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This thesis is concerned with solutions of noncommutative integrable systems where
the noncommutativity arises through the dependent variables in either the hierarchy or
Lax pair generating the equation.

Both Chapters 1 and 2 are entirely made up of background material and contain no
new material. Furthermore, these chapters are concerned with commutative equations.

Chapter 1 outlines some of the basic concepts of integrable systems including historical
attempts at finding solutions of the KdV equation, the Lax method and Hirota’s direct
method for finding multi-soliton solutions of an integrable system. Chapter 2 extends the
ideas in Chapter 1 from equations of one spatial dimension to equations of two spatial
dimensions, namely the KP and mKP equations. Chapter 2 also covers the concepts of
hierarchies and Darboux transformations. The Darboux transformations are iterated to
give multi-soliton solutions of the KP and mKP equations. Furthermore, this chapter
shows that multi-soliton solutions can be expressed as two types of determinant: the
Wronskian and the Grammian. These determinantal solutions are then verified directly.

In Chapter 3, the ideas detailed in the preceding chapters are extended to the non-
commutative setting. We begin by outlining some known material on quasideterminants,
a noncommutative KP hierarchy containing a noncommutative KP equation, and also two
families of solutions. The two families of solutions are obtained from Darboux transfor-
mations and can be expressed as quasideterminants. One family of solutions is termed
“quasiwronskian” and the other “quasigrammian” as both reduce to Wronskian and Gram-
mian determinants when their entries commute. Both families of solutions are then verified
directly. The remainder of Chapter 3 is original material, based on joint work with Claire
Gilson and Jon Nimmo. Building on some known results, the solutions obtained from
the Darboux transformations are specified as matrices. These solutions have interesting
interaction properties not found in the commutative setting. We therefore show various
plots of the solutions illustrating these properties.

In Chapter 4, we repeat all of the work of Chapter 3 for a noncommutative mKP
equation. The material in this chapter is again based on joint work with Claire Gilson
and Jon Nimmo and is mainly original.

The original material in Chapters 3 and 4 appears in [20] and in [21].

Chapter 5 builds on the work of Chapters 3 and 4 and is concerned with exponentially
localised structures called dromions, which are obtained by taking the determinant of the

matrix solutions of the noncommutative KP and mKP equations. For both equations, we



look at a three-dromion structure from which we then perform a detailed asymptotic anal-
ysis. This aymptotic forms show interesting interaction properties which are demonstrated
by various plots. This chapter is entirely the author’s own work.

Chapter 6 presents a summary and conclusions of the thesis.
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Chapter 1

Introduction

1.1 Sir John Scott Russell’s observation of a solitary wave

The solitary wave can be traced back to 1834 when Sir John Scott Russell observed what
he called the “great wave of translation” on the Union Canal in Scotland. Reporting his
observation in [47], he described the physical characteristics of a mass of water put in
motion by the sudden stoppage of a horse-drawn boat. According to Russell, the mass of
water
...rolled forward with great velocity, assuming the form of a large solitary elevation,
a rounded, smooth and well-defined heap of water, which continued its course along the
channel apparently without change of form or diminution of speed.
Russell then attempted to recreate this phenomenon in laboratory experiments where
he created solitary waves by dropping weights at one end of a water channel. He then

deduced that the speed of a solitary wave, ¢, is given by

c=+v/g(h+a), (1.1)

where a denotes amplitude, A is the undisturbed depth of the water and g is the acceleration
of gravity. From equation (1.1) it is clear that taller waves travel faster. Continuing on a
mathematical theme, Boussinesq (1871) and Lord Rayleigh (1876), used (1.1) in order to
find an expression for the wave profile. They showed that the wave profile z = ((z,t) is

given by

C(z,t) = asech? (B(z — ct)), (1.2)
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3a
b= \/ 4h?(h + a)

<< 1. Equation (1.2) represents a right-travelling wave with amplitude

where

for a > 0 and
a, wavelength = and speed c.

1.2 The Korteweg-de Vries equation

Despite being able to derive (1.2), neither Boussinesq or Lord Rayleigh managed to find an
equation governing this wave profile. However, in 1895, Korteweg and de Vries were suc-
cessful in finding a mathematical schematization to describe Russell’s observation. They
developed a nonlinear partial differential equation which governs one-dimensional waves.
The celebrated Korteweg-de Vries [6] (normally abbreviated to KdV) equation is

@
ug + —ﬁumx + %uuw =0, (1.3)
Y Y

where the subscripts denote partial differentiation and «a, 8 and ~ are constants. Equation
(1.3) is a general form of the KAV equation. In this thesis, we will use the following version

of the KdV equation:
Ut + Ugge + Ouug = 0. (1.4)

To find a solitary-wave solution of equation (1.4), we let u = [(z — ct) = [(&) for some

constant ¢ > 0 so that our solution is a right-travelling wave. Therefore [ must satisfy

—c +6ll +1" =0, (1.5)
where ' = d%. Integrating equation (1.5) once gives
—d+3%+1" =0, (1.6)

where C] is an arbitrary constant. Multiplying both sides of equation (1.7) by ' and
integrating again yields

1
—SPHP S =i+ Oy, (1.7)

where Cs is an arbitrary constant. By setting Cy = Cy = 0 so that we have a wave which
has | — 0, — 0 and I” — 0 as & — 400, we have the first-order ordinary differential

equation

' = +iVe—2l. (1.8)
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By making the substitution [ = %sech2 6, equation (1.8) leads to the solution

u(z,t) = gsech2 <\é6($ et — m) , (1.9)

where the choice + has been eliminated since the solution is an even function, and xg is
an arbitrary constant. In fact, zg plays an important role in the behaviour of the solution:
it is the phase constant — the position of the peak of the wave at ¢t = 0.

Some time passed before the KdV equation was shown to possess multi-soliton solu-
tions. In 1965, Zabusky and Kruskal [33] considered the initial-value problem for a version

of the KdV equation
Up + Uy + 02 Uppy = 0. (1.10)

They solved this equation with u(z,0) = cos(nz),0 < x < 2 and u, Uy, Uyy, periodic on
[0,2]. Their results showed that the initial profile seperated into eight sech?-like functions
propagating around the system with different speeds. The sech?-like functions collided
but emerged from interaction with all of their characteristics preserved. This is as a result
of the balancing of the nonlinear and dispersive terms in the equation. Owing to these
particle-like properties, Zabusky and Kruskal termed the solitary-wave solution a soliton,
where the suffix -on indicates a particle. Whilst no precise mathematical definition of
the soliton exists, Drazin and Johnson define solitons in [9] as any solution of a nonlinear

equation (or system) which:
1. represents a wave of permanent form;
2. is localised, so that it decays or approaches a constant at infinity;

3. can interact strongly with other solitons and maintain its identity.

1.3 The Lax method

In 1968, Lax presented a method [35] which represents nonlinear evolution equations with
differential operators that are linear in . The work of Lax requires two operators, L and
M, which operate on elements of L?(R), the space of integrable functions on the real line,
endowed with an inner product

+00

(6, 0) = Py dx. (1.11)

—00
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Both L and M are self-adjoint so that (L[¢], ) = (¢, L[¢]) and (M[p],v) = (¢, M[¢])
V¢, € L*(R). In the spirit of finding exact solutions via inverse scattering, one has the

spectral problem

Ly = A, (1.12)

so that v is an eigenfunction for L with eigenvalue A. In addition, the eigenfunction 1

evolves in time according to

Ve = M[Y]. (1.13)

Lax showed that if equations (1.12) and (1.13) both hold, then the operators L and M
satisfy the relation

Li+[L,M] =0, (1.14)

where [L, M] = LM — ML denotes the commutator of L and M. To see this, we differ-
entiate both sides of (1.12) with respect to ¢ and then substitute equation (1.13) into the

resulting equation. Doing so gives

Aetp = L[] + Llthe] — My
= Li[yp] + LM[Y] — M[A)]
= L[] + LM[)] — M L[]
= (L + [L, M])[¢]. (1.15)
Solving equation (1.15) for nontrivial eigenfunction ¢ and choosing A; — 0 gives equation

(1.14). Since \; vanishes, every eigenvalue of L is a constant. Throughout this thesis, we
use a more convenient but equivalent form of (1.14), by incorporating J; into the operator
M.

The KdV equation (1.3) provides us with a prototypical example of the Lax represen-

tation. If we choose the operators

Lyay = 03 +u,
Myay = 402 + 6ud, + 3u, + 0y, (1.16)
then
[Lxav, Myav][¥] = (ut + tgzs + 6uug) . (1.17)

Therefore, we must have that [Lykayv, Mxay] = 0 if and only if u is a solution of the KdV
equation. When a nonlinear evolution equation can be represented in this way, it is said

to have a Lax representation and the two operators used are referred to as a Laz pair.
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1.4 The modified KdV equation

By making a simple modification to the nonlinear term in (1.3), we obtain the modified

KdV (abbreviated to mKdV) equation
Wi + Wege — 6w wy = 0, (1.18)

which will play an important role in what follows. In 1968, Miura [39] showed that if w

satisfies equation (1.18), then w, defined by
u=—(w?+ w,), (1.19)
satisfies the KdV equation (1.3). Substituting (1.19) into (1.3) gives
(2w + 0;) (W + Way — 6w wy) = 0. (1.20)

Therefore, every solution of the KdV equation (1.3) can be obtained from a solution of
the mKdV equation (1.18). However, the converse of this statement is false.
Equation (1.18) also has a Lax representation: it can be thought of as the compatibility

condition of the operators

Lyxav = ag% + 2w0y,

Moxcay = 403 4+ 12002 + 6(wy + w?)0y + 0. (1.21)

1.5 Hirota’s direct method

Hirota proposed the direct method [28] in 1971. Hirota’s method transforms an evolution
equation into a type of bilinear differential equation via a transformation of the dependent
variable. From this platform we can find exact solutions. In devising this method, Hirota

introduced a new differential operator, the D-operator:

. o o\ /o oa\"
D' D"(a-b) := (&E - 81:’) (825 - 815’) a(z,t)b(2',t) , (1.22)

=z, t=t'
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for nonnegative integers [ and m. For example

Dth (CL . b)

0 0 0 0
= <(‘9:1: - &W) <8t - 8t’> a(z, t)b(z", 1)

0 0
= <8x - 8x’> (atb — aby)

= agztb — azby — atby + abyy

z=xz/ t=t'

r=z' t=t'

r=x’, t=t'

= axtb — ambt — atbx + abxt.

There are many properties of the D-operator that can be called upon to assist in solving

differential equations. In what follows, the following three properties will be utilised:

Dth (a . 1) = Ayt = Dth (1 . a) 5 (123)
D?c (a'l) = Qgzzx :Di (l'a)7 (1.24)
DD exp A1 - exp Ay = (A — X2)™ (A3 — A3) " exp (A1 + Ay), (1.25)

where A; = \j(x — )\?t) + Aip, ¢ = 1,2 and )\, is the phase-constant.
Exact solutions of the KdV equation can be found using Hirota’s direct method. The

first step is to make the dependent variable transformation
u=2(log 7)zz. (1.26)
Substituting directly into the KdV equation (1.4) gives an equation involving 7:
TatT — TaTt + ToeeeT — YTazaTe + 372, = 0. (1.27)
Using the D-operator, we can express equation (1.27) as
(DyD;y + D717 =0. (1.28)
To find the solution 7, we expand it as a power series in € << 1:
T=1+en +Em T+ (1.29)
Substituting the above equation into (1.28) and collecting terms in each order of € gives

€:Dy(Di+D3)(ry - 141-7) =0, (1.30)
¢ :Dy(Dy+D3)(rg- 147 -1 +1-7) =0, (1.31)

e D, (Dy —|—D§§)(Tg A+7m-m+m-m2+1-13)=0, (1.32)
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Properties (1.23) and (1.24) of the D-operator imply that the coefficient of e (1.30) is
equivalent to

a (0 3
One solution of the above equation is

=M. (1.34)

Using properties (1.23) and (1.24) of the D-operator, (1.31), the coefficient of €2, can be
written as
0 (8 ok

250 ot T s

B > Ty = —Dy(D¢ + D)1y - 7. (1.35)

Upon substitution of (1.34) into (1.35), and using property (1.25) of the D-operator, we

obtain

o (0 o3

2— | =+ =— = 0. 1.36
o <8t+6x3>7_2 (1.36)

We may choose the solution of equation (1.36) to be 72 = 0. Similar calculations apply for

T, and we may choose 7, = 0, n = 2,3,..., for all z,t. The expansion of 7 can therefore

be truncated at 7 = 1 4 er. Substituting this expression for 7 into (1.26) gives

u =2 (log (1 + eAl))

zx’

1 1
= 5)\% sech? <2A1> , (1.37)

in which e has been absorbed into the phase-constant \;,. Equation (1.37) represents a
travelling wave solution.

Hirota’s method can also be used to find the two-soliton solution of the KdV equa-
tion. Consider equation (1.33). Since this equation is linear in 71, we may use the linear

superposition principle and choose the solution
= eM e,

Upon substitution of this choice of 7 into the coefficient of €2 and using property (1.25),

we obtain

o (o 0 B 4 (Ar+As)
2% <8t + M’) T9 = *2()\1 - )\2) (& y (138)
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2
which has solution m = (%) eM+42) - Using (1.23), (1.24) and substituting 7; and

75 into the coefficient of €3 gives

o (0 o3

— =+ == =0. 1.39

oz <8t + 81:3) & (1.39)
We choose 73 = 0 as a solution of (1.39) and may then choose 7,, =0, n = 3,4,..., for all

x,t. The expansion of 7 can therefore be truncated at 1 4 er; + €275. So we have

2
T=1+¢ (eAl + eAQ) + €2 <§1 I_ ;z> e(h1+h2), (1.40)

By substituting (1.40) into (1.26) and absorbing e into the phase-constants, the two-soliton

solution can be written as

u=2 (log (1 +ettpehr g alge(A1+A2))) , (1.41)

Tx

in which

do — <)\1—>\2>2
L UVIN Y

I OYERY 2

then by writing a;; = e/lis | the n-soliton solution can be expressed as

Hirota showed that if

i (n)
T = Z exp Z%‘Az‘ + Z Aijwiwj )
n=1

i<j
where ) is the summation over all possible combinations of w; = 0,1, wy = 0,1, ...,
wp, = 0,1 and ZZ(Z)J is the summation over all possible pairs (i, j) where i,7 € {1,2,...,n}

and i < j.

1.6 Summary

In this chapter, an historical account of the soliton and its association with the KdV equa-
tion was discussed, as well as some elementary ideas from integrable systems which help
lay the foundations for the material in this thesis. An outline of the construction of soliton
solutions obtained from Hirota’s method was given and will be referred to in the next chap-
ter for equations in two spatial dimensions. Later in this thesis, we shall see that Hirota’s

method cannot be used to find soliton solutions of noncommutative integrable systems. It
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was shown that the KdV equation has a Lax representation and possesses multi-soliton
solutions. The idea of a Lax representation is very important for future chapters as the Lax
pair used is an essential ingredient needed to generate noncommutative equations. Fur-
thermore, Lax pairs are heavily used in Darboux transformations, introduced in Chapter
2, which we later use as an alternative to Hirota’s method for obtaining soliton solutions
of noncommutative equations. We also introduced the mKdV equation and it was shown
that the Miura transformation mapped solutions of the mKdV equation to solutions of the
KdV equation. Most of the original work in this thesis centres around a noncommutative
mKP equation, which can be thought of as a generalisation to two spatial dimensions of
a noncommutative mKdV equation. In this work, in addition to finding soliton solutions,
we also replicate the Miura transformation to map solutions of a noncommutative mKP

equation to solutions of a noncommutative KP equation.



Chapter 2

The KP and mKP equations

In this chapter, we are concerned with generalisations to two spatial dimensions of the
KdV and mKdV equations, which are the Kadomstev Petviashvili (KP) and modified KP
(mKP) equations respectively. Both of these equations are known to have multi-soliton
solutions which can be obtained from Hirota’s direct method. Alternatively, they may
be found from Darboux transformations, which we shall visit later in this chapter. The
solutions can be expressed compactly as determinants and then verified directly. The
main purpose of this chapter is to demonstrate these methods for both the KP and mKP
equations, as the results that we will obtain can be related to noncommutative results in

later chapters. Let us begin with the KP equation, which serves as a prototypical example.

2.1 The Kadomtsev-Petviashvili equation

The KP equation is
(ut + Ugpgz + 6UUL )z + Buyy =0, (2.1)
which can also be written in potential form
(V¢ + Vg + 302) 2 + 3vyy = 0, (2.2)

where v = v,. Kadomtsev and Petviashvili [31] derived the equation in 1971 and it was
subsequently named after them. By neglecting the y-derivative term in (2.1), we recover

the KdV equation (1.4). The Lax pair for the KP equation is

LKP = ai + 'Ul- - 8y, (23)

Myp = 402 + 60,0, + 3vzz + 3vy + O, (2.4)

16
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whose compatibility condition [Lkp, Myp] = 0 gives (2.2).

2.1.1 The KP hierarchy

The KP hierarchy is an infinite set of nonlinear evolution equations in infinitely many
functions u,u1,us, ... of the infinitely many variables x1,z9,x3,.... There are various
approaches to constructing this hierarchy. In this thesis, we use the method of Gelfand
and Dickii [15] and Sato [5,48].
To construct the hierarchy, we need the following extended version of the Leibnitz rule:
diu = Z <;> % 9i-, (2.5)
Jj=0

for i € Z. We define the binomial coefficients in (2.5) to be

O Vs o
j) T\ DGt

JjG-1-1

-1 -1 -1
-1, _ -1 —2 -3
0, u= ( 0) ul, =~ + ( 1) Uy 0y - + < 2> Ugzr Oy ° + ...

-1 _9 _
= ud; b — up0; % 4 g0y — ..,

For example,

07 %u = ud; 2 — 2uu0,3 + Bug 0, — ..,

073U = ud; 3 — Bugd;t + 6ug 0,0 — ...

Construction of the KP hierarchy also requires the use of a pseudodifferential operator

L= uoi,
€L

of order < a. Associated with this pseudodifferential operator we consider natural projec-

tions P>y, such that

1>k

For the KP hierarchy, we use the pseudodifferential operator
P -2 -3
Lyp = 0z + iuﬁx +u0, " +uz0,” + ... .. (2.6)
Let £ = Lxp. Then the KP hierarchy is defined to be

Ly, = [P>0(L9),L], ¢=1,2,3,.... (2.7)
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In general, the operators P>o(L£?) will be differential operators of order ¢ associated
with the fields w,ug, ..., uq—1. The first three natural projections P>q(L?) are
P>o(L) = O,
PZ()([,Q) = 83% + u,
3 3 3 3
on([, ) = 833 + §u8x + §Ux + 3UQ.

Thus, the evolution equation (2.7) gives

uxl = u{l‘a
U2 = U2,
Loy = [P>o(£), L] & o ’ (2.8)
U3z, = U3,
Uy = Ugy + dug,
Uoy =  Uogy + 2U3y. + Lou ,
Loy = [Poo(c?), 0] { ™ o T 2 g 2.9)
Uy = Usgy + 2Udy — 3UUZz + 2U2Uyg,
ut = Ugzr + 3uu:v + 6“230&6 + 6u3a:a
Loy =[P>0(L%), L] & usy = usgws + 3(utiz) s + 3uges + 3z, (2.10)

where we have set x1 = x, xo = y and x3 = t. These are the first three equations of the KP
hierarchy. Other equations for £, = [P>o(£9), £] may also be considered for ¢ = 4,5, .. ..

By integrating with respect to x, we can recursively express the fields wuo,us,... in
terms of u and its z- and y-derivatives. The fields uo,us,... can then be eliminated
through (2.9) allowing us to rewrite the first component in (2.10) in terms of u and its

x- and y-derivatives. The equation we obtain is the KP equation (2.1), where the scaling
t — —4t has been made.
2.1.2 Wronskian solutions obtained from Hirota’s method
When working in two spatial dimensions, the D-operator is defined by
DLDI"Dya-b (2.11)

o aN'/o o\N"/a o\"
:<8x_8x’> (ay_ay') (8t_c‘9t’> a(z,y, )b(a, y', )

)

r=x',y=y', t=t'
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for nonnegative integers [, m and n.

The dependent variable transformation for the KP equation is
u = 2(log 7)z- (2.12)
Substituting this into the KP equation (2.1) gives the bilinear form of the KP equation:

TTat — TaTt + TTagaw + 3Tap — 4TaTaze + 37Ty — 37, =0, (2.13)

(D3 + Dy Dy +3D2)7 -7 = 0. (2.14)

Soliton solutions are obtained by using the same perturbation method outlined in Chapter

1. For the one-soliton solution, we truncate the series at 7 = 1 + €7y, so that
=1+ eAl,

where Ay = m — 1 + A1y, m = p1(@ + pry — 4p)t + e M = @i + iy — 467)t + 71,
D1, q1, Mg, Y1, are constants and A, is the phase-constant. Then we have the one-soliton

solution
u = 2(log(1 + €*))ya,
1 1
— 5(pl — q1)2 sech? (2/\10) ,

where € has been absorbed into the phase-constant Aq,,.

For the two-soliton solution, we obtain

re 1o gete p PLTP)@ = ®) (ryns) (2.15)

(1 — @2)(q1 — p2)

Let us now define the functions
91, = el + 6%7

in which n; = pi(2 + piy — 4p7t) +Ms v = qi(z + qiy — 4g7t) + 71, and p;, g, M1y, 11, ave
constants, for : =1,2,...n.
We can then show that the two-soliton solution, as given by (2.12), is equivalent to the

Wronskian

0, 0
W(b1,02) = (2.16)
01,:(; 02@

= (g2 — q1)€71+f\/2 <1 + q2 — P1 oM + P2 —q1 o2 + P2 —p1 €A1+A2> o (2.17)
q2 — q1 q2 — q1 q2 — q1




CHAPTER 2. THE KP AND MKP EQUATIONS 20

in which A; = n; — v + A4y, ¢ = 1,2 and A;, is the phase-constant. Since u = 2(log 7), is

invariant under the transformation 7 — (ga — q1)e?" 7271,

W(0:,0,) =1+ L7 PLlot | P27AL Ay | P27 DL Arks

a2 —q1 92 —q 92 —q
By choosing A, = log (%) and Ay, = log (%), the Wronskian W(61, 62) may be

written as

(p1 — p2)(q1 — Q2)€(A1+A2)
(p1 — q2)(q1 — p2) ’

which is equal to (2.15). This result has been generalised [12,45] to express the n-soliton

1+l ety

solution of the KP equation as the n x n Wronskian

T=W(01,02,...,0,), (2.18)
where
01 0,
9%1) copth
W(01,09,...,0,) = . _ (2.19)
QYL—I) o 97(171—1)
oAl
and ) .= IR

By choosing p,, > ¢, > -+ > p1 > q1, the Wronskian (2.19) is positive-definite and the
n-soliton solution is regular.
Solutions of the KdV equation can be recovered by setting p; = —¢; = \;. For example,

the one-soliton Wronskian solution of the KP equation reduces from
=—(p1 — h | =A
u=5(p1—q) sec (2 1)
to

u = 2)\] sech? (A;(z — 4A31)) .

2.1.3 Wronskian solutions obtained from Darboux transformations

In this section, we introduce an alternative method to Hirota’s for finding multi-soliton
solutions of a nonlinear evolution equation.
As far back as 1882, the French mathematician Jean Gaston Darboux proved [13] that

the Sturm-Louville equation

— +A—v()y =0, (2.20)
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with v as a fixed solution, is covariant with respect to the transformation

d
yeﬂiﬁ—%w’ly and v — 0 = v —2(log(¥)), -

Darboux’s result means that ¢ satisfies the Sturm-Louville equation (2.20) with potential
0, so that

d*j I

Almost a century later, in 1979, Matveev [37] realised that a similar covariance property

as Darboux’s for the Sturm-Louville equation holds for all equations of the form

n g f
fi= mZ::OUmW’ (2.21)
where f = f(z,t) and v = v(x, t).

Returning to the KP equation, let 6 = 0(x,y,t) be an eigenfunction for Lyxp and Myp

so that Lgp[f] = Myp[f] = 0, which imply
Ope + 00 — 0, = 0, (2.22)
4005 + 60,0, + 30500 + 3vp20 + vy + 60, = 0. (2.23)
Equations (2.22) and (2.23) are of similar form to those proposed by Matveev and are
therefore Darboux covariant. To generate a new solution, we consider another pair of op-
erators I:Kp = GQLKPGQ_I and MKP = GQMKPGH_I in which Gy is an invertible differential

operator. By observing that
[E/Kl% MKP] = GLKP]WKPG*1 - GMKPLKPGil = G[LKP7 MKP]Gil - 07
we can see that I~/KP, My are compatible if and only if Lyp, Myp are compatible.

Definition 1. A Darboux transformation from Lyxp, Mxp to EKP, MKP is defined by Gy =
00,01 such that Gy[0] = 0.

Let ¢ be another eigenfunction for Lyp, Myp. Then
Liw[Gol@]] = GoLirGy ' [Gold]] = Go[Lr[¢]] = Gp[0] =0
and similarly, MKP[Gg [¢]] = 0. Therefore, gZ; := Gyl|¢] is an eigenfunction for Lyp, Myp.
Calculating Lyp gives
Lie = 02 4+ u+2(0,,071 — 6267%) - 9,
=02 +u+2(1og0)ss — 9y

=02+ 11— 0.
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So the effect of the Darboux transformation is that
u—t=1u+2(logh)y. (2.24)

We may conclude that if u is a solution of the KP equation and if L[#] = 0 = M[6)], then

4 satisfies the KP equation too, that is:
(T + 6Tty + Ugyy )z + 3lyy = 0.

Repeating the process of determining @ using Myp gives entirely consistent results. If we

take the trivial vacuum solution u = 0, from L[f] = 0 = M[f] we obtain
Oy =0 and 0; = —40,.,. (2.25)
We choose the simplest solution of equations (2.25), which is
0 =em+et.

Here, we are using the same notation ~;,7; and A; as in the previous section. Upon

substitution of this choice of # into (2.24), we have the one-soliton solution

1 1
i = — sech? (Al) )
2 2

In 1955, Crum [4] considered iterating Darboux’s result and showed that the iter-
ated solution could be formulated as the Wronskian determinant of eigenfunctions. He
also showed that the Darboux transformation adds an eigenvalue to the spectrum of the
Schrédinger operator: for nonlinear evolution equations such as the KP and mKP equa-
tions, this means that a soliton is added by each Darboux transformation. The key to this
iteration is the transformation of the eigenfunction ¢. Let 6;, ¢ = 1,2, ..., n be a particular
set of invertible, distinct eigenfunctions. Furthermore, let ¢ = ¢ be an eigenfunction for

LKP[I] = LKP and 0[1] = 91. SO

b2 = Gem (D)) = ¢ — 017x91‘1¢

0
R / .
01,:(: ¢x

is an eigenfunction for Lypp,. For the second iteration

th b ¢
0 6y
(b[?’] = G9[2] [¢[2]] = 91,1‘ 02,:(3 ¢x )
91,3: 02 x
Hl,mz 92,ac;t ¢acac

)



CHAPTER 2. THE KP AND MKP EQUATIONS 23
in which 0j9) = ¢(9[4—s,, is an eigenfunction for Lyp(s). Here, we have the linear equations
ei,y = ei,mx and ei,t = _40i,zx:pa

fori =1,2,...,n and we choose the solutions 8; = e + ¢7:.

After n iterations, for n > 1, we have

¢ _ W(91792,~-79n7¢)
AT W04, 05, ., 0,)

(2.26)

where 0 = di)lp—6,- From each Gg[k] we obtain a new compatible Lax pair
Lyppni1), Myppn+1), from which we obtain a new solution Ufp11)- This class of solutions can

be written compactly using the Wronskian determinant. For n > 1, we have:
Ulp+1] = u+2(logW(91,92,. 7971))3533 (2.27)

We can also obtain this family of solutions by transforming the pseudo-differential
operator Lyp. In [43] the authors show how to obtain the one-soliton solution from the
Darboux transformation Lyp = G@L’KPGQ_I.

To see why the Darboux transformation Lxp = GQCKPGgl works, we need the following

lemma [43]:

Lemma 1. Let £ = Lyp. If £ = GoLG, " and ¢ = Gy[¢], then

La, = [P>0(£7), £] = Go(La, — [P>0(L7), L]) Gy
— (687182, — Po(LD6])20 107, L],

(@2, — P2o(LN)G]| = =d(0 [0z, — P>o(LY)0])s + 00 [dw, — P2o(L)¢]|)a-

The notation |[b]| is used to denote multiplication with the function b.
The eigenfunction for the hierarchy L., = [P>0(L?), L], where £ = Lyp, is the function

0 = 0(z, ) satisfying the linear equations
Oz, = P>o(LY)0, ¢=1,2,3,....

The above equations are compatible and may be considered simultaneously for different

q’s. With this definition of the eigenfunction 0, we may deduce from Lemma 1 that

Ly, — [P>o(£),L]=0 and |[¢s, — P>o(L£9)¢]| = 0.
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So if L satisfies the KP hierarchy with eigenfunctions 6 and ¢, then Exq = GQEGe_l
satisfies the hierarchy £, . = [on(ﬁq ) ﬁ] Furthermore, ¢ = Gy[¢] is an eigenfunction for
Lo . = [PZO(EQ), L], so that ¢ satisfies the linear equations

bz, = P>0(LN)D, q=1,2,3,....
Let us now calculate £. We find that

L=00,0"" <ax + %u@;l + w0y % 4+ uzdy? + .. ) 00,1671
=0, + % (u+2(In(0))4s) O+ + <UQ + %ux — by 105" — 0,007 + 95’;03> 9,2
+ ...
So the effect of the Darboux transformation is that
u—U=u+2(In(0))zs,

1
Uy — 1y = Uy + iy — 00 — 0,007 + 602073,

The coefficients of £ will satisfy (2.9) and (2.10). In particular, @ will satisfy the KP
equation (2.1).
By considering n distinct eigenfunctions 6;, i = 1, 2, ...n, the Darboux transformation

can be iterated so that, schematically,
Gopy [2] Copny

EKP[l] - EKP[2] _ ﬁKP[n+1]7

for n > 1. By taking the vacuum solution u = 0, we again obtain (2.26) and (2.27).

2.1.4 Grammian solutions obtained from Hirota’s method

Grammians are determinants of matrices whose entries are in integral form. For the KP

equation (2.1), the solution 7 can be written as the Grammian det(G) [29], where

ca+ [C Oiprde - cin+ [T 01ppda
G = . . . ,
g+ 5 Ouprdr o cpp+ [T Opppda
and, for 7,5 = 1,2,...,n, the ¢; ; are constants. Both ¢; and p;, i = 1,2, ..., n are functions

of z, y and ¢ satisfying the linear equations
ei,y = Hi,zmy ei,t = _49i,mzz;

Pixx = —Piy, Pit = _4pi,xzx-



CHAPTER 2. THE KP AND MKP EQUATIONS 25

By choosing the solutions of these equations to be 6 = €' and p = e, with n; =

pi(z + piy — 4pit) and v; = ¢;(x + qiy — 4¢;t), the one-soliton solution is

in which 7 =1+ ﬁe”‘y, A=n—vand £ =log (TL;) is the phase-constant.

For the n-soliton solution,
u=2(log(7)),, (2.29)

where 7 = det G and the entries in G are of the form

e,

By choosing p, > ¢, > ---p1 > q1, det(G) will be positive-definite and the n-soliton
solution will be regular.
By setting p; = —¢; = A;, we recover solutions of the KdV equation. For example, the

one-soliton solution

u= %(p — q)” sech? (; (A + §>)

1 1
_ 932 2 N2 4 -t
u = 2)\“ sech ()\ <;1: 4)\t—|—2/\log<2)\>>>.

2.1.5 Grammian solutions obtained from binary Darboux transforma-

reduces to

tions

Grammian solutions of the KP equation can also be found using binary Darboux trans-
formations where there are two eigenfunctions transforming. The additional eigenfunction
comes from an adjoint system.

Let H be a Hilbert space with an inner product ( , ), and let A : H — H be
a differential operator. Then there exists a differential operator A" : H — H with the
property (A[a],b) = (a, A[b]) for all a, b € H. This gives us the properties

1. (AB)t = BT AT,
2. AT = A,

3. (A+B)t = AT + B,
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4. If A is invertible, so is A and then (A")~! = (AT = AT

For (matrix) differential operators acting on complex vectors,
+00
(a,b) :/ blada.
—0o0

Then integration by parts gives us (ud.)" = (=1)?0%u’, which we can use for all partial
derivatives in differential operators.

Binary Darboux transformations for the KP hierarchy have been discussed in [44].
However, here we shall only give the construction in terms of the Lax pair.

We now calculate the adjoint of the Lax pair Lgp, Mykp, which is

Ly =02+l + 0, (2.30)

ML, = —492 — 6010, — 3vl, + 3v] — 8. (2.31)

If [Lyp, Myr] = 0, then [Lkp, M) = 0 and the compatibility condition [Lip, Mip] = 0

gives
(u:tr + ulm + GUTUL)I + 3“;534 =0,

which is the adjoint of (2.1), the KP equation.

We have seen that Lyp = G(;LKPG? with Gy = 00,6~'. The adjoint of Lyp is
IJLP = G};LI{PGQ_T which can be rearranged to give LLP = G(;TI:;QPGQ Similarly M;EP =
G;TM}EPGZ. So the Darboux transformation from Lyxp, Mxp to iKP, MKP induces an ad-
joint Darboux transformation in the opposite direction from IN}LP, ]\;IIJLP to LLP, M;ﬁp.

To describe the general form of the binary Darboux transformation, we consider an-
other Lax pair fpr, MKP with eigenfunction 6 such that Gy f/KP, MKP — EKP, ]\;IKP. Then

we have the mapping
Gé_lGG : Lgp, Mgp — f/KP; MKP-

However, this mapping can only be defined if we can determine 6. This can be achieved
by first noticing that, from ker GZ we obtain some nontrivial solution of the equations
L};P[H} = Mip[ﬁ] = 0, which we denote by i(f). The equation G;[i(@)] = 0 is satisfied
by i(6) = #~T. Now, corresponding to 0 € ker Lyp N ker Myp, there exists a solution
z(é) € ker INLIT(P N ker ]\Zf}tp. We can then use the mapping GQ_T : LLP, MIT@ — ﬂLP, ]\leip to
obtain § = iil(Ge_T[p]) for any p € ker L, Nker M. This enables us to define the binary

Darboux transformation for the KP equation.
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Go,p

o~

6
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Lt Mt <" [t art —%= it art
Y,p i(0)

Figure 2.1: Construction of the binary Darboux transformation

Definition 2. For p € ker LLP N ker M;EP, we define Gy , = Gé_le, where 6 = i_l(G;T[p]).
A binary Darboux transformation from Lyp, Mgp to f/KP, MKP is defined by Gy, , such that
G07p [0] = 0'

Figure 2.1 illustrates the construction of the binary Darboux transformation.

To determine the binary Darboux transformation we must calculate 6. We have

0= (G;T[p]yT

where
Q =0, (2.32)
So the binary Darboux transformation is

Go,p=Gy'G, = 00719100071
= 007191 (00 — Q) 67!

=1-0Q719; 1)
A similar calculation gives us
Gyl =1-p0~To 10",
Let v be another eigenfunction for LI(P, Mlip. Then

ELolGy il = Gy Lk Gy 1)) = Gy L[] = Gy o] = o,
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and similarly, M;LP [G;Z[zb]] = 0. Therefore, 1& = G;L[w] is an eigenfunction for I:;&P, M;J.
To calculate @, we use the fact that both Lyp, Myp and fLKp, MKP map to EKP, MKP. So

we have that
u+2(log(0)),, = @+ 2 (log(827(6,p))),, -
Then isolating @ gives
i = u+ 2 (10g(20, ), -

As was the case with the Darboux transformations, the binary Darboux transformation
can be iterated to give an infinite family of solutions of the KP equation. Let 6; be
a particular set of invertible, distinct eigenfunctions of Lyp;,1 and let p; and v; be a
particular set of invertible, distinct eigenfunctions for LLP[Z. 4 for e = 1,2,...,n. Then
the formulae for the nth binary Darboux transformations for the eigenfunction ¢ and the

binary eigenfunction ¢ are:

Q(0,P) Q(¢,P
D) = (6 ) (¢ >/(ﬂ<@,P>)7

Q(O,P) Q(O,y)f
o) = (P : (w ) /]9(@,13)*\

and

QO,P) QP
Q(¢[n+ﬂ7w[n+ﬂ): (@ ; QEZ 1/)3/‘9(@’13)’

In the above formulae, © = (61,6s,...,0,), P = (p1,p2,- .., pn) and Q is defined by (2.32).

The class of solutions uj, ) can be written compactly using the Grammian. For n > 1,

upin) = u+2 (log [0(6, P)

)m : (2.33)

For soliton solutions, we take the trivial vacuum solution u = 0. Then the eigenfunctions

#; and the binary eigenfunctions p; satisfy
ei,y = 9i,1‘1‘7 ei,t = _46i,x$za
Pixx = —Piy, Pit = _4pi,xxx-

Finally, we choose the solutions of the above to equations to be 8 = €™ and p = e™ 7, with
n; = pi(x + piy — 4pit) and v; = q;(x + gy — 4q;t). We then obtain the one-soliton solution
(2.28).
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2.2 The modified Kadomstsev-Petviashvili equation

The mKP equation is

Wat + (Wagy — 6w2wx)$ + 3wyy + 6wywy + 6wy, / wy dx = 0,

which can also be written in potential form

Vi + Vazaz — 6V Vor + 3Vyy + 6VirV, = 0,

29

(2.34)

(2.35)

where w = V,. It originated with Dubrovsky and Konopelchenko in [32]. By neglecting

the y-derivative term in (2.34), we recover the mKdV equation (1.18). The mKP equation

has the Lax pair

Luxp = 02 +2V,:0, — 0y,

Moxp = 402 + 12V,02 4+ 6(Vay + V2 = V) 0y + 0.

2.2.1 The mKP hierarchy

We now construct the mKP hierarchy using a similar analysis to that of the KP hierarchy.

Here, we use the pseudodifferential operator
Loxp =0 +w+ w10, +wad; 2+ .. ..
Let £L = L, xp. The mKP hierarchy is defined to be
Ly, = [P>1(L£9),L], ¢=1,2,3,....

The first four projections are the differential operators:

Ps1(L) = By,
Po1(L?) = 02 + 2w0y,

Po1(L3) = 02 + 3wd? 4 3(wy + w? + wy )0,
Poi(LY) = 03 + 4wd? + (6w, + 4wy + 6w?)d?

+ (4w + 6wy + dwey + 4wy + 12ww, + 12ww )0,

The evolution equation (2.37) gives
Wz = Wg,
Wi, = Wig,

W2, = Wy,

(2.36)

(2.37)

(2.38)

(2.39)
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Wy = Wgp + 20WWe + 2W1g,

w = Wige + 2(wwy)z + 2woy,
Loy = [Por(c?), ] { tes + 2(10n)e + 2. (2.40)

W2y = Wz — 2W1 Wy + 2WWo, + 4Wawo + 2w3,,

| e

wy = Wezr + 3w1x:v + 3w2$ + 3(wwm)x + 3w2wx

Loy = [Po1(L7), L] & +6(ww )., (2.41)
(
Wyy = Wezee + 0Wage + 4Wiges + 4w3x + dwwygy

+10W, Way + 6W W,y + 12ww% + dwdw,

+12wwipe + 18w w1, + 12w wy

Lo, = [Ps1(£Y), L] & o e i (2.42)
+6W Wy + 120w w1, + 24wwwy + 12wwo,

+12w,wa,

where again we have set x1 = z, ©9 = y, x3 = t. These are the first four equations of
the mKP hierarchy. We can eliminate the fields wy,wo, ... by expressing them in terms
of the field w and its z- and y-derivatives. Eliminating w; and wy via (2.40) allows us to
rewrite the first component in (2.41) in terms of w and its z- and y-derivatives. From this

we obtain the mKP equation (2.34), where the scaling ¢ — —4t¢ has been made.
2.2.2 Wronskian solutions obtained from Hirota’s method
The dependent variable transformation [30] for the mKP equation is
VY = log <T> .
T
Substituting this into the mKP equation (2.34) gives the bilinear form [29,30)]
(Dg + Dy)7-7=0, (2.43)

(D3 + Dy — 3D, Dy)# -7 =0. (2.44)

The n-soliton solution of the mKP equation [29] can be expressed as

w=(~1)"log (%),

T = W(el,eg, . ,Hn),
7’— = W(el,xv 02,I7 s 79n,$)7
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in which 0; = e + ¢, n; = p;(x+piy —4p?t) and v; = qi(z + iy —4q?t) fori =1,2,...,n.
Both u = 2(log 7)., and 4 = 2(log 7)., are solutions of the KP equation (2.1).

The one-soliton Wronskian solution of the mKP equation is

o= (3,

= 41— ) sech (5(40) ) sect (a0 +10g (21}, o)

q1
where Ay =m1 — 1.

2.2.3 Wronskian solutions obtained from Darboux transformations

Darboux transformations can also be used to find a family of Wronskian solutions of the
mKP equation. To obtain Wronskian solutions, we use a different differential operator
Gy from the KP equation. For the mKP equation, each of £, xp, Lyukp and M, xp, with

eigenfunction 6, is covariant under the Darboux transformation [41,43]
Go=((0"1)2) 0,07 =1—0(0,)10,.
We focus on L, xp here, using the following lemma [43]:

Lemma 2. Let £L = L,,kxp.

1. If L=60"1£0 and ¢ = 6~'¢ then

Lo, = [P>1(L7), L] = 071 (Lo, — [P>1(L7), £1)0 — [07[0z, — P>1(£7)0]], £],

q

(6, = Po1(LDG| = =072¢|[02, — Po1(L)0] + 07" |[¢a, — Po1(LDY]].  (2.47)
2. If £ =0,'0,L£9;'0, and ¢ = 0, ¢, then

Ly, = [P>1(L£9), L] = 0,1 0(La, — [Po1(L7), L])0; 02 — [0, |02, — P>1(£9)0]2, £],

(@2, — Po1(£9)9)| = ~0260[6z, — Po1(L)0)|e + 65 |[00, — Po1(L)g)la. (248)

The eigenfunction for the hierarchy L, = [P>1(L£7), L], where £ = L,.xp, is the func-

tion 6 = 6(z, z,) satisfying the linear equations
O0r, = P>1(L£7)0, ¢=1,2,3,...

The above equations are compatible and may be considered simultaneously for different

q’s. With this definition of the eigenfunction 6, we may deduce from Lemma 2 that

Ly, — [P>1(£9,L]=0 and |[¢y, — P>1(L£9)¢]] = 0.

q 2



CHAPTER 2. THE KP AND MKP EQUATIONS 32

So if £ satisfies the mKP hierarchy with eigenfunctions 6 and ¢, then fxq = 0L67!
and £~$q = 0,'0,L£0,10, satisfy the hierarchy qu = [P>1(L£9),£]. However, it is the
composition of the two aforementioned transformations that we are interested in here
since this will give us Wronskian solutions. In addition to € and ¢, the constant 1 is a
trivial eigenfunction. Then from part 1 of Lemma 2, £, = L0~ with eigenfunctions

®=0"1¢ and #~'. Using the eigenfunction 6! in part 2 of Lemma 2 gives
L L= ((07))) L 0,L07 (07 = GolG5,

with eigenfunction 5 = ¢—0(0,) ‘¢z So if L satisfies the mKP hierarchy with eigenfunc-
tions 6 and ¢, then £, = GopLG," satisfies the hierarchy £, = [P>1(L9),L]. Further-
more, ¢ = Gy [¢] is an eigenfunction for Exq = [le(ﬁq), E], so that ¢ satisfies the linear

equations
€Z~5xq = Ps1(L9, ¢=1,2,3,....
Upon calculation of £,,xp = G@EGe_l, we obtain [43]
Lok = 0p + (w407 050 — 070,) + (w1 +we + (0710,)2)0, 1 + ...
So the effect of the Darboux transformation is that

- 0
w—>w:w+(log(0>> ,

wy; — W1 = w1 +wy + (eilez)xa

The coefficients of £ will satisfy (2.40), (2.41) and (2.42). In particular, @ will satisfy the
mKP equation (2.34).
Let 0;, ¢ =1,2,...,n be a particular set of invertible, distinct eigenfunctions. Further-

more, let ¢ = ¢ be an eigenfunction for L,kpp = Luxpe and 0] = 61. Then

0
b= 06— 07 b =—| ‘z’/ex
el,x ¢:c
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is an eigenfunction for £, kpp. For the second transformation,

iz O 61 B2 01 014 Oz O
¢[3] =19 — O + Gza /
91,:29: 92,w:v Hl,x:r 92 T 02 92,$ Hl,x:r 02,x:p

01 02 ¢

el,x ‘92,90
= 01,2 92,95 qb:p
Hl,acac HQ,J:m

el,x:c ‘92,361 Qbmc
W(01,02, )

N W(el,xv ‘92,36) ’
in which 9[2] = d)[Q] \ $—0s, is an eigenfunction for £, xpp. In general, for n > 1

W(elv 02’ s 79717 gb)
W(el,xa 02,xa B Hn,x) 7

P = (=1)"

where Q[k] = ¢[k}|¢_>gk. From each Gg[k] we obtain a new covariant L,xp[,+1 from which
we obtain a new solution wp, ). This class of solutions can be written compactly using

the Wronskian determinant. For n > 1, we have

log (W(Gl,eg,...,en)) )
log (W(el,m 92@, Ce ,Hn,m)) x ’

ey = w0+ (1" ( (2.49)

2.2.4 Grammian solutions obtained from Hirota’s method

For the mKP equation (2.35), both 7, and 7,41 can be written as the Grammian deter-

z

minants det(G) and det(G) [29], where the entries of G are of the form

Dj A
g.’, — 5.’. _ 76”71 ’YJ
BTN gi(pi — g))

and the entries of Q’ are of the form

, 1 -
Gij = 0ij+ (1 - > e
i — 4

fori,j=1,2,...,n.

For example, the one-soliton solution is

1 A A
w="(pg) 5 (p — 9)? sech (‘2“") soch (?) , (2.50)

where ¢ = log (ﬁ) and y = log (ﬁ).

For the n-soliton solution,
w = <log (T>) : (2.51)
T xxr
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7

where 7 = det(G) and 7 = det(¢). Both u = 2 (log(7)),.,. and @ = 2 (log(7)),.,,. are solutions
of the KP equation.

By choosing p, > ¢, > ---p1 > q1 > 0o0r 0> p, > g, > -+-p1 > q1, both det(G) and

z

det(G) will be positive-definite and the n-soliton solution will be regular.

2.2.5 Grammian solutions obtained from Darboux transformations

Grammian solutions of the mKP equation can also be found from binary Darboux trans-
formations. We use the same construction as for the KP equation as illustrated in Figure
2.1. As a notational convenience, we denote an element of LLKP N MLKP as p, rather
than p. The equation Gg [i(0)] is satisfied by i(0) = (0~ 1),. To determine 0, we need the
integrals
Q=0;"[p'0,] and Q =0, [pl0],
where
O+ 9 =plo.

We have that

and therefore
(07" =0, (p10)(67")a
=—Q'(07Y),.
We can then isolate 6 by integrating by parts and then taking inverses. Doing so gives
0=(-Q0+0,"(2,07")"
— (o — 9!
=001
Now that we have determined 6, we may obtain
Gopo = 00,1 (071)0(671), 10,07
= 0071910 9,07!

=1-60Q719;1p10,.
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A similar calculation gives
Gyl =1- 0,00 o700,
Let 1 be another eigenfunction for LLKP, M:LKP. Then
Lol Gy i []] = Gy LGl G 0] = Gy L] = Gy 0] =0,

and similarly, M:LKP [G; L[w]] = 0. Therefore, ¢ := G(J_,I)W] is an eigenfunction for ﬁLKP, MJ;KP.

To calculate W, we use the fact that both L,,xp, M, xp and ﬁmKP, mep map to EmKP, mep-

o o (5)). - (=(3),

Then isolating w gives the one-soliton solution

So we have that

w=w+ (log(l —0p'Q71(0, P)))x

Q(6, f
=w+ | log (Qp) pl /Q(G,p)

x

The binary Darboux transformation can be iterated to give an infinite family of solu-
tions of the mKP equation. Let ; be a particular set of invertible, distinct eigenfunctions
of L,xpu+1) and let p; and 1); be a particular set of invertible, distinct eigenfunctions for
L ey for i =1,2,...,n. Furthermore, let © = (61,62,...,6,) and P = (p1, p2,...,pn)-
Then the formulae for the nth binary Darboux transformations for the eigenfunction ¢

and the binary eigenfunction ¢ are:

Q(O,P) Q(¢,P

Q(O,P) Q(O,y)f
V1) = (P : (w ) /]sz(e,m*\

and
Q(O.P) Q¢,P
UPpnt1), Vpngr)) = QE@ ¢; QEz ¢§ /‘Q(@,P)).

The class of solutions wy, ;1) can be written compactly using the Grammian. Forn > 1,

Q(e,p) Pf
Wipt1) = w + | log o , Q0e,P) | . (2.52)

xT
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For soliton solutions, we take the trivial vacuum solution w = 0. Then the eigenfunctions

0; and the binary eigenfunctions p; satisfy
ei,y = 92'7:1:1‘7 ei,t = _49i,:cxx7
Pixxr = —Piy, Pit = *4/01',:1:9:9:-
Finally, we choose the solutions of the above equations to be § = e and p = e™ 7, with

n; = pi(x + piy — 4pit) and ; = q;(x + iy — 4q;t). We then obtain the one-soliton solution
(2.50).

2.3 Direct verification of the solutions

2.3.1 Derivatives of Wronskian determinants

Consider the n-vector © = (61,0s,...,0,)" depending on z; = x and possibly other
variables x9,s3,.... Using the notation ©() to denote the ith z-derivative of © with

respect to x, we can define the Wronskian determinant

@j_19,-
Oxi—1

T:|@<O>,@<1>,...,e<n—1>:det< > 1<ij<n.

The derivatives of 7 with respect to z; can be calculated from the basic result

]-7

n—1
;= 100, 00D el oith . erl|
i=0
For example, since a determinant with two equal rows or columns vanishes,
. =100 e . ern-2 g
Differentiating with respect to = again gives
72w = 0@, 00 02 gt 100 M) o3 ol o),

We can use a partition notation to denote derivatives of the Wronskian determinant
7. If we take a partition A = (A, A2,..., ), a sequence of positive integers, where

A1 > Ay > ... > Ay, then we can write derivatives of 7 as
™ ‘= TSCAl.Z’)\Q...x)\p' (253)
For example,

Taowy = T(21) and Tyiz1 — 7'(12).



CHAPTER 2. THE KP AND MKP EQUATIONS 37

For the Wronskian determinant (2.19) this notation can be used to denote “shifts” in the

index of the columns. For example,

Wy i=| 60 e .. o2 e |
W) :=\ e e® ... o2 e+ \
and in general,
Wi ;:) 00 . g1 g-pth) | @r-1+A) ‘ (2.54)

If © satisfies the linear equations

0, =00, =123, ...

J
then we can write down the relationship between the derivatives 7y and the determinants

Wh;

=Y GWa, (2.55)
w

where the sum is over all partitions p and the matrices Cf( are the character tables for the
symmetric group S,.

Some useful derivatives of T are

7(2) B 1 -1 W(g)
| T(12) i 1 1 W(12)
7(3) 1 -1 1 W)
T(21) = 1 0 -1 W(Ql) ) (256)
| T(®) | i 1 2 1 W(13)
e | [ 1 01— [ owy ]
T(31) 1 0 -1 0 1 W(gl)
T(22) = 1 -1 2 —1 1 W(22)
7'(212) 1 1 0 -1 -1 W(212)
L 7’(14) ] L 1 3 2 3 1 1L W(14) |

The relations (2.56) can be inverted using the formula

W= 1,
A
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where for a partition A = (r™r,...,2™m2 1™1) [ :=[];_; ¢™m,!. Thus

[1] [ T(1) } ;

L—|
=
S
C
—_
I

W) 2 3 1 7(3)

Wear) | = é 2 0 2| | 7 | (2.57)
Wasy | 2 31 T(13)
[ W | (6 8 3 6 1][ 7w |

Wi |60 e s

Wey [Z55| 0 =8 6 0 2| | 7oy

W) 6 0 —3 —6 3| | 7en
| Wae | 6 8 3 —6 1| 7 |

2.3.2 Laplace expansion of determinants

A Laplace expansion is an expression of an nth-order determinant as a sum of products
of rth- and (n — r)th-order determinants.

Consider an n x n matrix A with determinant det(A). We use lelnj{” to denote
the m x m determinant taken from det(A), where 1,--- ,m and ji,- - ,jm (m =n/2) are
the rows and columns respectively of det(A). Furthermore, E]llﬂim denotes the m x m
determinant obtained by deleting the 1,--- ,m rows and j1,- -+ , jm columns of det(A4). We

can now define A;, the Laplace expansion of det(A), as

A= >

j1<j2<~~~<jm

(= 1)) it dm i (2.58)

2, m=1,2,-m

For example, if n = 4, then

aip a2 @13 a4

a1 G2 (23 (24
det(A) =

azy azz a3z (34

aq1 Q42 (43 Q44
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ai;p ai2 a33 Aa34
1,2 1,2 _
T1,2 = ) S = etc., and
az; 22 a43 Q44
ail a2 asz  a34 ail a13 azz  a34 aj; a4 asz ass
Al: — —+
ag1 a22 a43 Q44 az1 a23 a42 Q44 az1 0G24 a42 443
ai2 a13 aslr  a34 a2 a4 aslr ass aiz a4 asy @32
+ — +
a22 (23 aq1 Q44 a2 24 a41 Q43 a23 0G24 a41 Q42

2.3.3 Pliicker relations

The term Pliicker relation will be used to describe a type of quadratic identity amongst

determinants W,,. Consider the 2n x 2n determinant

‘@(0) e<n—3>‘ o ... 0 0 0 0 0 ‘

A =
\ o ... 0 \@w) ey e gl g gt

| (2.59)

where 0 denotes the zero n-vector.

Applying (2.58), the Laplace expansion of (2.59) results in A = 0. This is the simplest
case of a Pliicker relation. We can now rearrange the right-hand side of (2.59) by adding
the (n + k)th row to the kth row (kK = 1,2,...,n) and subtracting the kth column from
the (n — 2 — k)th column (k= 1,2,...,n — 2). This gives

00 et | 0 . 0 ewd enn e e |
A= L (2.60)

0 .. 0 [e® . e end gl g e |
From the Laplace expansion of (2.60) we obtain the identity

|60 .. et et ety || o0 . e |

_‘ 00  @h-3 gh-1) gnh+l) H 00 enh-2) @<n>’
+] e . ewa etn e || e® . en-2 ety |=o,
which in our partition notation is
W(22)W - W(gl)W(l) + W(Q)W(lQ) =0. (2.61)

To verify the Wronksian solution of the KP equation, we need to show that the left
hand side of (2.13) with ¢ — —4¢, that is

(T(1a) + 37(22) — 7(31))7 — 4(7(13) — 7(3))7(1) + 3(7(212) - (22))7
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vanishes when 7 = W. Using the tables (2.56), this condition becomes
W)W = WenWa) + Wiy Waz) =0,

which is the Pliicker relation (2.61). Hence the solution is verified.
For the mKP equation, the left hand sides of the coupled system (2.43)-(2.44) can be

written in partition notation as

(7"(12) + T’(Q))T — 27(1)7’(1) + (7’(12) — (2))7’, (2.62)
(7/'(13) + 7"(3) — 37"(12))7' + (3T(12) — T(14) — T(3))7" — 37"(12)7'(1) + 37,'(1)7'(12) + 37"(2)7'(1)
+37 )7, (2.63)

which are again Pliicker relations (see for example [29]) and identically zero. Hence the

solution is verified.

2.3.4 Derivatives of Grammian determinants
In addition to the vector © previously introduced, consider another vector P = (p1, pa, . .., pn)’

also depending on x1, x2,x3,.... For any n X n matrix A whose entries a;; satisfy a%aij =

«;3;, the derivative of its determinant can be written as

9 - i+j i
%det(A) = ijzl(—n T3 Al
a1
B A
[07% ,
Br ... Bn O

where A; is the (4, 7)th minor of A. So for the Grammian 7, its derivative with respect to

x is the bordered determinant

G ©
PT 0|

Ty = —

Furthermore, if we assume that © and P satisfy

0., =0V and P, =(-1)FPW  jr=1,23...,
then it follows that

k—1
0Gi; ok=1=mg, omp;
_— = —1 m .
S = 2= V" G g
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For derivatives of Grammians, we must use a Frobenius notation for partitions. Con-
sider the Young diagram associated with a partition A and let «; denote the number of
boxes to the right of the diagonal in the ith row and (; the number of boxes below the
diagonal in the ¢th column. The two sets of nonnegative integers, a; and (;, determine
the partition which in Frobenius notation we denote as A = (a1, -, op|f1,- -+, 5p). For

example, the Young diagram for the partition A\ = (310]420) would be

where we have used a e to mark the diagonal entries. So, in Frobenius notation, (43%21)
is (310]420).
As with the Wronskian, we can use a notation to relate the derivatives of the Grammian

7 and its original form. For any partition A = (a1 ---op|B1 - - B,) we define

g @(al) e e(ap)
PGt 0 . 0
O3 = Glaraglor-p,) = (P | N (2.64)
P(ﬁp)T 0 Ce 0
Then, for example,
G o0 ¢ ol 0O

Fom =~ PO and  Gaopoy = | PHT 0 0
POt 0 0

The relationship between the derivatives 7\ and G, is the same as in (2.55) but with

W replaced by G, i.e.
=Y G,
w

and the matrices ¢} are as given in (2.56).

2.3.5 Jacobi identity for determinants

The Grammian equivalent of a Laplace expansion is Jacobi’s identity [1], which relates

different size determinants. Here we give the basic Jacobi identity. Let A be an m x m
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matrix. We denote by AZ":.’.’%, the minor obtained by omitting the ¢th, ..., jth rows and
the kth, ..., Ith columns. With this notation, the formula

o Al Aj

det(A)ALr = |7k Tk
T4 oA

= ApA] - A A]

is a general case of the Jacobi identity. In this identity, if det(A) is identified with, for

example, G(1g|10), With 4, j as the last two rows and k, [ as the last two columns then
A = Gap), Al = Gy At = Gajo) A = Golo),
and AZ?Z = G. Thus Jacobi’s identity gives
9101109 — G Yeolo) + 9009 0p) = 0- (2.65)
Rewriting this in partition notation gives
9209 —GenYn) + 929012 =0, (2.66)

which is the same form as the simplest Pliicker relation (2.61) for Wronskians.
To verify the Grammian solution, we need to show that the left hand side of (2.1)

vanishes when 7 = G. Using equivalent tables to (2.56), we obtain
G10110)9 = Y)Y l0) + G090 = 0, (2.67)

which is the Pliicker relation (2.65). Hence the solution is verified.
For the mKP equation, it can again be shown that (see for example [29]) equations
(2.62) and (2.63) with 7 = G and 7 = G are both Pliicker relations and identically zero,

hence the solution is verified.

2.4 The Miura transformation

A Miura transformation between the KP and mKP heirarchies can be obtained from the

following theorem [43]:

Theorem 1. Let L satisfy the KP hierarchy (2.7). Then L = 01L0 satisfies the hierarchy
qu = [le(/jq),[',] with Gl¢] = é = 071 being an eigenfunction for L, that is bz, =
P>1(L9)[9].
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We shall now demonstrate this by implementing the gauge transformation £ = 0~1£6.

This gives
~ -1 Lo Lo -2 -3
L=0+10 9x+§u8 —I—(uz—§u9 0,)0“+(---)0° +... (2.68)
Comparing this with the operator
Longp =0y +w+ w0, 4+ wd;? +wsd 3+ ... (2.69)

and equating coefficients gives

w=016,, (2.70)
1
wL = S, (2.71)
1
Wy = Uy — §u9_19m. (2.72)

These coefficients will satisfy (2.40), (2.41) and (2.42) of the mKP hierarchy (2.37). Upon
substitution of (2.71) into the first term of (2.41), we obtain

u=Vy — Vy — V2. (2.73)

x

Equation (2.73) is the Miura transformation between the KP and mKP equations. Direct
substitution of (2.73) into the KP equation (2.1) yields

(g + Ugzz + 6uty) s + 3uyy = (8y — 02 — 2V:00) Viz + Vawar — 6V2Ver + 3V + 6V V).

Therefore, if V, is a solution of the mKP equation (2.34), then the Miura transformation

(2.73) defines a new solution of the KP equation (2.1).



Chapter 3

A noncommutative KP equation

In this chapter, we look at an example of a noncommuative (nc) integrable system. Differ-
ent approaches to this noncommutativity exist. For example, the noncommutativity may

arise through an underlying nc space defined by the noncommutativity of the coordinates:
[0, 2*], = 67,

where i = v/—1 and #7% are real constants called the nc parameters. For Euclidean spaces,

the star-product is explicitly given by

Frgte) = exp (exp 307000 ) £ ol (31)
1 .0 0
= F)ole) + 582 10) Sle) + OF) (52)

which is known as the Groenewold-Moyal product [24,40]. The star-product is associative,
that is fx (gxh) = (f xg) x h, and returns the ordinary product in the commutative limit
67k — 0. The star-product makes the ordinary spatial coordinate noncommutative, in that

k k

Ko = 27 % 2F — 2% x 27 = 7%, In this case, an ncKdV equation would have space-

[27, 2
time noncommutativity, that is [¢,z], = i0. An ncKP equation could have space-space
noncommutativity in that [x,y], = 6 or space-time non-commutativity, in that either
[t,x] =i or [t,y] = if. Hamanaka and Toda [25-27] have extensively considered the cases
where the Lax method and the Gelfand-Dickii hierarchies give nc equations defined on the
nc space.

Lax [35], and later Goncharenko and Veselov [22,23], have considered a matrix version

of the KdV equation and Gelfand and Etingof [10] have considered a quaternionic version

of the KP equation.

44
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By dropping the assumption that the coefficients in the Lax pair or Gelfand-Dickii
hierarchy commute, the results should be valid for all cases. There are three levels of
noncommutativity that could arise in the variables in an nc integrable system; the variables

could be:
e Matrices with entries that commute,
e Matrices with entries that do not commute, for example a partitioned matrix,

e Noncommutative and not finite-dimensional matrices, for example, in [51], where the

commutation relations [z, x| = jkiejk are the Heisenberg algerba.

Where we have a noncommutative integrable system, we may still have associativity.

In the last chapter, we saw that multi-soliton solutions for the KP and mKP equations
could be written as a logarithmic transformation, such as u = 2(log 7),, where 7 could be
the Wronskian or Grammian determinant. We cannot use Hirota’s bilinear method in the
nc case as it does not make sense, for example, to take the derivative of the logarithm of
a matrix. This can be seen more clearly when attempting to differentiate the power series

of log(a) for some function a = a(x):

Y ) o)
log(a) = —(1—a) — U 2) _a 3) _a 4> b (3.3)

If we were to differentiate (3.3) with respect to x we would obtain terms such as

aay + aga # 2aa,, so we have to discard making logarithmic transformations on dependent
variables. In addition, we cannot define the determinant of a matrix when its entries do
not commute. When this is the case, the natural replacement for a determinant is the

quasideterminant.

3.1 Quasideterminants

The concept of quasideterminants originated with Gelfand and Retakh in [16]. An n x n
matrix over a not necessarily commutative unital ring R has, in general, n® quasideter-
minants. We denote each quasideterminant by |Z|;;,1 < 4,7 < n. Let Z¥denote the
matrix obtained from Z by deleting the ith row and jth column. Let 7"‘,1 be the row vector
obtained from the kth row of Z by deleting the jth entry and let sf be the column vector
obtained from the Ith row of Z by deleting the ith entry. If Z% is invertible, then |Z|;;
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exists and
|Z)ij = zij —r](Z27) 7 1s (3.4)
For example, if n =2 and Z = (2);;, then there are 4 quasideterminants, one of which is

211 212 .,
| Z |22 = = 299 — 22121 Z12-
291 2922

22
We shall henceforth adopt an alternative notation for quasideterminants by boxing the
leading element. For example,
211 [212] _
Z|12 = = 212 — 21125, 222-
Z21 %22
Quasideterminants of Z can also be defined via the inverse of Z. Suppose the matrix

Z is invertible with inverse B = (b;;). If |Z];; exists then
|23 = by

The theory of quasideterminants has been greatly developed over the years following
their introduction, resulting in several properties and identities which were published by
Gelfand, Gelfand, Retakh and Wilson in [14]. Here, we recall some of the main results

which we shall use in what follows.

3.1.1 The 2 x 2 matrix inverse

The 2 x 2 matrix inverse is given by

_ -1 —1 7
212 211 212
-1
211 212 221 %22 221 | R22
pry _1 —1
221 222 211 | 212 211 R12
221 %22 221 | %22
[ —1 -1 —1 -1
(211 — 212299 221) (221 — 222215 211)
- -1 1 -1 1|7
(212 — Z11%91 222) (222 — 221211 212)

provided that all inverses above exist. We can see this in the quasideterminant when

n = 3. We have

211?12 Z13
Z=|z01 202 223

231 <32 233
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and there are 9 quasideterminants. For example:

211 212 |Z13
|Z’13: 221 R22 %23

231 <32 233
-1

291 292 293
=213 —\211 %212
231 <32 233
~1 -1 -1 -1
( (221 — 222239 231) (231 — 232299 221) 223
=213 —\2z11 %212
-1 —1 -1 -1
(222 — 221257 232) (232 — 231297 222) 233

-1 -1 -1 -1 -1 -1
= 213 — 211(221 — 222235 231) " 223 — 212(%22 — 221257 232) " 223 — 211(231 — 232299 Z21) 233

1. \—1
— 212(232 — 231291 222) " 233.

3.1.2 Noncommutative Jacobi identity

Quasideterminants can be used to construct a noncommutative version of the Jacobi iden-
tity for determinants (also called the noncommutative Sylvester’s theorem in [14]). One

such case of this is given by

A B C -1
A C A B A B A C
D f g |= - (3.5)

- E [i] E [n]|| D [f] D [g]|

where A is a square matrix, B, C are column vectors, D, E are row vectors and f, g, h,i
are single entries all of compatible length. From these identities, we obtain the following

row homology and column homology relations [14]:

A B C -1 -1 -1
A C A cllac A B|l A B
A e[l D B 1] D [/f] 30

1
5 on i 9] 9]
A B C -1
psog|t 2 5.7)
. g ,
D
E [h]
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and

-1lA B C -1 -1
A B A B A C A B A C
D f g|= |- (3.8)
E |[n] g [ E |h] E [i] D |f] D [g]

-1l A B C
A B

D .

3.1.3 Elementary row and column operations

Replacing the expansion row by a left multiple has the effect of left multiplying the quaside-

terminant by that factor. For example,

E 0\ (A B EA EB
F g C d FA+g¢gC FB+gd
. A B
=g(d-CA™'B) =g : (3.10)
C d

This is again true if we replace row with column operations and left- with right-multiplication.

All other row and column operations have no effect.

3.1.4 Comparison with commutative determinants

If Z is an n X n matrix over a commutative ring R, then |Z|;; is related to det Z. If

det ZJ

det 7 - Recall that in the

Z is invertible, then the (j,4i)th entry of Z-1 = (—1)i+j
noncommutative case, if Z71 = B, then |Z|;; = bj_z»l. So

det Z
det Z43’

|Z]i = (=1)"7 (3.11)

where the notation = has been introduced to denote that the right-hand side of the equa-

tion is commutative. For example, if n = 2 then

.. detZ
Tl = (=1)H —
2l = D™ 57

211222 — 212221
<22

(e}

c -1
= 211 — ?12%99 221.



CHAPTER 3. A NONCOMMUTATIVE KP EQUATION 49

3.1.5 Quasi-Pliicker coordinates

Given an (n+ k) x n matrix A, denote the ith row of A by A?, the submatrix of A having
rows with indices in a subset I of {1,2,...,n+ k} by A, Given 4,5 € {1,2,...,n + k},
and [ such that #I =n — 1 and j & I, the right quasi-Pliicker coordinates are defined by

, , —1 Al 0
A A
I 1 i
T =T A) = = —| A? s 3.12
J J( ) N i | @ ( )
ns ns AJ 1

for any s € {1,...n}. The second equality comes from Jacobi’s identity and proves that

the definition is independent of s. Therefore we could also write the definition as

-1

AL | Al
At A
The left quasi-Pliicker coordinates are defined in an analogous way. For an n x (n + k)

matrix B,

_ I 7 j
b= o B[] e 5=

in which we here denote the ith column of B by B!, and the submatrix of B having
columns with indices in a subset I of {1,2,...,n+ k} by B’

The row homology and column homology relations can now be written in terms of

quasi-Pliicker coordinates giving the following identities:

A B C A B C||lA B C
D f g|=|D f g||D f g (3.13)
E [n] i E h [i]]] o [o] 1
and
A B C A B 0||lABC
flgl|=|Dp fO||D f gl (3.14)
E h i E h 1 || E h [i

3.2 A noncommutative KP hierarchy

Gelfand-Dickii hierarchies in the nc setting have been considered in [7,25,27,51].
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In the nc case, with £ = Lxp, we have the differential operators
PEO(‘C) = aﬁv’
on(EQ) = 8% + u,

3 3
on(ﬁ?’) = 83 + Euﬁx + iux + 3@62,

which, via the evolution equation (2.7), give the ncKP hierarchy:

U, = Ug
Ut = U2z,
Ly, = [P>o(£), L] &
usy, = U3z,
9
(
Uy — Ugq + 4“2277
1
Uy = Uozy + 2U3e + FUUL + [’LL u2]
2 Y 2 T
»Ctg = [PZU('C )"C] A 1
u3y = U3px + 2'11,43; — E'U/U/xx + 2U2ux + [U, u3]7
9
r B 3 3
U = Ugrr + OULe + OU3, + 5UUL + 5UgU,
Uzt =  Ugzr + SU3ze + gy + Suus

Ly = [P>0(L%), L] &
+%(U;ﬂt2 + UQUJ;) + 3[U, U3],

\

50

(3.15)

(3.16)

(3.17)

(3.18)

Eliminating ug and wug via (3.17), and making the scaling t — —4t allows us to rewrite the

first component in (3.18) as

(Ut + 3vgv; + U:E:CI)HC + 3Uyy + 3{05’3’ ’Uy] = 0’

(3.19)

where again u = v,. Equation (3.19) is the ncKP equation (ncKP) [46] in potential form.

When the variables in (3.19) do commute, we recover (2.1).

Equation (3.19) could also be obtained from the Lax pair

LKP - 6‘3 +/Ugj - ay,

Myp = 402 + 60,0 + 3vzq + 3vy + O,

whose compatibility condition [Lkp, Mkp| = 0 gives (3.19).
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3.3 Quasiwronskian solutions obtained from Darboux trans-

formations

Given that we can attempt to derive a noncommutative integrable system through the
Lax method or the Gelfand-Dickii hierarchy, Darboux transformations appear to be the
natural choice for finding multi-soliton solutions.

Both Lyxp and Myp are covariant under the Darboux transformation
Gy = 00,071 =0, — 0,07 .

Let 6;,i = 1,...,n, be a particular set of eigenfunctions. It is assumed that, like the
dependent variable u, the eigenfunction # and its derivatives do not commute. Introduce
the notation © = (64,...,6,) and 6 = (Qj(-i_l))i7j:17_,_7n, the n x n Wronskian matrix of
01,...,0,.

Let ¢ = ¢p1) be an eigenfunction of Lypn) = Lyke and 03 = 01. Then ¢p) := Gy, [D[1)]
and 0jg) = ¢[g|p—a, are eigenfunctions for Lypy = G,gm LGe_[ll]. In general, for n > 1 define

the nth Darboux transform of ¢ by
_ 1) pM)p-1
Plnt1] = ¢[n] - e[n] e[n} Pln»
in which
Oy = byl o—0y-
It has been shown in [14] and in [23] that ¢, 1) can be expressed as

© ¢

-1  Hn-1)|

om [

The effect of
EKP = GGLKPG_17 MKP = GHMKPGg_l

is that

b=0v+20,0""
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After n Darboux transformations we have

—1
V1) =02 0105
=1

© 0
—v—2lgm-2 q]. (3.20)
er-1 1
o) @

We call this type of quasideterminant in (3.20) a quasiwronskian.

3.4 Quasigrammian solutions obtained from binary Darboux
transformations
A new family of solutions of ncKP, obtained by binary Darboux transformations and

expressible as quasideterminants, was introduced by Gilson and Nimmo in [19]. The

adjoint Lax pair for ncKP is
Ly = 02+ ol + 9,
ML, = —493 — 6010, — 3vl, + 3] — 8.

Here, the notion of the adjoint has been extended from the well-known matrix case to any
unital ring R, as considered by Matveev in [38]: suppose that for each a € R, there exists
al € R, and for a derivative 0 acting on R, ol = —0, and for a product AB of elements
of R, or operators on R, (AB)" = Bf A,

Analogous to the commutative case, a potential (¢, ) is introduced, satisfying

Ao, v)e = 1o, Ue,v)y = VIge—vle, Qv = 4 b=l dutil,0) 60 v, 0.
A binary Darboux transformation is defined by
Opur1) = Ol — OO0 £1) ™ Ul P1m)
and
Y1) = Vi) — POt o)~ 2Opa) Ypa)

in which
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Using the notation © = (0;,...6,) and P = (p1, ..., p,) we have, for n > 1

5 Q(0,P) Q(¢,P)
[n+1] = )
+1 o
Q(e,P)t 6,y
Vg1 =
P

and

Q(0,P) Q(¢,P)

26.v) |

UPpg1) Y1) =
The effect of
IA/KP = GQ,d)LKPGQi(;) MKP = G@,QSMKPG;,(;
is that
b= v+ 200Q(6, p) "L pl.

After n binary Darboux transformations we have

Vpny1] =V + 2 Z 9[k]ﬂ(9[k]’p[k})_lp?k]
k=1

=v—2 woP) P . (3.21)

© [0]

We call this type of quasideterminant in (3.21) a quasigrammian.

3.5 Reduction to commutative Wronskian and Grammian

solutions

All of the quasideterminants expressing the Darboux-transformed eigenfunctions and po-
tentials v[, 1) of ncKP, should reduce to the corresponding commutative results in Chapter

2. Using (3.11), in the commutative case, we have:

e The transformed eigenfunction

S) ¢ © ¢

[lo

¢)n _ . . . .
[n+1] @(n—l) ¢)(n—1) @(n—l) ¢(n—1)/
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e The transformed potential

] 0 ] 0

v =v—-2|r-2) =y —2|ph-2) Ol = v+2(log|d
[n+1] 0 C) 0 g

-1 1 -1 1
o) @ omn o

).

e The transformed binary eigenfunction

Q(O,P) Q¢,P)| . |QAO,P) Q(¢,P)
O N K A PO

e The transformed adjoint eigenfunction

Ylnt1] = =

P P

e The transformed binary potential

Q(e,P) PT| . Q(e,pP) Pf
Vppt1] =0 — 2 =v—2 o . ‘Q(@,P)‘

o [
).

Zv+2 (log ‘Q(@,P)
We therefore recover all of the commutative solutions given in Chapter 2.

)

Qe,P)t e, ¢)f . |e,P)f Q(@,w)T/‘Q(@ Py’
y ,

3.6 Direct verification of the solutions

3.6.1 Derivatives of quasideterminants

Formulae for derivatives of quasideterminants were considered in [19]. The authors con-

sider differentiating the quasideterminant
A B
¢ [d]

Here, A is an n X n matrix, d is a single entry, C' is a row vector and B a column vector.

(3.22)

Differentiating both sides of (3.22) gives

/

A B

C [dl

=d —C'A'B+CA'"AA'B-CA'B. (3.23)
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The third term on right-hand side of (3.23) can be split into two cases. Firstly, if A has
the grammian-like structure, such as (0, P), then its derivative is the tensor product

k

A =>"EF,

i=1
where Ej; is a column vector and F; is a row vector, both of appropriate length. Therefore,
the third term on the right-hand side of (3.23) can be written as a product of quasideter-

minants, giving

/

A B . k ,
=d ~C'A'B+) (CAT'E)(FLA™'B)-CA™'B (3.24)

¢ [d] =
A B A B k|lA E||lA B

+ +
o |d| |¢ [o] ;C@Fi@

If A" does not have the grammian-like structure, like the Wronskian, then it may be

. (3.25)

factorised by inserting the identity matrix expressed in the form

k

1= Z ekef,

i=1
where ey, is the column vector (d;;), which has a 1 in the kth row and a zero elsewhere. If

we let Z* be the kth row and Zj be the kth column of the matrix Z, we have

’

A B ! ! k / k /
=d —C'A7'B+) (CA 'ex)(ef AAT'B) = (CA™ex)(ef B).

C i=1 i=1

This gives

A B A B| XA el A B

= + , (3.26)
c c e [0]] [(aby [(BY
or equivalently
A B A B FlA AW || A B
= - . (3.27)
c ld | [d] 2le [ " [o]

The authors of [19] then go on to show how to differentiate quasiwronskians and quasi-

grammians.
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3.6.2 Derivatives of quasiwronskians

Let © = (9‘?71))‘ L be the n x n wronskian matrix of 61, ..., 0,, where *) denotes
L,J=1..m

the kth derivative, and let ej be the n-vector (d;;) (i.e. a column vector with 1 in the kth

row and 0 elsewhere). We will calculate derivatives of the form

~

C) en,j

Qn+i) @

In this definition, ¢ and j are allowed to take any integer values, subject to the convention

Qi j) =

that if n — j lies outside the range 1,2,...,n, then e,_; = 0 and so Q(4,j) = 0. There is
an important special case: whenn+i=n—j—-1¢€ [0,n—1], (ie. i+j+1 =0 and

—n < i < 0) we have

© 0 (C] 0

QUi.9) = - — 1
@(nfl) 0 @(nfl) 0
o @] | o

Using the same argument for n+i € [0,n—1] but n+¢ # n—j — 1, we see that Q(i,j) = 0.

Assuming n is arbitrarily large, we may summarise these properties of Q(i,7) as

o -1 +4+5+1=0
Q(i,j) = : (3.28)
0 (i<Oorj<O0)andi+j+1+#0
If we relabel and rescale the variables so that x1 = x, z9 = y, r3 = —4t, O satisfies the

linear equations
Oz, = Oua,
vs = Ozaz.
We may allow © to depend on higher variables xj and impose the natural dependence
Oy, = @u .

k
Now, for any m, using the linear equations for ©, we have

o o &} €n_i n &} ex &} €n_i
——Q(i,j) = | > | '
0z, @n+itm) @ P Qn+i) @ Qk—1+m) @

n—1
=Q(i+m,j)+ Y Q(.k)Q(m—1—k,j). (3.29)

k=0
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Using the conditions (3.28), the above simplifies considerably and we obtain

m—1
Q(i,§) = QUi+ m. )~ Qg+ m)+ Y QPR ~k~ 1), (330)
m k=0

In particular
Q) = QUi+ 1,5) ~ QUi + 1)+ QU,0)Q(0. ),
Qi) = QU+ 2.0) ~ QUi +2) + QU 1Q(0.J) + QUL 0QL)
QUi J) = QUi +3.5) — Qisd +3) + Q. 2QU0.1) + QU DQ(L ) + Q. 0Q(2. ).

Note that these simplified formulae (3.30) are only valid for sufficiently large n. For smaller
n we should use (3.29) directly.

In addition to Q(i,j) we can define a shifted version, which we will call Q(z, J):

e 0
. eh-i) 1
Qi,j) =
oM 0
Q(n+i+1) @

This satisfies equations similar to (3.30).

3.6.3 Derivatives of quasigrammians

To express the derivatives of a quasigrammian, we define

Q(e,p) PpfU)
o) @

As we have seen in (3.21), solutions obtained by binary Darboux transformations are of

R(i,j) = (-1)

the form v = vy — 2R(0,0). As we did in the case of the quasiwronskian type of solutions
we choose vg = 0 for simplicity. Hence © satisfies the same linear equations as before and

P, the vector of adjoint eigenfunctions, satisfies
ng - _Pxx7 ng - Pmrz

Note that choice of the trivial vacuum is inessential and direct verification can be completed

for arbitrary vacuum.
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Using (3.24), derivatives with respect to the z,, can be calculated:

. 0 P& ' O ptG+m)
Ou,, R(i, §) = (=1)! +(=pm
Qli+m) @ o) @
m=1| (_1\itkq pik) Q P&
s (=1) |

P o) @ Q(m—1-k) @

m—1
= R(i+m,j) — R(i,j +m)+ > _ R(i,k)R(m —k—1,).

k=0

This final form for a derivative of a quasigrammian corresponds precisely with the for-
mula for the quasiwronskian (3.30). Thus subsequent calculations carried out for the
quasiwronskian solutions will be equally valid for the quasigrammian solutions.

To verify the quasigrammian and quasiwronskian solutions directly, we need to show
that both v = —2Q(0,0) and v = —2R(0, 0) are solutions of ncKP. In [19], the authors list

some of the derivatives of v that can be substituted into ncKP directly. For example:

vz = —2Q(0,0), = —2[Q(1,0) — Q(0,1) + Q(0,0)Q(0,0)],
Uy = *2Q(O’ O)y =—2 [Q(Q’ 0) - Q(O’ 2) + Q(O’ O)Q(lv 0) + Q(07 1)Q(07 O)] )
Ut = _QQ(O’ O)t = -2 [Q(3, 0) - Q(Ov 3) - Q(Oa O)Q(Qa 0) + Q(O> 1)@(1’ 0) + Q(Ov 2)@(03 0)] .

From here, using (3.30),we could easily calculate higher order derivatives. For example
ver = —2[Q(0,2) —2Q(1,1) + Q(2,0) — 2Q(0,0)Q(0,1) + Q(0,0)Q(1,0) — Q(0,1)Q(0,0)
+2Q(1,0)Q(0,0) +2Q(0,0)Q(0,0)Q(0, 0)].

Upon substitution of v and its derivatives into (3.19), all the terms cancel and the solution

is therefore verified.

3.7 Matrix solutions

In this section, we derive matrix solutions of ncKP (3.19), which are new results. This
work, much of which is outlined in [21], builds on that given in [22,23].

In [22] it was shown that a matrix version of the KdV equation
Ui —3UU; — 3U,U + Upyy = 0, (3.31)

where U = U(x,t) is a d x d matrix, possessed multi-soliton solutions obtainable from

Darboux transformations. For example, the one-soliton solution is

U = —2)\?Psech? (A\(s —v)), (3.32)
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where ¢ = % log (%) and v = z — 4\%t. The solution U, as given by (3.32), represents a
d x d one-soliton matrix solution. The matriz amplitude of the solution is —2\?>P, where
P = P? is a projection operator sometimes referred to as the polarization of the soliton.
Each soliton in the matrix has phase-constant ¢ = % log (ﬁ) for some constant r. Multi-
soliton solutions of a matrix sine-Gordon equation were found in [36]. The authors showed
that this equation has quasigrammian solutions, into which they introduced projection
matrices.

Using the quasigrammian solutions of ncKP, we now follow this approach and investi-
gate the one-, two- and three-soliton matrix solutions. Taking the trivial vacuum solution

v =0 gives

Q(e,P) Pf
U[n+1} =-2 . (333)

o [o]

The eigenfunctions 6; and the binary eigenfunctions p; satisfy
ei,xx = ei,ya ei,t = _40i,a:$x

and
Pixzx = —Piy, Pit = _4pi,a:a:x
respectively. The simplest nontrivial solutions of these equations are

0; = Aje”f, pi = Bie™ 7,

where n; = pj(x + pjy — 4pj2-t),% = ¢;(z + qiy — 4¢?t) and A;, B; are d x m matrices. At

this stage the general structure of vy, q) is

Q(O,P)pxm P!

dxm
Vln+1] = —2 o 5 -
= —2 (0gxd — OaxmUO,P) L Prisa) - (3.34)

With this choice of 6; and p;,
Q0 p0)s = BI A0

Integrating with respect to x gives

BT A;
Q(@j,pi) = 7.1 ]'6777'7% + 5i7jI,
P — 4
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where 6; ;1 is the constant of integration. We take A; = r;P;, where r; is a scalar and P;
is a projection operator. With A; chosen in this way, we must have m = d and therefore

(3.34) becomes
v[nH] =-2 (0d><d — @dXdQ(@, P);idpdxd) . (3.35)

We choose B; = I and the solution u will be a d x d matrix.

In the case n = 1, we obtain a one-soliton matrix solution. Expanding (3.35) gives

, -1
eAP> ,
pP—q

where A; = 1; — ;. When taking the inverse of €2, we make use of the formula

Vg = 2rPe’ <I +

(I —aP)™' =I+aP+a*P?+a°P> + ...
=I+aP+d*P+d°P+...
=I+aP(l+a+a*+...)

=I+aP(1-a)},

where a # 1 is a scalar and P is any projection matrix. This useful identity is subsequently

used throughout. We now have

2rP

V) = TR g (3.36)
et o
Consequently, the one-soliton matrix solution is
1 1
w= g = 50— 0P Psect? (3 (A+9)). (3:37)

where £ = log (p’%q). Each plane wave in the matrix u is travelling with speed 4 (%) t

in the z-direction and 4 (gi:gz) t in the y-direction. A regular solution requires that

det(£2) # 0 for all 2,y and ¢, and = > 0. We have

.
det() =1+ e 3.38
() p— (3.38)

If »r > 0 and p > ¢ or alternatively, if » < 0 and ¢ > p, then ﬁ > 0 and det(Q2) is
positive-definite. In each case, we would obtain the same solution (3.37) since sech? is an

even function.
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In the case n = d = 2, we obtain a two-soliton 2 x 2 matrix solution. By expanding

(3.35) we get

L -1 [Ie ™
Pi—4qi ’ 2x2 \ Je—2
Ie_’YI
=2 <K16’71 K2e')’2) , say
Ief'YQ
=2(K; + Ky),
where K7 and Ky satisfy
A1 Al
K, (I + 2 Pl) =eMa - ‘ KyAy,
P1—q1 P1— Q2
AQ A2
Ky (I—I— r2¢ PQ) = €A2A2 __c KiAs.
P2 —q2 P2 —q1

We assume that the P; are the rank-1 projection matrices

T
_ KOV MYy

P; :
T wv)

where the d-vectors pu;, v; satisfy the condition (u;,v;) # 0. Solving for Ky and K gives

_ b2—q
- h
b1 —q2
- h

K (ha(p1 — @2)I — A2) Ay, (3.39)

Ky (h1(p2 — 1)1 — A1) As, (3.40)

where

h = hiha(p1 — q2)(p2 — q1) — arira,

hi=e ™+ " and azw
Pi = i (k15 1) (p2, v2)

= TT(Plpg).

For the solution to be regular, we need det(2) # 0 for all x, y and ¢. Upon expanding
det(€2), the result simplifies greatly since the trace of a projection matrix is equal to its

rank and the determinant of any projection matrix is zero, and we obtain
det(2) =1+ k1eM 4 Koed? 4 KikroBeti A2

in which k; = -, i = 1,2 and § = 1 — %. By ordering the spectral

parameters ps > g9 > p1 > ¢1 and choosing r; > 0, for ¢ = 1,2, we ensure that x; > 0.

Furthermore, if we insist that @ > 0, we have f > 0 and det(Q2) is therefore positive-
definite.
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We now investigate the behaviour of vz as ¢ — +o0. This will demonstrate that each
soliton emerges from interaction undergoing a phase shift and that the amplitude of each
soliton may also change due to the interaction. For each soliton, we need to show that
the asymptotic form of vj3 is the same as (3.36). We first fix A; by making the change of
variables (a similar change of variables involving y would also fix A1)

r=2+14 <M> t.
a1 — D1

This gives

A = (g1 — p1)& + (¢ — pl)y,

Ao = (g2 — p2)2 + (g5 — p3)y — 4 <Q§ B PRl ) i _p%)> t.
a1 —p1
Since A; is now independent of ¢, soliton 1 is at rest. We may assume without loss of
generality that 0 > p2 > g2 > p1 > q1. Then as t — —o0,
r1 Py

1)[3] ~ 2 hl

and therefore
u~§(p1—q1) P sech §(A1—|—§1) ,

where £, = log (mrflql)

Note that v = v, is invariant under the transformation v — v 4+ C, where C is a

constant matrix. As t — +oo we get

(ra(p1 — q2) — (p2 — q2)A2)(p2 — q1) A1 + (ar1(p2 — ¢2) — (1 — q2) A1) (p2 — q2) A2
hira(p1 — q2)(p2 — q1) — arira(p2 — q2)

V) ~ 2

(P2 — q2) A2
r2
olra(p1 = 42) = (P2 = @2) A2) (2 — a1) Ar + (a1 (P2 — g2) = (1 — @2) A1) (P2 — 42) Ao

r2(p1 — q2)(p2 — q1) (hl - %)

+2

1Py
~2 A o
—{\1 1
€ + P1—q1
where

P r1(f, 1) P = fn ® i
(pa,v1) (A1, 01)
(P2 —@2)(uy, v2)p2 o P (P2 — q2) (p2, v1)v2

(p1 — q2)(p2, v2) (p2 — q1)(p2, v2)

fi1 = p1 —
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Therefore

1 A 1
U~ 5(101 — q1)* Py sech?® <2 (A1 + £1+)> as t— —oo,

where " = log (;fléll)'

Similarly, fixing Ao gives
1 25 2 1 —
u~ 5 (P2 — g2)"Ppsech §(A2+§2) as t — —oo,

1 1
U ~ 5(]92 _ C_I2)2P2 sech2 <2 (AQ + g;)) as t— +oo,

where
_ T2 T9 . ro(fl2, U2 - 2 ® U
£2=10g< ) g;:mg< ) gy T T) 2@
P2 — 2 P2 — Q2 (p2,12) (f12,12)
A p1—q1 2, V1)1 N p1—q1 1,2)V1
H2 = p2 — ( ) I , and Do =1y — ( ) )

(p2 — q1)(p1, 1) (p1 — q2)(p1,v1)

Note that 7&1’53 = %Z;’Zi; =1- —OE;T__(]?))(;?__(J?)) = (3. The soliton phase shifts A; = £]+ =&

are

A~

Ay =log (:) =logB, As=log <

T2
2

> = —logg.

We may now summarise the characteristics of the two-soliton matrix solution as follows:

~

e The matrix amplitude of the first soliton changes from %(pl —q1)%Py to %(pl —q1)*Py
and the matrix amplitude of the second soliton changes from %(pg — q2)2]32 to
1

§(p2 - q2)2P2 as t changes from —oo to +oo.

o If (p1,12) = 0(PyPy =0) or (u2,v1) =0 (PP, =0) then a = 0 and therefore 5 =1,

so there is no phase shift but the matrix amplitudes may still change.

o If (u1,v2) =0 and (u2,v1) = 0 (giving PP, = P,P; = 0) there is no phase shift or

change in amplitude and so the solitons have trivial interaction.
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In general, for n > 1, expanding (3.35) gives

16_71
=" —1 Ie™
Ulp+1] = 2 (Alem A2€772 . Aneﬁn> < e’ + O JI>an : (341)
Te n
[6771
Te 2
=2 (Klem Koe™ ... Kne”"> | say (3.42)
Te
n
=Y K. (3.43)

However, for n > 3, it is very difficult to isolate each K;. So we will now only investigate

the three-soliton solution. When n = 3, (3.43) gives

v =2 (K + Ko + K3) (3.44)

From (3.41 — 3.43) we must have that

1 KyA K3 A
K1—<A1— 28 1) (3.45)
hi P1—Qq DP1—GQ3
1 KA Ks A
K2:<A2— 12 28 2) (3.46)
ha P2—q1 DP2—G3
1 K{A KyA
K3:<A3— LA 23), (3.47)
hs3 P3—q  DP3— Q2
where h; = e~ + ota , for i =1,2,3. Solving for K, Ko and K3 gives
h(2 K, .A Ky A
K = 2:3) Ay — 230 Ts2t (3.48)
h(1,2,3)(p2 — q3)(p3 — q2) PL—q2 P1—G3
h(1 K. Ay K\, A
Ky = (1,3) Ay — 1372 T81T2 ) (3.49)
h(1,2,3)(p1 — q3)(p3 — q1) P2—q1  P2—G3
h(1,2 K, ,As K,,A
Ky — (1,2) Ay — 1208 T8 (3.50)
h(1,2,3)(p1 — q2)(p2 — q1) P3—q P32
in which
h(i,j) = (pi — @) (pj — @i)hihj — rirjoy 4,
h(1,2,3) = hyhohs — rorzag 3hy rirgon zhe _ riraa 2hsg
(P2 — @) 3 —q) (—a)os—a) (p1—a)p2—aq1)
o123 1,32
+ riror = + %
e ( (P2 —aq1)(P1 —a3)(P3 — q2) (1 —q2)(p2 — q3)(p3 — ql))
K, =20 (g — g)T — A)) Ay,

Y b, g)
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for i,7 € {1,2,3} and i # j. Here, the notation from the two-soliton matrix solution has

been extended to include the trace of all permutations of products of P;, j = 1,2,3, so

that
(15, vi) (pi; v5)
o =Tr(PP;) = -2 200071 (PP,
,J ( ? J) (MHVZ)(,U/WVJ) ( J Z)
o123 =Tr(PiPPs) = (o, ) (s, o) (s 1) _ Tr(PyPsPr) =Tr(PsPiPy),
(Mla Vl)(ﬂ% V2)(/'L37 V3)
132 = TT(P1P3P2> = (M?” 1/1)(/1,2, V3)(M17 VQ) = TT(P2P1P3) = T?“(PgPQPl).
(Mla Vl)(ﬂ% V2)(/'L37 V3)

2
= —— (bggA; +by3As + b1 2A3 + b1 324145 +b123A1A
V4] 1(1,2,3) (ba3A1 + b1 3As + b1 2A3 + b1 324142 + b1 23A143
+b23.1A2A1 + ba1 3A2A3 + b3 21 A3 A1 + b3 12A4342), (3.51)
in which
hii i
bij = (4,) and
(pi — 4;)(Pj — @)
m’ (k — ¢j)(pj — @)k Pk — G

if a; j # 0. For the solution to be regular, we need det(§2) # 0 for all z, y and t. Here we

have

= i .
Q= (Aj pi—a T 5’4[)3x3'

Using the fact that Tr(A;) = r; and det(A4;) =0, for j = 1,2, 3, expanding det(Q2) gives

det(Q) =1+ IileAl + HQGAQ + I£3€A3 + K1K2ﬁ1726A1+A2 + E2E352736A2+A3

+ k1ka 3™ TS 4 Ky Rokg g geltt TAZTA (3.52)
where
B aro(pr—q1)(p2 —q2)  a23(p2 —q2)(p3 —q3)  a13(p1 —q1)(p3 — q3)
Bi23=1- = —
(1 — q@2)(p2 — 1) (P2 — 43)(P3 — q2) (P1 —a3)(p3 — q1)
o123 01,32
+P1—q1)(P2 — @2 p3—q:>,< — + — )
( )( )( ) (p2 - Q1)(P3 - QQ)(pl - Q3) (Pl - Q2)(P2 - (IS)(Ps - Q1)

_aig(pi — ) — 4j)
(pi — 4;)(pj — @)
for i =1,2,3.

ﬂz,]zl for i7j€{17273}7i7éj7

Ti
bi —q;

R =
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S

2 3 2 3
(a) t<< 0 (b) t>>0
Figure 3.1: The chosen configuration of the three-soliton solution

Ordering the spectral parameters p3 > g3 > p2 > g2 > p1 > ¢1 guarantees that 3; ; > 0
and k; > 0. From (3.52), det(2) will be positive-definite if

o123 Q1,32
(b2 — )1 —a5) s — ) (1 — @) (2 — 45) (s — 1) o

To determine the asymptotic forms of each matrix soliton, we fix each A;, i = 1,2,3
and assume without loss of generality that 0 > p3 > q3 > p2 > g2 > p1 > q1- In doing
s0, the solution has the configuration detailed in Figure 3.1. For soliton 1, as t — —o0,
hi — +oo for i = 2,3. Then we can see from (3.45-3.47) that K; — 0 for ¢ = 2,3. This
may be compared with similar expressions in the two-soliton matrix solution, giving
NESE

Ul4) hy

— — 72 — —
where r| =1, P| = (#ulf Vll), py = p1 and v; =wvy. So as t — —oo, we have

1 1
U~ 5(pl — ql)QPf sech? (2(A1 + fl)> ,

where {; = log (ﬁ).

Ast — +oo, hy — p_’jq_, for ¢ = 2,3. Using the fact that u is invariant under the

transformation vy — vy + C, where C is a constant matrix, we have that

o Pt
v ~ 143 ’

+
—A1 T
€ + pP1—q1
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where
o+ — ri(py,v) _ ribies L@y
! (/1’17”1) ﬁ2,3 ' ! (Mi’"yf")’
ut =+ (P2 — 42)(P3 — g3) ( (11, v3) (13, v2) _ (11, 2) ) 12
! ! (12, v2)B2,3 (13,v3) (1 — @3)(p3 — q2)  (P1 — @2)(P3 — @3)
n (p2 — 43)(p3 — q2) < (11, v2)(p2, v3) B (p1,v3) ) s
(13,v3) 02,3 (n2,v2)(p1 — @) (P2 —q3) (1 —@3)(p2—q2) ) "
v — (P2 — 42)(P3 — g3) ( (13, v1)(p2,v3) B (p2,11) ) vy
Lo (12, v2)B2,3 (13,v3) (2 — @3)(p3 —q1) (P2 — q1)(p3 — @3)
4 (P2 —a3) (3 — ¢2) < (p2,11) (13, v2) B (13, 11) ) "
(13,v3)B2,3 (2, 2)(p3 — @) (P2 —q1)  (p3—q1)(p2 —q2)) ~
So we have
U~ %(pl - q1)2P1+ sech? <;(A1 + ff)) as t — +o0o,

+
where ff = log (pfiql )

T1

Fixing Ag brings soliton 2 to rest. Ast — —oo, h; — and hg — +o0. This gives

P1—q1
’ ’ 2T_P_
v~ 2(Kq 9+ Ky q) ~ 2727,_,
=
where
ry = rality.vy) _ r2bre, Py = fy O%
(h2,v2) (g, vy)

- (1 — q1)(p2, 1) (p1 — q1)(p1,12)

Mo = pr2 — 1, and v, =uvg— V.
2 (P2 — q1) (g1, 1) 2 (P1 — q2)(p1, 1)
Ast — 400, hy — +00 and hsy — (p;_“%). This gives
’ / 27"+P+
vy ~ 2(Ko 5+ Kz9) ~ 272#7
efAz + _'2
p2—q2
where
L orapg,vg) b Hy @y
TQ - —7“2,82,3, P2 - + 0
(12, v2) (13 ,vy)
3 — q3)(H2, V3 D3 — q3) (3,12
S ) ) ),

(P2 — q3) (13, v3) (p3 — q2)(u3,v3)

So the asymptotic forms for soliton 2 are
1 2 p— 2 (1 -
U~ §(p2 — q2)“ P, sech 5(1\2 +&5) as t — —o0,

1 1
u ~ 5(}72 _ Q2)2P2+ sech? <2(A2 + f;)) as t— +oo,
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— +
where §, = log (pz q2> and §2 log (m q2)
With Ajg fixed, soliton 3 is a rest. Ast — —o0, h; —

5o for i =1,2. This gives

2r, Py
oy~
o—A
’ + p3— q5
where
o r3(ps,v3) _ T3Pi23 _ M3 Qv
3 (p3,v3) Bra 3 (p3 1/3_)7
JT = s+ (P2 — @2)(p1 — 1) ( (13, v1)(p1,v2) B (13, v2) ) iy
3 (p2,12) 01,2 (ui,v1)(p3 —aq1)(p1 —q2)  (p3— q2)(P1 — 1)
. (P2 — @2)(p1 — 1) < (3, v2)(p2, 1) _ (ps3,v1) ) "
(1, v1)B2 (2, v2)(p3 —q2)(p2 —q1) (P33 — q1)(P2 — q2) ’
e = st (P2 — @2)(p1 — 1) ( (11, v3) (p2, 1) N (p2,v3) ) "
3 (p2,v2)P1,2 (ui,v1)(p2 —q)(p1 —q3) (P2 — @3)(P1 — 1)
L (2= @) —ar) < (12, v3)(p1, v2) 3 (11, v3) ) ”
(1, v1)B2 (2, v2)(p1 — q2)(p2 —q3)  (p1 — @3)(P2 — q2)
As t — 400, h; — 400, for i = 1,2. This gives
2r P+
e
° + pP3—q3
where ri}f =73, P3+ $+®:i), ,u3 = us and y;' = v3.

So the asymptotic forms for soliton 3 are
1 2 p— 2 (1 —
U~ §(p3 — q3)“P; sech 5(1\3 +&3) as t — —oo,

1 1
u ~ 5(1)3 — Q3)2P3+ SeCh2 (2(A3 + S;)) as t— +OO,

- +
where §5° = log (ﬂ> and 53 log <p3 q3>
The soliton phase shifts A; = §+ §; are

(Hfﬁffr)) <ﬁ1,2,3>
A =1 — Jog [ 2123
Loe <(u;,vf) 6\ s )
_ (M;ﬂ/;)) _ <52,3>
W) _ ( Bus )
u=tog (1) <o (2

3.8 Plots of the matrix solutions

In this section, we demonstrate the interaction properties of the two-soliton matrix solution

of ncKP with various plots.
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Figure 3.2 shows a plot of the generic two-soliton matrix solution u = (u;;), i,j = 1,2,

where

rr=2 — 71 =40.763,

79 =20.381 — 7 1,

[\v)
I

( ) — ﬂ1=(10.521 —14.876>,
( —1. 25) — ﬂzz(—o.szg —1.25>,
= ( 0177 —0. 582) — V1=(0.333 —0.667),
Uy = (—27.333 51) — VQ:(Q 0.333),
. —0.274 —0.901
— P =
0.387 1.274
. —0.551 1.028 0.793 —0.132
—0.831 1.551 —1.3  0.207

as t changes from —oo to +o00. This plot shows both a change in matrix amplitude and a
phase-shift upon interaction.
Figure 3.3 shows a plot of the two-soliton matrix solution v = (u;;), i,j = 1,2, where

rn=2 — f1=r,

= Ty =T2,

(13

)
( —1. 25) — fl2= (1.238 0.064),
U= (—0.177 —0.582) — V= (0.333 —0.667),

— M1 = M1,

) =(1 0.333) — vy =1,

—-0.2 04 R —0.032 0.344
b= — P =
—-0.6 1.2 —0.095 1.032
. 1.018 —0.339 0.658 —0.219
- — Py=
0.053 —0.018 —1.027 0.342

as t changes from —oo to +o0o. This plot shows a change in matrix amplitude but no
phase-shift because (u1,v2) = 0.

Figure 3.4 shows a plot of the two-soliton matrix solution u = (u;;), 4,5 = 1,2, where
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n=2 — 7r1=r,

fo=1 — ro=ry,

p1 = (1 3) — =,
p2 = (4 1.5) —  fli2 = 2,

vy = 1917

v = <0.25 —0.667

— 1/2:1927

N— N N

vy = (—1 0.333

—0.143 0.381 N

P = — P =P,
—0.429 1.143

N 1.143 —0.381

P, = — P=D,
0.429 —-0.143

as t changes from —oo to +o00. This plot shows no change in matrix amplitude and no

phase-shift because (u1,1v2) =0 = (u1,2).
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Figure 3.2: (a) Plot of matrix KP two-soliton interaction at ¢ = 0 with parameters given
by p1 = —i, Py = %, g = —% and g = % (b) Plot of the corresponding scalar KP

two-soliton interaction with P; =r; =1 for j = 1,2.
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Figure 3.3: Plot of matrix KP two-soliton interaction at ¢ = 0 with parameters given by

1 19 39 1
pPL=—13,P2=75,q=—5% and g2 = 5.
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Figure 3.4: Plot of matrix KP two-soliton interaction at ¢ = 0 with parameters given by

1 19 39 1
pPL=—13,P2=75,q=—5% and g2 = 5.

3.9 Reduction to matrix KdV

To make the reduction from matrix KP solutions to matrix KdV solutions, we set p; =

—q; = \;. For the one-soliton solution, this gives
A = 2)\(z — 4)%t).

So

B 2rP
VRl T S —arh) o o
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giving
u = 2X2Psech? (A\(v +¢)),

where v = x — 4)\?t and ¢ = % log (ﬁ)

For the two-soliton matrix solution, we have
for ¢ = 1,2. The asymptotic forms for soliton 1 are

u ~ 2)\? Py sech? (M(v1+¢1)) as t— —oo,

U~ 2)\%]51 sech? ()\1(111 + §1+)) as t— +oo,

in which

_ T1 fl
vl =& — 4)\%15, G, =log <2)\1) , gfr = log (2)\1> ,

r1(fi1, 1) _m®n 5 m®n

f, = 7\ P - ) ~ ~ N\
Y ) T () (i)
. 202 (1, v2) 2 . 22 (2, v1)va
=y — , and =11 — .
A= O+ 2) (a2, 1) T O+ M) ()

The asymptotic forms for soliton 2 are

U~ 2)\%]52 sech? ()\g(vg + g{)) as t— —oo,

u ~ 203 Py sech? (\o(v2 +6)) as ¢ — +oo,

in which

_ 722 79
Vg =T — 4)\%t, Gy =log (2)\2> , g;r = log (2)\2> ,

fy = T2(M1,V1)’ P - M2®V27 Py — fiz ®A1/2’
(pa,v1) (p2,v2) (f12,72)
2o (p2, V1)

A1+ A2) (1, v1)

201 (p1, v2)1n
(A1 + Xo)(p1, 1)

y and I)QZVQ—

fl2 = po —
(

These results from the reduction match up with those given in [22].



Chapter 4

A noncommutative mKP equation

Noncommutative mKP equations have been considered by Hamanaka and Toda [27], and
Wang and Wadati [51] in the case where the noncommutativity arises through the indepen-
dent variables. This suggests that we may be able to follow the methods of the previous
chapter and try to: derive an ncmKP equation, two families of solutions of ncmKP that
can be expressed as quasiwronskians and quasigrammians, directly verify the solutions
and investigate matrix solutions. We will also look at an nc Miura transformation which

maps solutions of ncmKP to solutions of ncKP.

4.1 A noncommutative mKP hierarchy

A noncommutative mKP hierarchy has been developed by Kupershmidt in [34], but in
a more algebraic setting. In [51], a ncmKP hierarchy is given that uses analytic Hirota
bilinear identities to give the hierarchy in a condensed form. Here, we construct the ncmKP
hierarchy in the spirit of Sato theory.

With £ = L,k p as defined by (2.36), we obtain the differential operators

Ps1(L) = 0y,
Ps1(L?) = 02 + 2w, (4.1)
Ps1(L£3) = 02 + 3wd? + 3(wy + w? + wy )0,
Ps1 (LY = 0% + 4wd? + (6w, + 4w + 6w?)d?

+ (4w3 + 6wy + 4wy, + 4wy + 8ww, + 4w, w + 6wwy + 6wiw)o,,

75
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which, via the evolution equation (2.37), give the ncmKP hierarchy:

wxl
W1g,

W2z,

wly

’IUQy
Ly, = [P1(L7), L] &

’wgy

Loy = [P>1(L%), L] &

Wy,

\

Wy,
Wiy,

W2y,

Weg + 215 + 2ww, + 2[w, wy],

Wigr + 2Way + 21w, + 2ww1, + 2w, wa],
Waze + 2W3y + 2WWay + 4Wowy — 2W1 Wy
+ 2w, w3,

W3gy + 2Way + 20WW3, + 6W3W, — 2W1Wepy
— 6wy, + 2[w, wy),

)

Wagr + 3Wize + 3wy + 6wwiy + 3wiw,
+ 3wewy + 3wwee + 3w? + 3ww, + 3[w?, w]
+ 3[w, wa],

Wazze + 6W2gz + dWigzs + 4w3y + 4WWeaa
6wy Way + AWppWy + dWpwwy + 6w Wy
+8ww323 + dwdw, + 120wy + 12Ww14
+6wi,w, + 6w, wy + 6wiwy, + 2w Wey
Hwgpwy + 1202 w1, + Swwywy + 6wwiw,
+4w,wwy + dwiww, + 2wiw,w + 12wway,
+6wawy + 6wzws + 6[w, wi] + 6[w?, wo)

+4[w3, wi] + 4[w, ws),

76

(4.3)

(4.4)

The term 2[w, w; | in the first component of (4.3) prevents us from recursively expressing

the fields wy, ws, ... in terms of w and its x- and y-derivatives. However, using the second

component of (4.3) and the first component of (4.4), we obtain

0 = 2wy — 2Wgze — 3Wige — bWW1, — 3wy — bwpwy — 6WWyy — 6wg2c — 6w2wm

— 6[w?, wy].

(4.6)
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To eliminate the field w;, we make the change of variables w; = —%(wx +w? — W). Thus,

from the first component of (4.3), and from (4.6), we obtain the following equations:

Wt + Wege — bwwzw + 3Wy + 3[wg, Wi — 3{wgs, w] — 3[W, w?] =0, (4.7)
Wy —wy + [w, W] =0, (4.8)

where the scaling t — —4¢ has been made.

Equations (4.7) and (4.8) could also be obtained through the Lax pair

LmKP - 82 + 2wax - 8y,

M xp = 483 + 12w8§ + 6(wy + w? + W)y + 0.

The compatibility condition [L,kp, Muxp] = 0 gives (4.7) and (4.8), which represent the
ncmKP equation in a slightly different but equivalent form to that of Wang and Wadati in
[51]. Unlike the commutative mKP equation, equation (4.8) is not satisfied by introducing
a potential. Instead, we follow the approach in [51] by letting w = —f,f~!, and W =
—fyf71, where f = f(z,z,) is a differentiable function with an inverse. It is assumed that
the function f and its z- and x,-derivatives do not, in general, commute. These choices

of w and W satisfy equation (4.8). It is important to reiterate here that

w# —(log f). and W # —(log f),.

Now that we have w = —f,f~ ! and W = —fyf_l, we can attempt to eliminate
w1, w2, ... from the hierarchy. When w,wi, w2, ws,... and their z- and z,-derivatives

commute, we have seen that

wy = (wy + w? + 2w1) gz,
wi = (Wyg + 3wiy + 3wy + 3ww, + wd + 6wwi )y,
Wy, = (Wagr + 6way + 4wz, + 4ws + w? 4+ 120wy + 6ww, + 120w, + 611)% + 6wz wy

+ 12ww 4 + 3w§ + Awwgy ) -
Since w = V,, for the first three fields, say, we can write

Vay = (wg + w? + 2wy )z,
Vit = (Wee + 3wi, + 3we + 3ww, + w? + 6ww )y,
sz4 = (wrzz + 6wy + dwigy + 411)3 + w4 + 12wwy + 6w2wx + 12w2w1 + 6w% + 6wz wy

+ 12wwi, + 3w32C + dwwgy )z
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Integrating both sides of each of these equations with respect to x and isolating w1, we, w3

gives
1 1 1 5
’LU1_§Vy—§wl-—§'LU 5
lV 1 3 _o
w Vi — —Wgp — Wip — WW; — —W° — 20W
2 3 t 3 Tx 1x x 3 1
1 1 3 1 3
w3 = ZVM — wam — ing — Wige — Zw4 — 3wwy — §w2wz — 3w2w1
3 3 3
— iw% — iwxwl — 3wwiy, — Zwi — WWqg-

Furthermore, we have that
_fxfilﬁ_(logf)z—)vl' a’nd_fyfilﬁ_(logf)y—)Vy'

However, in the noncommutative case we have w = —f, f~'. We may therefore take

w1, Wy, W3, ... to be of the form

wy = aw, + agw® + agfy fL

Wy = bWy + bawiy + b3ww, + byww + byw® 4+ bgwwy + brwyw + bg frf

W3 = ClWgezy + C2W2x + C3W1r + C4w4 + cswwa + cgwar + C7w2wx + csngw2 + coww,w
+ crow?wy + erywiw? + erpwwiw + 013w% + C14WL w1 + CI3W1 Wy + CleW W1y

2 1
+ Cl7w1zW 4 C18W5 + C19WWey + C20WaeW + C21 fo, s

where ay, by, cn,...,n = 1,2,3,..., are constants to be chosen such that the resulting
noncommutative fields wi, wa, ws ... will then satisfy the ncmKP hierarchy.

We know that, forn =1,2,3,...

Wy, = _(fxfil)xn
= *f:r:a:nf_l + fxf_lfxnf_l
= _fx:pnf_l _wf:rnf_l' (49)

Using the terms wy, w1y, way, . .. in (4.3), we can calculate wq, wz, w3, . ... For example,

wy = (1 4+ 2a1)wgz + (2 + 2a1 + 2a2)ww, + (2a2 — 201 ))wyw + 2a3wfyf71 + 2a3fxyf71.

For (4.9) to be satisfied by w; and with w = —f, f~!, we require that

1 1 q
a1 =—=, a2=—— and az3=——.
1 5 2 5 3 5
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Using the same approach for ws and ws, we require that

1 2 1 1
bi=—=, byo=-1, bg=—=, bys=—=, by=—=, bg=-1, by =-—1,
1 37 2 ) 3 3 4 3 5 3 6 7
b 1 1 3 _ 1 1 3 3
8 — 37 C1 = 47 C2 = 25 c3 = ) Cq = 4) C5 = 25 Ce = 23
3 1 1
G=—p 8= =" cio=-1, en=-1, ca=-1, €3 =5
1 1 5 1 3 3 1
Cly = — Ccls =—=, Cig=— cly = — clg=—-, Cl9g=——, Cy=—-
14 y  Cl15 5 Cl6 , v ,  C18 1 0 1
1
Co1 = —Z.
Therefore, the fields wq, ws, w3 are
1 1 _
w1 = 2 2w - *fyf
1 2 1 1 1
w2 = 3 Wrx — Wiy — gwwx 3wxw - §w3 —Ww; — MW — gftf_la
1 3 1 4 3 3 3 5 1 9 1
W3 = ——Wapr — =Wy — Wigy — —W — —WWy — —Wol) — —W Wy — —WyW* — —WWzW
3 4 TXT 2 2x lzx 4 2 2 2 2 4 T 4 T 2 T
2 2 2 3 9
—wWw —ww —uwvnww — iwl — WyeW1 — iwlwx — wahE — W1 W — wa
Sww — WaaW — — f, [T
4 T 4 xT 4 T4 .
Although tedious, this procedure could easily be used to obtain wg,ws,.... Rewriting
these fields in terms of f gives
1 _ _ _ 1 _
o= 5 feaf T = o T T = SR (4.10)
1 _ _ _ _ 1 _ _ _ _
_gf:caca:f t— 2f1’f 1f:cf lf:cf ! + Qfxf 1fa:acf ! + fx:cf 1fa:f !
1 _ _ _ 1 _ _ 1, .
+ §fa:yf T fyf 1fmf 1 ifacf 1fyf 1 gftf 17 (4-11)

e d Tl et T ST el = SR f T ST e
S T L et D el T e

2 T e e e d T S T T Rl el
R A A A R N N R A T

B eaf T d el O T e e el (412

This hierarchy, in terms of f, was derived from a different perspective by Dimakis and

Miiller-Hoissen in [8] in what they refer to as a functional representation of the hierarchy.
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4.2 Quasiwronskian solutions obtained from Darboux trans-

formations

In this section, we look at quasiwronskian solutions of ncmKP obtained from the Darboux
tranformation Gy = ((071),) 10,0~ =1 — 0(6,)10,. We will use the pseudodifferential
operator L xp. Let 6;,7 =1,...,n be a particular set of eigenfunctions and introduce the
notation © = (0y,...,60,). It is again assumed that the eigenfunction and its derivatives
do not commute.

Let ¢ = ¢(1) be an eigenfunction of L, = Lixe and 0y = 01. Then ¢pg := Gy, (D]
and 9[2} = ¢[2]|¢H92 are eigenfunctions for L,kpp = G@m EprGg_[ 11]. In general, for n > 1

we define the nth Darboux transform of ¢ by
Dlnt1] = Bn) — Opn) Opj) ™ g (4.13)
in which
Oy = Pkl o0,
It can be shown by induction that ¢y, ;) as given by (4.13) can be expressed as
6
Ppnt1) = E 5 : (4.14)

Q-1 Hn-1)
om  Hm

In the initial case n = 1, (4.13) gives

0
P = ¢ — 0101 100 = ' :
01,$ ¢z

So the result is true for n = 1. Substituting n 4+ 1 for n in (4.13) gives

D2 = Ppns1] — Ot 1] Opnr1)e) ™ Dpn1)e- (4.15)
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Using (3.26) and (3.10),

(1)
0[n+1} -

Similarly

we have
o |0\ o [o]|e®+D
1 n
o o) . oW oM
: k=1 €k
em ¢, o) o)
o @ on+1) 9(”+1)
ol 0 "g)l
@(1) 0n+1
@(n—l) 0 ()
(n) n
@(n) 1 o 0n+1
C)
@ @(n+1) ¢(n+1)
oM 0
" o M
¢[n+1]: )
o1 o
om  pm
em 1

81

(4.16)

(4.17)

Substituting (4.16) and (4.17) into (4.15) and using the nc Jacobi identity (3.5) gives

6
Pln =
T gt g
om
© 9n+1
o o)

n n+1
o) 45

S)

-1

¢(n)
¢(n+1)

n—1
O
04,

1
o0,
o 4,
n n+1
o) [

-1

This proves the inductive step, completing the proof of (4.14).

ol

oM
Qn+1)

¢(1)

¢(n)

¢(n+1)

(4.18)

(4.19)
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We can determine the Darboux-transformed fields w, Wy, w3, . . . by calculating

Loxe = (071,710,071 L0071 (071,

=0, = (00,1000, ) (G000 (001 1)
—(—69x1f>m(—99x1f>1(—09x1f>z<—99x1f)1—;((—9%%)1)y(—00x1f>1>8x1
+...,

which preserves the structure of the ncmKP hierarchy. The coefficients

W= —(—007"f)a(—007" )71,
iy = %<—00;1f)m<—90;1f>*1 — (=00, )2 (=001 £) 1 (=00, (=060, )7

(00 ) (00 )

will satisfy (4.3) and (4.4). In particular, @, which could also be obtained from L,xp =
GngKPG’Q_1 or Mpr = G@MprGe_l, will satisfy the ncmKP equation. Using the fact

that @ is of the form —f, f~!, we obtain

f=—-00;'f= b f. (4.20)
0, 1

It can be proved by induction that after n Darboux transformations, we have, for n > 1

o [0
=] g 4.21
Jin+1] o1 g f (4.21)
em 1

When n = 1, the result (4.21) follows directly from (4.20). Upon substituting n + 1
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for n, using (4.16), the nc Jacobi identity (3.5) and the homology relations (3.6) we have

Sint2) = =Opr1) Opgye) ' f

o [ o )

S 0y,
. -+ Hdlem 6 1| [0 o

en-1) pn-1) ) )
n+1 e(nil) 07(171—11) @(n—l) 0

om o, | ew 1

o0

Qn+1) 0("+1)

n+1
© @(1) 9(1)

n+1

n—1 (n—1) ' '
@( ) 9n+1 @(n—l) e(nfl)

om g™ ntl
o o),

Now if we use the quasi-Pliicker coordinate formula (3.12), we get
© a1 [0]

sy =| N
om g o

e(n+1) 953:31) 1

This completes the proof of (4.21).

An analogous transformation can be made on f~!. Let ¢ = f~'. This gives
w=—(9")29=9"" s
The effect of
Loxe = GoLoeGy 'y Luxe = GoLaeGy' or Myxe = GoMue Gy

is that

giving
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After n Darboux transformations we have

S} 1
o 0
In+1] =9 (4.22)
o= o
o) @

We can see that (4.22) is consistent with (4.21) since

-1

) 1
o [0]
oM ¢ .
Cle-b g
@(n—l) 0 -
N 1
oMm) @

4.3 Quasigrammian solutions obtained from binary Darboux

transformations

In the same way as for ncKP, we may extend the notion of the adjoint to obtain the adjoint

Lax pair

LLKP =92 — 2wl — 2w'a, + Oy,

Mo = —49? + 120102 + 6(3w] — wh? - Wha, +6(wl, —wiw' —whwl, — W) -,

m T T

The compatibility condition [LLKP, MJ;KP] gives

wf 4wl — 6wlwlw! + 3W] + 3wl Wi, = 3[wl,, wl] - 3w, wt’] = o,

Txrxr

(4.23)

W) — w;; + [w, W =0, (4.24)

which is the adjoint of (4.7) and (4.8).
In order to be able to define a binary Darboux transformatiom, we need to introduce

a potential Q(¢, ) satisfying
Qe ¥)e =V, Q,)y = 20wy + 9T bpa — V],
Qo) = 2(=201 b0 — 20 e + 201 b — 3T By — 3YTW e, — 3¢ 1wy,

+ 6Ylwe, — 61 we,).
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The parts of this definition are compatible when L, kp[¢] = M,xp[¢] = 0 and Ll [¢] =
M [¢)] = 0. In addition, we may define Q(®, ¥) for any row vectors ® and ¥ such that
Loke|®] = Moyo[®] = 0 and Ll [¥] = M, .[¥] = 0. If ® is an n-vector and ¥ is an
m-vector then Q(®, V) is an m X n matrix.

Let 0;, i = 1,2,...,n be the eigenfunctions defined in the previous section and let p;,
1 =1,2,...,n be adjoint eigenfunctions. For Lax operators with matrix coefficients, a

binary Darboux transformation was defined in [41] and is

D1 = D) — O 2Py )~ QUppg s D)

and

-1
V1) = Ppol = PP Ope) T (W O
in which

Using the notation © = (0y,...6,) and P = (p1,..., p,) we have, for n > 1

Q(O,P) Q(¢,P
Plnt1) = (6.F) ¢ ), (4.25)
o
QO,P) Qo,y)f
b = | P O (4.26)
P

If the above binary Darboux transformation holds then, using (3.25), we have

0O,P) Q6P
QUPpnr1)s Ypnt)) = (6,F) G5, P)
Q(0,v) Qe )

To prove (4.25), first observe that when n = 1,

P = ¢ — 1Q(p1,01) " Qp1, )

Qp1,61) Qo,p1)

0,
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Using the nc Jacobi identity (3.5) and the row homological relations (3.6), we have

D2 = Binr1] — O ]2 Ppr1] Opns1) " QPnr1]s Ppns1)

Q(0e,P) Qe,P)
©

QO,P) Q(0n+1,P)
.

|6, P) Q(e,P)
| s

Q0e,P) Qbn+1,P)
.
Q(e,P) Q(0p+1,P) Q(o, P)

= U6, pnt1)  QUOnt1, pnt1)  QUP, prta) |-

o b1

This proves the inductive step and completes the proof. The proof of (4.26) is very similar.

Q6,P) Q(e,P)
Q(0,p) |€20, p)

Q(0,P) [Q(¢,P)
Q(0,p) 26, p)

The effect of

[:mKP = G@,(ﬁmEmKPGQ_,ému f’mKP = G07¢1LmKPG9_7(]Z;m or MmKP = G@,(j)mMmKPGe_’(ltx

is that
R Q pf
f=a-ea = g (4.27)
0
After n Darboux transformations we have, for n > 1
QP,0) PT
Jinr1) = f (4.28)

Proof of (4.28) is again by induction. For n = 1, the result clearly follows from (4.27).

Next, replacing n with n + 1 gives

finrz = (I = Op 1O i), P 1) ™ Prar)) fint]
—1
Q20,P) Qb,+1,P)

.
Q(,p) Pt )

Q(0,P) Q(0p+1,P)
QO, pnt1) | QOn+1, prs1)

QP,0) Pf

f
o

2O, pny1) ij-l
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By observing that

Q(6,P) Pt ||oP,0) Pt
Q(0, prt1) PL+1 S

= (phi1 = 20, pi)0.P)TP) (1 - (P, 0) P

Q(e,P) Pt

O, pnt1) PLH

and using the nc Jacobi identity (3.5) we have

-1
; QP,0) Pl |QO,P) Q6,:1,P)|| QO,P) (0,41, P)
[n+2] — -
S} S} Q(@non—i-l) ‘Q(en—i-l?pn—i-l)‘

Q(e,P) pt

O, pnt1) PL+1

Q(P7@) Q(P70n+1) PT
= Q(pn-i-la@) Q(pn+179n+1> ,OLH I

G On i1

which proves the inductive step and the proof is now complete.
There appears to be no way of inverting (4.28). Consequently, an analogous transfor-

mation on f[;_lH] is not made in the quasigrammian case.

4.4 Reduction to commutative Wronskian and Grammian

solutions

As we saw with ncKP, all of the quasideterminants expressing the Darboux-transformed
eigenfunctions and variables f,, ;1) should reduce to the corresponding commutative results

in Chapter 2. Using (3.11), in the commutative case we have:

e The transformed eigenfunction

. _ . . é 1 n+l . . é.)
gb[ +1] @(n—l) d)(n—l) ( ) @(n—l) ¢(n_1) /‘
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e The transformed variable
e 0]

f=(=1)ntte™V
(1) o

fn =
[n+1] o-1 g
o) 1 M)
This gives
e 0
e
V[nJrl] =— log(f[nJrl}) =V + (_1)n log . .
o= o
o))
oM 1
ol
Y4 (~1)"log é)/ :
o)
e The transformed binary eigenfunction
Q(e,P) Q(¢,P)| . |A6,P) Qe,P)
¢[n+1} = = ’Q(@, P)‘ ’
C! e ¢
e The transformed adjoint eigenfunction
Qe,P)" e,4)f . |2(6,P)F QO,y)f
Vi) = £ (0, P)]
P p P
e The transformed binary variable
Qe,p) P . |Q6,p) Pf
f[nJrl} = =e v ‘Q(@,P)’ .
e I
Therefore
Vint1) = —1og(fint1))
£V +10g (oo, p))) -

We therefore recover all of the commutative solutions given in Chapter 2.
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4.5 Direct verification of the solutions

Since we did not derive an expression for f[;}rl} when finding quasigrammian solutions, we
only prove the quasiwronskian solutions in this section.

The Lax pairs of KP and mKP are the same when the vacuum solutions are trivial.
Let © be a common eigenfunction for these two (trivial vacuum) Lax pairs. For ncmKP,

the trivial vacuum solution, obtained from f = 1, which gives w =0= W, is

o [0
o o

F=| : e (4.29)
o=b ¢
on 1

To verify directly that (4.29) is a solution, we also use the solutions v = —2Q and © = —2@

of ncKP (3.19). Here, for convenience this is written in potential form

e 0 oM o
oM 0 o 0
Q=Q(0,0)=| : H, @=0Q(0,0) =
er-1) 1 em 1
o) @ on+1) @

Note that Q is only a solution if the vacuum is zero.

In a similar way we define

o [o]
0

o

FGy=| | (4.30)
om—ji) 1
e ¢

so that F' = F(0). Using (3.14), we have homological relations expressed as the identities
FQ(0.4) = F(j +1). (431)

From the quasi-Pliicker coordinates (3.12), the inverse of F' can be obtained from the

expression for F' by swapping the boxed entry and the 1 in the last column of F'. Thus we
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define

G=F1=

and additionally

Then

~

QU,0)G = =G(j +1).

Now consider the derivatives of F(j): using (4.30) and (4.31),

F(j)2 = FQ(0,5) — F(j +1) = F(Q(0, ) — Q(0, 5)).

90

(4.32)

(4.33)

(4.34)

More generally, if we assume that © satisfies the linear equations ©,, = Oy ..., we have

k
F(fay = D_FO)QKk —i,5) = F(k +j+1)

Thus, using (3.30),

and

and so

Fow + F, = 2FQ,.

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)
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Using the nc Jacobi identity and (4.33) we can show that

®© 1 0
e o
oM o0 o
Q(0,1) = |@»-1) 1| = @(' y C 1 =Q(1,0 - GM)F'Q = Q(1,0) + QQ.
n=1) 0 1
o) 0 -
e o 0
Qn+1) @
@(nJrl) 0 @

This is the noncommutative version of the first bilinear identity in the ncmKP hierarchy.

It can be generalized to get to the other members of the hierarchy:
Qi,4) = Qi +1,j — 1) + Q(i,0)Q(0,j — 1). (4.40)

This follows immediately from considering Q(z, Jj) written as

C) 1 0 -1
C) 0 © 1 C) 1 C) 0
e 0 0
o 0 ol 0 ol 0 1) 0
olh=i) o 1

=|er3) 1|-]6rD o|lerd g oh-i) 1

o=b 0 0
- @(nfl) 0 @(nfl) 0 @(nfl) 0 @(nfl) 0
CNE 0 0
O n+1+i) ©n+1+i) em) o)
i o o o]/ o [o] 0

=QGi+1,j—1) -Gl +1)F Q0,5 —1)

and then using (4.33).
On substituting F' and its derivatives into (4.7), all the terms cancel and the solution
is therefore verified.

Using (4.37) and (4.38) in (4.39), we can isolate u = —2@Q), to give
u=—F"tw,F - F'wF - F'F, (4.41)

which is the noncommutative Miura transformation between the KP and mKP equations.
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4.6 Matrix solutions

We take trivial the vacuum solution f = 1 so that w = W = 0. This gives

QP,0) Pf

The eigenfunctions 6; and the binary eigenfunctions p; satisfy
ei,acac = Qi,ya gi,t = _40i,xmx

and
Pixx = —Piy, Pit = _4pi,x:p:v-

The simplest nontrivial solutions of these equations are
9]' = Aje”j, Pi = Bie_%',

where 7; = pj(x +pjy — 4p]2-t), vi = gi(z + q;y — 4¢?t) and A, B; are d x m matrices. With

this, we have

BT A
QO p) = 0i i1 — D% i onii,
¢(pj — i)

We take A; = r;Pj, where r; is a scalar and P; is a projection matrix, and we take B; = I.
In the case n = 1, expanding (4.42) gives

2P
for=T+ _Fx_—m—
q(p—q)

If r > 0 and either ¢ > p > 0 or 0 > ¢ > p, or alternatively, if » < 0 and either p > ¢ > 0

or 0 > p > q then

1, 1 A+ A+
w= _f[2]7:vf[2]1 = 1(10(1) é(10 — ¢)?Psech (290> sech <2X> :

W = _f[Q],yf[;]l = (p + Q)wa

where ¢ = log ( > and x = log (p_—’") Both w and W have a unique maximum where

pr
q(p—q) —q

A= —log (W) =¢£.
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In the case n = 2, expanding (4.42) gives

A -1 [1&
f[3] - (Alem AgeW) <5i,j] o Qi(pli—j%)enj_%) .

2x2 Ie_”’Q
@
Ie*'“
=1+ (Lle'Y1 Lge'72> e(—hw ,  say
a2
1 1
=1+ —L;+ —Lo,
q1 q2
where L1 and Lo satisfy
A1 Al
L (I - WPl) —eMa 4+ 4,
(p1 —a1)a (r1 — 2)q2
A2 A2
I (1_ Wp2> _heg, g P2
(P2 — @2)q2 (P2 —q1)q
Solving for L1 and Lo gives

L= (prqul)m((pl — qz)QOQI —|—p1A2)A17

L — <p1—hqz>q2<(p2 — q)@hn ] + p2Ar) As,

where h; = e D — Biti
Pi—qi) i

and h = h1haq192(p1 — 2) (P2 — q1) — apipariTa.

We now investigate the behaviour of fi3 as ¢ — +oo. We first fix Ay and assume
without loss of generality that 0 > ps > g2 > p1 > ¢q1. Then, as t — —o0,

T1

~ T q1
T~ T+
and therefore
1 A 1 A 1
w o~ Z(plﬁh)_%(pl — q1)? Py sech (1;('01> sech (1—’2_X1> , (4.43)
where ¢ = log (ql(_p’i 11(111)) and x; = log (ﬁ). We also have the phase-constant
0l
& = —log (‘“’;flf”

Note th

Q

tw=—f3« f[g]l and W = — fz f[g]l are invariant under the transformation

93
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fi3) = fi3C where C' is a non-singular constant matrix. As ¢ — +oo, we get

~ | I+
Tie ( <h1T2P2Q1 (p1 — q2)(p2 — 1) + apiparira(p2 — q2)>
" (I+ D2 — Q2 A2>>< pQ—QQ)A2>
qar2 p2r2

I+ ( )
< hirapagi(pr — q2)(p2 — q1) + apiparir2(p2 — q2)

()

i p
~ I+ q1 _ ,
evi—n — P11
q(p1—q1)
where
M = rapa(p1 — q2)(p2 — q1) A1 — (P2 — @2) (1 (P2 — 1) A2 Ay
+ p2(p1 — q2)A1A2 + apiri(p2 — g2)) Az,
. < a(pr — q1)(p2 — QQ)> ~ri(fun, )
rn=mT 1-— = s
(p1 — @2)(p2 — q1) (p1,v1)
. p1(p2 — q2) (11, v2) 2
H1 = p1 — )
p2(p1 — q2) (2, v2)
. q1(p2 — q2) (2, v1)v2
1/1 - Vl )
@2 (p2 — q1) (12, v2)
]31 _ } ®A 1
(f11,01)
Therefore
1 . A T A T
w~ = (1) "2 (p1 — q1)?Pr sech ML) oo (2L :
4 2 2
1
s = o (7847} = o () a € = - o (200
Similarly, fixing Ag gives
1 . A . A .
w ~ 1(172(12)’%(292 — q2)° Py sech (2;%> sech <2;XQ> as t— —oo,
1 A iy A iy
w o~ Z(pg(]g)_%(pg — q2)? Py sech (2;@2) sech <2-12-X2> as t— 400,
A _p2pi—g)(pe v 5 o @emi—q)(pLr)v pH o @b
where fip = pia p1(p2—q1)(m v) o V2= 12 alpi—q2)(pipr) * 727 (11227'922)’
- _ —paf api—q1)(p2—q2) \ _ r2(f2,P2)
Py = log (q2(1722—32)) = log (p2 Q2)’ 2 =12 (1  (pi—q@2)(p2—a1) ) T (p2p2) 0
3 =log <q2(_pi;2j22)) and x5 = log (pz 2~ ). The soliton phase-constants are:

6 = —tog (220 ) g = —tog (212000 ) g5 — —tog (<)% ) ana

P2—az
& = —log ((qul)%m).

p2—q2
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The soliton phase shifts A; = fj — &, are

~

r 7
m:md?):—m@ &:m%2>:mﬁ
m 2
The characteristics of the two-soliton solution may be summarised in the same way as

the matrix solutions of ncKP:

e The matrix amplitude of the first soliton changes from i(plql)_%(pl —q1)%Py to

%(plql)_% (p1 — q1)2151 and the matrix amplitude of the second soliton changes from
1 ~ 1
%(P26]2)75(p2 — q2)%Ps to %(png)*ﬁ(pg — q2)%P» as t changes from —oo to +oc.

o If (p1,12) = 0(PPy =0) or (u2,v1) =0 (PP, =0) then a = 0 and therefore § =1,

so there is no phase shift but the matrix amplitudes may still change.

o If (p1,v2) =0 and (u2,v1) = 0 (giving PP, = P,P; = 0) there is no phase shift or

change in amplitude and so the solitons have trivial interaction.

In general, for n > 1, expanding (4.42) gives

16_71
i pje(nj*'ﬁ) -1 Ie 2
Te
e 71
q1
e 2
=1+ (Lle““ Loe ... Lne%) “ 1, say, (4.45)
e~ Tn
qn
"1
=1+ ) —Li 4.46
Z:%Z (4.46)

In a similar way to that of matrix solutions of ncKP, for n > 3, it is very difficult to isolate
each L;. So we will now only investigate the three-soliton solution. When n = 3, (4.46)
gives

1 1 1
f[4] =1+ le —+ fLQ + 7L3' (4.47)
q1 q2 q3
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From (4.44 — 4.46) we must have that

1 p1LaAy p1L3A; )
L= — <A1 + + , 4.48
hy @1 —q) @1 —q3) (4.48)
1 LA L3 A
L2—<A2+ b2l A n b2aL3 A )7 (4.49)
ha ap2—q1)  q3(p2—q3)
1 p3L1 A3 p3La A3 )
Ls=— (A + 4.50
> hg < a(ps —q1)  q(p3 —q2) (4.50)
where h; = e M — (piﬁzz)qi’ for i = 1,2,3. Solving for Ly, Lo and L3 gives
h(2 L. A Lao,A
L= ( ,3) Ay + Pi1lg 341 Pi1l32A41 7 (4.51)
h(1,2,3)q2q3(p2 — g3)(p3 — q2) @1 —q2)  ¢3(p1—q3)
h(l L. A L. A
Ly— ( ,3) Ay + Pb2ly 342 Pba2li3 142 (4.52)
h(1,2,3)q193(p1 — g3)(P3 — q1) ap2—aq1)  q3(p2—qs3)
h(1,2 L), A L, A
Ls= (1,2) Ay 1208 Pt (4.53)
h(1,2,3)q1q2(p1 — ¢2)(p2 — 1) a3 —aq1)  @(p3—q)
in which
h(i,j) = (pi — @;)(pj — @)@qihihy — pipjrirjo j,
p2p3Tar3as 3hy p1p3rirzar zhs p1pariraay 2h3
h(1,2,3) = — - -
@2 —@3)P3 —q2)  ae —@)Ps—a)  ae® — )P —a)
_ P1p2p3TiTars < 123 N Q132 >
719293 P2 —aq1)(1 —@3)(p3 —q2)  (p1 —q2)(P2 — @3)(P3 — q1)
+ hihahs,
v qi(py — qi)
WS hg) (hjqi(pi — q;)1 + pid;j) Ai,

for i,j € {1,2,3} and i # j.
Substituting (4.51 - 4.53) into (4.47) gives

fu=T+ M2 a0n (ba3A1 +bi13As + b1 oAz + b1 324142 + b123A143
+b231A2A1 + bo1 3A2A3 + b3 21 A3A1 + b31243A2), (4.54)
in which
L W)
i, — 5
(pi — 4;)(pj — @)

p'T'a',',k hq
(e —4)(pj — @i)vie Pk —
Using the fact that Tr(A;) = r; and det(A4;) = 0, for j = 1,2, 3, expanding det(f2)

gives
det(Q) =1 — @IileAl — @/ﬁ;geAz — @IigeAS + angﬁLgeAHAQ + %R2H3ﬁ2736A2+A3
q1 q2 q3 q1492 q243
pP1Dp3 A+As _ P1P2P3

H1I€2H351,2,36A1+A2+A3- (4.55)

4149243
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Ifr>0andgs >p3>q >p2>q >p1 >00r0>q3 >p3>qe >ps>q > p1, OF
alternatively, if r < 0 and p3 > q3 > p2 > qo >p1 > q1 > 0o0r 0> p3 > g3 > p2 > ¢ >
p1 > ¢1 then, B;; > 0 and x; > 0. From (4.55), det(£2) will be positive-definite if

Q123 01,32

(P2 — q1)(p1 — 43)(P3 — @2) * (P1 — q2)(p2 — 43)(P3 — q1) <0

The asymptotic forms of each soliton can be determined by following the methods in
Chapter 3. It can again be assumed, without loss of generality, that 0 > p3 > q3 > p2 >
q2 > p1 > q1. For soliton 1, as t — —oo, h; — —oo for i = 2,3. Then we can see from
(4.48 - 4.50) that L; — 0 for i = 2, 3. The resulting solution may be compared with similar

expressions in the two-soliton matrix solution, giving

LS -
q1
S~ 1+ —,
evi—m — Py
q1(p1—q1)

where r; = r; and P = P;. Therefore

1 1 _ A+ o7 A+ xq
w ~ Z(plql) ;(pl — q1)2P1 sech <12<p1> sech (12X1> ,

where
_ p1iry _ Ty
¢ —10g<—1 ) X1 —10g<— ! )
q1(p1 — q1) P1—q1
NI
The phase-constant of this soliton is {; = —log (W
As t — +oo, hy — ——P - for 4 = 2,3. Using the fact that w and W are invariant

2 (Pi—a;)
under the transformation fi4 — fi4C, where C is a constant matrix, we have

+

Lpﬁ
Sy~ 1+ - T
6’)/1—771 _ L
q1(p1—q1)
where
= Tl(ﬂfa’/f) + Nf@”/f
B I )
o p1(p2 — ¢2)(p3 — q3) ( (1, v3) (13, v2) (p11,v2) >
By = p1+ -
p2 (2, v2) P23 (u3,v3)(p1 —q3)(P3 —q2)  (p1 — 42)(P3 — @3)
p1(p2 — 43)(p3 — g2) ( (p1, v2) (p2, v3) B (11,v3) ) s
p3(p3, v3) P23 (p2,v2) (1 — q2)(p2 —q3) (P11 — @3) (P2 — q2) ’
+_ q1(p2 — q2)(p3 — q3) ( (u3,v1)(p2,v3) (p2,v1) >
v =+ - V9
q2(12,v2)B2,3 (3, v3)(p2 —a3)(ps —aq1) (2 —q1)(ps — q3)

q1(p2 — 43) (3 — @2) ( (p2, v1)(p3, v2) B (p3; 1) ) ,
q3(13,v3) 02,3 (12, 2)(ps — @2) (2 — q1)  (p3—q)(p2 —q2) ) >
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So we have
1 1 A + + A + +
w ~ Z(Plﬁh) 2 (pl - q1)2P1+ sech (12()01) sech <12X1 ,

where

+ +
a1(p1 — q1) P1— Q1

1
—(prgy H2rf

The phase-constant of this soliton is & = — log ( P—q1

Fixing Ay brings soliton 2 to rest. As ¢ — —oo, hi — =~ and h3 — +oo. This gives

pP1—q1
L L
q1 q2
Ty y—
~ T+ [
e—Az _ %
q2(p2—q2)
where
ry = roling,v) r2bre, Py = y B
(:u2ay2) (#25”2)
0y = g — p2(p1 — q1)(p2, v1) . v =y — q2(p1 — Q1)(M17V2)V1
2 pilpe — q1)(p1, 1) 2 a1(p1 — q2) (11, 1)
Ast — +00, hy — +00 and hy — (p;qu)‘ This gives
L L.
Jig ~ I+ 23 4 32
q2
ry
~ I—|- q2 P2
e—No _ P2ty
q2(p2—q2)
where
TJZTQ(MSF’U;):TQﬁQ:; P;:M;(gy;
(k2, v2) ’ (3 ,v5)
= iy - p2(ps — a3)(p2, v3) = g a2(ps — QS)(M37V2)V3
2 p3(p2 — q3)(us,v3) 2 3(p3 — q2) (13, 3)
So the asymptotic forms for soliton 2 are
1 A S A N
w ~ 1(}?2(]2)_%(1)2 — q2)* Py sech <2—i2—<p2) sech (242_X2> as 1 — —00,
1 A iy A iy
w ~ 1(})2(]2)7%(]?2 — q2)* Py sech <242-<p2) sech (2;X2> as t— 400,

_ - ot B - 4
where ¢y = log (%(117)2212(12))’ 4,02+ = log (!12(117)2212(120’ Xy = log <p2i2qz) and X2+ = log (p2i2@>'

We also have the soliton phase-constants

_ —1\1 — . —1\3 4+
52:10g< (P25 )27“2>, 2+:10g< (P24 )27“2)_

b2 —q2
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With As fixed, soliton 3 is a rest. As t — —o0, h; — q,&ff;,) for i = 1,2. This gives

f[4] ~ T+ q3 "3 _
e—Ns _ p3T3
q3(p3—q3)
where
i r3(ug,vs) _ r3fies —_H3 ®vy
3 (u3,v3) Bia (nz,v3)
b = s + p3(p2 — q2)(p1 — 1) ( (p3, v1)(p1, v2) B (13, v2) > iy
p2(p2,v2) P12 (p1,v1)(p3 —q1)(p1 —q2)  (p3 — @2)(p1 — @1)
p3(p2 — q2)(p1 — q1) ( (p3, v2) (12, 1) _ (3, 11) )
p1(p1,v1)P2 (2, v2)(ps — a2)(p2 — 1) (3 —a)(pa—az) ) '
v — s+ a3(p2 — @2)(p1 — @1) < (11, v3) (p2, 1) B (p2, v3) ) vy
q2(p2, v2) 51,2 (p1,v1)(p2 —q1)(p1 —a3) (P2 — @3)(P1 — q1)
g3(p2 — q2)(P1 — q1) < (p2,v3) (11, v2) B (11, v3) > "
q1(p1,v1) P12 (2, 2) (1 — @) (P2 —q3) (1 —@3)(p2—q2))

As t — 400, hy — 400, for i = 1,2. This gives

s p+

pary
q3(p3—qs3)

+ ud vt

+ _ + _ + _
where ry = r3, Py" = Fa) ps = p3 and v3 = v3.
373

So the asymptotic forms for soliton 3 are

1 A 2 A 3
w ~ Z(m%)*%(m — q3)° Py sech <3—5¢3) sech (%) as t — —oo,
1 _ Az + o3 Az +xq
w ~ i(p?,%) 3 (p3 — q3) P sech <32¢3) sech <32X3 as t— +o0,
h =1 —Pp3ry | _P3T§— T =1 Ty dvi =1 —7’3’
WRETE P53 =108 \ 55 —a3) )> ¥3 = 08 \ Glps—as) )0 X8 = 198 \ ps—gs ) AN X3 = 108 \ p3=g5 )

In addition, we have the soliton phase-constants

. —1\i — _ -1\ +
& = log <(p‘”iq‘°’_ S > & =log <(p3q“°’_ £ ) -
P3 — g3 b3 — g3

The soliton phase shifts A; = f;“ — & are




CHAPTER 4. A NONCOMMUTATIVE MKP EQUATION 100
4.7 Plots of the matrix solutions

In this section, we demonstrate the interaction properties of the two- and three-soliton
matrix solution of ncmKP with various plots.
Figure 4.1 shows a plot of the generic two-soliton matrix solution w = (w;;), i,j = 1,2,

where

r = 1 — fl = 0.846,
7o = —0.846 —

()%
)

p2 = (—1 —0.5

1.615 0.308

( )
( 1.25 —0.5)7
=
= (-

l

(0 692 —0.885 ) — =11 )
vg=|— —0. 125) — = 1 0. 375)
. 1.321 —1.689
s P = 7
) 0.252 —-0.321
R 0.909 0.227 1.231 —0.462
Py = — b= ;
0.364 0.091 0.615 —0.231

as t changes from —oo to +00. This plot shows both a change in matrix amplitude and a
phase-shift upon interaction.
Figure 4.2 shows a plot of the generic three-soliton matrix solution w = (w;;), 4, j = 1,2,

where
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;=1 r = 0.711,
ry =2 ry = 1.135,
ry =1.21 ri =1,
py = (1 0.333) i = (0 857 0. 205)
vy = (1 2) v = (2 549 6.656),
fy = (26 11) p = (0 427 3.315),
vy = (0.125 2.25) vy = (1 455 4606)
py = (2.362 0.328> py = (1 —0. 2)
vy = (1.377 —1.806) vi = (3 )
- 0.6 1.2 . 0.615 1.606
1 f— P]. — 9
0.2 0.4 0.147 0.385
- 0.116 2.089 . 0.039 0.124
= R P2 = y
0.049 0.884 0.303 0.961
1.222 —1.604 1.364  1.818
0.17 —0.222 ~0.273 —0.364

as t changes from —oo to +o00. This plot shows both a change in matrix amplitude and a

phase-shift upon interaction.
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Figure 4.1: Plot of matrix mKP two-soliton solution at ¢ = 0 with parameters p; = i,

-1 3 3
P2=7,q0=7%q=F,r1=1land rp = —1.
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Figure 4.2: Plot of matrix mKP three-soliton solution at ¢ = 0 with parameters p; = 1,

pr=3,13=6q1=2¢=5¢g=9andr =ry=r3 =1

4.8 The noncommutative Miura transformation

Using the same method as in the commutative case, we can construct a noncommutative
Miura transformation between the ncKP and ncmKP equations. Upon calculation of the

transformed pseudodifferential operator EKP = 01 Lpb, we have
-1 [ —1 —1 1 -2
Lxp=0410 9x+§9 ufo™" + (0 u29—§9 ubp )0+ ...
Comparing this with the operator

Lomgp =0 +w+ w0, +wed; % + w30, + .. .. (4.56)
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and equating coefficients gives

w = 6716,, (4.57)
1
wy = 59_1u0, (4.58)
1
wy = 0 tugh — 50_111996. (4.59)

These coefficients will satisfy (4.3), (4.4) and (4.5). Isolating u in (4.58) gives

u = 20w 07 . (4.60)
Given that w = 6716, and w = —f,f~!, we can conclude that f = #~'. Therefore, we
can rewrite (4.60) as

w=2f"twf, (4.61)

which was also derived in [8]. Upon substitution of (4.10) in (4.61) we obtain the noncom-

mutative Miura transformation between the ncKP and ncmKP equations:

w=—f"twpf = T = [y (4.62)
:filfacx_Qfacfilfxfil _filfy- (463)
Direct substitution of (4.63) into ncKP (3.19) leads to the left-hand side of (3.19) being

identically zero. Therefore, (4.63) defines a new solution of ncKP (3.19). Furthermore,

(4.62) is consistent with the nc Miura transformation (4.41).



Chapter 5

Dromions of the matrix equations

The aim of this chapter is to find exponentially localized structures, obtained from the
matrix versions of the nc KP and nc mKP equations. The commutative KP equation [3]
and the commutative Davey-Stewartson (DS) equations [49] are known to have localized
lump solutions, which have algebraic decay at infinity. However, when each lump collides,
the interaction is completely trivial. Equations such as the DSI equations [2,18] and the
Nizhnik-Veselov-Novikov (NVN) [42] equations are known to have localized solutions which
have exponential decay at infinity. In this case, the solutions have interesting interaction
properties such as changes in amplitude and trajectory. For the NVN equations, it was
shown, in [50], that an exponentially localized solution may be thought of as a two-soliton
solution made out of two intersecting “ghost” solitons. In [18], the authors show, by means
of direct methods, how to derive the characteristics of exponentially localized solutions of
the DSI equations. This has been extended to the noncommutative setting in [17]. In
both the DSI and NVN equations, the underlying solitons which interact to create the
localized solution are perpendicular. These localized solutions are called dromions which
comes from the Greek word dromos meaning track. This term was coined in [11] because

the dromions are located at soliton interactions which can be thought of as forming tracks.

5.1 Matrix KP single dromion

Since the one-soliton matrix solutions of ncKP and ncmKP have projection matrices gov-
erning their amplitude, their determinant will equal zero. Therefore, the natural thing
to investigate when looking for dromions of these solutions, is the determinant of the

two-soltion matrix solution. We begin by investigating the two-soliton matrix solution of

105
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ncKP.

Recall from Chapter 3 that the two-soliton matrix solution of ncKP is u = v, where

v=2(K; + Kb),
in which
K =2 ; D (ha(pr — )T — A2) Ay,
K=" ; L (hi(ps — q)T — A1) As,
and

h = hiha(p1 — q2)(p2 — q1) — arire,

and o — (p1,v2) (12, 1)
Pi — 4; (/1’171/1)(/1‘27”2)

iy T
hi:(BAl—i- !

= T’I’(Plpg).

Since the determinant of a projection matrix is zero and the trace of a projection
matrix is equal to its rank, det(u) can easily be expanded along any row or column. In

doing so, the result greatly simplifies and we obtain

det(u) = 4rira(p1 — g2)(p2 — q1)(1 — @)

2
X ((pl —q2)(P2 — q1) (Zl) <f;2> —rirea (:L) )
= 4r1r2(p1 — g2)2(p2 — 1)*(1 — @) gho o h 2. (5.1)

The single dromion (5.1) can be rewritten as

_Arira(p — q)(p2 — go) (1 — a)e” M HAY)
(e=(M1+h2) 4 gje=Ae 4 gpe—hi 4 )
_ drira(pr — q1)(p2 — g2)(1 — a) (5.3)
(e‘é(A”A?) +rperMA2) g o ea(he—hn) ne%(A1+A2))2

det(u)

a(p1—q1)(p2—g2)

where k; = ﬁ’ for i =1,2 and k¥ = Kk1k93, where =1 — TERICEDE

Figure 5.2 shows a plot of the dromion (5.3). The method of describing the charac-
teristics of this dromion is in the spirit of that in [18] and [50] with one main difference
being that the solitons governing the dromion are not necessarily perpendicular to one
another. The characteristics of det(u) as given by equation (5.3) may be summarised by

the following theorem:

Theorem 2. If det(Q2) is positive-definite and if o # 1, then det(u) has the following

properties:
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1. det(u) decays to zero exponentially as (x,y) — oo in any direction and has a unique
mazximum or minimum value

(1—a)(p1 — q1)*(p2 — CJ2)2‘
(VB+1)*

The dromion will have negative, zero or positive amplitude. The amplitude is

det’ (u) maz/min -

(5.4)

e negative if a > 1,
e zeroifa=1,

e positive if a < 1.

2. At time t this maximum or minimum s located at

1
(.0 = 55— (86 +60) ~ 176 +&) +8ht
e + ) -V +eD +8hgt),  (55)

where l; j = ll(-i)l;j) — lz(j)l;i) and ll(j) = qg - p{ This result implies that the dromion
1s located symmetrically between the solitons in the two-soliton matrixz solution as

tllustrated by Figure 5.1.

3. The trajectory of the dromion is the straight line

y:<l173>$+(5()l23+l 113>(€2 +&) - ( Doy +15 ll3>(§1 +§1). 5.6)

201 2l23

1
phsé)sét(s)ﬁlft

dromion

1
phszgsétgﬁlft

Figure 5.1: Phase-shifts in the solitons and the location of the dromion.
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Proof. From (5.3), we see that det(u) decays to zero exponentially as (x,y) — oo in any
direction since, along any ray in the (z,y)-plane, at least one of the exponentials in the
denominator is unbounded as (x,y) approaches infinity. To see this, let y = kx, where

k € R, be a ray in any direction. Substituting this into (5.3) gives

o 3 (VD4 (124082 k) a—a (1) 4157 ) N me%((z§1>—z§1)+(l§2>—l;2>)k)x—4(z§3)—z§3>)t)
t kg (187 =10+ (87 =1 ) k) o—a (18—t + ket (848 + (18 +187 ) k) o—a (154157 )t

()

on the denominator. This expression must tend to infinity for any values of k and [;7’,

1,7 =1,2 as x — Fo0.
Since det(u) is exponentially localized, a unique critical point must be either a maxi-
mum or a minimum. If we consider the conditions that o # 1 and (det(u)), and (det(u)),

vanish simultaneously, we get

(19 4 150) e 30002 gy (1) 41D et

g (10— 1§ e300y () D) ehean
and

(l?) + lf)) e—%(A1+A2) + Ky (—ng) + l§2)> e%(Al—AZ)

+r2 (5§2) _ l§2)> ez(Bha—p1) | (—l?) _ l§2)> e3(AiFA2) _

which imply that

e—(A1+A2) e(—A1+A2) — a2}

K2

e M — ‘/%:KJ\/B and e‘AQ:”%:@\/B (5.7)
2 1

Substituting (5.7) into (5.2) gives the maximum or minimum of det(u).

=k and

and so

Solving (5.7) for x and y gives (5.5), the location of the dromion. Eliminating ¢ in

(5.5) gives the trajectory of the dromion.

The dromion as given by (5.3) is still prevalent when there is no phase-shift and when
there is both no phase-shift and no change in amplitude. This is different from the DSI

and NVN equations where the dromion vanishes when there is no phase-shift.
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Figure 5.2: (a) Plot of a single dromion at ¢t = 0 with parameters r; =2, ro =1, p; = —i,
a=-hp=3ae=1mn =02, =(53),1 = (53 andvy =(23). (b) Plt

of the corresponding ncKP two-soliton matrix solution.
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5.1.1 A three-dromion example

The determinant of the three-soliton matrix solution gives a three-dromion structure. In
this case, the three dromions will always collide as they are effectively sharing the same
origin. This is illustrated in Figure 5.3. Adding more solitons to the solution would
give a much more complicated dromion scattering scheme in which all dromions may not
simultaneously collide. Therefore, we will concentrate on the three-dromion case here and

perform a detailed asymptotic analysis.

Figure 5.3: Schematic form of the dromion scattering.

Upon expansion of det(u) = det(vy ), where u is the three-soliton matrix solution of
ncKP, by using the fact that the trace of a projection matrix is equal to its rank and its

determinant is equal to zero we get

hizho emi 23 4+ b1 zh3 zmi1 32 + ho phs zmo 31
det(u) = h2(1.2.3) , (5.8)

where we have the quadratic equations in hy:

;i k(b + O i QG i (i + i i p(lig + g i
Mgk = TiT (h%(l — i) + itk < w,k( i,k k,J) . Nw( J.k k,z) . Jvk( J:k lw)

Ci gl Cj il i ili,j
il + %‘)) 2 < Qijk | Qikj i k0 ks (Cik — Chi) Lok — Lhj)
Ci 1l i P\l Calh Ci 1l il il

Qj K Q5 |
+ ‘77 + 3 )> ,
Cilr;  ligly

in which ¢; ; = p; — q; for 4,5,k € {1,2,3} and i # j # k. To investigate the behaviour of
each dromion as t — 400, we fix attention on the dromion arising from the interaction of
the ¢th and jth solitons, which we term d(i, j). In addition, the corresponding two-soliton

interaction matrix potential will be termed v; ;. We consider det(u) as given by (5.8) in a
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frame moving with the (¢, 7)th dromion by rewriting it in terms of

(@ =P @ —p)) — (& — P )
roetd ( (4 — )@} —p}) — (@] — P3)(a — ps) > b
(@} —p) (g —ps) — (@ — D) g — pi)
y=urd ((Qj —pi)a; — 7)) — (6 — p)(a pi)) b

fori,j=1,2,3.

In accordance with the three-soliton matrix solution, we will assume, without loss of
generality, that 0 > p3 > q3 > p2 > g2 > p1 > q1. Let us begin with the frame moving with
d(1,2). To obtain the characteristics of this dromion, we let soliton 3 pass through solitons
1 and 2, which are stationary, as t — +oo. We then study the asymptotic behaviour of
the resulting two-soliton interaction. With solitons 1 and 2 fixed, h; and hy are are also

fixed and we study the asymptotic behaviour of h3 as t — +o0o. We have that

3 —
pa—aqz t 0,

+o0 as t — Hoo.

hg —

When hg — r3/(ps — q3), equation (3.51) gives

V2 = ( ) (b1,2A3 + b123A1A3 + b321A3A1 + by 13A2A3 4 b3 1 2A3A2

h h
r3hs ror30i23 > A+ < rshi r1r3001,3 ) A,
ps—az  (p2—aq3)(p3 — @) p3—q3  (p1—q3)(p3 —aq1)

(
(

+ ( “”O“ 3,2 ik ) A1 Ay
(i

_|_

(P2 —q3)(p3 — q1)ane (p2— q1)(p3 — q3)

7”‘3041 2,3 r3
AsAq ), 5.9
(1 — @3) (03 — @)1z (p1 — q2)(p3 — qg)) ? 1) (59)

_l’_

where

raaz3(ps —q3)hi riaais(ps —g3)he 172002
(P2 —a@3)(p3—q2) (1—a@3)p3—aq1) (1 —q2)(P2 —q1)

h(1,2) = <h1h2 —

a12.3 a1.32
Frira(ps = ds) <(p2 —q1)(p1 — a3)(P3 — ¢2) " (P1—q2)(P2 — q3)(p3 — CI1)>) '

To obtain the characteristics of the dromion d(1,2), we find the asymptotic forms of @ :=

(v1,2)e. Firstly, let us fix A;. Since @ is invariant under the transformation vy 9 — v12+C,
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where C' is a constant matrix, we have

__2n(1,2) Py(1,2)"

Y12 e—M + 7'1(1 2)~ as t— —oo,
, +
e = DR s v o
where
- _ /~”1(172)_V1(172)_T _ H1(172)+V1(1)2)+T
e e P A o M M AR R R )
-, s —a)(uvs)us -, (ps—as)(ps,v)vs
m12)7 = m (p1 — q3)(u3,v3) 1,2) Y s — ) (s )
+_ (P2 — ¢2)(ps — g3) (p1,v3) (13, v2) B (11, 12)
m12)" =t (p2,v2)B2,3 <(M3, 3)(p1 — @3)(p3 —q2)  (p1 — q2)(p3 — Q3)> H2
N (P2 — a3)(p3s — q2) ( (p1, v2) (p2, v3) B (11,v3) ) .
(13,v3) P23 (2, 12)(p1 — ) (p2 —a3) (1 —@3)(p2—q) )
y i, @) —a) (13, v1) (12, v3) B (w2, v1) 5
1(1,2) o (p2,12) 32,3 ((M?n v3)(p2 —q3)(p3s —q1) (2 —aq1)(p3 — Q3)> ?
L (P2 = as)(Ps — ¢2) ( (12, v1) (113, v2) B (13, 1) ) ,
(13,v3) P23 (2, 12)(p3 — ) (p2 — 1) (p3—a)p2—q2) ) >
- 7”1(#1(172)_,1/1(1’2)_) o an
ri(1,2)” = (p1,v1) =113 d
r + _ Tl(/l’l(172)+7’/1(172>+) _ 51,2,3
1(12)7 = (ar ) "y

These asymptotic expressions for v; o are of the same form as the one-soliton matrix

potential vy discussed in Chapter 3. Therefore, the asymptotic forms for @ are

(p1 — q1)*P1(1,2)” sech® <;(A1 + 61(1,2))> as t— —00,

l\D\}—t [\:)M—l

(p1 = a1)*Pi(1,2)" sech” <;(A1 + &(1,2)*)) as t— +oo,

. _ 1,2)" 1,2
with phase-constants &;(1,2)” = log <%) and & (1,2)* = log (r;(1 q)1 )
Next we fix Ap. Since u is invariant under the transformation vy o — v12 + C, where

C' is a constant matrix, we have

_ 2rp(1,2)" Pp(1,2)”

19 = as t— —oo,
,A 7”2(].2)
S pP2—q2
2r9(1,2) T Py(1,2
v, = T2( ) 2( ) as t— 400
1,2 ,A2+r2(1 2)+ ’

p2—q2
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in which
~ (1,27 w(1,2)7" Ce(1,2) T ue(1,2)
R PR AT o i e PR R o)
+ (s —a3)(p2, v3)ps v (p3—q3)(ps,va)vs
Ha(1,2)7 = (p2 — q3) (3, v3) 2(1,2) (p3 — q2) (3, v3)
_ (1 —q1) (p3 — q3) (12, v3) (13, v1) B (p2, 1)
Ha(1,2)7 = iz + (p1,v1)051,3 ((M?», v3)(p2 —a3)(ps —q1) (P2 —q1)(p3 — CI3)> i
L (1= a)(ps — as) ( (p2,11) (11, v3) B (12, v3) ) i
(13, 13)B1,3 (u,) (P2 — )1 —a3) (P2 —a)pr—aq1) )"
vo(1,2)" = vy + (P —a1)(p3 — q3) < (p3,v2) (a1, v3) B (p1,v2) > "
’ (p1,v1)0P13 (u3,v3)(p1 — @3)(p3 —q2)  (p1 — q2)(p3 — q3)
n (1 —q1) (3 — g3) ( (11, v2) (13, 11) B (p3,v2) > y
(13,13)01,3 ()3 — )1 —a2)  (ps— @)1 —aq1) ) >
~_ra(pe(1,2)7,1e(1,2)7) 5123 .
r2(1,2)” = (p2,v2) 513 d
7’2(1 2)+ 7"2(M2(1,2)+7V2(172)+) :T2ﬂ23
’ (p2,2) -

So the asymptotic forms for @ are

(Ao 4+ &(1,2)~ )) as t — —oo,

[\D\H

(p2 — qg) Py(1,2)” sech? <

[\D\H

U~ (A2 + &(1,2) )) as t— 400.

l\.’)\r—l

(p2 —qg) Py(1,2)" sech? (

l\.’)\r—l

The phase-constants are: &»(1,2)” = log %) and &(1,2)T = log <T;(21 2(1)2 ) Fur-

thermore, the soliton phase-shifts A;(1,2) = &;(1,2)" — &;(1,2)7, for j = 1,2 are

Pras
B1,302,3

The asymptotic expressions for 4 can now be used to describe the dromion d(1,2) as

Aq(1,2) = log (61_,2> and As(1,2) = —log (ﬁi2> , inwhich ;5=

t — —oo. When hs — r3/(p3 — ¢3), equation (5.8) gives

d(1.2) ~ 4r1(1,2)7r2(1,2) " (p1 — 1) (p2 — ¢2)(1 — a ) -\ (5.10)

(67%(A1+A2) + r1(1, 2)_6%(/\171\2) + Ka(1, 2)_6%(/\271\1) + K] %(AIJFAQ))

where

r1(1,2)” ko(1,2)" = ro(1,2)" and

a7, =Tr(Pi(1,2)"Py(1,2)"), ki(1,2)” = ,
12 (P1(1,2)"»(1,2)7), k1(1,2) p—— —

K19 = K1 Ko 51,2-

In Chapter 3, we had that
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for 7,5 € {1,2,3} and i # j. When hg — 400, from (3.47) we have that K3 — 0 and

therefore
vi2 ~ 2(Ky 5 + Kyy). (5.11)

The asymptotic expression (5.11) is of the same form as the two-soliton matrix potential
vfg) and the resulting dromion is therefore of the same form as the single dromion as given

by (5.3). Therefore, when A; is fixed, the asymptotic forms for w0 = (v12)g are

~ %(pl —q1)*P1(1,2)” sech® <;(A1 + 51(1=2))> as t— —oo,
i~ g — )P, 2) set? (J0 4 60,2)9) a0 o
where
= Iy 09 = B g

(P2 — g2) (11, v2) 2
(p1— a2)(p2,v2)
(P2 — q2)(p2, 1) v + (i, )

I;172+:l/_ ;o m(L,2)7 =1, (1,2 =7 =T )
1(1:2) L 2 - a1) (w2, 1) 1(1,2) o fil2) (1, v1) P12

£(1,2) = log (Tl(”)_) and - G1(1,2)" =log <T1(12)+> |

p1—aq1 b1 —q1

ﬂ1(172)_ = M1, 7}1(172)_ =, ﬂ1(1,2)+ =l —

When As is fixed, the asymptotic forms for @ are

U~ %(pg — q2)2Py(1,2) sech? <;(A2 + 52(1,2)_)> as t — —o0,
0~ %(pg — q2)°Py(1,2) 7 sech? <;(A2 +&(1, 2)+)) as t — 400,
in which
P12 = f2LD L2 o Be(L2) 51,2

(A2(1,2)T, 92(1,2)T)’

A~ ~ ~ _ —_ 71/
'u2(172)+ = U3, V2(1,2)+ = vy, /,L2(1,2) = iy — (pl Q1)(N2 1),“17
(P2 — q1) (1, 1)

(2(9]1)1—};1;/;;,11/21)/17 72(1,2)” = m = roBra,  Pa(1,2)T =1y,
£(1,2)” =log ( 9 ) and  &(1,2)" =log <r2(1,2)+) :

P2 —q2 b2 —Qq2

02(1,2)" = v —

~ A~

The soliton phase-shifts A;(1,2) = &(1,2)" — éj(l, 2)7, for j =1,2 are

A1(1,2) = log <ﬁff2> and  As(1,2) = —log (ﬁf,z) . where B, = fia.
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The dromion d(1,2) as t — +00 can now be written as

471 (1,2) " 72(1,2) (01 — q1) (P2 — @2) (1 — o)

5, (5.12)
(e—%(A1+A2) + k1 (1, 2)+e%(1\1—1\2) + Kao(1, 2)+€%(A2—A1) + ﬁiQe%(Aﬁfb))

d(1,2) ~

where ozi'r’2 =Tr(P1(1,2)"Py(1,2)T), k1(1,2)" = k1, ko(1,2)" = Ky and
ki = k1(1,2)TRa(1,2)7 81,
When in a frame moving with the dromion d(2,3), the asymptotic analysis is very

similar to that of d(1,2). In this case, hy and hg are fixed and

T1
N
B T t 00,

+o0 as t — +oo.

When h; — plr_lql, fixing Ay gives the asymptotic forms for u:

i~ =(p2 — q2)*P2(2,3) sech? <;(A2 + &2(2, 3)_)) as t— —o0,

U ~

N~ N

1
(p2 — q2)2P2(2, 3)* sech? <2(A2 + &2(2, 3)+)> as t— 400,

with phase-constants £2(2,3)” = log <%) and &(2,3)" = log (%) and
b ma(2,3) m(2,3)T
(M2(27 3)+7 V2(27 3)+) 7
(p1 — q1)(pa, v2)n
(p1 —a2)(pa, 1)

12(2,3) " 12(2,3) "
(M2(273)_7V2(273)_)’
- i —a) e -
H2(2,3)" = po (P2 — q1)(p1, 1) 2(2.3) ?

P2(2,3)7 = P5(2,3)

+_ (1 —aq1) (p3 — g3) (p2,v3)(p3,11) B (p2,11)
#a(23)" = 2 (p1,v1)051.3 ((u?,, v3)(p2 —@3)(ps —q1) (P2 —q1)(ps — q:a)) =
n (1 —aq1)(p3 — g3) < (p2, v1) (p1, v3) B (12, v3) ) "
(13,v3)01.3 ()2 —q) (o —a3)  (p2—a)pr—aq) )"
_ oy = a)(ps — g3) (13, v2) (11, v3) B (k1,v2) 5
va(23)T =t (p1,v1)B1,3 ((Ms; v3)(p1 —q3)(ps —q2) (1 —q2)(p3 — Q3)) !

L (= a)(ps — as) ( (11, v2) (13, 1) B (13, v2) ) y
(13,v3)01.3 ()3 — )1 —a2)  (ps— @)1 —q1) ) >
TQ(M2(2> 3)_7 V2(2’ 3)_)

r2(2,3)” = (42,12 =rof12 and
, (2 3)+ _ TQ(M2(2,3)+,I/2(2,3)+) —r ﬂ1,2,3
2% (2, o) * s

Fixing A3 gives the asymptotic forms for :
U~

(ps — 43)°P5(2,3)™ sech® <;(A3 +&3(2, 3)_)) as t — —o0,

U ~

N~ N

1
(ps — Q3)2P3(2, 3)* sech? (2(/\3 + &3(2, 3)+)> as t— 400,
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where £3(2,3)" = log (M> and &3(2,3)" = log (7T3(2’3)+) and

p3—gq3 pP3—g3

Py(2,3)" = “3(2’3)_”3(2’3)_T, Ps(2,3)

(k3 ,v3)

Loms(2,3)Tus(2,3)T
C (u3(2,3)%,13(2,3)*)’

+ (ps — a3)(p2, v3) 13 v (p3 — q3)(p2, v3) 13
#3(2 )7 = 2 - (p2 — a3) (3, v3) va(23)" = iz - (p2 — q3) (3, v3)
_ (P2 — @2)(p1 — q1) (13, v1)(pa, o) (13, v2)
wo(2,8)" = us + (H2,v2)B1,2 ((m,vl)(pg —a)(pr— @) (p3—q@)(p1 — q1)> H2
L (=) —a) < (13, v2) (12, 1) B (ks 1) > »
(p1,v1) P12 (p2,v2)(p3 —q2)(p2 —q1)  (P3 — q1) (P2 — q2) ’
DT = va + (P2 — g2)(P1 — q1) < (11, v3) (2, 11) B (2, v3) ) 5
3 ’ (p2,v2) 01,2 (u, )2 — 1) (01 —g3) (P2 —a3)p1 —aq1) )~
N (p2 —a2)(p1 — q1) ( (112, v3) (11, v2) B (p1,v3) ) "
(p1,v1) P12 (p2,v2)(p1 — q2) (P2 — q3) (1 — @3) (P2 — q2) ’
_ T3(u3(2,3)_,yg(2,3)_) 517273
rs(2,3)" = (13, 13) ~ B, and
T3(2 3)+ _ T3(/‘3(273)+7V3(273)+) — 1363.
’ (13, 13) ’

The soliton phase-shifts A;(2,3) = &;(2,3)" —&;(2,3)7, for j = 2,3 are

B1,2,:3
B1,21,3

As(2,3) = log (52j3) and  A3(2,3) = —log (@3) . inwhich B, =

The asymptotic expressions for % can be used to describe the dromion d(2,3) as t —

—o00. When hy — r1/(p1 — q1), equation (5.8) gives

4r2(2,3)773(2,3) " (p2 — ¢2)(p3 — ¢3)(1 — ay3)

d(2,3) ~ - - - - 5, (5.13)
(€*§(A2+A3) + Ko (2, 3)765(/\2*/\3) + ,{3(2’3)765(/\3*/\2) + ,.62*’36§(A2+A3)>
where
2,3)” 2,3)”
gy = Tr(Py(2,3)"P3(2,3)"), ka(2,3)" = r2(2,3)” K3(2,3)" = r3(23)°
’ P2 —q2 p3—q3

Koy = K2(2,3) K3(2,3) By
In the case that h; — +00, when A, is fixed, the asymptotic forms for 0= (v2,3)g are

~

So

(p2 — q2)*Pa(2,3)” sech? (;(Ag +&(2, 3))) as t — —o0,

~

S
N = DN =

N 1 "
(p2 — 2)°P»(2,3) " sech® <2(A2 +&2(2, 3)+)> as t— +00,
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in which
T T
A in(2,3) " 02(2,3)" . 15(2,3) (2, 3)*
P2(2,3)_: u2(7 ) V2( ’ ) ’ P2(2,3)+: M2(7 ) 1/2(1 )

(ﬂ2(2> 3)+7 ’92(2’ 3)+) ’
(ps — q3)(p2; v3) B3
(p2 — a3) (13, 3)

(A2(2,3)7,92(2,3)7)

f12(2,3)" = po, 22(2,3) =va, [12(2,3) = po —

N (p3s — q3)(us, vo)vs . —
09(2,3)T =1y — 72(2,3)" = 7o,
2(2.3) ? (p3 — q2)(p3,v3) 2(2.3) ?

(. = PEBD BRI oy g —os (22D g
. L a(2, 3)+)
£(2,3)" =log <p2 0 )

When Aj is fixed, the asymptotic forms for @ are

G %(p3 ~ g3)2Py(2,3)" sech? @(A3 (2, 3)—)> as t— —o0,
U~ %(pg — q3)?P3(2,3) " sech? <;(A3 + &3(2, 3)+)> as t— 400,
where
e = By e =

(P2 — q2) (13, v2) 2
(p3 — q2)(p2,v2)

(p2 - Q2)(M2a V3)V2 P (2 3)— _ T3(ﬂ3(27 3)7 ’93(2a 3))
(p2 — g3) (2, v2) ~ 0 (113, v3)

) rs(2,3)”
Fo(2.3)" =15, E(23)" = log (H) and
f3(273)+>

As(2,3)" = s, 05(2.3)" = w5, 15(2,3)7 = ps -

= 13323,

3(2,3)” =3 —

53(2, 3)+ = log <
pP3 — g3

Furthermore, the soliton phase-shifts are Aj(Q, 3) = éj(Q, )t — 5}-(2, 3)~, for j =2,3 are
Ay = log (ﬂ;:3> and Az = —log (ﬁ;})) , Where ﬁ;3 = [23.

The dromion d(2,3) as t — 400 can now be written as

479(2,3)"73(2,3) " (p2 — q2) (p3 — ¢3)(1 — 043,3)

(e_%(A2+A3) + Ko(2, 3)+e%(A2_A3) + k3(2, 3)+e%(A3_A2) + /1;36%(/\2—’_1\3))

d(2,3) ~ 5, (5.14)

where Tr(P5(2,3)” P3(2,3)T), k2(2,3)" = ko, 3(2,3)" = k3 and K3y = r2(2,3)TKs(2,3)" B3,

Finally, we move to a frame moving with d(1,3). In this case h; and hg are fixed and

+o00 as t— —o0,
hy —

T2
—s — .
g 38 t 400
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When hy — +o00, fixing A; gives the asymptotic forms for @ := (v13)s:

U~ %(pl —q1)*Pi(1,3) sech? < (A1 +&(1,3)" ) 00,
U~ %(pl —q1)?Pi(1,3) " sech? < (A +&(1,3)F ) as t — 400,
where
AL = 03Ty w13,

T (m(13)T (1 3)F)
(p3 — q3)(p1,v3) 3
(P1 — q3) (3, v3)

1(1,3)T = — (ps — g3) (s, 11)vs r(1,3)" =ry, (1,3 = 77“1(M1W1) =7 ,
1(1,3) Y (s — 1) (s, vs) 1(1,3) ! 1(1,3) (p1,v1) 113

£(1,3)” =log (“(13)_> and &(1,3)" =log <“(13)+) :

b1 —aq1 P1—aq1

(,u1(17 3)7,v(1,3)7)
/1'1(173)_:/1’17 V1(173)_:V17 M1(1,3)+:M1—

When Aj is fixed, the asymptotic forms for @ are

U %(103—qg,)ng(l,3)*sech2 <;(A3+§3(1,3))> as t— —oo,
i~ = PP s (M +80.9)1) a0 o
where
P13y = Pl p oy e (LT

© (ws(1,3)+,w3(1,3) )’
(1 — q1)(p3, 1)1
(p3 — q1)(p1, 1) ’
T3(M3(173)7V3(113))
(13,v3)

B (M3(173)7>V3(173)7)’
p3(1,3)" = s, v3(1,3)" =ws,  p3(1,3)7 = p3 —

(71— @) (1, v3)n
(p1 —a3)(p1,v1)

rs(L3)" =rs, £(1,3)" = log (;’“3’) and
3

— 43
4 7’3(1,3)"“)
&(1,3)" = log (PS )

v3(1,3)” r3(1,3)” = 13013,

In addition, we have the soliton phase-shifts A;(1,3) = &;(1,3)" — &;(1,3), for j = 1,3,

which are

A1(1,3) = log (553) and  Az(1,3) = —log (5;3) . inwhich B, = fus.

The dromion d(1,3) as t — —oo can now be written as

4(1,3) ~ 4ry(1,3)7r3(1,3)" (11 — q1)(ps — g3)(1 — a3 3) L (5.15)

(e—%(A1+A3) + ,%1(1, 3)—6%(1\1—1\3) + H3(1,3)_€%(A3_A1) + /€1_36%(A1+A3)>
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where o 3 = Tr(Pi(1,3)" P5(1,3)%), £1(1,3)7 = k1, £3(1,3)” = 3,
ki3 = n1(1,3)*ﬁ3(1,3)*ﬂi3 and (1 3 = B13.
When hy — r1/(p1 — 1), fixing A1 gives the asymptotic forms for :
- 25 - 2 (1 2 -
U~ §(p1 —q1)°P1(1,3) sech 5(1\1 +&(1,3)7) as t— —oo,
A 1 N 1 A
U~ 5(pl —q1)%*Py(1,3)" sech? <2(A1 + &1(1, 3)+)) as t— 400,
with phase-constants £1(1,3)” = log (%) and & (1,3)" = log (%) and
. 01 (1,3)"01(1,3)" - 10 (1,3) 01 (1,3)1
P13 = MOIPCI g gy o MO
(:U’l(la3) 77/1(1’3) ) (M1(173) 7V1(173) )
N - (P2 — q2) (11, v2) p2 N - (P2 — q2)(p2, 1)12
1,3)” =1 — , (1,3 =v — ,
L) = ) Y T T G T ) ()
i (1,3)" = g + (P2 — ¢2)(p3 — g3) ( (11, v3) (13, v2) _ (b1, v2) >
37T =m (2, v2) 2,3 (13, v3)(p1 — a3) (s — @) (1 —a2)(ps —a3) ) '
L (2= 43)(ps — a2) ( (11, v2) (p2, v3) 3 (11, v3) ) s
(13, 3)B2,3 (t2,v2)(P1 — q2) (P2 —@3) (1 —a@3)(p2—q2)) "~
1 (13)F = vy + (P2 — 42)(P3 — a3) ( (p3, v1) (2, v3) 3 (12, 1) > ,
1(1:3) ' (12,v2)B2,3 (3 v3)(p2 — a3) (3 — 1) (o2 —a1)(p3 —a3))
L (P2 —as)(ps — o) ( (p2,v1) (13, v2) 3 (ps, 1) ) "
(13, v3)B2,3 (H2,v2) (3 — @) (P2 —q1)  (p3—a)(p2—aq2))
N R (1 + o (1 +
F1(L3)" = iy, 0y) R r1(fn(1,3)7,21(1,3)7) :rlﬂm’?’,
(pe1,v1) (p1,11) B2,3

Next we fix A3. Then the asymptotic forms for o are

~

o

(p3 — q3)*Ps(1,3) sech? (;(Az?, +&(1, 3))) as ¢ — —oo,

~

S
N~ N~

~ 1 ~
(ps — q3)2P3(1, 3)* sech? <2(A3 + &5(1, 3)+)> as t — +oo.



CHAPTER 5. DROMIONS OF THE MATRIX EQUATIONS 120

A o= A At
The phase-constants are: {5 = log ( p;i%) and f; = log ( p;ﬁ q3> and we also have

fis(1,3)"03(1,3)""

(f13(1,3)=,23(1,3)7)’

(P2 — q2) (13, v2) p2
(p3 — q2)(p2,12)

+ _ ﬂ3(153)+ﬁ3(173)+T

B (ﬂ3(173)+7ﬁ3(173)+)’
(p2 — a2)(p2, v3)v3
(p2 — ¢3) (2, 12)

P3(1a3)7 = ]33(173)

f3(1,3)" = pg — , 3(1,3)T =g —

N - _ (P2 — q2)(p1 — q1) ( (13, v1) (1, v2) _ (13, v2) >
Aa(1,8)" = s (p2,2)B1,2 (p1,v1)(p3 — q1)(p1 —q2)  (P3 — q2)(p1 — @1) e
n (P2 —@2)(P1 — q1) ( (p3,v2) (2, v1) B (13, v1) ) i
(p1,1)B1,2 (2, v2)(p3 — @2)(p2 —q1)  (P3 — 1) (P2 — ¢2) ’
5 _ (P2 —q2)(p1 —q1) ( (11, v3) (p2, 1) B (u2,v3) >
%s(1.8)" = vs (2, v2)B1,2 )2 —a)pr —@)  2—-w)p—a))
L (2 =) —ar) ( (p2,v3) (11, 12) 3 (p1,v3) ) "
(p1,1)B1,2 (2, 2) (1 — @) (P2 —q3)  (P1—a@3)(P2—q2))
. _ o ora(s(1,3)7,03(1,3)7)  m3fBias
73(1,3)” = (i3.v3) = s and
723(1 3>+ _ T3(/:L3(1’3)+7 7)3(173)+) = 13093
’ (/’L37V3) .
Furthermore, the soliton phase-shifts Aj(l, 3) = fj(l, )t — éj(l, 3)~, for j =1,3 are
Ai(1,3) = log (ﬂfg) and  Az(1,3) = —log <Bi3> , where Bfﬁ = ﬂf;;gg

The asymptotic expressions for @ can again be used to describe the dromion d(1,3) as
t — 4o00. When ha — 72/(p2 — ¢2), equation (5.8) gives
471(1,3)773(1,3) " (p1 — q1)(p3 — g3) (1 — affy)

d(1,3) ~ —— : 1 1  516)
(67§(A1+A3) + 111(1, 3)+€§(A17A3) 4 ,13(1’3)-5-65(A37A1) + ﬁigei(A1+A3))
where
: : r1(1,3)” A3(1,3)"
afS:TT(P1(1,3)7P3(1,3)+), I<61(173)Jr — M’ Ii3(1,3)+ — M and
| p=a P3— g3

ks = r1(1,3) " k3(1,3) "B,

5.1.2 Summary of the three-dromion structure

The asymptotic expressions (5.10), (5.12), (5.13), (5.14), (5.15) and (5.16) all have the
same form as the dromion structure given by (5.3). Therefore, we have shown that the
three-dromion structure det(u) = det(vy),) decomposes asymptotically into six dromions:
4ri(i,) i (6,§) T (pi—ai) (pj—a;)(1—a; ;)
(e*%(AiJrAj)+Hi(i,j)_e%(AifAj)+Kj(i,j)_e%(Aiji)+H;je%(Ai+Aj)>27

474(3,5) 75 (6,5) T (pi—a:) (pj—q;) 1—arf )

t — —o0,

1 1 1 1 7, t— 400,
<e—§(Ai+A]’)+Hi(i7j)+e§(Ai_/\j)+Hj(1;7j)+6§(Aj_Ai)_;'_H?’jej(Ai""Aj))

for i,j € {1,2,3} and i # j, giving the following generalisation of Theorem 2:
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Theorem 3. If det(2) is positive-definite, then det(u), as given by (5.8), has the following

properties:

1. det(u) decomposes asymptotically into siz dromions as described in Theorem 2. Each

d(i, ) decays to zero exponentially as (x,y) — oo in any direction.
2. The amplitude of d(i,j) is

= (1 —a; ;)i — :)*(pj — 4)*

= 3 as t— —o0,
(Ves+1)
1—at. a2 — )2
PR Rt )
(V75 +1)

The amplitude is

e negative
(a) ast — —oo: ifa;; > 1,
(b) ast — +oo: ifozzj > 1,
e zero
(a) ast— —oo: ifa;; =1,
(b) ast — +oo: ifaxj =1,
® positive
(a) ast — —oo: ifa;; <1,

(b) ast — 4o0: ifaifj <1,

3. At time t the location of d(i,j) moves from

(9) = 51— (2060, + &0 ") — 16 0) + €007 + Sl
]

10 (,5)7 + &0 = (D (6(0,5)7 + &0 )F) + Sligt)
ast — —oo to

~

(0,9) = 5 (206, + &)™) — 1) + &) ) + 8l
]

10 0,)7 +& 6,07 = (V65T + & )T) + Sligt)

ast — +oo.
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4. The trajectory of d(i,j) changes from
Li
()
ik

(K00 + 182031) (66,0~ + €50 ) = (1050 + P04) (66,5) ™ + 66,5
2l; 5l k

ast — —o0 to
l;
Y = < 7k> T+
ik
(87050 + 80 ) (€6.9) + 663 = (57030 + i) (6000)” +66.9))

ast — +oo.

5.1.3 Plots of dromions

In this section, the interaction properties of the three-dromion structure are highlighted
with various plots. It is interesting to see under what conditions each dromion vanishes

before and after undergoing interaction. Let us label the elements of the 2-vectors as

_ B N .
AN avl s\ b,]. .. a71 R b71
uig)= = 7). w0 = bi] copli )t =) @)t = blj
10:2 3,2 Dij2 3,2
_ 3 . s
NP Cij1 NPT di: o ¢ o i,
)= P T = ) A=) et = |
7,2 dz‘j,Q Cij,2 dzy 2

for j =1,2,3 and ¢ # j.

As t — —o0, d(i,7) vanishes
Ang TT(Pl(Zvj)_]DJ(Za])+) =1
& (uliy )~ v (i) ") (i, 3) T v 5)7) = (ulis )75 v 5) ) (i ) v(E, 5)7)

ZHa$20rb b =b. b

+
Ang az] 20 i5,2%3,1 — Yij3,17i5,2"

z]l
As t — 400, d(i,7) vanishes

& Tr(Pi(i,§)” Pi(i.j)*) =1

& (i)~ o0, 7)), )T, 000, 5)7) = (A, 5) 7, 2065 7) (6, 5) T (i, 5) 1)

+20rd dr . =d;. d

+
<:>ch20 17,2%%3,1 — “ig,17%5,2"

%], 1= ij,lcz]

There is enough freedom in the parameters of the three-dromion structure to set up a

situation where there are three dromions where one or two dromions vanish as t — +o0o.
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Figure 5.4 shows a plot of the three-dromion structure with

i =(1 1), w=(3 3), wi=(1 1),
VIT:<_% %), VQT:<_1 _1) and V§=<%

so that no dromions vanish as t — +oo.

o~y
N——

Figure 5.5 shows a plot of the three-dromion structure with

(1 8), wb=(13). wf=(-1 )
y1T:<1 _3>7 1/2T:(5 _2> and u?z(—% 1>7

so that d(1,2) and d(2,3) vanish as t — +o0.

Figure 5.6 shows a plot of the three-dromion structure with

VlT: <_% %), VQT: <_1 _1) and l/g: (5 7),

8 8

so that d(1, 3) vanishes as ¢t — —oo. Note that this structure has a dromion with negative
amplitude.

Figure 5.7 shows the details of the interaction in Figure 5.6.
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Cu=T=Cupueg=Tu‘e=8‘T=0b‘¢c—=1b‘y=2¢d‘g=c2d ‘g— = 1d s1oromwrered 1M 9INJONI)S UOTWOIP-99IY} oYY} JO 10[J :F'G oIN3Lq

10=1 (p) c0'0=1 (9)

70°0— =1 (q) 10— =1 (®)
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Figure 5.6: Plot of the three-dromion structure with parameters p;
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Figure 5.7: Details of the interaction shown in Figure 5.6

5.2 Matrix mKP single dromion

As we were able to find dromions of the matrix version of the ncKP equation, the matrix
mKP equation should also possess dromions. Again, the simplest case is the single dromion
which appears from the two-soliton matrix solution obtained when n = 2. Most of the
results obtained in this section bear close resemblance to those of the matrix KP solutions.

Recall from Chapter 4 that the two-soliton matrix solution of ncmKP can be written

in terms of
1 1
Joy =1+ —Li+ —Loy,
q1 q2

in which

(pz - CJ1)Q1
h

Lo = (1?1—};12)@12(@2 —q1)qihil + p2Aq)As,

L, = ((p1 — @2)q2hol + p1A2)Ay,

and

h = hihaqiq2(p1 — q2) (P2 — q1) — ap1p2rire

DiTi and o — (pe1,v2) (p2, 1)
(Pi — @i)gi (p1,v1)(p2, vo)

Expanding det((f(3)).) and det(fj3)) and using the fact that the determinant of a pro-

hi = €_Ai — = TT(P1P2>.

jection matrix is zero and its trace is equal to its rank, we get
det((fi3)z) = @aerira(pr — a2)*(p2 — @)*(1 — a@)hyzhoh™  and

det(fi3) =14+ h~" (hi(p1 — @2)(p2 — @1)@r2 + ha(p1 — @2)(p2 — q1)@ers

+(p1 — q2)(p2 — q1)r1ra + rirec(pip2 — 142)) -
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We may now calculate the determinant of w, which is

- det((f[s])x) o r1ra(pr — q1)(p2 — ¢2)(1 — @)
det(w) = dot(fiy) = 11255, , (5.17)

where

S, = (67%(A1+A2) _ Rle%(/\ll\z) /€262(A2 A1)y 14;62(/\1+A2)>

)

1 1 1 1
S, = (e—g(/\ﬁ—/\z) —pesie) L o5(he—Ay) +L€§(A1+A2)),

=Dl i=1,2, Kk = k1Ko and ¢ = 111203.

Li qi

The characteristics of det(w), as given by equation (5.17), may be summarised by the

following theorem:

Theorem 4. If det(Q2) is positive-definite and if « # 1, then det(w) has the following

properties:
1. det(w) decays to zero exponentially as (x,y) — oo in any direction and has a unique
mazimum or minimum value
(1—a)pip2(p1 — ¢1)*(p2 — @2)*
p1p2 pip2 pP1 /P2 P2 /p1 2.2
(\/B< Q92 + qu]2) T o'\l ¢ T a2\ (h) 1192

The dromion will have negative, zero or positive amplitude. The amplitude is

det (w) max/min =

e negative if a > 1,
e zeroif a =1,
e positive if a < 1.

2. At time t this maximum or minimum as located at

(z,y) = s

(5 + &) — 1P (5 + &) + 8laat
l(l)(EQ +&5) — l (51 +&) + 8ll,3t) ) (5.18)

where l; j = lgi)lg»j) — lgj)ly) and ll(j) = qz — p{ This result implies that the dromion

1s located symmetrically between the solitons in the two-soliton matriz solution.

3. The trajectory of the dromion is the straight line

(5.19)

:<llg)x+(z< Vo + 700) 65 +61) - (102 + 170a) (6 + 65)

2l12l2 3
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Proof. From (5.17), we see that det(w) decays to zero exponentially as (z,y) — oo in
any direction since, along any ray in the (z,y)-plane, at least one of the exponentials in
the denominator is unbounded as (z,y) approaches infinity. To see this, we use the same
technique as for the matrix KP single dromion. Let y = kxz, where k € R, be a ray in any

direction. Substituting this into (5.17) gives

5, BP9 (842 )
p (o)) (ol 4))

5 = W () a(58)) _ A4 4))ea (7))
)] (o447

()

on the denominator. This expression must tend to infinity for any values of k and [;7’,

1,7 =1,2 as x — Fo0.
Since det(w) is exponentially localized, a unique critical point must be either a maxi-
mum or minimum. If we consider the conditions that o # 1 and (det(w)), and det((w)),

vanish simultaneously, we get

X2Y? — k101 Y? + 60 X2 — kikot1198% — (Ko + 12) X2Y + (kg + 12)k101 Y = 0
and

X2Y? 4 k11 Y? — ko’ X? — kikot1193? — (k1 + L1)XY2 + (k1 + t1)k2t28X =0,
in which

X=e¢M and Y =e"2
Solving this equation for X and Y gives only one pair of positive roots which is
e™ = /kiuf and e = \/kowf. (5.20)

Substituting (5.20) into (5.17) gives the maximum or minimum of det(w).
Solving (5.20) for x and y gives (5.18), the location of the dromion. Eliminating ¢ in

(5.18) gives the trajectory of the dromion.

5.2.1 A three-dromion example

For the matrix mKP solution, the determinant of the three-soliton matrix solution again
gives a three-dromion structure. The schematic form of the dromion scattering will be in

accordance with the dromions of the matrix KP solutions as illustrated in Figure 5.3.
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When n = 3, expanding det((fj4).) and det(f4)), the expressions simplify greatly and

we obtain
hizho i 23 + hizhg zmi 32 + ho ghs zmo 31
1
det(fly) =1+ N oeh(1,2.3) (r1ror3M + qrh102.3 + q2h201,3 + q3h301,2
h(1,2 h(1,3 h(2,3
(Pr—@)p2—q1) (P1—@3)p3—q1) (P2 —a3)(p3 —q3)
where
@i j(¢iqj — pip;) >
0ij=mrir (11— ;
’ ’ ( (pi — 4)(j — )
M= p1(p3q1 + (P2 — q1)q2) + @3(p2(P3 — q2) — P3q1)
=123
(1 — a3)(P3 — q2) (P2 — 1)
s 2qz((p3 — q1)p2 — p3q3) + p1(p2q1 + g3(p3 — q1))

’y

(p1 — @2) (P2 — 43)(p3 — q1)
p2(p1 — q2) + p1(p2 — 1) p3s(p1 — q3) + p1(p3s — q1)
T, ( (p1 — q2)(p2 — 1) > o, ( (p1 — a3)(p3s — q1) >
e <p3(p2 —q3) +p2(p3 — Q2)>
23 (P2 — 43)(P3 — q2)

(pli g + pilk ;)

a" "k
M jk = GidiTiTy (qizhi(l — i j) + hiqrer <— »d

li 1l j
_ @ik (Pilik  Pilia) | k@il +Pilhg) | i (Prlis +pifk,i)>
Cikly i Ciily Ci 1lh i
per? <_pi04i,j,k _ Pi%ikg | i ko gk (Pi — i) (@ — @) L Pi%k | Ptk ))
Ciilky il Ci 1l iy kL Gl liglr

for i,j,k € {1,2,3} and i # j # k. As in the previous section, we have ¢; ; = p; — g;.

To investigate the behaviour of each dromion as ¢ — 400, we fix attention on the
dromion arising from the interaction of the ith and jth solitons, which will again be
termed d(i, j). Furthermore, we will call the corresponding two-soliton interaction matrix
variable f; ;. We consider det(w) = det(—(fi4))z)/ det(f(4)) as given by (5.21) and (5.22)

in a frame moving with the (i, j)th dromion by rewriting it in terms of
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fori,7 =1,2,3.

In accordance with the three-soliton matrix solution, we will assume, without loss of
generality, that 0 > p3 > g3 > p2 > q2 > p1 > ¢q1. Let us begin by fixing d(1,2). With
solitons 1 and 2 fixed, h; and ho are fixed and we study the asymptotic behaviour of hg

as t — +oo. We have that

p3r3

—8 -t —00
q3(p3—qs3)’ )

hy —
+o00, t— +o0.

When hg — Lﬁ”), equation (4.54) gives

93(P3—qs3
fi2=—(b12A3 4 b123A1 A3+ b321A3A1 + ba1 3A2A3 + b3 12434 (5.23)
<p 27“3h2 D2P3T2T302 3 > A — <p3(J17“3h1 P1P3T1T3Q1 3 > A
p3—q3 (P2 —q3)(p3 — q2) p3—q  (p1—@)(p3 —q1)
T3 T
4 < p2p3 3(41,3,2 _ P2p3T3 )A1A2
p2—q3)(p3 —q1)ore (P2 —q1)(Ps — g3)
T30 T -
N < p1p3 301,23 B P1p3T3 ) A2A1> _(ps—aes) .
(p1 — @3)(p3 — @2)a12 (1 — q2)(p3 — q3) h(1,2)psqiqars
where

= parac 3(p3s —q3)h1  pirioa 3(p3 — q3)ha P1P2r1T200 2
7(1,2) = (hho — - -
@P2— )3 —q) aPi—@)ps—q) agelpr—q9) (P2 —q)

p1P27“17“2(p3 - 613) 0123 01,3,2
* q192 ((pz —q1)(p1 — @3)(P3 — @2) * (1 — @2)(p2 — q3)(p3 — q1)>> '

To obtain the characteristics of the dromion d(1,2), we find the asymptotic forms of

= (—f1.2)z i 21 Firstly, let us fix A;. Since @ is invariant under the transformation

fi,2 — f12C, where C is a constant matrix, we have

r1(1,2)” Pl(l, 2)—
flo=I+—2 — as t— —00
) —A p1r1(1,2) ’

e~ + q1(p1—q1)

=1+ (;12)+ (1,27 t— +
f]_,2 - —Al N p17’1(1 2) as o0,

q1(p1—q1)
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where
~ o om(1L,2) (1,27 ~m(1,2) (L2t
L A T e e e MO M PR A Tk
-, s @) (v - _ @(ps — q3)(ps, v1)vs
L) == o ) P (s — a1) (13, )
o p1(p2 — q2)(p3 — q3) (p1,v3) (13, o) B (p1,v2)
mL2" =+ p2(fi2, Vz)ﬂ2,3 <(M3, v3)(p1 — (J3)(p3 —q2) (pl —q2)(p3 — Q3)> ?
p1(p2 — a3)(P3 — g2) ( (11, v2)(p2,v3) _ (p1,v3) )
p3(u3,3) 02,3 (p2,v2)(p1 — @2) (P2 —q3) (1 — @3)(P2 — q2) 13
b(1,2)F = 1y 4 P2 = ©) (b3 — 45) ( (3, v1)(uo,vs) — (p2, ) ) ,
e ! @2 (p2,2) 32,3 (13, v3) (02 — a3)(p3 —a1)  (p2—a1)(p3 —as) )~
a1(p2 — ¢3)(p3 — q2) < (p2, 1) (3, v2) B (13, 11) > ,
q3(p3,v3) P23 (2, v2)(p3 — @2) (P2 — 1) (3 —aq1)(p2 —q2))
ri(1,2)” = Tl('ul(lv(i)h;ﬁ(lﬂ) ) =rif13 and
, b n(m(L,2)7,m(1,2)") 5123
1(1,2)" = (p1,v1) 523

These asymptotic expressions for fio are of the same form as the one-soliton matrix

variable fig) discussed in Chapter 4. So the asymptotic forms for w are

—q1)? A 1,2)" A 1,2)"
W ~ =) Q1)1 Pi(1,2) sech [ =L XL +¢1(1,2) sech (2L XxilL2) x(2) as t — —o0,
4(p1g1)? 2 2
—q1)? A 1,2)*" A 1,2)*"
W~ (1 —a)” Q12 Py(1,2)" sech A+ en(1,2)7 sech [ —L AL 2 +x1(1,2) as t — 400,
4(p1q1)? 2 2
. . - pir1(1,2)~ piri(1,2)"
in which ¢4(1,2)” =log ( qll ;1 — ) 01(1,2)T =log (—m»
x1(1,2)” = log (—T;}(ll_’Qq); ), x1(1,2)" = log ( “(%) and the phase-constants are:
—1 1 — —1 1 +
— 1,2 — 1,2
&1(1,2)" :—log< (P10, )2r1(1,2) ) and  £(1,2)" :—log< 1y )71, 2) )
P1—q P1—a

Next we fix Ap. Since w is invariant under the transformation fi2 — f12C, where C

is a constant matrix, we have

7‘2(1,2)7P (1 2)_
- a2 _
f1,2—I+ _A2+p2r2(12) as t— —o0
q2(p2—q2)

r2(1,2)* p2(1 2)+
+ q2 ’
fl’Q =0 ez para(L)t t = +oo,
q2(p2—q2)
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in which
py1,2) = DT p g e el 2 (L2
’ (g ,vy) ’ (n2(1,2)*,v2(1,2)1)’
_ b2z —a@s)(pa,vs)us _,, _ 42(ps — a3) (s, va)vs
Ha(L,2)7 = o p3(p2 — a3)(ps,v3) (1,7 =2 a3(p3 — q2)(p3, v3)
- p2(p1 —q1) (p3 — g3) (12, v3) (13, 1) _ (p2,11)
(12 = (o =a) ™ e —a)
L p2(p1 =91 (s — g3) ( (p2,v1)(p1,v3) 3 (p2,v3) ) .
p3(u3,3)01,3 ()2 —a) (01 —a3)  (2—a3)mr—a1) )
vo(1,2)~ = vy + a2(p1 — q1)(p3 — q3) ( (p3, v2)(pi1, v3) 3 (p1,v2) ) ”
’ q1(p1,v1) 61,3 (3,v3)(P1 — @3)(p3 — q2) (1 — q2)(P3 — @3)
@2(p1 — q1)(p3 — g3) < (11, v2) (13, 11) B (u3,v2) > ,
a3(p3,v3) 01,3 () (s —a)(p1 — a2) (s —a@2)(p1 —a1))
~ ra(pe(1,2)7,10(1,2)7) . B1.2,3 an
r(1,2)” = (p2, v2) ~ B d
ra(1,2)" = ralua(1, 2%, 12(1,27) _ r202,3
’ (N%VQ) .

So the asymptotic forms for w are

— ¢2)* A 1,2)” A 1,2)"
W~ (P2~ 22)” q2)1 P5(1,2)” sech (2 +¢2(1,2) > sech (2 +x2(1,2) > as t— —oo0,
4(p2q2)? 2 2
— ¢2)* A 1,2)* A 1,2)"
5~ (P2 QQ)I Py(1,2)" sech (2 +¢2(1,2) > sech (2 +x2(1,2) ) as t — 400,
4(p2g2)” 2 2 2
: : — ra(1,2)” ro(1,2)*
in which ¢(1,2)" = log (2207 ), @2(1,2)* = log (~ 22045 ).
r B T +
x2(1,2)” =log <—%>, x2(1,2)" = log <—%) and the phase-constants are:
—1\ 1 _ —1,\ 1 4
— 1.2 - 1,2
£(1,2)" :—log< (P2gy )2r2(1,2) ) and  &(1,2)" =—log< (P20 )2r2(1,2) ) .
P2 — @2 P2 — @2
Furthermore, the soliton phase-shifts Aj(1,2) = &;(1,2)* — ¢;(1,2)7, for j = 1,2 are
B _ B _ ) ) _ Biggs
Ay(1,2) = —log (ﬁl 2) and As(1,2) =log (ﬁl 2) , in which g7, = .
’ ’ < Pr3fBes

The asymptotic expressions for @ can now be used to describe the dromion d(1,2) as

t — —oo. When hg — QB(;’I;ngB), equation (5.21) and (5.22) give

r1(1,2)772(1,2) " (p1 — @) (P2 — ¢2)(1 — a1 5)

d(1,2) ~ Se(1,2)S,(1,2) |

(5.24)
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where

S-(1,2) = o3 (A1+A2) ,{1(1’2)—6%(/\1—/\2) _ ,{2(1’2)—6,%(/\2—/\1) + Hfze%(lh-i-/m)’

S7(1,2) = em2(Mitha) (1 9)mea(imhe) (1 9)mea(Memh) 4y s (M),

1.2)" 1,2)*
a7y = Tr(Pi(1,2)"Py(1,2)), k1(1,2)" = n(,2)” Ko(1,2)" = (1,27
’ P1—q1 P2 — Q2
_  m _ _ D2 _ _ _ o
1(1,2)” = am1(1,2) , Ly = q—Qng(l,Q) T 11(1,2) 1a(1,2) Bio, and

k1o = K1(1,2) K2(1,2)7 B 5.
In Chapter 4, we had that

r 4P — ¢i)
RN CY))

for 7,5 € {1,2,3} and i # j. When hy — 400, from (4.50) we have that L3y — 0 and

L (hj(gipi — q;)I + pidA;) Ai,

therefore

L L.
fro~ T+ —22 4 2L (5.25)
q1 q2

The asymptotic expression (5.25) is of the same form as the two-soliton matrix variable
Ji3) and the resulting dromion is therefore of the same form as the single dromion as given

by (5.17). Therefore, when A; is fixed, the asymptotic forms w := —(fl,Q)xfol are

- —q1)? - AL+ $1(1,2)" Ay +x1(1,2)”
ﬁzwi(pl qlz 1(1,2)‘8(—:'ch<1—1—('01(7 ) >sech <1+X1(’ ) > as t— —oo,
4(p1q1)? : 2
2 —q1)” 5 A+ ¢i(1,2)* A+ x1(1,2)*
W ~ (1 qlz 1(1,2)" sech <1—|—<,01(, ) )sech <1+X1(’ ) > as t — 400,
4(p1q1)? 2 2
where
. 01(1,2)701(1,2)" - 10 (1,2) 0y (1,2)F
U LSS LG Y . Lo . L W
(:ul( ) 77/1(1a2) ) (M1(172)+3V1(1a2)+)

. - N _ . — , U
M1(17 2) — H]_, 7/]_(1, 2) — V]_, H]_(]., 2)+ — M]_ o pl(p2 q2)(/“1’1 2)“2

p2(p1 — q2)(p2,v2)
N q1(p2 — @2)(p2, v1)va _
141 1,2+:I/1— , o T1(1,2)7 =1,

( ) Q2(P2 - CI1)(M2,V2) ( )

n1(1.2),01(1,2 —p171(1,2)”
m(12t = MO DALD) g, 5(1,2)7 = log (plm(? ) )
(Mh V1) q1 (pl - Q1)
R _ —f1(1,2)_) . n <—p1f1(1,2)+>
1,2)" =log [ 22 ) 1,2)* =log [ 222 ) and
x1(1,2) g< P ¢1(1,2) A A —

x1(1,2)" =log (—?"1(12)+> :

pP1—q1



CHAPTER 5. DROMIONS OF THE MATRIX EQUATIONS 135

The soliton phase-constants are

€1(1,2)” = —log (—(pqul)m(lﬂ)—) and £1(1,2)T = —log <_(p1qfl)2f1(1,2)+> .

p1—aq1 b1 —aq1

When As is fixed, the asymptotic forms for @ are

A — 2, A 09(1,2 A xo(1,2)"
ww(m QQ)l »(1,2) sech( 2+ ¢2(1,2) )sech( 2+ X(1,2) > as t— —oo,
4(p2ge)? 2
. —)? - Ao+ $o(1,2)T Ao+ %2(1,2)T
wwi(pz Q2)1 »(1,2) " sech (2—“02( 2) >sech (2+X2( 2) ) as t — 400,
4(p2g2)” 2 2 2
in which
T T
A o(1.2)"D9(1,2)” A fo(1,2)TDo(1,2)T
P2(1,2)_ _ le( ) ) VQA( ) ) , P2(1,2)+ _ /f2( ) ) V%( ) ) ’
(MQ 172)_7 2(172)_) (M2(172)+7V2(172)+)
. N N — p2(p1 - Q1)(M2,V1)M1
f2(1,2)F = po, 22(1,2)Y =va, [2(1,2)” = po — )
(1,2) (1,2) (1,2) p1(p2 — q1)(p1, 1)
— o(1.2),09(1,2
Po(1,2)" = vy — q2(p1 CI1)(M1,V2)1/1’ Fa(1,2)" = ra(fi2(1,2),22(1,2)) — rafra,
q1(p1 — q2)(pa, 1) (2, v2)
—poTe(l,2)” —79(1,2)™
7§2(172)+ = T2, @2(172)7 = IOg ( p2r2( : ) > ) 22(172)7 = lOg ( TQ( : ) ) )
q2(p2 — q2) P2 — Q2
—pois(1,2)T —fo(1,2)T
£201,2)" = tog (2PED0) and 10(1,2)% = tog (2020
@ (P2 — q2) P2 — @2

The soliton phase-constants are

£(1,2)” = —log <_(p2q51)2f2<1’2)> and  &(1,2)" = —log <_(p2q51)2"22<1’2)+> .

b2 —Qq2

Furthermore, the soliton phase-shifts Aj(l, 2) = fj(l, 2)t — éj(l, 2)7, for j =1,2 are

A1(1,2) = —log <ﬂfr72> and A2(1,2) = log (5&) , Wwhere 5{2 = P1,2.

The dromion d(1,2) as t — 400 can now be written as

P1(1,2)"72(1,2) " (p1 — q1)(p2 — @2) (1 — afy)

d(1,2) ~
(1,2) ST(L2)S7(L,2) /

(5.26)

where

SE(1,2) = e 2(Mthe) (1, 2)Ferhimhe) (1, 2)Fer(amto) 4ot ea(hathe),
SF(1,2) = ema(hathe) (1 2)FerMimhe) (1, 2)tea(hemhe) oot ea(Mathe),
O‘IL,2 = TT(P1(1,2)7P2(1,2)+), k1(1,2)T = k1, K2(1,2)T = Ko, RIQ = mfﬁ:;ﬂb,

u(1,2)t = %m(m)* 1a(1,2)F = %@(mﬁ and of, = B,
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Similar calculations give expressions for the dromions d(2,3) and d(1,3). As t — —o0.

and as ¢ — 400 we have
INEIEE, S

5.2.2 Summary of the three-dromion structure

The asymptotic expressions (5.24), (5.26), (5.27), (5.28), (5.29) and (5.30) all have the
same form as the dromion given by (5.17). Therefore, we have shown that the three-
dromion structure det(w) = —det((f4))z)/ det(f}s) decomposes asymptotically into six
dromions:
ri(6,7) "7 (0,) " (pi—a:) (pj—a;) (1—a; ;)
d(i, j) ~ Sk (1,9)50 (1,9)

74(i.) =75 (1.0)F (i—ai) (pj —q;) (1—a )
S (3,5)8:F (4,9)

as t— —oo,

as t— +o0,
for i, € {1,2,3} and i # j, giving the following generalisation of Theorem 4:

Theorem 5. If det(Q2) is positive-definite, then det(w), as given by (5.21) and (5.22), has

the following properties:

1. det(w) decomposes asymptotically into six dromions as described in Theorem 4. Each

d(i,7) decays to zero exponentially as (x,y) — oo in any direction.

2. The amplitude of d(i,j) is

~ (1 — oy ;)pipj (pi — 2(29] - q5)?
= ) t — —00
— piPj plp 2
( 5@',1 < qij qlq;> + o \/ i \/ 7,> qu
20 N2
+ . (1- )pzp](pz q)"(pi — 4)  t oo,

+ pibj p’Lp 2
(\/ ﬁi,j (\/ qij qij> + 4 \/ @ + \/ 7,) qj

The amplitude is

e negative

a) ast — —oo: ifa; ; > 1,
(]
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(b) ast — +oo: ifaszj >1,
e zero

(a) ast— —oo: ifa;; =1,

(b) ast — +oo: ifa:'j =1,
® positive

(a) ast — —oo: ifa;; <1,

(b) ast — 4o0: ifozifj <1,

3. At time t the location of d(i,j) moves from

2[1‘,]‘

(29) = 5 (600,07 + &(0,0) ") = 1P (§0.0) + & (i) ) + 8Lt
10 (0,5)7 + &0 = (D (6(0,5)7 + &0 )T) + 8ligt)
ast — —oo to

L (120 ) + G0 ™) — 1P (E(0,0) + &) + Syt

10 0,0)7 + &0 — (V65T + &G )T) + 8ligt)
as t — +o00.
. The trajectory of d(i,j) changes from
()

(5050 + 121 ) (66,9)™ + i) = (100 + 87030 (€500,5)™ + & 6,9))
21; 5l

ast — —oo to
l;
Y= < k) T+
Lk
(K050 + 121 ) (G6,9)™ + &) = (10 + 8150 (€0,5)™ + €6,9))

)

ast — +oo.
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5.2.3 Plots of dromions

Let us again label the elements of the 2-vectors as

- - + +
Lo Qi1 Do bij1 . Qi1 o bija
pGi )" = s @)= T eG)T =T ) v@T = ]

Q59 bij,2 Q52 bz’j,2
N - Cij1 N — diiq NP 0#1 P d—'i_‘l
p )= ) v = T aGHT = T = ]

Cij2 dij,2 Cij,2 dij,2

for j =1,2,3 and ¢ # j.
As t — —o0, d(i,7) vanishes
& Tr(P(i,5)"Py(i.)*) =1
< (pli, )7 v 5) )l 5)* w6 5)7) = (@, 5) 7 w6 5) ) (@ 5) v, 4)7)
& ai_j72a<

o= ot — gt -t
ij1 = Qij1Q52 OF byjobs 1 = byj 1055,

As t — 400, d(i, j) vanishes
& Tr(Py(i,5) Pi(i,5)") =1
& (i, 5) 7,006, 5) ) (i, 4)*, 000, 5)7) = (A, 5) 7, 2(0,5) ) (6, 5) ", 26, 5)7)

d;d

U —
& CijaCij1 = Cij1Cij2 OF dij0d; ,2°

i i7,2%35,1 = %1

Figure 5.8 shows a plot of the three-dromion structure with
i =(1 2), wh=(36), wi=(-1 -3),
V1T=(2 %), l/g:(—l 3) and V3T=<3 1),

so that d(1,3) vanishes as t — —oo and d(1,2), d(2,3) vanish as t — +oo.
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Figure 5.8: Plot of the three-dromion structure with parameters p;



Chapter 6

Summary and conclusions

In Chapter 3, we saw that our noncommutative KP equation had two families of solutions,
obtained from Darboux and binary Darboux transformations, which could be expressed as
quasiwronskians and quasigrammians. Like the commutative case reviewed in Chapter 2,
it was shown that these solutions can be verified directly. In doing so, both types of solu-
tion reduced to identities with the same structure, just as the Wronskian and Grammian
solutions did. Our noncommutative mKP equation again had a family of quasiwronskian
and a family of quasigrammian solutions, obtained from Darboux and binary Darboux
transformations. However, when attempting to directly verify these solutions, we were
only able to do so for the quasiwronskians as there appears to be no obvious way of invert-
ing the quasigrammian F' discussed in Chapter 4. Further work is required to investigate
the invertibility of F' and the subsequent direct verification of the family of quasigram-
mian solutions of ncmKP. The process of directly verifying the quasigrammian solutions
of ncKP proved to be easier than that of the commutative case outlined in Chapter 2 since
no Frobenius partition was needed.

For both ncKP and ncmKP, we saw in Chapters 3 and 4 that all of the quasiwronskians
and quasigrammians expressing transformed eigenfunctions and solutions can always be
reduced to the corresponding commutative results in Chapter 2 using a known result of a
quasideterminant. Quasideterminants therefore appear to be more beneficial as a compact
expression for iterated Darboux transformations. However, quasideterminant solutions
cannot be obtained from Hirota’s method and in this thesis their existence was limited to
Darboux transformations.

The nature of the noncommutativity of the dependent variables in ncKP and ncmKP

was specified in Chapters 3 and 4 by projection matrices. Though not the most general
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case of matrices, they provided a richer picture of interaction of soliton solutions of ncKP
and ncmKP by adding a change of matrix amplitude in addition to a phase-shift. Examples
of other types of noncommutative variables such as vectors could also be investigated in
addition to the projection matrix examples discussed in this thesis.

Taking the determinant of the projection matrix solutions allowed us to find a new class
of dromion structures. These dromions are unique to this example of noncommutativity
and clearly have no commutative analogue. The properties of the single dromion are
similar to those of the DSI and NVN equations and are found using the same techniques.
After finding the single dromion, interaction properties of these new structures were then
examined for three-dromion structures. The key to changes in amplitude lies in the trace
of the projection matrices governing the amplitude of the underlying interacting solitons.
This is different from the DSI and NVN equations. The changes in location and trajectory
are similar to the DSI and NVN dromions in that they are governed by changes in phase-
shift of the underlying solitons in the three-soliton structure.

Another different feature of the dromions of ncKP and ncmKP is the orientation of
the underlying solitons in the solution. For the DSI and NVN equations, the underlying
solitons are perpendicular and/or parallel to one another. This orientation gives a nicer
schematic form of dromion scattering allowing for generalisation of the asymptotics to
any n > 1. However, the orientation of the solitons of the matrix versions of both ncKP
and ncmKP is not fixed in the same way which prevented us from finding asymptotic
expressions for each dromion in the solution beyond n = 3. Further work would be

required to generalise the result to any n > 1.
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