫

0

ly
∫

0

lx
∫

0

ly
∫

0

φr(x, y)φs(x
′, y′) S̃ff (x, y, x

′, y′, ω) dx dy dx′ dy′











. (B.68)

B.5.2 Elemental approach

Replacing the spatial integrals in Equation (B.64) by a finite summation over all panel ele-

ments gives the following expression for the power spectraldensity of the total sound power

radiated due to disturbances which are stochastic in time and space:

SP (ω) = Re

{

jωρ0A
2
e

2π

Ne
∑

i=1

Ne
∑

j=1

e−jkRi,j

Ri,j

lim
T→∞

E

[

1

T
˜̇w
∗

(xi, yi, ω) ˜̇w(xi, yi, ω)

]

}

= 2 lim
T→∞

E











1

T

[

˜̇w
∗

1 · · · ˜̇w
∗

Ne

]











Rrad1,1 · · · Rrad1,Ne

...
.. .

...

RradNe,1
· · · RradNe,Ne





















˜̇w1

...

˜̇wNe





















= 2 lim
T→∞

E

[

1

T
˜̇w

H

e Rrad
˜̇we

]

, (B.69)
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whereRrad is the elemental radiation impedance matrix as defined in Equations (B.43) to

(B.46). Equation (B.69) can be rewritten to give

SP (ω) = 2 trace

(

lim
T→∞

E

[

1

T
˜̇we

˜̇w
H

e Rrad

])

= 2 trace

(

lim
T→∞

E

[

1

T
Φe

˜̇a˜̇a
H
ΦT

e Rrad

])

= 2 trace
(

Φe S̃ȧȧΦ
T
e Rrad

)

, (B.70)

where the [N ×N ] matrix of power and cross-spectral densities of the modal velocitiesS̃ȧȧ

is derived in Equation (B.59), so that:

SP (ω) = 2 trace
([

Φe Ω̃ΦT
e S̃fefe Φe Ω̃

H ΦT
e,r

]

Rrad

)

= 2 trace
([

Ỹee S̃fefe Ỹ
H
ee

]

Rrad

)

, (B.71)

whereỸee is the [Ne ×Ne] matrix of element point and transfer mobilities andS̃fefe is the

matrix containing the power and cross-spectral densities of the element excitation forces

given in Equation (B.60).
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Appendix C

Formulations for the base impedance of

proof-mass electrodynamic actuators

This Appendix provides the derivation of the open and closedloop base impedance for

current- and voltage-driven feedback control units, whichthey apply to the structure at the

point where they are mounted. The open loop response functions for single feedback loops

and decentralised multiple input multiple output (MIMO) feedback control systems are then

formulated using the expressions for open and closed loop actuator base impedances.

Figure C.1 shows the standard block diagram which is normallyused to describe the re-

sponse of a structure with a multi-channel feedback controlsystem, as discussed in Refer-

ence [45] for example. In this block diagram the matricesG̃ contain frequency response

functions between the error/monitor sensors and the control/primary excitations including

the control unit passive responses whileH̃(g) contains solely the control functions.

epG%
ecG%

( )g-H%

ccG%cpG%

ora aI U% %

pF% ew%&

cw%&

Figure C.1: Block diagram of the multi-channel velocity-feedback control system, with the system plant
responsẽG containing the panel response and also the control unit dynamics.
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Figure C.2 shows the alternative block diagram proposed in this study, where the frequency

response functions in the matricesỸ do not include the passive effects of the control units

which are instead included in the feedback loop via theZ̃a(g) matrix, which contains the

open and closed loop base impedance of the control units. This notation gives a better

insight into the system dynamics since it formally separates the dynamic properties of the

structure under control from the dynamics of the control units.

epY%
ecY%

( )a g-Z%

ccY%cpY%

cF%

pF% ew%&

cw%&

Figure C.2: Block diagram of the multi-channel velocity-feedback control system, with the plant response of
the panelỸ and the base impedanceZ̃a(g) of the control units.

C.1 Base impedance with general actuator force

The force balance for the control unit shown in Figure C.3 can be expressed by the following

set of linear equations

f̃c = −
(

Z̃s + Z̃m1

)

˜̇wc + Z̃s
˜̇wm2

+ f̃a (C.1)

f̃m2
= Z̃s

˜̇wc − Z̃s
˜̇wm2

− f̃a. (C.2)

In these equations̃Zs = cs + ks/(jω) is the actuator suspension impedance, whereks and

cs are the mechanical stiffness and damping coefficient of the proof-mass suspension. The

suspension damping coefficient combines mechanical damping effects, viscous damping

effects due to fluid flow in the air gaps and Eddy current damping which is due to the relative

velocity between the conductive actuator parts which are attached to the structure and the

magnetic field of the actuator permanent magnet. The termZ̃m1
= jωm1 represents the

mechanical impedance of the actuator mounting massm1 which, in this model, is assumed
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Figure C.3: Actuator schematic view.

to be rigidly attached to the structure and includes both theactuator base mass and the mass

of the control sensor. Also,̇̃wc is the velocity of the structure at the point where the control

unit is mounted and̃̇wm2
is the velocity of the actuator proof-massm2. f̃c is the effective

control force acting on the structure,f̃m2
is the force acting on the actuator proof-massm2

andf̃a is the force developed by the actuator voice coil motor. The velocity of the actuator

proof-mass is given by

˜̇wm2
= Z̃−1

m2
fm2

, (C.3)

whereZ̃m2
= jωm2 is the impedance of the actuator proof-mass. Substituting Equation

(C.3) into Equation (C.1) and (C.2) gives

f̃c = −
(

Z̃s + Z̃m1

)

˜̇wc + Z̃sZ̃
−1
m2

fm2
+ f̃a (C.4)

f̃m2
= Z̃s

˜̇wc − Z̃sZ̃
−1
m2

fm2
− f̃a. (C.5)

The force on the actuator proof-mass can therefore be written as

f̃m2
=
(

1 + Z̃sZ̃
−1
m2

)

−1

Z̃s
˜̇wc −

(

1 + Z̃sZ̃
−1
m2

)

−1

f̃a. (C.6)

Substituting Equation (C.5) into Equation (C.4) yields the control forcefc as
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f̃c = = −
[

(

Z̃s + Z̃m1

)

− Z̃sZ̃
−1
m2

(

1 + Z̃sZ̃
−1
m2

)

−1

Z̃s

]

˜̇wc

+

[

1− Z̃sZ̃
−1
m2

(

1 + Z̃sZ̃
−1
m2

)

−1
]

f̃a. (C.7)

C.2 Control current

In the case of a current-driven voice coil, the forcef̃a produced by the voice coil motor is

given by

f̃a = ΨIa, (C.8)

whereΨ is the transducer coefficient of the voice coil-magnet system andIa is the current

through the voice coil. In the case of velocity feedback control this current is given by

Ĩa = −H̃(g) ˜̇wc,

= −C̃g ˜̇wc, (C.9)

whereH̃(g) = C̃g is the feedback control function, which is given by the product of the

gain-normalised frequency response function (FRF) of the controller C̃ and the feedback

gaing. For ideal proportional velocity feedback the controller FRF is unity for all frequen-

cies, for integral feedback (displacement) byC̃ = 1/(jω) and for differential feedback

(acceleration) bỹC = jω. Substituting Equations (C.8) and (C.9) into Equation (C.7), the

control force can be expressed in terms of a passive and an active actuator base impedance,

so that

f̃c = −
[

Z̃passive,I + Z̃active,I C̃g
]

˜̇wc

= −
[(

(

Z̃s + Z̃m1

)

− Z̃sZ̃
−1
m2

(

1 + Z̃sZ̃
−1
m2

)

−1

Z̃s

)

+

(

Ψ C̃g

(

1− Z̃sZ̃
−1
m2

(

1 + Z̃sZ̃
−1
m2

)

−1
))]

˜̇wc. (C.10)
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Rewriting Equation (C.10) gives

f̃c = −
[(

Z̃s + Z̃m1
− Z̃2

s

Z̃m2
+ Z̃s

)

+Ψ C̃g

(

1− Z̃s

Z̃m2
+ Z̃s

)]

˜̇wc. (C.11)

From Equation (C.11) it can be seen that in the limiting case that the proof massm2 of the

actuator tends to zero, the base impedance of the actuator reduces to the impedance of the

actuator mounting mass̃Zm1

f̃c

∣

∣

∣

limm2→0
= −Z̃m1

˜̇wc. (C.12)

Also in the limiting case that the proof-mass tends to infinity, the base impedance of the

actuator reduces to

f̃c

∣

∣

∣

limm2→∞
= −

[(

Z̃s + Z̃m1

)

+Ψ C̃g
]

˜̇wc. (C.13)

With increasing frequency the impedance of the mounting massm1 becomes the dominating

term in Equation (C.11). This will limit the frequency range over which an active control

force can be applied. The mounting massm1 of the actuator should therefore be as small

as possible. The performance of the actuator increases withincreasing actuator proof mass

m2, which should therefore be as large as possible.

C.3 Control voltage

In the case of a voltage-driven voice coil, the forcef̃a produced by the voice coil motor

can be derived from the relationship between the current, the driving voltage and the back

electromotive force (backemf ), which is generated by the relative motion between the

magnet and the coil

Z̃eIa = Ua −Ψ( ˜̇wc − ˜̇wm2
), (C.14)

whereZ̃e = Re+jωLe is the electrical impedance of the the voice coil motor with the voice

coil resistanceRe and inductanceLe. Rearranging Equation (C.14) for̃Ia and substituting

Equation (C.8) gives the force produced by the voice coil motor as
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f̃a = ΨIa =
ΨUa

Z̃e

− Ψ2

Z̃e

( ˜̇wc − ˜̇wm2
). (C.15)

Assuming velocity feedback, the driving voltage is given by

Ua = − C̃g ˜̇wc, (C.16)

so that

f̃a = − ΨC̃g

Z̃e

˜̇wc −
Ψ2

Z̃e

( ˜̇wc − ˜̇wm2
). (C.17)

Since the force produced by a voltage-driven voice coil motor depends on the backemf

force, which is a function of the difference between the control velocity ˜̇wc and the ve-

locity of the actuator proof masṡ̃wm2
, the force balance in Equations (C.1) and (C.2) is

reformulated to give

f̃c = −
(

Z̃s + Z̃m1

)

˜̇wc + Z̃s
˜̇wm2

− ΨC̃g

Z̃e

˜̇wc −
Ψ2

Z̃e

˜̇wc +
Ψ2

Z̃e

˜̇wm2
(C.18)

f̃m2
= Z̃s

˜̇wc − Z̃s
˜̇wm2

+
ΨC̃g

Z̃e

˜̇wc +
Ψ2

Z̃e

˜̇wc −
Ψ2

Z̃e

˜̇wm2
. (C.19)

Substituting the expression for the velocity of the actuator proof mass in Equation (C.3) in

to (C.18) gives

f̃c = −
(

Z̃s + Z̃m1

)

˜̇wc + Z̃sZ̃
−1
m2

fm2
+

ΨC̃g

Z̃e

˜̇wc −
Ψ2

Z̃e

˜̇wc +
Ψ2

Z̃e

Z̃−1
m2

fm2
(C.20)

f̃m2
= Z̃s

˜̇wc − Z̃sZ̃
−1
m2

fm2
+

ΨC̃g

Z̃e

˜̇wc +
Ψ2

Z̃e

˜̇wc −
Ψ2

Z̃e

Z̃−1
m2

fm2
. (C.21)

The force acting on the actuator proof mass can therefore be written as
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f̃m2
=

(

1 + Z̃sZ̃
−1
m2

+
Ψ2

Z̃e

Z̃−1
m2

)

−1

Z̃s
˜̇wc

+

(

1 + Z̃sZ̃
−1
m2

+
Ψ2

Z̃e

Z̃−1
m2

)

−1
ΨC̃g

Z̃e

˜̇wc

+

(

1 + Z̃sZ̃
−1
m2

+
Ψ2

Z̃e

Z̃−1
m2

)

−1
Ψ2

Z̃e

˜̇wc. (C.22)

Substituting Equation (C.22) into Equation (C.20) yields thecontrol forcefc as

f̃c = −
(

Z̃s + Z̃m1

)

˜̇wc

+Z̃sZ̃
−1
m2

(

1 + Z̃sZ̃
−1
m2

+
Ψ2

Z̃e

Z̃−1
m2

)

−1

Z̃s
˜̇wc

+Z̃sZ̃
−1
m2

(

1 + Z̃sZ̃
−1
m2

+
Ψ2

Z̃e

Z̃−1
m2

)

−1
ΨC̃g

Z̃e

˜̇wc

+Z̃sZ̃
−1
m2

(

1 + Z̃sZ̃
−1
m2

+
Ψ2

Z̃e

Z̃−1
m2

)

−1
Ψ2

Z̃e

˜̇wc

− ΨC̃g

Z̃e

˜̇wc

−Ψ2

Z̃e

˜̇wc

+
Ψ2

Z̃e

Z̃−1
m2

(

1 + Z̃sZ̃
−1
m2

+
Ψ2

Z̃e

Z̃−1
m2

)

−1

Z̃s
˜̇wc

+
Ψ2

Z̃e

Z̃−1
m2

(

1 + Z̃sZ̃
−1
m2

+
Ψ2

Z̃e

Z̃−1
m2

)

−1
ΨC̃g

Z̃e

˜̇wc

+
Ψ2

Z̃e

Z̃−1
m2

(

1 + Z̃sZ̃
−1
m2

+
Ψ2

Z̃e

Z̃−1
m2

)

−1
Ψ2

Z̃e

˜̇wc. (C.23)

Rearranging Equation (C.23) and combining the passive and theactive terms, which contain

the feedback control function, results in
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f̃c = −
[

Z̃passive,U + Z̃active,U C̃g
]

˜̇wc

= −












Z̃s + Z̃m1

+
Ψ2

Z̃e

−

(

Z̃s +
Ψ2

Z̃e

)2

Z̃m2
+ Z̃s +

Ψ2

Z̃e







+C̃g
Ψ

Z̃e

(

1−
Z̃s +

Ψ2

Z̃e

Z̃m2
+ Z̃s +

Ψ2

Z̃e

)]

˜̇wc. (C.24)

For the limiting case that the proof massm2 of the actuator tends to zero, the base impedance

of the actuator reduces to the impedance of the actuator mounting massZ̃m1
which is the

same as in Equation (C.12). In the limiting case that the proofmass tends to infinity, the

base impedance of the actuator reduces to

f̃c

∣

∣

∣

limm2→∞
= −

[(

Z̃s + Z̃m1
+

Ψ2

Z̃e

)

+ C̃g
Ψ

Z̃e

]

˜̇wc. (C.25)

To produce a control voltage signal from a voltage sensor signal it is necessary to use a

voltage amplifier. An ideal amplifier of this type has an infinite input impedance and a zero

output resistance.

C.4 Open loop response function for single channel control

The open loop response function for a single control channelcan be derived from the

velocity response at the control position in absence of primary excitation

˜̇wc = Ỹcf̃c (C.26)

whereỸc is the point mobility of the structure at the control position. The control forcẽfc

is given by

f̃c = −Z̃passive
˜̇wc − Z̃active C̃ g ˜̇wc (C.27)

Substituting Equation (C.27) into Equation (C.26) gives
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˜̇wc = −ỸcZ̃passive
˜̇wc − ỸcZ̃active C̃ g ˜̇wc (C.28)

As discussed previously, both passive and active impedancefunctions depend on the type

of control signal that is used, i.e. if current or voltage is supplied to the voice coil motor.

Assuming an input current proportional to velocityĨa = −C̃ g ˜̇wc, Equation (C.28) gives

˜̇wc = −ỸcZ̃passiveI
˜̇wc + ỸcZ̃activeI Ĩa. (C.29)

The open loop frequency response functionH̃I for a single current-controlled feedback loop

with unit feedback is given by

H̃I =
˜̇wc C̃

Ĩa
=

ỸcZ̃activeI C̃

1 + ỸcZ̃passiveI

, (C.30)

which is

H̃I =
Ỹc C̃ Ψ

(

1− Z̃s

Z̃m2
+Z̃s

)

1 + Ỹc

(

Z̃s + Z̃m1
− Z̃2

s

Z̃m2
+Z̃s

) . (C.31)

Similarly assuming a velocity proportional input voltage,Ũa = −C̃ g ˜̇wc the open loop

response function for a single feedback loop is given by

H̃U =
˜̇wcC̃

Ũa

=
ỸcZ̃activeU C̃

1 + ỸcZ̃passiveU

, (C.32)

which is

H̃U =

Ỹc C̃
Ψ
Z̃e

(

1− Z̃s+
Ψ
2

Z̃e

Z̃m2
+Z̃s+

Ψ2

Z̃e

)

1 + Ỹc

(

Z̃s + Z̃m1
+ Ψ2

Z̃e
−

(

Z̃s+
Ψ2

Z̃e

)

2

Z̃m2
+Z̃s+

Ψ2

Z̃e

) . (C.33)
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C.5 Open loop response for multi-channel control

The open loop response function for a decentralised multi-channel control system can be

derived from the velocity responses at all control positions in the absence of primary exci-

tation

˙̃wc = Ỹccf̃c (C.34)

where ˜̇wc is the [Nc × 1] vector of control point velocities,̃fc is the [Nc × 1] vector of

feedback control forces and̃Ycc is the [Nc × Nc] matrix of point and transfer mobilities

between the control points. The vector of control forces canbe expressed as

f̃c = −Z̃passive
˜̇wc − Z̃active C̃ g ˜̇wc (C.35)

whereZ̃passive is the [Nc ×Nc] diagonal matrix containing the passive actuator impedance

terms,Z̃active is the [Nc×Nc] diagonal matrix containing the active actuator base impedance

terms,C̃ is the [Nc × Nc] diagonal matrix controlling the Controller FRFs andg is the

[Nc × Nc] diagonal matrix containing the feedback control gains. Substituting Equation

(C.35) into Equation (C.34) gives

˜̇wc = −ỸccZ̃passive
˜̇wc − ỸccZ̃active C̃ g ˜̇wc (C.36)

Setting the matrix of drive currents tõIa = −C̃ g ˜̇wc gives

H̃I = ˜̇wc C̃ Ĩ−1
a = ỸccZ̃activeI C̃

(

I+ ỸccZ̃passiveI

)

−1

, (C.37)

whereI is the [Nc × Nc] identity matrix andH̃I is the fully populated [Nc × Nc] ma-

trix containing the control system open loop frequency response functions for the current-

controlled actuators. Similarly, for voltage control, setting the matrix of driving voltages to

Ũa = −C̃ g ˜̇wc gives

H̃U = ˜̇wc C̃ Ũ−1
a = ỸccZ̃activeU C̃

(

I+ ỸccZ̃passiveU

)

−1

, (C.38)

whereH̃U is the fully populated [Nc ×Nc] matrix containing the control system open loop

frequency response functions for the voltage controlled actuators.
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Appendix D

Parameter estimation for honeycomb

test panel

This Appendix presents the initial experimental tests carried out on the structural response

of the honeycomb test panel. These studies have been conducted to estimate the principal

structural parameters of the panel which are then used to model the panel response.

• Section D.1 gives the test panel geometry, material specification and the structural

parameters which are estimated from fitting the model for an anisotropic sandwich

panel to the experimentally determined panel response.

• Section D.2 gives the formulations used to model an anisotropic sandwich panel with

free boundary conditions on all edges.

• Section D.3 describes the experimental set-up and also presents the experimental and

corresponding simulation results.

D.1 The honeycomb panel

The honeycomb test panel has the dimensionslx ≈ 500 mm andlx ≈ 400 mm. According

to the manufacturer both face plates are made of carbon reinforced resin with three plies

and an overall thickness ofhf = 0.86 mm and were manufactured in an out-of-autoclave

process. The honeycomb core is made of phenolic resin material (HRP) with 3/8 inch (9.5

mm) cell width and a thickness of 7/8 inch (22.2 mm). The panelhas a total mass of 0.856

kg. The mass per unit area is 4.28 kg/m−2 which corresponds to that of a homogeneous
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aluminium panel of 1.6 mm thickness. The estimated structural parameters are summarised

in Table D.1. The determination of these parameters is described further below.

Table D.1: Cross section geometry and physical properties for the honeycomb sandwich test panel.

Parameter Symbol Value Unit

Thickness of face plate hf 0.86 mm
Core depth d 23.09 mm
Mass density face plates ρf 1250 kg m−3

Mass density core ρc 96 kg m−3

Panel mass per unit area1 m′′ 4.28 kg m−2

Young’s modulus face-platesx-axis Ex 48 GPa
Young’s modulus face-platesy-axis Ey 43 GPa
Shear modulus corex-axis Gx 82 MPa
Shear modulus corey-axis Gy 155 MPa
Poisson’s ratio face plates νf 0.33 –
Poisson’s ratio sandwich plate ν 0 –
Loss factor η 0.015 –
Anisotropic factor α 0.035 –
1 m′′ = 2hfρf + (d− hf )ρc

D.2 Model for anisotropic sandwich panel

The transverse bending stiffness of honeycomb sandwich panels is frequency-dependent

[19, 58] and anisotropic with respect to thex- and y-axes [61]. The principal material

properties of the core are the out-of-plane shear moduliGx andGy [62].

The frequency-dependent dynamic response of the compositesandwich panel is modelled

using a basic theory [19, 58] which considers pure undistorted bending of the cross-section

and the face-plates and pure undistorted transverse shear of the core. The relationship be-

tween the transverse wavenumberk and the wavenumbers corresponding to pure bending

and to pure shear of a sandwich panel is given by

1 +

(

ks
kb

)2(
k

kb

)2

−
(

k

kb

)4

−
(

kb
kbf

)4(
ks
kb

)2(
k

kb

)6

= 0, (D.1)

whereks is the shear wavenumber in the absence of transverse bendingforces,kb is the

overall cross-section bending wavenumber in the absence ofshear distortion andkbf is the

bending wavenumber for face-plate bending alone. These wavenumbers are given as

(a) k2
s =

m′′ω2

Gd
, (b) k4

b =
m′′ω2

D1

, (c) k4
bf =

m′′ω2

2D2

, (D.2)
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wherem′′ is the total panel mass per unit area,G is the transverse core shear modulus and, as

shown in Figure D.1,d is the distance between the face-plates neutral axis, whichassuming

thatd is much larger than the thickness of the face-plates is also used to represent the core

thickness.D1 is the bending stiffness of the cross-section andD2 is the bending stiffness of

an individual face-plate. These flexural stiffness terms are given by

(a) D1 =
Ed2hf

2
(

1− ν2
f

) , (b) D2 =
Eh3

f

12
(

1− ν2
f

) . (D.3)

wherehf << d is the face-plate thickness.

d

totalh fh

Figure D.1: Sketch of sandwich panel cross section geometry.

Equation (D.1) has one real and two imaginary pairs of axi-symmetric solutions. For sim-

plicity the mode shapes of the honeycomb panel in thex- andy-directions are assumed to

be those of a corresponding thin beam with free boundary conditions and it is assumed that

the equivalent flexural rigidityD, is given by

D =
ω2m′′

k4
, (D.4)

where the wavenumberk in Equation (D.4) is the real wavenumber solution of Equation

(D.2), which corresponds to travelling waves. The imaginary wavenumber solutions to

Equation (D.1) correspond to decaying near-field waves, which are neglected in the model.

According to References [61, 63] the natural frequencies of an anisotropic rectangular panel

can be estimated as

ωm,n =
π2

√
m′′

√

Dx

(

Gm

lx

)4

Dy

(

Gn

ly

)4

+
2JmJn + 2ν(HmHn − JmJn)

(lxly)2
α
√

DxDy, (D.5)

In the above equation the parametersG, J andH depend on the mode order inx- andy-

directions,m andn, and the boundary conditions, which for this study are chosen as those

for free boundary conditions [47, 48] (compare Appendix 2, Section A.2). The parameterα
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is adjusted to give good agreement between predicted and measured natural frequencies for

the [rocking, rocking] mode of the panel [61]. For a sandwichpanel the bending stiffnesses

Dx andDy are frequency-dependent and need to be evaluated atω = ωm,n. A Regular-Falsi

root search algorithm [49] is employed to estimate the panelnatural frequencies that satisfy

the relationship

0 = ω2 − π4

m′′

(

Dx(ω)

(

Gm

lx

)4

Dy(ω)

(

Gn

ly

)4

+
2JmJn + 2ν(HmHn − JmJn)

(lxly)2
α
√

Dx(ω)Dy(ω)

)

.

(D.6)

D.3 Experimental and simulation studies

D.3.1 The experimental set-up

For this study the honeycomb panel was vertically supportedin a steel frame using two flex-

ible hangers to simulate free boundary conditions. As shownin Figure D.2, the panel was

hanging with the longer panel edge parallel to the floor. The panel was excited at one of the

lower edge corners using an LDS type V201 electro-dynamic shaker. The excitation force

was measured using a B&K type 8001 impedance head. A B&K type 4375 accelerometer

and a Polytec laser vibrometer were used to measure the panelresponse on the opposite side

of the panel.

15 mm

1
5
 m

m

III

III

IV

V

15 mm

a) b)

Figure D.2: a) Schematic view of freely supported honeycombpanel, excitation point and point mobility
measurement point I (square), transfer mobility measurement points II to V (circles), b) Experimental set-
up, honeycomb panel supported in a steel frame to approximate free boundary conditions with reflective grid
used for laser vibrometer measurements.
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D.3.2 Experimental and simulation results

Point and transfer mobilities: Figures D.3 and D.4 show the measured and simulated

point mobilities at pointI as defined in Figure D.2. The simulation parameters were man-

ually fitted to yield a good agreement between measured and simulated results over a wide

frequency range. The natural frequencies and modal loss factors were manually estimated

from the measured point mobility using a circle fitting method [69].

Since no beam samples of the panel were available, it was not possible to measure the modal

response of the panel inx- andy-directions in isolation. Therefore the laser vibrometer head

was used to measure a 24x18 uniform grid of panel transfer mobilities. The visualisations

of the panel velocity normalised by the excitation force panel from the vibrometer scans

were used to associate the natural frequencies with the corresponding modeshapes of the

panel, which also gives the specific sequence of panel modes.The test panel response along

thex- andy-axes was analysed by identifying isolated beam-like modesfrom the grid of

measured transfer mobilities.

Table D.2: Measured and simulated natural frequencies of the freely supported Honeycomb panel

Experimental Simulation
Mode order Natural frequency [Hz]Mode order Natural frequency [Hz]

-1, -1 0
-1, 0 0
0, -1 0

0, 0 373.9 0, 0 374.9
1, -1 597.3 1, -1 607.9
1, 0 860.9 1, 0 864.3
-1, 1 939.9 -1, 1 945.4
0, 1 1086 0, 1 1107.8
2, -1 1292 2, -1 1305.6
2, 0 1463 2, 0 1485.3

1, 1 1492.8
2, 1 2019 2, 1 1986.3

3, -1 2028.8
-1, 2∗ 2151 -1, 2 2106.5

3, 0 2159.8
0, 2 2190.7

1, 2 2426 1, 2 2428.3
3, 1 2580 3, 1 2551.4
4, -1 2717 4, -1 2743.4

2, 2 2770.3
4, 0 2860 4, 0 2845.7

4, 1 3160.5
∗ not clearly identifiable
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Table D.2 gives the experimentally determined and simulated natural frequencies and cor-

responding modal identification, where mode orders of -1 correspond to whole body trans-

verse modes, mode orders of 0 correspond to rigid body rocking modes and mode orders of

1 and above correspond to bending modes. In thex-direction three isolated modes, [1,-1] at

597.3 Hz, [2,-1] at 1292 Hz and [4,-1] at 2717 [Hz] were identified. Equation 5.1 was used

to fit the panel parameters in thex-direction to the measured natural frequencies. In the

y-direction only one isolated mode, [-1,1] at 939.9 Hz was clearly identifiable; the natural

frequency at 2151 Hz is assumed to correspond to the [-1,2] mode but could not be clearly

identified. The combined information of sequential mode order and isolated modes allowed

the model parameters to be chosen to yield a reasonably good agreement between measured

and predicted response. Knowledge of the panel geometry, manufacturer material specifica-

tions, experimental natural frequencies and modes alloweda set of model parameters to be

determined that yield good agreement between predicted andmeasured structural response

of the honeycomb panel used in the experimental study, whichare given in Table D.1.

For verification the transfer mobilities between the force at point I and the response at II,

III, IV and V (see Figure D.2) were measured using a B&K type 4375 accelerometer and

compared with the results of the prediction model. Both the measured and simulated transfer

mobilities are shown in Figure D.5. One should note that the locations of the points IV and

V in the simulation were chosen to be slightly offset from thepanel centre in thex− and

y−directions in order to capture the response of the [0,0] mode. All four transfer mobilities

show a good general agreement between measured and simulated results and indicate that

the sandwich composite model and chosen model parameters yield reliable results in the

observed frequency range.
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Figure D.3: Measured (faint) and simulated (solid) point mobility for the freely supported honeycomb test
panel on logarithmic frequency scale.
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Figure D.4: Measured (faint) and simulated (solid) point mobility for the freely supported honeycomb test
panel on linear frequency scale.
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Figure D.5: Measured (faint) and simulated (solid) point mobilities for the freely supported composite
honeycomb panel; (a)I-II; (b) I-III, (c) I-IV and (d) I-V.

Bending stiffness: Figure D.6 shows the simulated equivalent bending stiffness of the

honeycomb panel inx andy-directions. For low frequencies the bending stiffnesses are

nearly constant and correspond to the bending stiffness of the cross-section. For increasing

frequency the equivalent bending stiffness in both directions drops due to core shear effects.

It is interesting to note thatDx andDy cross over at about 290 Hz, which together with the

test panel geometry results in the specific modal order observed in the experimental studies.

For frequencies well above 10 kHz the bending stiffness in both dimensions of the panel

converges towards a constant value which corresponds to pure face-plate bending.
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Figure D.6: Simulated frequency dependent equivalent bending stiffness of the honeycomb composite panel
in x-direction (solid) andy-direction (dashed).

Correlation method: The measured 24x18 uniform grid of panel transfer mobilities has

also been used in an attempt to identify the panel transversewavenumbers using a correla-

tion method. In Cartesian coordinates the two-dimensional discrete correlation function for

a single frequency is given by Fergusonet al [70]

C(kx, ky) =

∫

∞

−∞

∫

∞

−∞

˜̇w(x, y)e−ikxxe−ikyydxdy. (D.7)

Due to the discrete sampling of data points, the coordinates, (x, y) in Equation (D.7) be-

come discrete coordinates(xi, yj) and the double integral is replaced by a double sum. The

discretisation of equation (D.7) therefore yields

C(kx, ky) =
LxLy

NxNy

Nx
∑

i=1

Ny
∑

j=1

˜̇w(xi, yj)e
−ikxxie−ikyyj . (D.8)

The wavenumbers in thex- andy-directionskx andky for a specific observation frequency

are estimated by identifying the maximum ofC(kx, ky). Note that the increase in com-

putational effort limits the resolution of the correlationgrid in kx andky. The correlation

method also has certain limitations with respect to the measured data. The spatial density

of the measurement grid must guarantee at least two points per wavelength in order to avoid

spatial aliasing and for reliable results at least one complete bending wavelength should be
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sampled. In thex-direction this is only satisfied above 1290 Hz and in they-direction this

is only satisfied above 2150 Hz (compare Table D.2). Also for aspecimen with dimensions

of approximately 500 mm the lower wavenumber limit for reliable estimates is therefore

k > 4π i.e. k > 12.5 rad/m.

Figure D.7 shows the simulated wavenumbers of propagating waves of the honeycomb test

panel in thex andy-directions and the experimentally estimated wavenumbersfrom the

correlation method. Also the dash-dotted line shows the wavenumbers that correspond to

the static bending stiffnessD1 =
√

D1xD1y as a reference. For frequencies below 2000 Hz

the results from the correlation method do not give satisfactory results due to the limitations

in the test panel dimensions. Above 2000 Hz the results are also not satisfactory but support

the trends in the simulated wavenumbers which increase morerapidly with frequency than

the wavenumber that corresponds to pure cross-section bending. The results also support

the predicted divergence between the wavenumbers in thex- andy-directions with increas-

ing frequency which is a result of the different transverse shear moduli in the two panel

directions.
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Figure D.7: Experimentally estimated and simulated bending wavenumbers of the honeycomb test panel.
Experimentalx-direction (black − circles), y-direction (cyan − squares); Simulatedx-direction (solid −
line), y-direction (dashed− line) and wavenumber for constant static stiffnessD1 (dash− dotted− line).
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Appendix E

Transmission chamber experimental

arrangements and complementary

experimental results

This appendix provides further background information on the transmission chamber ex-

perimental set-ups and also complementary experimental results from microphone mea-

surements. Also it provides experimental results for the panels with lumped point masses in

place of the control units. This appendix is therefore organised in two sections:

• Section E.1 describes the experimental set-up, the transmission chamber, the test

frame and the excitation and measurement arrangements usedin the transmission

chamber experimental studies.

• Section E.2 then presents the radiated sound power for the panels without control

units and with open and closed loop control units, measured using a grid of micro-

phones. These results are in good agreement with the laser vibrometer measurement

experimental results, which are presented and discussed inChapter 5.

Finally complementary studies on the panels with lumped point masses are presented.

The results show that the control unit mass effects alone do not produce broad-band

reductions. The predominant effect of the lumped masses is to shift the resonance

frequencies of low order modes.
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E.1 Transmission chamber experimental arrangement

Past experimental studies on active panels were conducted at the ISVR [32, 34], using a

Perspex box set-up that allowed the measurement of sound radiation into a hemi-anechoic

room. The experimental measurements presented in this thesis have instead been carried

out in a sound transmission suite, located in the ISVR teaching laboratory ( room 13/4060

and 13/4062).

The schematic ground plan of the transmission chamber, shown in Figure E.1, gives the

overall dimension of the two chambers. Previous studies indicated that the two rooms of the

transmission suite do not satisfy reverberant field assumptions for frequencies below 800

Hz and also reported concerns about flanking transmissions [71]. It was therefore decided

to transform the receiving room (13/4060) into a hemi-anechoic chamber which satisfies

free-field conditions down to about 250 Hz. It was also decided to increase the amount of

acoustic absorption in the source room (13/4062) in order toreduce resonant effects.

Source room

height = 2.61 m

Receiving  room

height = 2.52 m

Transmission

window

2.38 m 2.07 m

2
.5

2
 m

2
.5

5
 m

B13 R4062 B13 R4060

Figure E.1: Schematic ground plan of the transmission chamber in the ISVR teaching Lab (13/4060 and
13/4062).

For the conversion to a hemi-anechoic chamber the back and side walls, the ceiling and the

floor of the receiving room (13/4060) were fitted with acoustic absorbent foam wedges. In

order to be able easily to convert the room back into reverberant conditions it was decided

to mount the foam wedges using adhesive Velcro pads (walls and ceiling only), where the

hook pads were stuck to the chamber surfaces and the eye pads were stuck to the back of

the foam wedges. The foam wedges are 30 cm deep and should therefore provide a high

absorption coefficient above 250 Hz where the wedge depth is equal or large than a quarter

of an acoustic wavelength.
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Transmission wall cross-section

Test panel

Aluminium test frame

Three layers of 1 inch MDF

1 inch plywood frame

seal

Receiving roomSource room

Figure E.2: Schematic cross-sectional view of the transmission chamber separating wall and transmission
window with test frame.

As shown in the schematic cross-section view of the separating wall, in Figure E.2, a heavy

wooden mounting frame was designed to mount the aluminium test frame in the transmis-

sion window and avoid unwanted flanking transmissions. Notethat the panel is not per-

fectly flush mounted on the receiving room side. It was also necessary to modify the cable

ducts between the inside and the outside of the source and receiving rooms in order the fit

the high number of connecting cables and also the plug of the laser vibrometer data cable

which needed to be routed into the receiving room. After all cables were fitted, the inside

and outside wall openings of the cable ducts were sealed using removable permanent plastic

sealant material (Teroson Terostat-IX).

E.1.1 Test frame

The test frame, schematically shown in Figures E.3 and E.4, is constructed from three in-

dividual frame sections made from solid aluminium bars of one inch (25.4 mm) thickness.

The base frame section has a width of 7/4 inch (44.5 mm) and has14 threaded holes that

allow the frame to be mounted onto the plywood frame as shown in Figure E.2 and also 18

threaded holes that allow the three frame sections to be assembled together. The brace frame

section has a width of 5/4 inch (31.8 mm) and 18 through holes,and as shown in Figure E.4

(a), is only needed when the honeycomb panel is mounted in theframe. The cover frame

has a width of 7/4 inch (44.5 mm) and has 18 through holes that allow for a friction-locked

connection to the base frame section. Figure E.3 shows the schematic front view of the test

frame with the frame dimensions and the locations of the primary shaker excitation point

and the control point locations viewed from the source room.
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Figure E.3: Schematic front view of the aluminium test framefrom the source room side, where the square
indicates the excitation point and circles mark the location of the control units.

Figure E.4 shows the schematic of the test frame cross-section with mounting of (a) the

honeycomb panel and (b) aluminium panel. The honeycomb panel is clamped between the

base and the cover frame sections which are separated by the brace frame. To clamp the

honeycomb panel in the test frame without putting extensivestresses on the outer edges,

rubber bands were inserted along the panel perimeter. The aluminium panel is directly

clamped between the base and the cover frame. As indicated inFigure E.4(b) the aluminium

panel only overlaps with the test frame sections by about 1/2inch (12.7 mm) along each

edge unfortunately. This caused uneven stress distribution in the test frame when the base

and cover frame were friction-locked by tightening the 18 screws. This introduced uneven

in-plane loading on the aluminium panel.
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Figure E.4: Schematic view of the aluminium frame cross-section with (a) honeycomb panel and (b) the
aluminium panel.
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For future experimental studies, thin panels that are directly clamped between the base and

cover frame should be fabricated to the frame outside dimensions and fitted with 18 through

holes so that an even stress distribution in the friction-locked test frame is guaranteed. For

further tests on sandwich panels with a thickness between 0 and 1/2 inch (12.7 mm) an

additional height-adjustable inner frame has been designed but not yet assembled.

E.1.2 Panel boundary conditions

Figure E.5 shows the experimental results for the plain honeycomb panel when mounted

in the test frame for shaker excitation. Also shown are the simulation results for the hon-

eycomb panel assuming pinned or clamped boundary conditions on all edges, for point

force excitation. The measured results fall between the predicted responses for pinned and

clamped boundary conditions but are closer to pinned. For simplicity pinned edges are

therefore used in the simulations. The magnitude of the resonant responses are also lower

than those from the simulation results, which use the structural loss factor that has been

estimated from the experimental studies on the freely supported honeycomb panel (see Ap-

pendix D). This indicates that the in-situ mounting conditions of the honeycomb panel

introduce additional structural damping.

Figure E.6 shows the experimental results for the plain aluminium panel when mounted in

the test frame for shaker excitation. Also shown are the simulation results for the aluminium

panel assuming pinned or clamped boundary conditions on alledges, for point force exci-

tation. The natural frequencies for the aluminium panel were higher than those predicted

for pinned boundaries and also higher than those for clampedboundary conditions. The

measured results therefore suggests that the response of the aluminium panel is affected

by in-plane loads due to non-perfect mounting conditions. Also the aluminium panel was

slightly curved due to the manufacturing process and storage conditions, which is expected

to shift the panel resonances towards higher frequencies. With a thickness of 1.6 mm the alu-

minium panel has a considerable transverse stiffness, therefore it is problematic to straighten

existing static deformations of the panel. At the time of themeasurements it was not clear

how the mounting conditions of the existing aluminium panelcould be improved. It was

therefore decided to accept the initial in-situ boundary conditions and to represent it in the

simulations using clamped boundaries.
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Figure E.5: a) Measured and predicted panel kinetic energy and b) radiated sound power for thehoneycomb
panel due to point force excitation; measured with laser vibrometer (solid); simulated for pinned boundary
conditions (dashed) and predicted for clamped boundary conditions (dotted).
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Figure E.6: a) Measured and predicted panel kinetic energy and b) radiated sound power for thealuminium
panel due to point force excitation; measured with laser vibrometer (solid); simulated for pinned boundary
conditions (dashed) and predicted for clamped boundary conditions (dotted).
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E.1.3 Excitation arrangements

Shaker excitation

To investigate the performance of the control system for panels excited by a single point

force, an electrodynamic shaker was attached to the panels via a force gauge, where the

location of the force excitation is defined in Figure E.3. As shown in Figure E.7 the shaker

was mounted on a wooden brace, which was attached to a heavy steel framed stand. A

force gauge is used to measure the force input into the panel which is used as the reference

excitation signal.

a) b)

Figure E.7: Pictures of the shaker arrangement on the sourceside of the panel.

Loudspeaker excitation

To investigate the performance of the control system for acoustically excited panels, a loud-

speaker was placed in the source room at about 80 cm from the panel surface so that the

panels were predominantly excited by the loudspeaker direct field. As shown in Figure E.8,

the loudspeaker was resiliently mounted on a stand with a height of 1.04 m, where the front

of the loudspeaker was slightly elevated to tilt in the vertical plane. The loudspeaker was

then placed in front of the transmission window with angle of30◦ to the plane of the test

panel. The aim of the loudspeaker arrangement shown in Figure E.8 was to expose the

panels to the direct acoustic field produced by the loudspeaker and to realise a non-normal

incidence angle for the acoustic waves.

For the loudspeaker excitation, the voltage input to the loudspeaker was measured and used

as the reference excitation signal. The effects introducedby the loudspeaker and by the

source room responses have been considered by correcting the measured responses on the
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receiver side of the panel with the magnitude of the transferfunction between the loud-

speaker input voltage and the spatially averaged sound pressure measured in close proxim-

ity to the panel surface on the source side. These correctionspectra are shown in Figure E.9;

they roughly resemble the inverse of the loudspeaker frequency response characteristics.

The transfer function between the loudspeaker input voltage and the sound pressure in close

proximity (2 to 5 cm distance) to the panel surface was measured at 18 randomly distributed

points for both panels. The correction terms for both panelsare very similar so that it can be

assumed that the contribution of back-radiated sound from the panels is negligible compared

with the incident sound pressure field.

a) b) c)

Figure E.8: Pictures of the loudspeaker arrangement in the source room.
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Figure E.9: Spectra of the correction term for loudspeaker excitation. Measured for the honeycomb panel
(solid− red) and results measured for the aluminium panel (dashed− blue).
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E.1.4 Measurement arrangements

Laser vibrometer measurements

As shown in Figure E.10(b), on the receiver side a laser vibrometer was used to measure

the response of the panel on a grid of 16x20 points. The panel kinetic energy and radiated

sound power are estimated using the formulations for the ‘elemental approach’ described in

Chapter 2. The panel is assumed to be subdivided into a uniformgrid of elements and the

grid of measured panel velocities represents the velocities at the centres of the elements.

The panel kinetic energy and radiated sound power are then estimated using Equations

(2.11) and (2.14) respectively. This methodology of estimating the radiated sound power

from panels has previously been demonstrated by Bai and Tsao [72].

Figure E.10(a), gives the relative location and orientation of the laser vibrometer head with

respect to the test panel surface. The laser vibrometer headwas arranged such that the laser

neutral axis was perpendicular to the plane of the panel at the panel centre.

A critical issue for laser vibrometer measurements is the signal quality of the reflected laser

beam. To guarantee high signal quality it was necessary to treat the panel surfaces in order

to improve the light scattering properties. For the aluminium panel the light scattering

properties were improved by sanding the receiving side surface with very fine sandpaper.

The carbon texture of the honeycomb panel surface gave relatively poor signal quality so

that it was necessary to improve the scattering properties of the surface on the 16x20 point

measurement grid using using small patches of reflective tape as shown in Figure E.10.

a) b)

82 cm

3
8

.1
 c

m

26.2° vertically
32.4° horizontally

Laser
Test panel

Figure E.10: Laser vibrometer set-up; (a) schematic view oflaser and panel geometry and (b) picture of laser
vibrometer arrangement in the receiving room.

The benefit of the laser vibrometer measurements is that theyallow the estimation of both

the panel kinetic energy and the radiated sound power. Also the measurements are relatively
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insensitive to background noise and flanking sound transmission. The main drawback is the

high number of measurement points that need to be sampled to optain the response accu-

rately, particularly if measurements are conducted up to mid and high audio frequencies.

This results in long measurement times and a large amount of measurement data.

Microphone measurements

As shown in Figure E.11, the radiated sound power was also estimated from sound pressure

measurements using a hemispherical grid of nine microphones, assuming hemi-anechoic

conditions in the receiving room. The procedure employed followed those described in the

relevant ISO standard [65]; it should be noted however that the receiving room used does not

meet the strict standard requirements and that the chosen microphone arrangement, shown

in Figure E.11 (a), is also different from that described in the ISO standard.

The main benefit of the microphone measurements is the relatively short time needed to

conduct an individual measurement. This benefit is counterbalanced by the relatively high

effort to set up the measurement grid and microphone channels. Also the microphone mea-

surements only allow the estimation of the radiated sound power but not that of the panel

kinetic energy. The measurement results are sensitive background noise and flanking sound

transmission and therefore pose stringent requirements onthe receiving room acoustics and

the efficient suppression of possible flanking paths. Further limitations of the accuracy of

the results may arise from the small finite number of microphones used in the grid. This is

particularly an issue for panels that exhibit distinctive non-uniform radiation characteristics.
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a) b)

60Measures in cm
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Figure E.11: Microphone array set-up; (a) schematic view ofmicrophone array geometry and (b) picture of
microphone arrangement in the receiving room ISVR (13/4060).
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Figure E.12 shows good agreement between the radiated soundpower obtained from the

laser vibrometer measurements and from the microphone measurements. At frequencies

below 250 Hz, the acoustic measurements were found to be slightly contaminated by the

resonant response of the receiving room and possible also bylow frequency flanking sound

transmission. This is an expected effect as the 30 cm deep foam wedges used to treat the

surfaces in the receiving room only start efficient absorb sound above 250 Hz where the

wedge depth exceeds a quarter of the acoustic wave length. Also the honeycomb panel was

found to have a strong radiation directivity so that a sampling via nine microphones may

not yield sufficient results.
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Figure E.12: Radiated sound power for shaker excited panels; radiated sound power from the aluminium
panel (left) and radiated sound power from the honeycomb panel (right) on a linear frequency scale (top)
and logarithmic frequency scale (bottom); Laser measurements (solid) and Microphone array measurements
(dashed).

E.2 Complementary measurement results

E.2.1 Results from microphone measurements

This section presents the microphone experimental resultsfor the radiated sound power of

the panels without control units and with open and closed loop control units. As discussed

above, the results generally are in good agreement with the laser vibrometer experimental

results, which are presented and discussed in Chapter 5.
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Figure E.13: Radiated sound power measured using a grid of microphones. Aluminium panel (left) and
honeycomb panel (right), shaker excitation (top) and loudspeaker excitation (bottom).
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Figure E.14: Change in the radiated sound power measured using a grid of microphones. Aluminium panel
(left) and honeycomb panel (right); shaker excitation (top) and loudspeaker excitation (bottom).
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E.2.2 Results for panels with lumped point masses

Additional measurements with lumped masses were conductedin order to compare the pas-

sive inertia effects produced by small blocks of steel, shown in Figure E.15, and the passive

and active effects produced by the control units with equivalent mass. In this study the con-

trol actuators were replaced with lumped masses of either 11grams or 35 grams, where the

11 gram masses represent the mounting mass of the actuators including the voice coil and

the 35 gram mass represents the total mass of the actuators. The accelerometer sensors on

the opposite side of the panel remained in place to account accurately for the total base mass

of the actuators. The results for panel kinetic energy and radiated sound power presented

here were measured using the laser vibrometer.

11 gram 35 gram

Figure E.15: Equivalent lumped masses

Figures E.16 and E.18 show the measured narrow-band panel kinetic energies and radiated

sound power for the plain panels and the panels fitted with the11 gram and 35 gram equiva-

lent lumped masses. Figures E.17 and E.19 show the changes inkinetic energy and radiated

sound power in 1/3 octave band spectra. The results indicatethat the added lumped masses

shift the resonances of low order structural modes towards lower frequencies but do not

introduce damping. At low frequencies this results in a shift of kinetic energy and radiated

sound power spectra between frequency bands. The 1/3 octaveband spectra indicate that

at higher frequencies the added lumped masses do not producea significant net broad-band

reduction of the panel response and radiated sound power. Asdiscussed in Chapter 4, well

below the actuator fundamental resonance, the base impedance of the control units corre-

sponds to that of the total lumped mass of the actuators. However, the actuator fundamental

resonance is well below the fundamental resonances of both of the panels so that the 35

gram lumped mass does not give a good representation of the control unit inertia effects in

the mid and high audio frequency range. For high frequenciesthe base impedance of the

control units converges to the impedance of the actuator base mass. Therefore the 11 gram

lumped masses give a good representation of the actuator inertia effects at higher audio

frequencies.
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Figure E.16: Measured response and sound power radiated forshaker excitation. Aluminium panel (left)
and Honeycomb panel (right); Panel kinetic energy (top) and radiated sound power (bottom).

10
2

10
3

−20

−15

−10

−5

0

5

10

15

d)

Frequency [Hz]

C
ha

ng
es

 in
 P

ra
d [d

B
]

 

 

10
2

10
3

−20

−15

−10

−5

0

5

10

15

b)

Frequency [Hz]

C
ha

ng
es

 in
 E

ki
n [d

B
]

 

 

10
2

10
3

−20

−15

−10

−5

0

5

10

15

c)

Frequency [Hz]

C
ha

ng
es

 in
 P

ra
d [d

B
]

 

 

10
2

10
3

−20

−15

−10

−5

0

5

10

15

a)

Frequency [Hz]

C
ha

ng
es

 in
 E

ki
n [d

B
]

 

 
11 gram masses
35 gram masses

11 gram masses
35 gram masses

11 gram masses
35 gram masses

11 gram masses
35 gram masses

Figure E.17: Change in the panel kinetic energy and radiatedsound power forshakerexcitation, evaluated in
1/3 octave bands. Aluminium panel (left) and honeycomb panel (right); Ekin (top) and Prad(bottom).
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Figure E.18: Measured response and sound power radiated forloudspeakerexcitation. Aluminium panel
(left) and Honeycomb panel (right); Panel kinetic energy (top) and radiated sound power (bottom).
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Figure E.19: Change in the panel kinetic energy and radiatedsound power forloudspeakerexcitation, evalu-
ated in 1/3 octave bands. Aluminium panel (left) and honeycomb panel (right); Ekin (top) and Prad(bottom).
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