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ABSTRACT 
 

The human pathogen and aetiological agent of tuberculosis, Mycobacterium tuberculosis has a 

cell wall architecture similar to the non-pathogenic bacterium Corynebacterium glutamicum. The 

availability of their genome sequences has enabled the utilisation of C. glutamicum as a model 

for the identification and study of essential mycobacterial genes involved in the synthesis of cell 

wall components such as lipomannan (LM), lipoarabinomannan (LAM) and arabinogalactan 

(AG).  

 

In this study, we have analysed several uncharacterised open reading frames, which encode for 

putative glycosyltransferases from M. tuberculosis and deleted their respective orthologues in C. 

glutamicum. Mutant phenotypes were characterised biochemically using two-dimensional-thin 

layer chromatography, SDS-polyacrylamide gel electrophoresis, gas-chromatography-mass 

spectrometry, nuclear magnetic resonance spectrometry and in vitro enzyme assays. Mutants with 

altered phenotypes were complemented with their respective mycobacterial orthologues to 

characterise their functions. In this thesis we have identified and characterised several putative 

glycosyltransferases and established their role in M. tuberculosis cell wall biogenesis.  

 

One of these ORFs, Rv2174/NCgl2093, was identified to encode for an (16) 

mannosyltransferase [MptA] involved in the later stages of the biosynthesis of the (16) 

mannan core of LM/LAM, while Rv1459c/NCgl1505 [MptB] was shown to be involved in the 

early stages of the biosynthesis of the (16) mannan core of LM/LAM. The disruption of 

NCgl2106 [Rv2188c] has shown its role in synthesis of phosphatidyl-myo-inositol dimannoside 

(Ac1PIM2) and also sheds further light on the synthesis of a Mannosyl--D-glucopyranosyluronic 

acid-(13)-glycerol (ManGlcAGroAc2) anchored LM (Cg-LM-B).  
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Furthermore, three different glycosyltransferases from C. glutamicum were characterised and on 

the basis of biochemical analysis of mutants, NCgl2100 and NCgl2097 were identified as 

α(1→2) mannopyranosyltransferases [MptC and MptD], and NCgl2096 as an α(1→2) 

arabinofuranosyltransferase [AftE], involved in LM/LAM biosynthesis. Altogether, these studies 

have shed further light on the complex cell wall biosynthesis in Corynebacterineae and identified 

several potential new drug targets for tuberculosis.  
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Tuberculosis (TB) is a major cause of death worldwide. Approximately, 9.27 million cases were 

registered in 2007, out of which 1.37 million were HIV-positive. Of these 9.27 million new cases, 

an estimated 4.1 million were new smear positive cases, and 2 million deaths were reported, of 

which 0.45 million were in HIV-positive individuals. To compound this situation 0.5 million 

cases were multi-drug resistant TB (MDR-TB) and it is estimated that 55 countries globally had 

reported at least one case of extensively-drug resistant TB (XDR-TB) (Fig. 1.1) (WHO, 2009). 

 

Mycobacterium tuberculosis, which is a Gram-positive bacterium, is the causative agent of TB. 

M. tuberculosis enters the host in the form of tiny airborne particles expelled by an infectious 

person (droplet infection), whereby the bacterium has evolved a complex system allowing it to 

evade the immune system of the host. It has an unusual lipid rich cell wall which is unique to the 

order Actinomycetes including the genera Mycobacterium, Rhodococcus, Corynebacterium and 

Nocardia (Brennan & Nikaido, 1995). It is surprising that M. tuberculosis has been classified as a 

Gram-positive organism since it weakly takes up the Gram stain (Minnikin, 1982). The 

mycobacterial cell wall is composed of a mycolyl-arabinogalactan-peptidoglycan (mAGP) 

complex (Besra et al., 1995; Brennan, 2003; Daffe et al., 1990; Dover et al., 2004; McNeil et al., 

1990; McNeil et al., 1991), which forms the inner part of the cell wall. Other additional lipids 

such as phthiocerol dimycocerosates, glycopeptidolipids, menaquinones, and glycosylated 

phenolpthiocerols intercalate to the mycolic acid layer and form the outer region of the cell wall 

(Bhowruth et al., 2008; Brennan & Nikaido, 1995; Brennan & Crick, 2007). Such an unique 

arrangement in the outer envelope results in a highly impermeable barrier for the penetration of 

chemical drugs, such as penicillin and sulphonamides (Amberson et al., 1931; Minnikin et al., 

2002).  

 



Chapter  1                                                                                                                Introduction 

 

3 
 

 

Fig. 1.1: Estimated number of TB cases in the year 2008 (WHO, 2009). 

 

Other cell wall associated lipids, such as phosphatidyl-myo-inositol mannosides (PIMs) and 

lipoglycans, termed lipomannan (LM) and lipoarabinomannan (LAM) are also found in the outer 

leaflet of the cell wall (Besra et al., 1997; Brennan & Ballou, 1967; Brennan & Ballou, 1968b; 

Brennan & Nikaido, 1995; Hill & Ballou, 1966; Morita et al., 2004). In addition to their 

physiological function, these glycoconjugates play a key role in the modulation of the host 

response during infection (Chatterjee & Khoo, 1998; Maeda et al., 2003; Nigou et al., 2002; 

Schlesinger et al., 1994). Most of the genetic elements involved in their biosynthesis are essential 

for the survival of M. tuberculosis (Kordulakova et al., 2002), therefore they represent potential 

drug targets. In this thesis, we will review the history of tuberculosis, followed by the invention 

of BCG as a vaccine, the adoption of chemotherapy regimens, the emergence of drug-resistant 

TB; and recent studies centred on the mycobacterial cell wall as a drug target.  
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1.1 History of TB 

 

TB has plagued human kind throughout its recorded history and has possibly resulted in more 

deaths than any other microbial pathogen. The disease is caused by the etiological agent M. 

tuberculosis (Koch, 1932; Koch, 1952; Koch, 1982), which evolved from East Africa around 3 

million years ago and infected early hominids of that time (Gutierrez et al., 2005). The, 

availability of genome sequences of various strains of the M. tuberculosis complex suggest that 

all modern strains, including M. tuberculosis, Mycobacterium africanum, Mycobacterium canettii 

as well as Mycobacterium bovis, had a common African ancestor, approximately 35, 000- 15, 000 

years ago (Table 1.1) (Brosch et al., 2002; Sreevatsan et al., 1997a).  

 

On the basis of molecular markers on the Y chromosome, the origin of Asian and Oceania 

populations has been traced to Africa 35,000 to 89,000 years ago (Ke et al., 2001). It is quite 

possible that these migrants carried diseases with them including TB to other parts of the world. 

Physiological changes due to TB in humans have been reported from Egypt (3500-2650 BC) 

(Zink et al., 2001), Sweden (3200-2300 BC), the Eastern Mediterranean (7000 BC) (Hershkovitz 

et al., 2008) and from the first half of the fourth millennium BC in Italy (Formicola et al., 1987), 

while written text describing TB are available in India and China from as early as 3300 and 2300 

years ago, respectively (Daniel, 2006). 

 

TB was well known in classical Greece, where it was called phthisis or consumption. Hippocrates 

(460-370 BC), the ‘father of medicine’ had clearly described the clinical signs of TB and 

recommended good food, milk and physical exercise for its treatment (Coar, 1982). However, it 

was Aristotle (384-322 BC), who described ‘scrofula’ and believed it to be infectious rather than 
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hereditary, which was a common belief (Garrison, 1913). In the 5th century AD, Caelius 

Aurelianus, a Roman physician, brilliantly described the diagnosis of a disease with latent fever, 

coughing with purulent sputum, breathing difficulty, and loss of appetite with few physiological 

changes in the body (Herzog, 1998). Aretaeus of Capadocia described pulmonary consumption as 

a disease with chronic sputum with poor prognosis, while Galen (131-201) re-emphasised the 

contagious nature of the disease (Guthrie, 1945).  

 

For many centuries, there was no further addition to the knowledge of phthisis or consumption 

probably due to the down-surge of the disease due to unknown reasons. The work of Johannes 

Gutanberg (Germany, 1398-1468), Girolamo Fracastro (Italy, 1478-1553), and Andreas Vesalius 

(Holland, 1514-1564), contributed towards the understanding of the disease to some extent 

(Daniel, 2006). However, it was the era of pathological anatomy, which enhanced the knowledge 

of the disease considerably. Sylvius de la Boe (Amsterdam, 1617-1655) was the first to describe 

tubercles as specific characteristics of lungs and its progression into cavities and ulcers. In 

addition, he also established the correlation between scrofula and consumption, later supported 

by Richard Morton (London, 1637-1698) (Keers, 1978; Keers, 1982), while Thomas Willis (UK, 

1621-1771) and John Jacobus Manget in France shed light on miliary-TB. However, it was the 

less well-known English physician Benjamin Marten (1690-1751) who suggested the 

involvement of small living creatures in phthisis. Furthermore, he also shed light on the air-borne 

infectious nature of that living organism (Doetsch, 1978). Ironically, his work got recognition 

only after 150 years after the discovery of M. tuberculosis by Robert Koch (Koch, 1932).     

 

Invaluable contributions made by Giovanni Battista in Padua (Italy, 1682-1771) and French 

giants Marie-Francois-Xavier Bichat (1771-1802), Gaspard Laurent Bayle (1774-1816), and Jean  
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Time Event/Discovery References 

3 million years 

ago  

Evolution of M. tuberculosis  (Gutierrez et al., 2005) 

35,000-15,000 

years ago 

All strains of M. tuberculosis complex evolved from a common African 

Ancestor  

(Brosch et al., 2002; Sreevatsan 

et al., 1997a) 

7000 BC Physiological changes from tuberculosis like disease were reported 

from Eastern Mediterranean  

(Hershkovitz et al., 2008) 

460-370 BC Hippocrates described the clinical signs of TB (Coar, 1982) 

384-322 BC Aristotle described TB as infectious (Garrison, 1913) 

5th Century Caelius Aurelianus complete diagnosis of TB  (Herzog, 1998) 

1600-1700 Tubercles were recognized as specific characteristics of lungs  (Keers, 1978) 

1705 Benjamin Marten established the role of a small air-borne living 

infectious creature in TB 

(Doetsch, 1978) 

1781-1826 Concept of pulmonary or extrapulmonary TB  (By Rene Theophile 

Hycinthe Laennec) 

(Laennec, 1962) 

1834 Schonlein coined the term ‘tuberculosis’ (Ferlinz, 1995) 

1840s Henle-Koch postulates (Evans, 1976) 

1865 Role of a specific microorganism (Jean Antonie Villemin) (Herzog 1998) 

1880-1940 Treatment in sanatorium  

1881 Discovery of M. tuberculosis and tuberculin (Robert Kotch) (Koch, 1932) 

1907-1926 Tuberculin skin test (Clemens Freiherr von Pirquet, Charles Mantoux, 

Florence Seibert) 

(von Pirquet, 1907, 

Lebedeva, 1977, 

Seibert, 1926) 

1888-1960 Lungs collapse therapy by artificial pneumothorax, phrenicectomy or 

thoracoplasty 

(Sharpe, 1931, 

Sakula, 1983) 

1920s Vaccine ‘BCG’ (Albert Calmette and Camille Guerin) (Calmette and Guérin, 1924, 

Calmette, 1928) 

1950 Discovery of Streptomycin and other antibiotics  (Schatz et al., 1944, Jones et al., 

1944) 

1950-60 Development of DOTS procedure  

1990 MDR-and XDR-TB pandemic (Pablos-Mendez et al., 1998) 

  

Table 1.1: History of TB. Bold sentences marked for major milestones in field of TB research. 

 

Nicolas Corvisart (1755-1821) were followed by Rene Theophile Hycinthe Laennec’s work 

(1781-1826), which explained TB pathogenesis and gave the concept of pulmonary and 

extrapulmonary TB (Laennec, 1962). The field of TB research was revolutionised with the entry 

of German scientists. Johann Lukas Schonlein of Wurzberg (1793-1864) who had different 
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thoughts regarding scrofula, tubercles and phthisis coined the term ‘tuberculosis’ to describe the 

affliction with tubercles (Ferlinz, 1995). In 1840, Jakob Henle (1809-1885) in Gottingen 

suggested that phthisis could be contagious only under certain circumstances and gave three 

postulates for categorising a disease as infectious: (1) the causative agent must be found in every 

case of disease; (2) it must not occur in another disease; (3) its application must always result in 

the same disease; later re-stated by his pupil Robert Koch which is also known as Henle-Koch 

postulates in bacteriology (Evans, 1976).  

 

Later in 1865, Jean Antonie Villemin (1827-1892) demonstrated the transmission of phthisis 

from blood or sputum from diseased human and cattle to rabbits and guinea pigs and showed that 

a specific microorganism causes the disease. Years later in 1877, Theodor Klebs (1834-1913), 

was able to maintain the causative agent in artificial medium, however he was unable to 

recognise the true nature of the agent (Herzog, 1998). 

 

1.2 Discovery of Mycobacterium tuberculosis 

 

On 24th March 1881, Robert Koch (1843-1910) delivered a famous lecture entitled ‘Die Ätiologie 

der Tuberkulose’ to the Physiological Society at the Charité Hospital in Berlin. He used 

microscopic techniques and identified the causative agent from tuberculous tissue as a rod-shaped 

bacilli which he called ‘Mycobacterium tuberculosis’ and also verified the Henle-Koch postulates 

regarding the disease causing microorganism (Koch, 1932). Later, he introduced the concept of 

primary and secondary infection in guinea pigs (Koch’s phenomenon) and discovered 

‘tuberculin’-a glycerin extract of dead tubercle bacilli, which was later utilised for tuberculin skin 

test. For his contribution, Robert Koch was awarded with the Noble Prize in Medicine or 
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Physiology in 1905.  

 

In 1907, Clemens Freiherr von Pirquet (Austria, 1874-1929) established that ‘tuberculin’ can be 

injected intra-cutaneously and resulted in an immune response (von Pirquet, 1907). Further, 

Charles Mantoux (France, 1877 - 1947), invented a more safe cannulated needle and syringe for 

tuberculin injection (Lebedeva, 1977) and Florence Seibert (USA, 1898-1991) isolated the active 

substance from tuberculin: Purified Protein Derivative (PPD) which further improved the 

accuracy of the tuberculin skin test (Seibert, 1926; Seibert & Dufour, 1948).  

 

1.3 Initial attempts of TB treatment 

 

The discovery of M. tuberculosis as the causative agent and the tuberculin skin test marked key 

milestones in TB research. However, thousands of individuals were dying due to the absence of a 

treatment. In the absence of antibiotics, the concept of public health came into existence. 

Hermann Brehmer (Germany, 1826-1889) emphasised the necessity of an immune balance and 

the concept of sanatoria: an environment with fresh air, good food, and rest and devoid of any 

known consumptives. In the following years, this regimen was practiced all over the world for the 

treatment of TB. Initially, recovery was surprising; however, the long-term results were not 

encouraging. However, it helped in the restriction of TB transmission, as infected patients were 

confined to certain locations, minimising contact transmission (Daniel, 2006). 

 

In patients where bed-rest alone was not sufficient, the localised collapse therapy by artificial 

pneumothorax, phrenicectomy or thoracoplasty, which consists of introducing clean and filtered 

air into the pleural space of the lung was introduced (Sharpe, 1931).  
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Fig. 1.2: Few of the main contributors in TB research. 

 

In 1888, Carlo Forlanini (Italy, 1847-1918) performed the first artificial pneumothorax (Sakula, 

1983). While collapse therapy yielded successful results; with closure of cavities, conversion to 

negative sputa, and low-operative mortality, it also produced numerous complications which 

included tissue infection, conversion into acute TB, fistula formation and empyma (Gaensler, 

1982).  

 

1.4 Invention of ‘BCG’ 

 

The concept of a vaccine was introduced by Edward Jenner (England, 1749-1823) in 1796, when 

he found that the use of pus from a hand of a milkmaid with cow pox, when administered to 

healthy individuals provided protection against smallpox (Baxby, 1999). Based on similar 

experiments, Frenchmen Albert Calmette (1863-1933) and Camille Guerin (1872-1961), obtained 
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an attenuated strain of M. bovis BCG which could induce protective immunity in humans, 

especially at an early age (Calmette & Guérin, 1924; Calmette, 1928). Soon a worldwide 

campaign against TB was started with the involvement of WHO, UNICEF and the Red Cross, 

based on the use of the tuberculin skin test followed by BCG vaccination (Comstock, 1994).  

 

1.5 Final combat: The discovery of streptomycin and other drugs against TB 

 

Selman Waksman (USA, 1888-1973) and colleagues  at the University of California 

demonstrated that streptomycin, an antibiotic, isolated from cultures of Streptomyces griseus had 

the ability to inhibit tubercle growth with low toxicity in laboratory animals (Jones et al., 1944; 

Schatz et al., 1944). Subsequently, Selman Waksman was awarded the Nobel Prize in Physiology 

or Medicine in 1952. This success was short-lived due to the appearance of resistant M. 

tuberculosis mutants. However, the problem of drug resistance could be overcome by using 

combinations of two or three drugs under a drug regimen (Table 1.2).  

 

Following the discovery of streptomycin, p-aminosalicylic acid (Nagley, 1949; Nagley & Logg, 

1949), isoniazid [INH] (Steenken & Wolinsky, 1952a; Steenken & Wolinsky, 1952b), 

pyrazinamide (Mc et al., 1954; Muschenheim et al., 1954; Tompsett et al., 1954), cycloserine 

(Morton et al., 1955), ethambutol [EMB] (Forbes et al., 1962), and rifampin (Furesz & Timball, 

1963) were developed as anti-TB drugs. There was an improvement in the disease condition with 

the recommended clinical regimen, involving these drugs (Table 1.2). However, due to patient 

compliance and non-adherence to the drug regimen the number of cases has increased and now 

the situation has led to the emergence of MDR- and XDR-TB (Pablos-Mendez et al., 1998).     
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Drug Prescribed Dose 
                      

                  Initial phase (2 months) 
Isoniazid 5 mg/kg/day (max. dose 300 mg/day) 
Rifampin 10 mg/kg/day (max. dose 600 mg/day) 
Pyrazinamide 30 mg/kg/day (max. dose 2 g/day) 
Ethambutol 15–25 mg/kg/day (max. dose 2 g/day) 

 
                        Consolidation phase (4–6 months) 

Isoniazid                                            as above 
Rifampin                                            as above 

                      or 
Isoniazid twice a week 14 mg/kg (max dose 1 g/day) 
Rifampin twice a week 10 mg/kg (max. dose 600 mg/day) 

 
 
 
Table 1.2: Chemotherapy protocol for the treatment of TB (WHO, 2009). First-line drugs are isoniazid, rifampin, 

ethambutol, pyrazinamide, and streptomycin. 

 

1.6 Drug resistant TB 

 

During mid-1950s, three-drug combination therapies, consisting of isoniazid, rifampin, 

pyrazinamide, and ethambutol initially for two months, followed by a two-drug phase of 

isoniazid and rifampin lasting for four months, were introduced (Table 1.2) (WHO, 2009). The 

advent of such a program, almost eradicated TB from many countries. However, the occurance of 

HIV and the emergence of MDR- and XDR-TB has led to an uncontrollable spurt in TB cases 

(Snider & La Montagne, 1994).  

 

The complex nature and length of therapy, drug supply, and the tendency of patients to feel well 

before completion of the course of treatment has accelerated and promoted MDR- and XDR-TB 

(Munro et al., 2007). MDR-TB is a form of drug-resistant TB in which M. tuberculosis can no 

longer be killed by at least two of the front line antibiotics, isoniazid and rifampin, and XDR-TB 

involves resistance against second-line drugs, including fluoroquinolone, and at least one of the 

other three injectable anti-TB drugs; amikacin, kanamycin, and capreomycin (WHO, 2009). 
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MDR-TB requires up to two years of multi-drug treatment and XDR-TB is untreatable so far. 

Therefore, there is a need for rapid and continued progress in the development of new 

antimicrobial compounds against M. tuberculosis. 

 

1.7 The cell wall of M. tuberculosis as a drug target 

 

 In the case of MDR and XDR strains of M. tuberculosis, the antibacterial compounds which can 

act on actively growing M. tuberculosis may help towards the treatment of TB (Bhowruth et al., 

2007). In this regard, cell wall inhibitors have been one of the most active agents of 

chemotherapy. Agents such as, INH and EMB, inhibitors of mycolic acid and arbinogalactan 

(AG) biosynthesis, respectively, have proved highly successful against combating the disease 

(Bhatt et al., 2007b; Bhowruth et al., 2008; Brennan & Crick, 2007). However, due to the 

development of drug resistant strains (Heymann et al., 1998; Sreevatsan et al., 1997b; Telenti et 

al., 1997), there is a need for the identification of novel drug targets and development of active 

compounds against them. In this respect the biosynthetic machinery of mycobacterial cell wall 

represents an attractive target (Bhatt et al., 2007b; Bhowruth et al., 2007; Brennan & Crick, 

2007; Dover et al., 2008).  

 

1.8 Structural features of the mycobacterial cell wall  

 

D. E. Minnikin first proposed a model of the mycobacterial cell wall in 1982, which was 

subsequently modified by McNeil and Brennan (Fig. 1.3) (McNeil & Brennan, 1991; Minnikin, 

1982; Minnikin et al., 1982). The mycobacterial cell wall core consists of a peptidoglycan (PG) 

layer, followed by AG, mycolic acids, and additional lipids and lipoglycans attached to the 
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plasma membrane (Dover et al., 2004; McNeil & Brennan, 1991; Minnikin, 1982; Minnikin et 

al., 1982). The PG layer is covalently attached to the AG through an unique linker unit (Amar & 

Vilkas, 1973; McNeil et al., 1990; Vilkas et al., 1973). The AG consists of a highly-ordered 

galactan attached to a branched arabinan which is esterified at the distal end to PG by a family of 

long-chain unusual lipids, termed mycolic acids. This entire structure is known as the mycolyl-

arabinogalactan-peptidoglycan (mAGP) complex (Fig. 1.3) (Besra & Brennan, 1997).  

 

1.8.1 Mycolyl-arabinogalactan-peptidoglycan (mAGP) complex  

 

Mycobacterial PG is very similar to the PG of Escherichia coli (Janczura et al., 1981; Petit et al., 

1969; Wietzerbin et al., 1974). The glycan part in mycobacteria consists of alternating N-

acetylglucosamine (GlcNAc) and a modified muramic acid (Mur) (Azuma et al., 1970), which is 

oxidised to N-glycolyl units to form MurNGly (Mahapatra et al., 2005a; Mahapatra et al., 

2005b). Further modification of the MurNGly unit with a tetrapeptide unit, -L-alanyl-D-iso-

glutaminyl-meso-diaminopimelyl-D-alanine-, results in a stem-peptide which is further cross-

linked to form the complete structure of PG (Petit et al., 1969; Takayama et al., 1970; 

Wietzerbin-Falszpan et al., 1970; Wietzerbin et al., 1974). The muramic acid residue provides 

the key attachment point to the galactan segment of AG via the disaccharide bridge, α-L-Rhap-

(1→3)-D-GlcNAc-(1→P), at C-6 position of MurNGly (Azuma et al., 1970; Takayama et al., 

1970).  



Chapter  1                                                                                                                Introduction 

 

14 
 

 

Fig. 1.3: Structural representation of cell wall core of M. tuberculosis (Adapted from Dover et al., 2004). The M. 

tuberculosis cell wall possesses covalently attached mycolic acid residues intercalated with TMM and TDM 

glycolipids and a diverse repertoire of complex lipids. The AG domain consists of arabinan and galactan that is 

further intercalated with the coiled glycan domains of PG via linker unit Rha-GlcNAc-phosphate linker. Glycolipids 

such as PIM6, anchored to plasma membrane through PI, followed by a string of mannose (LM), which is further 

branched by arabinan in LAM.  

 

The galactan domain of AG is made up of a linear chain of approximately 30 residues of β-D-

Galf linked together by alternating β(1→5) and β(1→6) linkages resulting in a helical-shaped 

polysaccharide chain (Daffe et al., 1990; Dmitriev et al., 2000). Approximately three chains 

made up of α-D-Araf units are linked to the C-5 position of β(1→6)-linked galactose residues 

towards the non-reducing end of the galactan backbone (Besra et al., 1995; Daffe et al., 1990). 

Interestingly, most of the arabinan of AG consists of a linear α(1→5)-D-Araf residues which are 

branched with 3,5-linked α-D-Araf units which are further extended with α(1→5)-D-Araf 

residues towards the non-reducing end (Besra et al., 1995). The non-reducing termini is further 

decorated with a branched hexa-arabinofuranosyl (Ara-6) motif, [t-β-D-Araf-(1→2)-α-D-Araf]2-
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3,5-α-D-Araf- (1→5)-α-D-Araf, which are covalently linked to mycolic acids (Besra et al., 1995; 

McNeil et al., 1991; McNeil et al., 1994).  

 

The mycolic acids are α-alkyl-β-hydroxy fatty acids (C70-C90) and are unique to the genus 

Mycobacterium which makes the outer layer of bacterium highly lipid rich and impermeable to 

hydrophilic antibiotics (Fig. 1.3) (Minnikin, 1982). Apart from esterified mycolates, 

mycobacteria also possesses free, solvent-extractable trehalose conjugates of mycolic acids; 

trehalose mono- and di-mycolates (TMM and TDM, respectively) (Asselineau & Lederer, 1950; 

Minnikin, 1982; Minnikin et al., 1982). Based on their structure, mycolic acids are classified into 

three classes; α-mycolic acids, ketomycolates and methoxymycolates (Minnikin, 1982). 

Interspersed within the hydrophobic environment provided by mycolic acids of the mAGP 

complex are the lipids, which form the outer layer of the pseudomembrane (Brennan & Nikaido, 

1995; Minnikin, 1982). These include phthiocerol dimycerosate, menaquinones, glycosylated 

phenolpthiocerols, TMM, TDM, sulpholipids, glycopeptidolipids, and 

phosphoinositolmannosides (Fig. 1.3) (Bozic et al., 1988; Chatterjee et al., 1988a; Chatterjee et 

al., 1988b; Cosma et al., 2003; Fujiwara et al., 1984; Glickman et al., 2001; Huang et al., 2002; 

Minnikin, 1982; Minnikin et al., 2002). 

 

1.8.2 Structural features of PIMs/LM/LAM 

 

PIMs, LM, and LAM are believed to be non-covalently attached to the cell membrane via the 

lipid portion of the PI anchor (Hunter & Brennan, 1990), while phosphatidyl-myo-inositol 

dimannoside (PIM2) serves as the scaffold at which higher mannosylated PIMs and lipoglycans 

are built (Fig. 1.4). The mannosylated core in LM consists of a linear α-(1→6)-linked mannan 
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which extends from the mannose (Manp) residue linked to the O-6 position of inositol in PIM2 

(Besra et al., 1997; Chatterjee et al., 1991) and is further decorated by singular α-(1→2)-linked 

Manp residues. In LAM, this mannan backbone is further elaborated by the addition, through a 

currently unknown linkage, of an arabinan domain similar to that found in AG, and finally 

decorated by Man caps (Man-LAM) (Chatterjee et al., 1993; McNeil et al., 1994).  

 

1.8.2.1 Phosphatidyl-myo-inositol mannosides (PIMs) 

 

During a study to identify novel phospholipids in mycobacteria, PIMs were accidently discovered 

and after a detailed chemical analysis they were categorised as glycolipids with fatty acids 

attached to glycerol, linked by a phosphodiester to myo-inositol and α-D-Manp residues (Vilkas 

& Lederer, 1956). It was later shown that the glycerol phosphate moiety was attached to the L-l-

position of myo-inositol (Ballou et al., 1963). This phosphate-myo-inositol (PI) is based on a sn-

glycero-3-phospho-(1-D-myo-inositol) unit, where hydroxyl moieties at O-2 and O-6 positions of 

myo-inositol are substituted with α-D-mannopyranose (α-D--Manp) units in case of PIM2 (Lee & 

Ballou, 1964; Nigou et al., 2003). The anchor is heterogeneous, with variations occurring with 

respect to the number, the location, and the nature of the fatty acids. There are four potential sites 

of acylation with different fatty acids (e.g. palmitic, stearic and tuberculostearic acid) at positions 

1 and 2 of the glycerol unit in the anchor, position 3 of myo-inositol and position 6 of the Manp 

unit linked at O-2 of myo-inositol (Khoo et al., 1995b; Nigou et al., 2003). In mycobacteria, 

palmitic and tuberculostearic (10-methyl-octadecanoic) acids are predominant, while myristic 

and octadecenoic acids are also found in large amounts, with traces of stearic, hexadecenoic and 

heptadecanoic acids (Ballou & Lee, 1964; Lee & Ballou, 1964; Nigou et al., 2003).  
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Fig. 1.4: Structure of LAM and related glyco-conjugates found in the cell wall of M. tuberculosis. Structural 

analysis of the mycobacterial cell wall suggests that only di- and hexa-mannosylated versions of PIMs, and the 

higher glycosylated polymers LM and LAM accumulate in the cell wall. In these glyco-conjugates, PI (yellow and 

blue circles) acts as anchor to the plasma membrane and further glycosylated at 2-OH and 6-OH positions of inositol 

by Manp residues (pink) which results in the synthesis of PIM2. In case of PIM6, Manp at 6-OH position of inositol is 

linked to three and two residues of α(1→6)-Manp and α(1→2)-Manp, respectively, while in LM and the mannan 

core of LAM, PIM2 is linked to another 17-19 residues of Manp in α(1→6) direction and 7-9 singular branched 

α(1→2)-Manp units. Mature LM is further linked via an unknown linkage to an arabinan domain made up of 70 

arabinan residues (green). The majority of the arabinan domain consists of a linear α(1→5)-Araf polymer branched 

at certain positions with α(3→5)-Araf residues towards its non-reducing end resulting in a linear (Ara-4) or/and 

branched (Ara-6) arabinan domain which in turn is terminated by β(1→2)-Araf and capped by α(1→2)-Manp units. 

n= to 55 units of Araf. 
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Further, Lee and Ballou (1965) discovered a pentamannoside, Manp-α(1→2)-Manp-α(1→2)-

Manp-α(1→6)-Manp-α(1→6)-Manp-α(1→.) attached to position O-6 of the myo-inositol of PI 

and identified it as phospho-myo-inositol-hexamannoside (PIM6) (Lee & Ballou, 1965). They 

also reported a biosynthetic relationship between PIM1 and PIM2, and suggested the involvement 

of a stepwise glycosylation of phosphatidyl-myo-inositol (PI), first at the O-2 position and then at 

the O-6 position of the inositol ring (Ballou & Lee, 1964). With the use of fast atom 

bombardment-mass spectrometry (FAB-MS) and gas chromatography-mass spectrometry (GC-

MS) analysis of acylated versions of PIMs, LM and LAM, Khoo and colleagues (1995) suggested 

that a C16 fatty acyl substituent is attached to the 6-OH position of the O-2 mannose attached to 

the inositol of PIM2 and also present in LM and LAM from M. tuberculosis and Mycobacterium 

leprae (Khoo et al., 1995b). Furthermore, it was suggested that the acylated version of PIM2 i.e. 

Ac1PIM2 is both a metabolic end-product and an intermediate in Ac1PIM6 and LM/LAM 

synthesis (Besra et al., 1997; Khoo et al., 1995b). 

 

Recently, the presence of ‘glucuronic acid diacyl-glycerol (GlcAGroAc2)’ based glycolipids, 

(GlcAGroAc2 and ManGlcAGroAc2) and a novel lipomannan (Cg-LM-B) were reported in 

Corynebacterium glutamicum, and to date this lipoglycan has not been identified in mycobacteria 

(Lea-Smith et al., 2008; Mishra et al., 2008b; Mishra et al., 2009; Tatituri et al., 2007b). 

However, Rv0557 [MgtA] of M. tuberculosis has shown the ability to synthesise these novel 

lipids and lipoglycan in in vitro and in vivo (Mishra et al., 2009; Tatituri et al., 2007b), and all 

members of the genus Mycobacterium possess the orthologue of MgtA. Therefore, the possibility 

remains for the identification of a glucoronic acid based-LM in mycobacteria. 
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1.8.2.2 Discovery of polysaccharides containing arabinan and mannan   

 

In 1930, Masucci and colleagues isolated a polysaccharide with high serological activity from a 

mycobacterial culture medium and showed that it contained D-arabinose and D-mannose 

(Masucci et al., 1930). At the same time, Chargaff and Schaefer (1935) reported the identification 

of two polysaccharides prepared from defatted M. bovis BCG. One of the polysaccharides 

contained D-mannose and D-arabinose together with a small amount of inositol (Chargaff & 

Schaefer, 1935). Later, Seibert and Watson (1941) separated these polysaccharides using 

electrophoresis (Seibert & Watson, 1941). However, it was the work of Nobel laureate Sir 

Norman Haworth at the University of Birmingham, UK, which described the structural features 

of these polysaccharides from heat-killed cells of M. tuberculosis (Haworth et al., 1948). 

Polysaccharides were methylated using methyl sulphate in the presence of sodium hydroxide and 

identified as highly branched structures composed of Manp, Araf, amino-sugar, and 

rhamnopyranose (Rhap) units forming terminal residues (Haworth et al., 1948).  

 

Later, Misaki and Yukawa at the University of Osaka, Japan, identified one of the 

polysaccharides as arabinogalactan (Misaki & Yukawa, 1966), in which the majority of the 

arabinans were covalently linked by α(1→5)-glycosidic linkages with minor α(1→3) and α(1→2) 

linkages (later re-annotated as β(1→2)), whilst the other was the immunologically active 

arabinomannan (Misaki et al., 1977). They described the arabinomannan as a polysaccharide 

consisting of α(1→6) mannan backbone with short chains of α(1→2)-Manp and α(1→5)-linked 

D-arabinose residues. In addition to arabinomannan, an immunologically inactive α-D-mannan 

was also identified whose structure resembled that of the core mannan of the arabinomannan 

(later identified as LM) (Misaki et al., 1977).  
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1.8.2.3 Identification of LM and LAM  

 

After these initial studies, Hunter et al. (1986) purified a polysaccharide from both M. leprae and 

M. tuberculosis using anion exchange and gel filtration chromatography. Apart from Manp and 

Araf  the polysaccharide contained glycerol, myo-inositol phosphate and was acylated by lactate, 

succinate, palmitate, and 10-methyloctadecanoate (Hunter et al., 1986). Further biochemical 

analyses established that “arabinomannan” of the genus Mycobacterium in its native state is 

acylated, contains the substituents of PI, which was later shown to be membrane bound (Hunter 

et al., 1986; Hunter & Brennan, 1990). They also isolated the mannan of M. tuberculosis as the 

native LM and proposed these polysaccharides as a multiglycosylated version of the 

mycobacterial PIMs (Hunter and Brennan 1990), which was verified later (Chatterjee et al., 

1992a).  

 

Hunter and Brennan (1990) proposed that LM and LAM are covalently and/or non-covalently 

attached to the cell membrane via the lipid portion of PI, while PIM2 serves as the scaffold at 

which LM and LAM are built (Hunter & Brennan, 1990). The O-6 position of inositol in PIM2 

serves as the attachment point for the synthesis of the α(1→6)-mannan backbone which is 

composed of around 25-30 residues of Manp and decorated by singular α(1→2)-Manp units, 

resulting in the formation of LM (Chatterjee et al., 1992a). The mannan core is further elaborated 

by the addition of an arabinan domain consisting of approximately 60-70 Araf residues in a linear 

α(1→5)-D-Araf fashion with 3,5-α-D-Araf branches. The linear chain is highly branched and 

conserved (Chatterjee et al., 1991; Chatterjee et al., 1992a; Chatterjee et al., 1992b; Chatterjee et 

al., 1992c) with two types of chain arrangements. Firstly, linear tetraarabinofuranosides (Ara-4) 

of the structure β-D-Araf(1→2)-α-D-Araf(1→5)-α-D-Araf(1→5)-α-D-Araf, and secondly, 
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branched (Ara-6) motifs with the structure [β-D-Araf(1→2)-α-D-Araf]2-3,5-α-D-Araf(1→5)-α-D-

Araf (Chatterjee et al., 1991). In both the cases, the non-reducing end is characterised by the 

disaccharide unit, Araf-β(1→2)-Araf-α(1→.) (Chatterjee et al., 1991; McNeil et al., 1994). 

 

1.8.2.4 Characterisation of non-reducing termini of LAM  

 

The arabinan termini of LAM from the virulent, Erdman strain of M. tuberculosis was shown to 

be capped with α(1→2)-D-Manp residues following analysis after arabinase treatment (Chatterjee 

et al., 1992b). It was established that the tetra/hexaarbinofuranoside unit was further extended by 

mono-, di- and tri-α(1→2)-D-Manp units (Chatterjee et al., 1992b; Chatterjee et al., 1993). At the 

same time, Puzo and colleagues (1993) reported the structure of Man-LAM from M. bovis BCG 

Pasteur, using 2-D Nuclear Magnetic Resonance (NMR) spectroscopy and per-O-methylation 

studies revealing that the Man-LAM from M. bovis BCG contained two types of terminal Manp 

and 2-O-linked Manp residues (Venisse et al., 1993). The number of mannose caps is species 

specific with M. tuberculosis H37Rv and M. bovis BCG Man-LAM equally capped with around 

seven caps per molecule (Khoo et al., 1995b; Nigou et al., 2003). Surprisingly, LAM from a fast 

growing Mycobacterium sp., was devoid of any Manp caps (termed as Ara-LAM) (Chatterjee et 

al., 1992b) and in turn, a novel inositol phosphate capping motif was identified on the arabinan 

termini of LAMs from Mycobacterium smegmatis ATCC 14468 and mc2155 (PI-LAM) (Khoo et 

al., 1995a).  
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Fig. 1.5: The non-reducing termini of the arabinan domain of Man-LAM from M. tuberculosis. The arabinan 

polymer is a linear α(1→5)-linked Araf backbone punctuated with branched hexa-Araf or/and tetra-Araf motifs. The 

mannose caps, which terminate the arabinan domain, consist of a single Manp residue, a dimannoside [α-D-Manp-

(1→2)-α-D-Manp-(1→.)] or a trimannoside [α-D-Manp-(1→2)α-D-Manp-(1→2)α-D-Manp-(1→.)]. 

 

1.8.2.5 Further modifications of LAM 

 

Nigou and colleagues (1997) established that M. bovis BCG contains two types of Man-LAM, 

namely parietal and cellular, which are different in terms of the percentage of Manp caps and the 

lipid anchor moiety (Nigou et al., 1997). Parietal Man-LAM had a novel fatty acid assigned as 

12-O-(methoxypropanoyl)-12-hydroxystearic acid, esterified at C-1 of the glycerol residue of PI, 

while cellular Man-LAMs were largely heterogeneous with palmitic and tuberculostearic acid 

(Nigou et al., 1997). Later, they also reported that these iso-forms of Man-LAM occur in M. 

tuberculosis (Gilleron et al., 2000). In different M. bovis BCG strains (Pasteur, Glaxo, 

Copenhagen, and Japanese strains), the presence of succinyl groups on O-2 of the 3,5-di-α-D-

Araf of arabinan domain of Man-LAM were also reported (Delmas et al., 1997). Recently, 

Treumann and colleagues  (2002) identified a 5-methylthiopentose substituent on the terminal 

Manp in the cap structure of Man-LAM in several strains of M. tuberculosis (Treumann et al., 

2002) which was later characterised as 5-deoxy-5-methylthio-xylofuranose (Joe et al., 2006).  
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1.9 Biogenesis of cell wall skeleton 

 

The importance of studying the biosynthesis of mycobacterial cell wall is necessary with regards 

to the development of new drugs against TB, which can target the novel enzymes involved in its 

synthesis (Bhatt et al., 2007b; Bhowruth et al., 2007; Brennan & Crick, 2007; Dover et al., 

2008). The following section highlights key steps of mycobacterial cell wall biogenesis.  

 

1.9.1 Biogenesis of mAGP complex 

1.9.1.1 Mycobacterial PG  

 

Biosynthesis of mycobacterial PG is very similar to E. coli. N-acetylmuramic acid (MurNAc) 

bound to an undecaprenyl carrier lipid via a phosphodiester is the main precursor of PG. In M. 

tuberculosis, UDP-MurNAc is synthesised from UDP-GlcNAc catalysed by MurA [Rv1315] and 

MurB [Rv0482] similar to E. coli (De Smet et al., 1999; Goffin & Ghuysen, 2002). Initially, 

UDP-MurNAc is converted into UDP-MurNGly and UDP-MurNGly-Ala, which is later modified 

by series of enzymes: MurC [Rv2152c] (Mahapatra et al., 2000), MurD [Rv2155c] (Crick et al., 

2001), MurE [Rv2158c], and MurF [Rv2157c] for the sequential addition of D-glutamate, 

diaminopimelate and D-alanyl-D-alanine dipeptide, respectively (Goffin & Ghuysen, 2002; van 

Heijenoort, 2001a; van Heijenoort, 2001b). However, MurX (Rv2156c) catalyses the transfer of 

phosphoryl-MurNGly-(pentapeptide) to its DPP acceptor which affords decaprenyl-diphosphoryl-

MurNGly-(pentapeptide) (Dover et al., 2004).  The final step in PG biosynthesis involves 

transpeptidation, i.e. the cross linking of glycan chains (Bhakta & Basu, 2002; Goffin & 

Ghuysen, 2002).  
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1.9.1.2 Biosynthesis of AG  

 

Mycobacterial AG is attached to PG by a linker unit which is synthesised by transfer of GlcNAc 

from UDP-GlcNAc onto a C50-polyprenol carrier by a decapaprenyl-phosphate α-N-

acetylglucosaminyltransferase, Rfe (UDP-GlcNAc transferase, Rv1302) (Mikusova et al., 1996). 

The synthesised lipid, C50-P-P-GlcNAc, is further glycosylated to form C50-P-P-GlcNAc-Rhap by 

a rhamnosyltransferase, WbbL [Rv3265c] which utilises dTDP-Rhap as a donor (Fig. 1.6) 

(Mikusova et al., 2000; Mills et al., 2004). C50-P-P-GlcNAc-Rhap then further serves as an 

acceptor for the sequential polymerisation of the galactan segment of AG with Galf residues from 

UDP-Galf (Lee et al., 1996) initially mediated by an unique galactosyltransferase, GlfT1 

[Rv3782] (Mikusova et al., 1996), which transfers the first two Galf residues, followed by further 

polymerisation by another bifunctional galactosyltransferase, GlfT2 [Rv3808c] which adds 

approximately a further 30 Galf residues in alternating β(1→5) and β(1→6) fashion (Kremer et 

al., 2001a).  

 

The C50-P-P-GlcNAc-Rhap-Galf30 is further primed by AftA [Rv3792] using decaprenol-P-

arabinofuranose (DPA) as an Araf donor at precisely three positions along the galactan at the 8th, 

10th, and 12th Galf residue (Alderwick et al., 2006b). C50-P-P-GlcNAc-Rhap-Galf30-Araf3 is 

further extended by concerted action of EmbA and EmbB, encoded by the emb operon (Telenti et 

al., 1997). Recently an α(1→3) arbinofuranosyltransferase, AftC [Rv2673], has been shown to 

add a single Araf unit at the 3-OH position of the α(1→5)-linked arabinan segment of AG (Birch 

et al., 2008) which in turn is further extended by an unknown α(1→5) 

arabinofuranosyltransferase. The non-reducing end of the arabinan chain of AG is terminated by 
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Fig. 1.6: Proposed biosynthetic pathway of AG synthesis. Biosynthesis of AG begins with synthesis of the linker 

unit by Rfe which transfers GlcNAc from UDP-GlcNAc to afford C50-P-P-GlcNAc followed by transfer of Rhap by 

WbbL. Galf is then transferred to C50-P-P-GlcNAc-Rha from UDP-Galf by GlfT/RfbE followed by galactan 

polymerisation by GlfT2. Matured C50-P-P-GlcNAc-Rha-Gal30 is further primed by AftA and arabinan is synthesised 

by the action of EmbA, EmbB, AftC, AftD and AftB.  
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a novel β(1→2) arabinofuranosyltransferase, AftB [Rv3805c] (Seidel et al., 2007a). The mature 

C50-P-P-GlcNAc-Rhap-Galf30-Araf70 is then transglycosylated to the PG and mycolated (Fig. 1.6) 

(Yagi et al., 2003). 

 

1.9.1.3 Mycolic acid synthesis 

 

Mycolates are synthesised by two discrete elongation systems, the Type I and Type II fatty acid 

synthases (FAS-I and FAS-II, respectively) in Mycobacterium sp. (Fig. 1.7) (Bloch, 1977; Bloch 

& Vance, 1977). FAS-I [Rv2524c] is a multi-domain enzyme with multiple catalytic activities 

(including acyltransferase, enoyl reductase, dehydratase, malonyl/palmitoyl transferase, acyl 

carrier protein, β-ketoacyl reductase and β-ketoacyl synthase), responsible for the synthesis of 

fatty acid acyl-CoA derivatives of C14 to C26 (Smith et al., 2003). The C14 acyl-CoA derivative is 

further utilised by FAS-II for the synthesis of meromycolates, which are later condensed with a 

C26 acyl-CoA. Initially, a β-ketoacyl-ACP synthase III, MtFabH [Rv0533c] (Choi et al., 2000) 

channels the C14-CoA, FAS-I, product and extends this substrate using malonyl-AcpM, 

synthesised by a malonyl-CoA:AcpM transacylase, (MtFabD, Rv2243) (Kremer et al., 2001b), 

affording a C16 acyl-AcpM, which is then elongated and processed via FAS-II (Fig. 1.7) 

(Bhowruth et al., 2008; Takayama et al., 2005).  

 

Mycobacterial FAS-II consists of four enzymatic activities, which ensure the C16 acyl-AcpM is 

extended to C56-AcpM meromycolates. In the first cycle, C16 acyl-AcpM is directly reduced by a 

β-ketoacyl-AcpM reductase, FabG1 [MabA, Rv1483] reduction via an enoyl-AcpM reductase, 

InhA [Rv1484] (Gurvitz et al., 2008; Kremer et al., 2003; Quemard et al., 1995a; Quemard et al., 

1995b). After the first cycle, MtFabH is replaced by KasA/KasB [Rv2245/Rv2246] 
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Fig.1. 7: Mycolic acid biosynthesis in M. tuberculosis (Adapted from Bhowruth et al., 2008). Malonyl-CoA is 

converted to malonyl-AcpM by mtFabD, which is then ligated by mtFabH to C14 -CoA synthesised by FAS-I. The 

C16 acyl-AcpM product is further processed by FAS-II (KasB/A, MabA, InhA, and Rv0636) and converted to 

mercomycolates (C56). The meromycolic acids precursors are ligated to a C26 fatty acid synthesised by FAS-I that 

constitutes the α-branch of the final mycolic acid. Finally, the polyketide synthase Pks13 catalyses the condensation 

of the α-branch and the meromycolate to produce mycolic acids.  

 

(Banerjee et al., 1998; Gurvitz, 2009; Marrakchi et al., 2002) which is followed by dehydration 

catalysed by a β-hydroxyacyl-AcpM dehydratase [Rv0636] (Brown et al., 2007a; Brown et al., 

2007b). KasA and KasB catalyse the condensation of the acyl-AcpM and malonyl-AcpM, which 

results in a further increment of two carbon units (Fig. 1.7) (Bhatt et al., 2005; Bhatt et al., 
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2007a; Kremer et al., 2002a; Schaeffer et al., 2001; Slayden & Barry, 2002). After about 20 

cycles, FAS-II produces a meromycolic acid (C56) which then undergoes a Claisen-type 

condensation reaction to form a pre-mycolic acid (Bhatt et al., 2007b; Bhowruth et al., 2008; 

Qureshi et al., 1978; Takayama et al., 1978; Takayama et al., 2005).  

 

The acyl-CoA carboxylases, AccD4 [Rv3799c] and AccD5 [Rv3280], carboxylate C26-S-CoA 

after its synthesis by FAS-I and affords 2-carboxyl-C26-CoA. Simultaneously, a fatty acyl-AMP 

ligase, FadD32 [Rv3801c] converts meromycolic acids (C56) derived from the FAS-II to 

meromycolyl-AMP (Trivedi et al., 2004). The 2-carboxyl-C26-CoA and mature meromycolyl-

AMP undergo the final Claisen-type condensation (Qureshi et al., 1978; Takayama et al., 1978) 

catalysed by polyketide synthase-13, Pks13 [Rv3800] (Gande et al., 2004; Gokhale et al., 2007; 

Takayama et al., 2005). Similar to FAS-I, Pks-13 also has a multi-domain structure with two 

phosphopantotheine-binding (PPB) domains, a ketoacyl synthase (KS), acyl transferase (AT) and 

thioesterase (TE) domain. The condensation reaction results in the formation of 3-oxo-C78-

mycolate which is then reduced by a reductase [Rv2509] and generates the mature C78-mycolic 

acid (Fig. 1.7) (Bhatt et al., 2008; Lea-Smith et al., 2007).  

 

The mature mycolic acid then reacts with trehalose-6-phosphate to yield phosphorylated trehalose 

monomycolate (TMM-P) (Shimakata & Minatogawa, 2000) which is transported outside of the 

cell by an ABC transporter [Rv1458c-Rv1456c] after its dephosphorylation by a phosphatase 

through a mycolic acid carrier (Besra et al., 1994; Takayama et al., 2005). The mycolic acids are 

then transferred to the arabinogalactan-peptidolycan complex, as well as TDM and TMM by the 

antigen 85 complex to produce arabinogalactan-mycolate and trehalose dimycolate, respectively 

(Fig. 1.7) (Belisle et al., 1997; Sathyamoorthy & Takayama, 1987; Takayama et al., 2005). 
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1.9.2 Biosynthesis of PIMs, LM, and LAM 

1.9.2.1 Biosynthesis of substrates  

1.9.2.1.1 GDP-Manp biosynthesis 

 

Apart from being the part of glycolipids and lipoglycans, mannose is also involved in the 

synthesis of a number of glycosylated proteins and a key component of several intracellular 

molecules in mycobacteria. These molecules are synthesised by both pathogenic and non-

pathogenic species, raising the possibility of yet undefined, ‘housekeeping’ functions in these 

organisms. Patterson et al. (2003) demonstrated that mannose metabolism is essential for growth 

in M. smegmatis and suggested that apart from glycolipid and lipoglycan biosynthesis mannose-

containing molecules may also have a role in regulating septation and cell division (Patterson et 

al., 2003).  

 

In mycobacteria, mannose can be produced by two distinct pathways, first by transport of 

extracellular mannose from the medium or extracellular environment, where free mannose is 

phosphorylated by a hexokinase [Rv2702] (Hsieh et al., 1996), and transported inside the cell in 

the form of mannose-1-phosphate, which is further converted into GDP-Manp by ManC 

[Rv3264c] (Fig. 1.8) (Ma et al., 2001; Ning & Elbein, 1999).  Secondly, in absence of 

extracellular mannose, it can be derived from glucose and other sugars via the glycolytic 

pathway, where fructose-6-phosphate is converted to mannose-6-phosphate by an essential  

enzyme, phosphomannose isomerase (PMI), encoded by manA [Rv3255c] (Patterson et al., 

2003). A PMI deletion mutant in M. smegmatis was unable to synthesise mannose-containing 

molecules in the absence of an exogenous source of mannose which suggested the essentiality of 

this enzyme in mycobacteria (Patterson et al., 2003).  
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Fig. 1.8: Biosynthetic pathways of important nucleotide and lipid-linked sugar donors in M. tuberculosis. Most 

of the sugars utilised by mycobacteria are derived from glycolytic intermediates or glucose as major carbon source. 

Apart from glycolytic pathway, GDP-Manp, PPM, DPA and PI are also derived from exogenous sources.  

 

The mannose-6-phosphate is then converted to mannose-1-phosphate by a phosphomannomutase 

(PMM). In search of a putative PMM, McCarthy et al. (2005) identified four M. tuberculosis 

open reading frames (ORF) which were similar to known PMMs (McCarthy et al., 2005). They 

utilised two PMM and phosphoglucomutase (PGM) deficient strains of Pseudomonas aeruginosa 

and expressed putative PMMs from M. tuberculosis. Based on complementation studies and in 

vitro enzyme assays, it was established that Rv3257c [ManB] from M. tuberculosis possesses 

both PMM and PGM activity. Overexpression of mycobacterial ManB in M. smegmatis led to the 

accumulation of PIMs, LM, and LAM, which suggested its role in the biosynthesis of these 

mannosylated molecules (McCarthy et al., 2005). Finally, mannose-1-phosphate is converted to 

the nucleotide sugar donor GDP-Manp by GDP-mannose pyrophosphorylase, ManC [Rv3264c] 

(Ma et al., 2001; Ning & Elbein, 1999).  
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1.9.2.1.2 Synthesis of β-D-mannosyl-1-monophosphoryldecaprenol (PPM) 

 

Takayama and Goldman (1970) were the first one to show the presence of C50-polyprenol based 

mannolipid (C50-P-Man) biosynthesis in M. tuberculosis (Takayama & Goldman, 1970). Later 

on, they identified a second M. smegmatis specific alkali stable, C35-octahydroheptaprenyl-

phospho-mannose (C35-P-Man). Based on similarities to the known eukaryotic dolichol 

monophosphomannose (DPM) synthases, Gurcha et al. (2002) identified a polyprenol 

monophosphomannose synthase, Rv2051 [Ppm1] from M. tuberculosis (Fig. 1.8). Surprisingly 

Ppm1 possesses an unusual two-domain architecture in M. tuberculosis of which the second 

domain, viz. Mt-Ppm1/D2, is sufficient for PPM synthesis (Gibson et al., 2003; Gurcha et al., 

2002). Interestingly, M. smegmatis, M. avium and M. leprae produce two distinct proteins, which 

are similar to the two domains found in Mt-Ppm1, with Ms-Ppm2 and Ma-Ppm2 having similar 

catalytic activity to Mt-Ppm1/D2. Due to the essentiality of PIMs, LM, and Man-LAM the PPM 

synthase represents an attractive target for drug development (Gibson et al., 2003; Gurcha et al., 

2002). 

 

1.9.2.1.3 Origin and synthesis of decaprenyl-phospho-arabinose (DPA)  

 

The arabinofuranose sugar donor was identified by Wolucka et al. (1994) as lipid linked 

decaprenyl-phospho-arabinose (C50-P-Araf, DPA) (Wolucka et al., 1994). In mycobacteria, DPA 

can be synthesised via two routes. First, by exogenous D-arabinose which can be reduced by an 

NADPH-dependent D-arabinose dehydrogenase to D-arabinotol followed by oxidation to D-

xylulose by an NAD-dependent D-arbinotol dehydrogenase [Rv1928], which is further 

phosphorylated by a D-xylulose kinase [Rv0729], and enters into the non-oxidative pentose 



Chapter  1                                                                                                                Introduction 

 

32 
 

phosphate pathway via D-xylulose 5-phosphate 3-epimerase [Rv1408] (Fig. 1.8) (Wolucka, 

2008). Second, through the glycolytic pathway, where D-glucose-6-phosphate is reduced by 

glucose 6-phosphate-1-deydrogenase [Rv0407] (Bashiri et al., 2007) into 6-phosphoglucono-1,5-

lactone, which is further converted to 6-phosphogluconate by a lactonase [Rv1445] and entering 

the pentose phosphate pathway with the activity of an unidentified decarboxylase and 6-

phosphogluconate dehydrogenase [Rv1122, Rv1844] (Fig. 1.8) (Wolucka, 2008).  

 

The majority of DPA synthesised in mycobacteria comes from the pentose shunt pathway. A 

vitamin B1 dependent transketolase [Rv1449] links the glycolytic and pentose shunt pathway and 

transfers a keto-group from the pentose pathway intermediate, sedoheptulose 7-phosphate to D-

glyceraldehyde 3-phosphate and produces ribose 5-phosphate. Alternatively, D-ribulose 5-

phosphate can be isomerised by ribose 5-phosphate isomerase [Rv2465] (Roos et al., 2004; Roos 

et al., 2005) into ribose 5-phosphate. However, Rv2465 is non essential in M. tuberculosis, while 

the putative transketolase, Rv1449 is essential (Sassetti et al., 2003) which indicates that 

isomerisation of ribulose 5-phosphate plays a very minor role towards DPA biosynthesis. In 

Gram-negative bacteria, ribose 5-phosphate diphosphokinase (pRpp synthase, PrsA) adds a 

pyrophosphate group to ribose 5-phosphate and converts it into 5-phosphoribosyl-α-1-

pyrophosphate (pRpp) with the expense of an ATP molecule (Eriksen et al., 2000). In M. 

tuberculosis, an essential putative ribose-5-phosphate diphosphokinase, Rv1017c, exists which 

possesses a conserved pRpp binding motif (Eriksen et al., 2000; Wolucka, 2008).  

 

On the basis of time course, feedback, and chemical reduction experiments, Mikusová et al. 

(2005) proposed the dephosphorylation of pRpp by a phosphatase as the first committed step in 

decapolyprenol ribose (DPR) and DPA biosynthesis (Fig. 1.8) (Mikusova et al., 2005). In the 
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genome of M. tuberculosis an unknown PAP2-family phospholipid phosphatase [Rv3807c] exists 

which is present in the AG biosynthetic cluster (Rv3779-Rv3809c) and next to the Rv3806c.  

 

Scherman et al. (2006) demonstrated the synthesis of DPA and decaprenylphosphate-[14C]-

Ribose (DPR) from pRpp (Scherman et al., 1996). Furthermore, it was shown that DPA is 

formed from pRpp via a two-step pathway, with an additional epimerisation step that converts 

DPR to DPA (Mikusova et al., 2005; Scherman et al., 1996). Recently, Huang et al. (2005) 

identified an ORF encoding for a 5-phospho-α-D-ribose-1-diphosphate:decaprenyl-phosphate 5-

phospho-ribosyltransferase, UbiA [Rv3806c] in M. tuberculosis (Fig. 1.8) (Huang et al., 2005). 

Deletion of ubiA in C. glutamicum produced a mutant that possessed a galactan core consisting of 

alternating β(1→5)-Galf and β(1→6)-Galf residues and was completely devoid of arabinan and 

cell-wall-bound corynomycolic acids, confirming its role in the synthesis of DPR and DPA 

biosynthesis in Corynebacterineae (Alderwick et al., 2006a).   

 

More recently, Mikusová et al. (2005) identified an epimerase, which is involved in the 

epimerisation of DPR to DPA (Fig. 1.8). It was established that the 2-OH of ribose is oxidised to 

decaprenylphosphoryl-2-keto-β-D-erythro-pentofuranose, which is reduced to form DPA. These 

activities are encoded by Rv3790 and Rv3791 and simultaneous expression of both is required for 

complete activity of the epimerase reaction (Fig. 1.8) (Mikusova et al., 2005). Interestingly, 

Rv3790 has been shown to be a target of benzothiazinones, thus a potential TB drug (Makarov et 

al., 2009).  

 

 

 



Chapter  1                                                                                                                Introduction 

 

34 
 

1.9.2.1.4 Synthesis of PI 

 

PIMs, LM and LAM are attached to the cell membrane with the linker unit composed of 

phosphatidyl-myo-inositol. Inositol is an essential metabolite in Mycobacterium, 

Corynebacterium, Nocardia, Micromonospora, Streptomyces, and Propionibacterium (Brennan 

& Ballou, 1968a; Brennan & Lehane, 1971; Kataoka & Nojima, 1967; Tabaud et al., 1971; Yano 

et al., 1969). In mycobacteria, inositol is essential for growth and derived directly via glycolysis 

(Jackson et al., 2000). Glucose-6-phosphate is cyclised by an inositol-1-phosphate synthase, Ino1 

[Rv0046c] (Bachhawat & Mande, 1999; Movahedzadeh et al., 2004), and converted to myo-

inositol-1-phosphate followed by dephosphorylation of myo-inositol-1-phosphate by an inositol 

monophosphatase (IMP) (Fig. 1.8). On the basis of homology, the M. tuberculosis genome shows 

four ORFs exhibiting an IMP signature. Rv2701c [SuhB] possesses the highest homology with 

human IMP and has been shown to possess inositol monophosphatase activity (Fig. 1.8) (Nigou 

& Besra, 2002a; Parish et al., 1997).  

 

The first step in the production of many phospholipids, including PI, is the phosphorylation of 

diacylglycerol (DAG) by a DAG Kinase [Rv2252] to form phosphatidic acid (Owens et al., 

2006). Phosphatidic acid is then activated by CTP to form cytidine diphosphate-diacylglycerol 

(CDP-DAG) by a CDP-DAG synthase [Rv2881c], a homologue of which has been characterised 

in M. smegmatis (Nigou & Besra, 2002b). Furthermore, Salman et al. (1999) have shown that cell 

wall fraction (P60) from M. smegmatis is able to synthesise P-[3H]-I in presence of exogenous 

substrate, CDP-dipalmitoyl-DAG (Salman et al., 1999). Myo-inositol reacts with CDP-DAG and 

forms PI (Fig. 1.8). Recently, the gene encoding PI synthase [Rv2612c] has been identified and 

shown to be essential in M. tuberculosis (Jackson et al., 2000).  
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1.9.2.2 Overview of PIM biosynthesis 

 

The current model of mycobacterial PIM biosynthesis supported by biochemical and genetic 

studies, follows a linear pathway from PI  PIM2  PIM4  PIM6 (Fig. 1.9) (Besra & Brennan, 

1997). PI is glycosylated by an -Manp residue catalysed by PimA [Rv2610c], which transfers 

Manp from GDP-Manp to the 2-position of PI to form PIM1 (Kordulakova et al., 2002). PIM1 is 

acylated by Rv2611c (Kordulakova et al., 2003) and the resulting Ac1PIM1 is further 

glycosylated by PimB [Rv2188c] at the 6-OH position of inositol (Lea-Smith et al., 2008; Mishra 

et al., 2008b; Mishra et al., 2009). RvD2-ORF1 from M. tuberculosis CDC1551, designated as 

PimC, catalyses the further α-mannosylation of Ac1PIM2 resulting in Ac1PIM3 (Kremer et al., 

2002b). Recently, a novel mannopyranosyltransferase PimE [Rv1159], utilising PPM has been 

identified and shown to be involved in the biosynthesis of Ac1PIM5 (Morita et al., 2006). 

However, the enzyme responsible for the synthesis of Ac1PIM4 from Ac1PIM3 still remains to be 

identified (Fig. 1.9). 

 

1.9.2.2.1 Conversion of PI into Ac1PIM1  

 

The enzymes involved in the synthesis of early PIMs are part of a conserved cluster of six ORFs 

in an operon, which is found in all members of Corynebacterineae (Fig. 1.10) (Cole & Barrell, 

1998; Cole et al., 1998). The first ORF of this cluster, Rv2614c, encodes for an aminoacyl-

transfer RNA synthetases class-II signature and similar to E. coli threonyl-t-RNA synthetases. 

The second ORF, Rv2613c, encodes for an unknown protein with similarity to the proteins 

involved in nucleotide biosynthesis. The third ORF, Rv2612c, has been identified to encode for a 

phosphatidylinositol synthase, PgsA and is essential in M. tuberculosis (Jackson et al., 2000).  
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Fig. 1.9: Overview of PIM biosynthesis in M. tuberculosis. On the cytosolic side PI is glycosylated by PimA, 

PimB and an acyltransferase to form Ac1PIM2, which is then transported across the plasma membrane by an 

unidentified flippase where it is further mannosylated by PimC and PimD to form Ac1PIM4, an intermediate for 

Ac1PIM6 and LM. Ac1PIM4 is further mannosylated by α(1→2) mannosyltransferases, PimE and/or another 

unidentified enzyme to form Ac1PIM6 . The species shown in bold accumulate on the mycobacterial cell wall.   

 

The fourth ORF, Rv2611c, encodes an acyltransferase which acylates the 6-position of Manp 

residue linked to 2-OH position of myo-inositol (Kordulakova et al., 2003). A Rv2611c mutant of 

M. smegmatis exhibited severe growth defects and accumulation of non-acylated PIM1 and PIM2. 

Furthermore, in a cell-free assay utilising membrane preparations from M. smegmatis, 

overexpression of Rv2611c increased the incorporation of [14C]-palmitate into PIMs 

(Kordulakova et al., 2003). PimA [Rv2610c] is the fifth ORF of the operon and is essential in M. 

smegmatis (Kordulakova et al., 2002). In cell-free assays with partially purified Rv2610c and/or 

membranes from M. smegmatis overexpressing pimA and GDP-[14C]-Manp, Kordulakova et al. 

(2002) identified the incorporation of radioactivity into Ac1PIM1 and Ac2PIM1 (Kordulakova et 

al., 2002). They deduced that Rv2610c encodes for an α-mannopyranosyltransferase, and PimA 

was responsible for the formation of PIM1 from PI and GDP-Manp (Kordulakova et al., 2002). 

The structure of PimA in complex with GDP-Manp from M. smegmatis has a two-domain  
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Fig. 1.10: PIM biosynthetic cluster in M. tuberculosis. Enzymes involved in the early steps of biosynthesis of 

PIMs are part of a conserved operon consists of six ORFs. Rv2614c encodes for an aminoacyl-transfer RNA, while 

Rv2613c is probably involved in nucleotide biosynthesis. Rv2612c and Rv2611c encode for a phosphatidylinositol 

synthase [PgsA] and an acyltransferase, respectively. Last two ORFs, Rv2610c and Rv2609c, encode for PimA and 

an uncharacterised GDP-Manp hydrolase. Out of these six ORFs, three have been identified in the synthesis of PIMs.    

 

organisation and the catalytic machinery typical of GT-B glycosyltransferases (Guerin et al., 

2007). The sixth ORF, Rv2609c encodes for a putative GDP-Manp hydrolase carrying a mutT 

domain signature. The remarkable conservation of this cluster of genes among genus 

Mycobacterium may be related to an essential feature dedicated for mycobacterial viability and 

growth which is attributed to this class of glycolipids (Fig. 1.10) (Kordulakova et al., 2003).  

 

1.9.2.2.2 Ac1PIM2, a key regulatory molecule in the biosynthesis of PIMs 

 

Schaeffer et al. (1999) proposed Rv0557 as an α-D-mannose-α(1→6)-phosphatidyl-myo-inositol-

mannopyranosyltransferase [PimB] that transfers mannose from GDP-Manp to Ac1PIM1 to form 

Ac1PIM2. The study was based on the utilisation of cell-free assays using GDP-[14C]-Manp, 

Ac1PIM1, M. smegmatis membranes and/or partially purified recombinant Rv0557 (Schaeffer et 

al., 1999). However, on disruption of Rv0557 in M. tuberculosis, the biosynthesis of PIMs remain 

unaffected (Torrelles et al., 2009) suggesting either gene duplication or that Rv0557 performed 

another function in M. tuberculosis. Interestingly, Rv0557 has also shown to be involved in the 
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biosynthesis of a novel mannolipid, ManGlcAGroAc2 and a LM-like molecule in C. glutamicum 

(Tatituri et al., 2007b).  

 

Furthermore, recently, Rv2188c was also proposed as an α-D-mannose-α(1→6)-phosphatidyl-

myo-inositol-mannopyranosyltransferase [PimB’] (Lea-Smith et al., 2008; Mishra et al., 2008b) 

which has augmented ongoing confusion in the field. The synthesis of PIM2, is followed by 

synthesis of PIM4, PIM6, LM and LAM (Besra & Brennan, 1997; Besra et al., 1997). However, 

biochemical characterisation of the cell wall shows the accumulation of different acylated 

versions of PIM2, PIM6, LM and LAM. Herein, PIM6 and LAM have been assigned as the 

metabolic end-products of the pathway, while PIM2 has been characterised as a precursor of 

Ac1/Ac2- PIM6 and LM, and LM as a precursor of LAM (Besra et al., 1997; Mishra et al., 

2008a). In spite of the commitment of Ac1/Ac2PIM2 towards PIM6 and LM biosynthesis, there is 

substantial accumulation of Ac1/Ac2PIM2 in the mycobacterial cell wall, which suggests that 

upstream and downstream steps are very tightly regulated. 

 

1.9.2.2.3 Synthesis of higher PIMs 

 

RvD2-ORF1 from M. tuberculosis CDC1551 was identified as an Ac1PIM2:α-D-mannose-

α(1→6)-phosphatidyl-myo-inositol-mannopyranosyltransferase [PimC], involved in the addition 

of Manp from GDP-Manp to the 6-OH of mannose at the non-reducing end of Ac1/Ac2PIM2 

(Kremer et al., 2002b). PimC belongs to Family 4 of the CAZy classification of 

glycosyltransferases (Cantarel et al., 2009). RvD2-ORF1 and PimA, as well as six other putative 

α-mannopyranosyltransferases found in the M. tuberculosis H37Rv contain a conserved EXE 
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Fig. 1.10: Early and late steps of PIM biosynthesis in M. tuberculosis. PI is converted to Ac1/Ac2PIM2 by the 

action of cytosolic glycosyltransferases and acyltransferases. Furthermore, Ac1/Ac2PIM2 are transported across 

extracellular face by a flippase where it is converted to Ac1/Ac2PIM6 by trans-membrane glycosyltransferases. 

Towards the cytosolic side glycosyltransferases use nucleotide-linked mannose donor, whilst on the extracellular 

side lipid-linked mannose is used as a sugar donor.  

 

motif (Glu- X-Glu) found in most known mannopyranosyltransferases (Berg et al., 2007). The 

use of a cell-free assay containing GDP-Manp, amphomycin and membranes from M. smegmatis 

over-expressing PimC led to the synthesis of Ac1/Ac2PIM3. However, inactivation of pimC in M. 

bovis BCG did not affect the production of higher PIMs, LM, and LAM suggesting the existence 

of redundant gene(s) or an alternate pathway that may compensate for PimC deficiency (Kremer 

et al., 2002b). 

 

Ac1/Ac2PIM3 are further α(1→6) mannosylated at the non-reducing termini by an unidentified 

α(1→6) mannopyranosyltransferase [PimD] which results in the formation of Ac1/Ac2PIM4. This 
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step in the biosynthesis of higher PIMs, LM and LAM, as Ac1/Ac2PIM4 have been predicted as a 

key branching point towards the synthesis of Ac1/Ac2PIM6, LM and LAM (Mishra et al., 2008a; 

Morita et al., 2004; Morita et al., 2006). It has been proposed that at this point, a transition occurs 

from glycosyltransferases, utilising nucleotide-derived sugar substrates characterised by the GT-

A/B superfamily to glycosyltransferases utilising polyprenylphosphate sugars, the GT-C 

superfamily (Liu & Mushegian, 2003), for the elongation and branching of LM and LAM (Morita 

et al., 2006). Rv1159 [PimE] has been identified as an α(1→2)-mannopyranosyltransferase which 

utilises PPM as a substrate and adds an α(1→2)-Manp to the Ac1/Ac2PIM4 resulting in the 

synthesis of Ac1/Ac2PIM5 (Morita et al., 2006). However, it is not clear whether PimE is also 

responsible for the synthesis of both Ac1/Ac2PIM5 and Ac1/Ac2PIM6.  

 

Morita et al. (2005) suggested that enzymes involved in the biosynthesis of early PIM 

intermediates (PIM1 and Ac1PIM1) are localised to a membrane sub-domain termed PMf in the 

plasma membrane, while the majority of Ac1/Ac2PIM2 and enzymes involved in higher PIMs 

(Ac1/Ac2PIM4 and Ac1/Ac2PIM6) are localised to a denser fraction that contained both plasma 

membrane and cell wall markers (PM-CW) (Morita et al., 2005). On the basis of various cell free 

assays, they concluded that higher PIM biosynthesis occurs in the plasma membrane rather than 

the PM-CW fraction followed by their transport to the cell wall (Morita et al., 2005). The relative 

amount of higher PIMs and lipoglycans across the membrane was suggested to be regulated by a 

recently identified lipoprotein [LpqW] of M. smegmatis (Kovacevic et al., 2006; Marland et al., 

2006). However, the exact mechanism of the regulation of PIM flux and its segregation for 

Ac1/Ac2PIM6 or LM biosynthesis is unknown. Furthermore, Ac1/Ac2PIM4 was suggested as key 

regulatory products involved in the biosynthesis of Ac1/Ac2PIM6 and/or LM biosynthesis (Morita 

et al., 2004; Morita et al., 2006). While PimE directs Ac1/Ac2PIM4 towards Ac1/Ac2PIM6 
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synthesis, LpqW helps in the commitment of Ac1/Ac2PIM4 for LM synthesis (Crellin et al., 

2008). The mature Ac1/Ac2PIM4 is transported by a flippase or sugar transporter across the 

plasma membrane where mannosylation occurs by distinct mannopyranosyltransferases 

belonging to GT-C family.  

 

1.9.2.3 Synthesis of LM, LAM and Man-LAM 

1.9.2.3.1 Synthesis of mannan core of LM/LAM 

 

The α(1→6) mannan backbone in LM/LAM is synthesised by the cumulative action of two 

α(1→6) mannopyaranosyltransferases, MptA and MptB, which have been identified and 

characterised in this thesis and therefore will be discussed in more detail later (Chapter 2). The 

α(1→6) mannan core is further decorated by single α(1→2)-Manp branches (Chatterjee et al., 

1992a; Hunter & Brennan, 1990) from the action of an α(1→2) mannopyranosyltransferase (Fig. 

1.11). On the basis of known polyprenol-dependent glycosyltransferases, Kaur et al. (2006) 

identified Rv2181 as an α(1→2) mannopyranosyltransferase involved in the synthesis of 

α(1→2)-Manp side chains. Rv2181 has a DID motif, characteristic of most known 

glycosyltransferases, and contain 10 predicted transmembrane-spanning domains. A M. 

smegmatis mutant [Rv2181] showed absence of LM/LAM and synthesised a truncated version of 

LAM with less α(1→2)-Manp residues (Kaur et al., 2006). However, M. tuberculosisΔRv2181 

possessed truncated versions of LM and Man-LAM (Kaur et al., 2008), illustrating that 

regulation of LM/LAM biosynthesis in M. smegmatis is slightly different with M. tuberculosis.  
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Fig.1.11: Synthesis of LM and the mannan core of LAM in M. tuberculosis. Ac1/Ac2PIM4 is polymerised by 

MptB and MptA and decorated by singular α(1→2)-Manp by Rv2181. The mature LM is further utilised by 

arabinofuranosyltransferases to form LAM which is later capped by mannopyranosyltransferases forming Man-

LAM. n = 20-25; and x=0-2.    
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1.9.2.3.2 The assembly of the arabinan domain 

 

Mature LM is further glycosylated with α-D-Araf units by arabinofuranosyltransferases to 

produce LAM, which is further capped by mannopyranosyltransferases (Besra et al., 1997). The 

number of arabinofuranosyltransferases required for mycobacterial arabinan biosynthesis 

depends on the arabinan linkages present in mycobacterial LAM and one would suggest the 

activity of at least five distinct arabinofuranosyltransferases for mature LAM (Fig. 1.12). The 

EmbC protein is involved in arabinan biosynthesis of LAM, although the exact activity is 

unknown (Zhang et al., 2003). It contains 11-13 transmembrane helices (TMH) and a large 

carboxyl-terminal globular region which controls chain length extension of the arabinan domain 

of LAM (Shi et al., 2006). It is also speculated that the GT-C motif of EmbC maybe involved in 

the non-branched chain elongation of α(1→5)-Araf residues, either through an initial 

polymerisation, where the arabinan units are linked to each other creating 3,5-α-Araf branches on 

5-linked chains or by transferring the units directly on to the mannan backbone (Fig. 1.12) (Berg 

et al. 2005).  

 

Recently, utilising bioinformatics Birch et al. (2008) identified an α-arabinofuranosyltransferase, 

AftC in M. smegmatis (MSMEG_2785) and M. tuberculosis (Rv2673) with a glycosyltransferase 

motif (DDX) that is common to the GT-C family of glycosyltransferases (Birch et al., 2008). 

Deletion of aftC from M. smegmatis resulted in a truncated AG and LAM. Cell free assays using 

the sugar donor DPA and a synthetic α(1→5)-linked-[Araf]5 acceptor, identified AftC as a 

branching α(1→3) arabinofuranosyltransferase. On that basis, it was concluded that AftC 

catalyses the addition of α(1→3)-linked Araf residues on a linear α(1→5) arabinan domain 

resulting in 3,5-Araf residues (Birch et al., 2008).  
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Fig.1.12: Synthesis of the arabinan domain and capping motif of Man-LAM in M. tuberculosis. Mature LM is 

primed by a singular D-Araf through an unknown linkage which is extended by EmbC or unidentified α(1→5) 

arabinofuranosyltransferases. The linear α(1→5)-D-Araf chain is further primed by AftC which is subsequently 

extended by AftD and terminated by the action of AftC/AftB or unidentified AraTs to form linear Ara-4 or branched 

Ara-6. The penultimate Araf of the arabinan domain is further capped by Manp residues by CapA and Rv2181 to 

form Man-LAM. n, m, and p represent different numbers of Araf residues.  

 

 

Interestingly, Skovierova et al. (2009) have recently identified Rv0236c as another α(1→3) 

arabinofuranosyltransferase involved in the addition of α(1→3) arabinan residues towards the 

non-reducing end of LAM and AG. Although, they also suggested that AftD may have another 

unknown function e.g. regulation of arabinan assembly in AG/LAM or in fact even an α(1→5) 

arabinan transfer activity (Fig. 1.12) (Skovierova et al., 2009). 
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1.9.2.3.3 Mannan priming and Man-LAM synthesis 

 

All pathogenic strains of the genus Mycobacterium are known to possess mannose-capped LAM 

(Man-LAM), which is responsible for some of the immuno-modulatory properties of these strains 

(Briken et al., 2004). Close inspection of the M. tuberculosis genome in comparison with M. 

smegmatis which possesses LAM without mannose caps, provided the first indication of the role 

of Rv1635c in Man-LAM synthesis. On that basis, the homologue of Rv1635c in M. tuberculosis 

CDC1551 was identified as a glycosyltransferase that could be involved in Man-LAM capping 

(Dinadayala et al., 2006). Biochemical analysis of the cell wall of a transposon mutant strain of 

M. tuberculosis CDC1551 deficient in MT1671 (Rv1635c) yielded a smaller version of Man-

LAM. Further biochemical analyses established that the Man-LAM of the mutant strain was in 

fact devoid of Manp capping (Dinadayala et al., 2006). Furthermore, heterologues expression of 

MT1671 in a M. smegmatis strain resulted in a hybrid LAM, capped with a single mannose 

residues. Simultaneously, Rv1635c mutants in M. marinum and M. bovis BCG showed that 

Rv1635c encoded for an α(1→2) mannopyranosyltransferase involved in the addition of the first 

Manp residue on the non-reducing arabinan termini of LAM (Appelmelk et al., 2008). More 

recently, Kaur et al. (2008) have shown that Rv2181c also has an ability to add α(1→2)-Manp 

residues not only onto α(1→6) mannan backbone but also at the non-reducing end of LAM in 

combination with Rv1635c (Kaur et al., 2008). This was the first report confirming a 

mycobacterial glycosyltransferase having varied substrate specificity (Fig. 1.12).  
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1.10 Aims and objectives  

 

With the advent of MDR- and XDR-TB there is a need to identify novel drug targets in M. 

tuberculosis. The unusual lipid rich cell wall of M. tuberculosis inhibits the entry of hydrophilic 

drugs into the cell. Interestingly, many of the available front-line drugs (EMB, INH, and 

ethionamide) target cell wall biosynthetic machinery. In this respect, the unexplored biosynthetic 

machinery of the mycobacterial cell wall represents an attractive target for the development of 

new drugs.  

 

According to the CAZy (Carbohydrate-Active Enzymes) database (Cantarel et al., 2009), forty 

one loci of M. tuberculosis H37Rv have been shown to encode for putative glycosyltransferases 

on the basis of sequence similarity and alignment. Liu and Mushegian (2003) categorised these 

loci into three large superfamilies; GT-A and GT-B (soluble and peripheral membrane proteins 

which use NDP-sugars as donor substrates) and GT-C (integral membrane proteins) (Liu and 

Mushegian, 2003). At the start of this thesis only a handful have been characterised 

experimentally: EmbA, B and C (Telenti et al., 1999), AftA (Alderwick et al., 2006), AftB 

(Seidel et al., 2007a), MgtA (Tatituri et al., 2007b), Rv2181 (Kaur et al., 2006) and CapA 

(Appelmelk et al., 2008, Dinadayala et al. 2006). The major aim of this thesis was to determine 

the role of other uncharacterised putative glycosyltransferases in cell wall biosynthesis of M. 

tuberculosis with the view of identifying new drug targets for MDR- and XDR-TB.  



 

 

47 
 

 

 

 

 

 

 

 

 

2. BIOSYNTHESIS OF THE MANNAN BACKBONE OF 
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2.1 Introduction 

 

The current paradigm of mycobacterial lipoglycan biosynthesis follows a linear pathway, PI  

PIM2  LM  LAM (Besra & Brennan, 1997), with each individual step synthesising an 

increasingly glycosylated molecule catalysed by specific glycosyltransferases. In this pathway, PI 

acts as a substrate for the -mannopyranosyltransferase PimA [Rv2610c], which transfers a 

Manp to PI to form PIM1 (Kordulakova et al., 2002), followed by acylation of PIM1 by Rv2611c 

(Kordulakova et al., 2003) and the second mannosylation step by PimB [Rv2188c] (Lea-Smith et 

al., 2008, Mishra et al. 2008b, Mishra et al., 2009). PimE (Rv1159) has been implicated in the 

synthesis of Ac1/Ac2PIM5 (Morita et al., 2006), however, the enzyme responsible for the 

synthesis of the intermediate Ac1/Ac2PIM4 from Ac1/Ac2PIM3, remains elusive.  

 

Ac1/Ac2PIM4 has been suggested as a branching point and a likely precursor to LM/LAM (Morita 

et al., 2006), with a transition in type of glycosyltransferases involved in LM/LAM synthesis 

(Liu & Mushegian, 2003). The mature Ac1/Ac2PIM4 are flipped from the extracytoplasmic side of 

the membrane by an unidentified flippase, followed by polymerisation via distinct 

mannopyranosyltransferases and arabinofuranosyltransferases (Morita et al., 2004, Morita et al., 

2006). Recently, Kaur et al. (2006, 2008) reported the involvement of Rv2181 in the synthesis of 

the (12)-Manp linked branches on the mannan core of LM/LAM (Kaur et al., 2006; Kaur et 

al., 2008). However, the enzyme activity required for the synthesis of the core linear LM/LAM 

mannan domain through an (16) mannopyranosyltransferase remains to be identified.  

 

Herein, we have used C. glutamicum as a surrogate system to study the putative (16) 
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mannopyranosyltransferases of M. tuberculosis. Apart from C. glutamicum and M. tuberculosis 

sharing a similar cell wall architecture, the availability of completed genome sequences for both 

organisms has enabled the use of C. glutamicum as a suitable model to study the essential 

mycobacterial genes involved cell wall biosynthesis (Alderwick et al., 2005; Alderwick et al., 

2006b; Gande et al., 2004; Gibson et al., 2003; Seidel et al., 2007a). In this Chapter, we have 

examined two ORFs from C. glutamicum, NCgl2093 (homologue of Rv2174) and NCgl1505 

(homologue of Rv1459c), which encode putative GT-C glycosyltransferases. Based on molecular 

and biochemical studies, NCgl2093/Rv2174 were assigned as (16) 

mannopyranosyltransferases involved in the distal mannan backbone, while NCgl1505/Rv1459c 

represents (16) mannopyranosyltransferases involved in the proximal mannan backbone 

synthesis of LM in C. glutamicum and M. tuberculosis.  

 

2.2 Materials and methods  

2.2.1 Bacterial strains and growth conditions 

 
C. glutamicum ATCC 13032 and E. coli DH5mcr were grown in Luria-Bertani broth (LB, 

Difco) at 30°C and 37°C, respectively. The recombinant strains were grown on rich BHI medium 

(Difco), and the salt medium CGXII used for C. glutamicum as described (Eggeling & Bott, 

2005). Kanamycin and ampicillin were used at a concentration of 50 µg/ml. Samples for lipid 

analysis were prepared by harvesting cells at an OD of 10-15, followed by a saline wash and 

freeze drying. M. smegmatis strains were grown in Tryptic Soy broth (TSB, Difco) containing 

0.05 % Tween80. The concentrations of antibiotics used for M. smegmatis were 100 μg/ml for 

hygromycin and 20 μg/ml for kanamycin. All other chemicals were of reagent grade and obtained 

from Sigma-Aldrich.  
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2.2.2 Construction of plasmids and strains 

2.2.2.1 Construction of C. glutamicum∆mptA and complemented strains 

 

All mutant strains in C. glutamicum and their complimented strains were constructed at Institute 

for Biotechnology Research Centre, Juelich, Germany. In order to enable deletion of the gene 

with the locus tag C. glutamicum NCgl2093 (Cg-mptA) the primer pair P1, 

CGCTTCTAGACAACGCGCTGATAAGCAATCTCC, (all primers given in 5´to 3´direction) 

and P2rev, CCCATCCACTAAACTTAAACACGTTGAAAAAGTGTCATAC GCG, were used 

with start codon in bold and restriction endonuclease sites underlined to generate a 288 bp 

fragment upstream of NCgl2093. Similarly, the pair P3, 

TGTTTAAGTTTAGTGGATGGGACTGACCCTGCAACAAC, and P4rev, GCGGGAATTCG 

AAGGAAAACACCAACCGTTTCATC was used to generate a 340 bp downstream fragment. 

Using both isolated fragments cross over PCR was applied with primers P1 and P4rev to generate 

a 628 bp fragment which was cloned into EcoRI-XbaI-cleaved pK19mobsacB (Schafer et al., 

1994) resulting in pK19mobsacBmptA. For the chromosomal deletion of Cg-mptA, plasmid 

pK19mobsacBmptA was used, taking advantage of the kanamycin resistance gene aph, to select 

for plasmid integration in the first round of homologues recombination and the sucrose gene 

sacB, to select for loss of vector in the second round of homologues recombination (Jager et al., 

1992). The successful deletion in the resulting strain C. glutamicum∆mptA was verified by use of 

two different primer pairs (P1 and P4).  

 

To enable plasmid encoded expression of C. glutamicum NCgl2093 (Cg-mptA), the gene was 

amplified using the primer pairs 2093rev, GTAATGGATCCTAGGAAACGGTATGCGGG 

GAG and 2093RBSfor, GCGCGGTTAACAGGGAGATATAGATGACACTTTTTCAACGTT 
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TAAC were as used with start and stop codons in bold and restriction endonuclease sites 

underlined. The resulting fragment was cloned into pGEM-T, excised as an HpaI-SpeI fragment 

and cloned into the E. coli-C. glutamicum shuttle vector pVWEx resulting in pVWEx-Cg-mptA. 

To clone Rv2174 of M. tuberculosis (Mt-mptA) the primer pairs Rv2174rev, CAGTGAGAT 

CTCTATGGCGTATTGACCACCG and 2174RBSfor, CACTAGTTAACAGGGAGATATAG 

ATGACTACTCCGAGCCATG were used. The resulting fragment was cloned as above into 

pGEM-T and sub-cloned resulting in pVWEx-Mt-mptA. All plasmids used were confirmed by 

sequencing for integrity. Plasmid pVWEx-Cg-mptA and pVWEx-Mt-mptA were introduced into 

C. glutamicum∆mptA by electroporation with selection to kanamycin resistance (25 µg/ml). 

 

2.2.2.2 Construction of C. glutamicum∆mptB, C. glutamicum∆mptB∆mptA, and 

complemented strains 

 

The genes analysed were Rv1459c and NCgl1505 from M. tuberculosis and C. glutamicum, 

respectively, termed mptB. The vectors made were pVWEx-Mt-mptB, pVWEx-Cg-mptB, pET-

Mt-mptB, pET-Cg-mptB, and pK19mobsacBmptB. To construct the deletion vector 

pK19mobsacBmptB, crossover PCR was applied with primer pairs AB (A, CGTTAAGCTTCC 

AAAGGTAACCTTATTTATGCTGGCCACAGG; B, CCCATCCACTAAACTTAAACAC 

GATGCGCGGCAAAGT) and CD (C, TGTTTAAGTTTAGTGGATGGGGAGTTTGAGGCGG 

AATCC; D, GCATGGATCCGCGGTAAAACCTTCGCACATTTCAATG) and C. glutamicum 

genomic DNA as template. Both amplified products were used in a second PCR with primer pairs 

AD to generate a 597 bp-fragment consisting of sequences adjacent to Cg-mptB, which was 

ligated with HindIII-BamHI-cleaved pK19mobsacB. 
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To enable expression of Cg-mptB in C. glutamicum the primer pair EF was used (E, 

CGAATTGGATCCTCAGTGTAAACCAAAGGTTGGATTCC; F, GATATGTTAACAGGG 

AGATATAGTTGCCGCGCATCGG) to amplify C. glutamicum mptB, which was ligated with 

SalI-, BamHI-cleaved pVWEx to generate pVWEx-Cg-mptB. To enable expression of Mt-mptB 

in C. glutamicum the primer pair HJ was used (H, GATATGTTAACAGGGAGATATAGATG 

GCAGCCCGCCAC; J, GGAATTGGATCCTCACGTGGAATCAGCGTAGGCG) to amplify M. 

tuberculosis mptB, which was ligated with SalI-, BamHI-cleaved pVWEx to generate pVWEx-

Mt-mptB.  

 

All plasmids were confirmed by sequencing. The chromosomal deletion of Cg-mptB was 

performed as described previously using two rounds of positive selection (Schafer et al., 1994), 

and its successful deletion was verified by use of primer pairs A,B and the additional primer pair 

LM (L, GCGCGTATCACCGTCTCCGGTGTG; M, GCTGTTGGCCACCTGACAGACGTCG). 

Due to the similarity of MptB with MptA C. glutamicum∆mptB was transformed with and used 

together with pK19mobsacB∆mptA (Mishra et al., 2007) to give the double mutant C. 

glutamicum∆mptB∆mptA. Plasmids pVWEx-Cg-mptB, pVWEx-Cg-mptA, pVWEx-Mt-mpt, and 

pVWEx-Ms-mptB were introduced into C. glutamicummptB and C. glutamicum∆mptB∆mptA by 

electroporation with selection to kanamycin resistance (25 µg/ml). 

 

2.2.2.3 Construction of M. smegmatis∆mptB 

 

M. smegmatisMSMG3120 was constructed at Howard Hughes Medical Institute, Albert Einstein 

College of Medicine, New York, USA and was gift from Prof. K. Takayama. For details, please 

refer to Mishra et al. (2008a). 
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2.2.3 Extraction and biochemical analysis of lipids and lipoglycans 

 

Methodology covering extraction and biochemical analysis of lipids and lipoglycans with two 

dimensional-thin layer chromatography (2D-TLC), SDS-PAGE, GC-MS, MALDI-TOF-MS and 

NMR are covered separately as part of General Materials and Methods in Chapter 5.  

 

2.2.4 Preparation of enzymatically active membranes and cell envelope fraction 

 

M. smegmatis and C. glutamicum strains were cultured to mid-logarithmic growth phase in 1 L 

BHIS medium supplemented with kanamycin (25 µg/ml) and IPTG (0.2 mM) where appropriate. 

Cells were harvested by centrifugation, resuspended in 20 ml of buffer A (50 mM MOPS pH 7.9, 

5 mM β-mercaptoethanol and 5 mM MgCl2) and lysed immediately by sonication (60 sec ON, 90 

sec OFF for a total of 10 cycles). The lysate was clarified by centrifugation at 27,000 x g (4°C, 30 

min) and membranes were deposited by centrifugation of the supernatant at 100,000 x g (4°C, 90 

min). The membranes were resuspended in buffer A to a final protein concentration of 20 mg/ml. 

The 27,000 x g pellet was resuspended in 10 ml of buffer A and 15 ml of Percoll (Pharmacia, 

Sweden) and centrifuged at 27,000 x g for 60 min at 4oC. The particulate, upper diffuse band, 

containing both cell walls and membranes, was removed, collected by centrifugation, washed 

three times in buffer A, and finally resuspended in 1 ml of buffer A. The final concentration of 

this Percoll-60 cell envelope fraction (P60) was 20 mg/ml. 
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2.2.5 In vitro incorporation of radiolabeled mannan from GDP-[14C]-Manp into membrane 

lipids  

 

Initial assays involved incubation of membranes (0.5 mg of protein), P-60 fraction (0.5 mg of 

protein) in buffer A, containing 1 mM ATP and 0.25 µCi of GDP-[14C]-Manp (Amersham 

Pharmica Biotech, Uppsala, Sweden, 303 mCi/mmol) in a final volume of 100 μl incubated at 

37C for 60 min as described (Besra et al., 1997). The reactions were terminated by the addition 

of CHCl3/CH3OH (6 ml, 2:1, v/v), centrifuged and the pellet re-extracted thrice using 

CHCl3/CH3OH (6 ml, 2:1, v/v). The resulting insoluble pellet was sequentially washed three 

times with 0.9 % NaCl in CH3OH (2 ml), CH3OH/H2O (2 ml, 1:1, v/v) and CH3OH (2 ml) to 

remove residual GDP-[14C]Manp before extracting three times with CHCl3/CH3OH/H2O (2 ml, 

10:10:3, v/v/v). The CHCl3/CH3OH/H2O (10:10:3)-soluble lipids were dried and resuspended in 

200 µl of CHCl3/CH3OH/H2O (10:10:3, v/v/v) and an aliquot (10 %) of the resulting [14C]-

labeled mannoligosaccharide polymer [α(16)linear-LM] quantified by liquid scintillation 

counting using 5 ml of EcoScintA (National Diagnostics, Atlanta, GA). The remaining aliquot 

analysed by SDS-PAGE/autoradiography.  

 

The original combined CHCl3/CH3OH (2:1) organic extracts were dried and resuspended in 

CHCl3/CH3OH/H2O (4 ml, 10:10:3, v/v/v) followed by the addition of 1.75 ml of CHCl3 (1.75 

ml) and H2O (0.75 ml). The reaction mixture was vortexed, centrifuged and the upper aqueous 

phase removed. The organic phase was washed three times with CHCl3/CH3OH/H2O
 (2 ml, 

3:47:48, v/v/v), and the final organic extract dried under a stream of nitrogen to afford C50-PP-

[14C]-M, Ac1PI-[14C]-M2 and [14C]-Man1GlcAGroAc2. Alternatively, the combined 

CHCl3/CH3OH (2:1) organic extracts were dried and resuspended in CHCl3/CH3OH/0.8 M 
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NaOH (4 ml, 10:10:3, v/v/v) and heated at 50oC for 30 min, followed by the addition of 1.75 ml 

of CHCl3 (1.75 ml) and H2O (0.75 ml) and processed as described above to afford C50-PP-[14C]-

M. The resulting C50-PP-[14C]-M, Ac1PI-[14C]-M2 and [14C]-Man1GlcAGroAc2 products were 

subjected to TLC/autoradiography using silica gel plates (5735 silca gel 60F254, Merck) 

developed in CHCl3:CH3OH:H2O:NH4OH (65:25:3.6:0.5, v/v/v/v) and the products visualised 

and quantified by phosphorimaging (Kodak K Screen). 

 

2.2.6 In situ in vitro synthesis of [14C]-labeled mannoligosaccharide polymers 

 

The lipopetide amphomycin (2 mg) was dissolved in 500 μl of 0.1 M acetic acid and the solution 

adjusted to 0.05 M sodium acetate (pH 7.0) with 0.1 M NaOH to a final concentration of 2 mg/ml 

(Gurcha et al., 2002). Membranes/cell envelope (5 mg) in 500 μl of buffer A were pre-incubated 

with amphomycin (1μg/10μL reaction mixture) at 37oC for 15 min resulting in inhibition of PPM 

synthesis, prior to a further short 15 min pulse incubation with 1.25 µCi of GDP-[14C]-Man. A 20 

% aliquot of the reaction mixture was processed as described above to afford Ac1PI-[14C]-M2, 

[14C]-Man1GlcAGroAc2 and CHCl3/CH3OH/H2O (10:10:3)-soluble lipids. The remaining 

amphomycin-treated membranes/cell envelope containing in situ [14C]-Man-labeled lipids 

[Ac1PIM2 and Man1GlcAGroAc2] were diluted with buffer A and recovered by re-centrifugation 

at 100,000 x g for 60 min, carefully washed and re-centrifuged with cold buffer A twice, thereby 

ensuring complete removing of unused GDP-[14C]-Manp (Besra et al., 1997).  

 

The [14C]-Man-labeled membranes were then carefully resuspended in 400 μl buffer A prior to 

the addition of 0.5 mg C50-PPM in 1% IgePal CA-630 (40 μl, Sigma Aldrich) (Gurcha et al., 

2002), incubated further at 37oC for 60 min and a 100 μl aliquot processed/analysed as described 
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above to provide the CHCl3/CH3OH (2:1) and CHCl3/CH3OH/H2O (10:10:3)-soluble [14C]-

labeled mannose containing products. 

 

2.2.7 In vitro analysis of (16) mannopyranosyltransferase activity 

 

The neoglycolipid acceptor -D-Manp-(16)--D-Manp-O-C8 (stored in C2H5OH) and C50-P-

[14C]-M (stored in CHCl3/CH3OH, 2:1, v/v) were prepared as described elsewhere (Gurcha et al., 

2002), and separated into aliquots into 1.5 ml eppendorf tubes to a final concentration of 2 mM 

and 0.25 Ci (0.305 Ci/mmol), respectively, and dried under nitrogen. IgePal CA-630 (8 μl) was 

added and the tubes sonicated to resuspend the lipid-linked components, and the remaining assay 

components in a final volume of 80 μl were added, which included: 1 mM ATP, 1 mM NADP, 

and membrane protein (1 mg) from either M. smegmatis, C. glutamicum, C. glutamicummptA, 

C. glutamicummptA pVWEx-Cg-mptA and C. glutamicummptA pVWEx-Mt-mptA, C. 

glutamicummptB, C. glutamicummptB pVWEx-Cg-mptB, C. glutamicum∆mptB∆mptA, C. 

glutamicum∆mptB∆mptA pVWEx-Cg-mptB, C. glutamicum∆mptB∆mptA pVWEx-Cg-mptA, C. 

glutamicum∆mptB∆mptA pVWEx-Mt-mptB, and C. glutamicum∆mptB∆mptA pVWEx-Ms-mptB. 

Assays were incubated at 37C for 1 h and then quenched by the addition of CHCl3/CH3OH (533 

μl, 1:1, v/v).  

 

The reaction mixtures were then centrifuged at 27, 000 x g for 15 min at 4C, the supernatant 

removed and dried under nitrogen. The residue was resuspended in C2H5OH/H2O (700 μl, 1:1, 

v/v) and loaded onto a 1-ml SepPak strong anion exchange cartridge (Supleco) pre-equilibrated 

with C2H5OH/H2O (1:1, v/v). The column was washed with 2 ml of C2H5OH, and the eluate 
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collected, dried, and partitioned between the two phases arising from a mixture of n-butanol (3 

ml) and water (3 ml). The resulting organic phase was recovered after centrifugation at 3,500 x g, 

and the aqueous phase again extracted twice with 3 ml of water saturated-butanol. The pooled 

extracts were back-washed twice with n-butanol saturated water (3 ml). The n-butanol fraction 

was dried and resuspended in 200 l of n-butanol.  

 

The extracted radiolabeled material was quantified by liquid scintillation counting using 10% of 

the labeled material and 5 ml of EcoScintA. The incorporation of [14C]-Manp was determined by 

subtracting counts present in control assays (incubations in the absence of acceptor), which were 

typically less than 100 cpm per assay. The remaining labeled material was subjected to TLC 

using silica gel plates developed in CHCl3:CH3OH:H2O:NH4OH (65:25:3.6:0.5, v/v/v/v) and the 

products visualised by phosphorimaging. 

 

2.3 Results 

2.3.1 Genome comparison of the NCgl2093/Rv2174 locus 

 

In order to advance further our understanding of glycosyltransferases in Corynebacterineae, we 

focused on the genes annotated by NCgl2093 and Rv2174 from C. glutamicum and M. 

tuberculosis, respectively, which are recognised as glycosyltransferases of unknown function 

(Liu & Mushegian, 2003). The genomic organisation of these genes in all Corynebacterineae 

analysed is syntenic, and even in M. leprae the locus organisation is retained, indicating an 

apparent fundamental function of its product (Fig. 2.1).  
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Fig. 2.1 Comparison of the mptA locus within the Corynebacterineae and structural analysis of putative 

protein. (A) MptA spans the membrane 13 times and a large loop connects TMH 3 and 4. Part of the loop sequence 

is given, where acid and basic residues are highlighted. On top of the sequence comparison the predicted secondary 

structure is given, with H indicating a helical structure, and L a loop region. The entire region has a high solvent 

accessibility, which indicates together with the conserved aspartyl residues their functional significance. (B) The 

locus in the bacteria analysed consists of mptA which in C. glutamicum has the locus tag NCgl2093 and in M. 

tuberculosis Rv2174. A conserved ORF is present upstream of mptA and probably forms a transcriptional unit with 

mptA, and predicted to encode a polyprenyl synthetase. The genomic region displayed encompasses 6 kb, and 

orthologous genes are highlighted accordingly. M. bov., Mycobacterium bovis; M. tub. Mycobacterium tuberculosis; 

M. lep., Mycobacterium leprae; M. par., Mycobacterium paratuberculosis; M. avi., Mycobacterium avium; M. sme., 

Mycobacterium smegmatis; R. spe., Rhodococcus sp. (strain RHA1); C. glu., Corynebacterium glutamicum; C. dip., 

Corynebacterium diphtheriae. 

 

A pfam analysis (Bateman et al., 2004) of the ORFs upstream of Rv2174, revealed that the gene 

product derived bears structural similarities to polyprenyl synthetases, which could be 

functionally related to the glycosyltransferase, and both genes might form a transcriptional unit. 

 

In C. glutamicum and M. tuberculosis, a number of orthologous GT-C family 

glycosyltransferases have been identified by us and others, which transverse the membrane 

(Alderwick et al., 2006b; Kaur et al., 2006; Morita et al., 2006; Seidel et al., 2007a; Seidel et al., 
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2007b). Indeed, NCgl2093 and its M. tuberculosis orthologue (Rv2174) are putative membrane 

bound GT-C glycosyltransferases. Although, both orthologues have 13 TMHs, they differ from 

the -mannosyltransferase (Rv1635c) involved in the mannose capping of LAM (Appelmelk et 

al., 2008; Dinadayala et al., 2006) and the arabinofuranosyltransferases AftA, AftB and the Emb 

proteins (Alderwick et al., 2005; Alderwick et al., 2006a; Alderwick et al., 2006b; Alderwick et 

al., 2007; Seidel et al., 2007a; Seidel et al., 2007b) by the absence of a periplasmatic extension at 

the carboxy terminus. The degree of conservation, with respect to topology and sequence among 

the orthologues of NCgl2093, is high within the Corynebacterineae. For instance, the similarity 

of the C. glutamicum and M. tuberculosis protein is 58 %, and with the most distant pairs among 

the genus Corynebacterium, C. glutamicum and C. jeikeium, the similarity is approximately 64%.  

 

One of the most conserved regions is the loop between TMH 3 and 4 (Fig. 2.1 A). This sequence 

is reminiscent to the glycosyltransferase family GT-C modified DXD motif, since it contains a 

number of basic and acidic residues, the latter shown in mutational studies to be essential for 

glycosyl transfer from polyprenylated phospho-sugar donors (Berg et al., 2005; Seidel et al., 

2007b). Based on the results described below, the Rv2174 gene and its orthologues were 

designated as mptA (acronym for mannopyranosyltransferase A). 
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Fig. 2.2: In-frame deletion of Cg-mptA using the deletion vector pK19mobsacBmptA. pK19mobsacBmptA 

carries 18 nucleotides of the 5'-end of Cg-mptA and 36 nucleotides of its 3'-end thereby enabling the in-frame 

deletion of almost the entire Cg-mptA gene. The arrows marked P1 and P4 locate the primers used for the PCR 

analysis to confirm the absence of Cg-mptA. Distances are not drawn to scale. The results of the PCR analysis with 

the primer pair P1/P4 are shown on the right. Amplification products obtained from the wild type (wt) were applied 

in the left Lane and that of the deletion mutant (Δ) in the right Lane. St marks the standard, where the arrowheads 

located at 1.5, 1, and 0.5 kilobases. 

 

2.3.2 Construction and growth of C. glutamicum∆mptA 

 

In an attempt to delete mptA in C. glutamicum, the non-replicative plasmid pK19mobsacB∆mptA 

was constructed carrying sequences adjacent to Cg-mptA (Fig. 2.2). The vector was introduced 

into C. glutamicum and in several electroporation assays kanamycin resistant clones were 

obtained, indicating integration of the vector into the genome by homologous recombination. The 

sacB gene enables for positive selection of a second homologous recombination event, which can 

result either in the original wild-type genomic organisation or in clones deleted of mptA. Twenty- 

four clones exhibiting the desired phenotype of vector-loss (KanS, SucR) were analysed by PCR 
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and eighteen of them were found to have Cg-mptA excised. These numbers indicate that the loss 

of Cg-mptA is apparently not a disadvantage for viability. As a result, one clone was subsequently 

termed C. glutamicum∆mptA and confirmed by PCR to have Cg-mptA deleted, whereas controls 

with C. glutamicum wild type resulted in the expected larger amplification product (Fig. 2.2).  

Growth of wild type C. glutamicum and C. glutamicum∆mptA were compared in BHI medium as 

well as salt medium CGXII. Both strains exhibited comparable growth rates and final cell 

densities grown on CGXII of 0.31 ± 0.2 h-1 and 29.4 ± 2.3 (OD600) for the two strains, 

respectively. Thus, C. glutamicum∆mptA does not exhibit an apparent growth defect under the 

conditions assayed indicating a degree of tolerance to the deletion of Cg-mptA. C. 

glutamicum∆mptA was transformed with pVWEx-Mt-mptA and pVWEx-Cg-mptA. As expected 

with these complemented strains, no alteration in growth phenotype was apparent. 

 

2.3.3 Chemical analysis of extracted lipoglycans from C. glutamicum∆mptA and 

complemented strains   

 

Extracted lipoglycans from C. glutamicum, C. glutamicummptA, C. glutamicummptA pVWEx-

Cg-mptA and C. glutamicummptA pVWEx-Mt-mptA were examined on 15 % SDS-PAGE (Fig. 

2.3). Extracts from wild type C. glutamicum showed the presence of Cg-LAM and Cg-LM, while 

both of these lipoglycans were absent from C. glutamicummptA. Interestingly, a lower 

molecular weight lipoglycan, now termed truncated (t)-LM, could be observed in C. 

glutamicummptA. Complementation of C. glutamicummptA by either pVWEx-Cg-mptA or 

pVWEx-Mt-mptA restored the wild type phenotype (Fig. 2.3). Cg-t-LM was purified by 

hydrophobic interaction chromatography (HIC) and compared with wild type LM. Total sugar  
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Fig. 2.3: Lipoglycan profiles of C. glutamicum, C. glutamicummptA, C. glutamicummptA pVWEx-Cg-mptA, 

and C. glutamicummptA pVWEx-Mt-mptA. Lipoglycans were analysed using SDS-PAGE and visualised using a 

Pro-Q emerald glycoprotein stain (Invitrogen) specific for carbohydrates. The three major bands represented by Cg-

LAM, Cg-LM and Cg-t-LM are indicated. The STD Lane contains CandyCane glycoprotein molecular weight 

standards (Invitrogen). The four major bands represent glycoproteins of 180, 82, 42, and 18 kDa, respectively. 

 

analysis of alditol aceteate derived sugars from Cg-t-LM by GC, identified the presence of only 

mannose and traces of inositol. Glycosyl linkage analysis of the per-O-methylated alditol acetate 

derivatives from Cg-t-LM indicated the presence of t-Manp, 2-Manp, 6 Manp, and 2,6-Manp 

similar to wild type LM (Fig. 2.4 A, B), but with an overall decrease in 6-Manp and 2,6-Manp 

linkages, when compared to 2-Manp in C. glutamicummptA (Fig. 2.4 A,B). This tentatively 

suggested that NCgl2093 is probably involved in the synthesis of the (16) mannan core via an 

(16) mannopyranosyltransferase, whereby deletion results in a shorter backbone and in turn 

branching sites. Furthermore, the analysis of Cg-t-LM in comparison to Cg-LM also suggests that 

the distal end to the PI of LM is probably more heavily branched. This phenotype is in contrast to 

studies of other mannosyltransferase (Kaur et al., 2006), whereby inactivation resulted in the 
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complete loss of  

 

 

 

Fig. 2.4: GC-MS analysis of LM from C. glutamicum and C. glutamicummptA. For GC-MS analysis, per-O-

methylated samples were hydrolysed using 2M trifluoroacetic acid, reduced and per-O-acetylated. The resulting 

partially per-O-methylated, per-O-acetylated alditol acetates from C. glutamicum LM (A) and C. glutamicummptA 

Cg-t-LM (B) were analysed by GC/MS.  

 

2-Manp residues and a mut-LAM structure possessing a linear (16) mannan core devoid of 

(12)-Manp branches and as a result the characterisation of Rv2181 as an (12) 

mannopyranosyltransferase. The extracted LM from C. glutamicum and C. glutamicummptA 

were analysed by MALDI-TOF-MS (Fig. 2.5). The negative MALDI-TOF-MS spectrum of Cg-

LM showed a broad unresolved peak centered at m/z 5700 (Fig. 2.5 A), indicating a molecular 

mass of approximately 5.7 kDa for the major molecular species of this lipoglycan. Analysis of 

Cg-t-LM from C. glutamicummptA (Fig. 2.5 B) produced a lower average molecular mass of 

approximately around 3.3 kDa, proposing a composition based on extension of Ac1PIM2 (m/z 

1398) (Tatituri et al., 2007b) to afford Cg-t-LM as an average molecule centred on Ac1PIM14.  
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Fig. 2.5: MALDI-TOF-MS spectra of LM from C. glutamicum (A) and C. glutamicummptA (B). The spectra 

were acquired in the linear negative mode with delayed extraction using 2,5-dihydrobenzoic acid as a matrix.  

 

As highlighted in our previous studies, the carbohydrate backbone of Cg-LM has been shown to 

be composed of an (16)-Manp backbone substituted at most of the O-2 positions by t-Manp 

and t-Manp--D-(12)-Manp units (Tatituri et al., 2007b). The different NMR spin systems of 

Cg-LM and Cg-t-LM were further characterised by one dimensional 1H and two dimensional 1H-

13C HMQC NMR (Fig. 2.6). The Cg-t-LM from C. glutamicummptA possessed the same spin 

systems (Fig. 2.6C, D) as Cg-LM (Fig. 2.6 A, B) and their anomeric resonances were attributed 

as follows: δH1C1 5.12/101.2 (I1) to 2,6-Manp, 5.05/105.2 (II1) to t-Manp, 5.00/104.9 (III1) to 2-

Manp and 4.92/102.6 (VII1) to 6-Manp units, respectively. However, integration of the 1D 1H 
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Fig. 2.6:  Structural characterisation of LM from C. glutamicum (A, B) and Cg-t-LM from C. 

glutamicummptA (C, D) using NMR. 1D 1H (A,C) and 2D 1H-13C HMQC (B,D) NMR spectra of Cg-LMs in D2O 

at 313K. Expanded regions (δ 1H: 4.80-5.25) (A,C) and (δ 1H: 4.80-5.25, δ 13C: 99-107) (B,D) are shown. Glycosyl 

residues are labelled in roman numerals and their carbons and protons in arabic numerals. I, 2,6-α-Manp; II, t-α-

Manp; III, 2-α-Manp; IV, 6-α-Manp.  

 

 

resonances, supporting our earlier glycosyl linkage analysis indicated a reduced branching 

degree, approximately 50 % for Cg-t-LM, as compared to 78 % for Cg-LM. Altogether, the data 

indicate that Cg-t-LM in C. glutamicummptA occurs possibly as a result of inactivation of a core 

(16) mannopyranosyltransferase, presumably involved in assembly of the distal portion of 

Cg-LM, thereby rendering a substrate possessing reduced sites for branching. 
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2.3.3 In vitro analysis of (16) mannopyranosyltransferase activity with different strains 

 

Initial attempts to develop an in vitro assay using either purified recombinant expressed Mt-

MptA, Cg-MptA, or E. coli membranes expressing the proteins, have proved unsuccessful. In an 

alternative approach, we assessed the capacity of membrane preparations from C. glutamicum, C. 

glutamicummptA, C. glutamicummptA pVWEx-Cg-mptA and C. glutamicummptA pVWEx-

Mt-mptA to catalyse (16) mannopyranosyltransferase activity in a previously defined 

neoglycolipid acceptor assay utilising an exogenous -D-Manp-(16)--D-Manp-O-C8 acceptor 

and PP-[14C]-M as a sugar donor (Brown et al., 2001) (Fig. 2.7 A). TLC analysis of radio-labeled 

products, when assayed with C. glutamicum membranes, resulted in the formation of two 

products, X and Y (Fig. 2.7 A, B). Control assays when performed in the absence of acceptor 

afforded background counts, typically <100 cpm per assay (Brown et al., 2001).  

 

The enzymatic synthesis of product X and Y using membranes from C. glutamicum relates to the 

biosynthesis of the radiolabeled trisaccharide -D-[14C]-Manp-(16)--D-Manp-(16)--D-

Manp-O-C8 (97864 cpm) and the tetrasaccharide -D-[14C]-Manp-(16)--D-[14C]Manp-

(16)--D-Manp-(16)--D-Manp-O-C8 (5915 cpm), respectively, and is consistent with 

previous studies (Brown et al., 2001). However, when assays were performed using membranes 

prepared from C. glutamicummptA, a drastically reduced amount of product X (1385 cpm) 

could be observed and a complete absence of product Y, indicating that Cg-MptA provides the 

majority of (16) mannopyranosyltransferase activity utilising the -D-Manp-(16)--D-

Manp-O-C8 neoglycolipid acceptor (Fig. 2.7).  
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Fig. 2.7: α(16)-Mannopyranosyltransferase activity in membranes prepared from C. glutamicum, C. 

glutamicummptA, C. glutamicummptA pVWEx-Cg-mptA, and C. glutamicummptA pVWEx-Mt-mptA. (A) 

Biosynthetic reaction scheme of products formed in the α(16)-mannopyranosyltransferase assay utilising -D-

Manp-(16)--D-Manp-O-C8 and C50-PP-[14C]-M. (B) α(16)-Mannopyranosyltransferase activity determined 

using the synthetic -D-Manp-(16)--D-Manp-O-C8 neoglycolipid acceptor in a cell free assay. The products of 

the assay were resuspended in n-butanol before scintillation counting. The incorporation of [14C]-Manp was 

determined by subtracting counts present in control assays (incubations in the absence of acceptor). The labeled 

material were also subjected to TLC using silica gel plates developed in CHCl3:CH3OH:H2O;NH4OH (65:25:3.6:0.5, 

v/v/v/v) and the products visualised by phosphorimaging. The results represent triplicate assays in two independent 

experiments. 
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In addition, these results also suggest the existence of a second (16) 

mannopyranosyltransferase presumably affording the weak activity seen within the membrane 

preparations of C. glutamicummptA and involved in the synthesis of the (16) mannan core 

proximal to the PI of LM. Membranes assayed with C. glutamicummptA complemented with 

either pVWEx-Cg-mptA (X, 62953 cpm; Y, 1947 cpm) or pVWEx-Mt-mptA (X, 26145 cpm; Y, 

1174 cpm) restored product formation to that of wild type C. glutamicum, albeit at a lower rate of 

transfer (Fig. 2.7). 

 

2.3.4 Genome locus and structural features of Rv1459c/NCgl1505 

 

Residual (16) mannopyranosyltransferase activity with C. glutamicummptA membrane 

suggested the presence of another (16) mannopyranosyltransferase in C. glutamicum which 

may be involved in the synthesis of the (16) mannan core proximal to the PIMs of LM. 

NCgl1505 in C. glutamicum shows the highest homology with NCgl2093 and Rv2174, and may 

encode for a potential (16) mannopyranosyltransferase and for the remainder of the text will 

be referred to as MptB. Therefore, mptB from C. glutamicum was deleted in order to study its 

role in LM/LAM synthesis. Rv1459c and NCgl1505 both are members of the GT-C family of 

glycosyltransferases and present in all Mycobacterium and Corynebacterium species as well as 

the sequenced Nocardia farcinica IFM 10152 and Rhodococcus sp. RHA1 strains (Fig. 2.8A). In 

addition, this gene is retained in M. leprae, supporting the hypothesis that Rv1459c encodes for a 

protein possessing a vital function inherent to this group of bacteria.  
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Fig. 2.8: The analysis of mptB locus and its homologoues and structural features of putative protein. (A) The 

locus in the bacteria analysed consists of mptB which has in C. glutamicum the locus tag NCgl1505 and in 

M. tuberculosis Rv1459c. sufR encodes a transcriptional regulator in front of an operon of the SUF machinery of [Fe-

S] cluster synthesis. The genomic region displayed encompasses 7 kb, and orthologous genes are highlighted 

accordingly. Nocardia farcina, Nocardia farcina IFM 10152; Rhodococcus, Rhodococcus sp. strain RHA1. (B) 

MptB is a hydrophobic protein predicted to span the membrane 15 times and the TMH are numbered accordingly. 

The lower part of the figure shows the degree of conservation of the orthologues given in A as analysed by the 

DIALIGN method. Also shown is the approximate position of the fully conserved aspartyl (D) and glutamyl (E) 

residues.  

 

The glycosyltransferase encoded by NCgl1505 is a polytopic membrane protein, which is 

comprised of 558 amino acid (aa) residues, and is predicted to encode 15 hydrophobic segments, 

HS (Fig. 2.8 B). Rv1459c constitutes 591 aa, with the additional length mostly due to an 

extended loop between HS 7 and 8. This loop extension is not present in Mycobacterium 

paratuberculosis or M. smegmatis. It contains a number of repeated Pro and Arg residues, and 

similarly highly charged repeat sequences are found in loop regions of other transporters, without 

having a specific function (Eng et al., 1998; Vrljic et al., 1999). The sequence identity of the 

orthologues NCgl1505 and Rv1459c is 37% (52% similarity) and can therefore be considered 

very high. The strongest conserved regions are found in loops connecting HSs and adjacent 

regions with intermediate hydrophobicity, like those between HS 3-4, HS 7-8 and HS 13-14. 

Within the highest conserved regions; 5 of the 6 fully conserved acidic Asp and Glu residues are 
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located (Fig. 2.8 B), which are known to play important roles as general bases and nucleophiles 

in enzyme catalysis. They are also retained in the MptB orthologue in N. farcinica IFM 10152 

and Rhodococcus sp. RHA1 and are therefore likely to be involved in catalysis, or in interactions 

with the sugar donor or acceptor (Liu & Mushegian, 2003). Interestingly, among the 

glycosyltransferases of M. tuberculosis and C. glutamicum previously identified (Alderwick et 

al., 2006b; Dinadayala et al., 2006; Kaur et al., 2006; Morita et al., 2006; Seidel et al., 2007a), 

NCgl1505 and Rv1459c possess the highest identities to the mannosyltransferase MptA (Mishra 

et al., 2007), and based on the results described below, the Rv1459c gene and its orthologues 

have been designated as mptB, as an acronym for mannopyranosyltransferase B. 

 

2.3.5 Construction and growth of C. glutamicummptB, C. glutamicummptBmptA, and 

complemented strains 

 

In order to delete mptB in C. glutamicum, the non-replicative plasmid pK19mobsacBmptB was 

constructed carrying sequences adjacent to Cg-mptB (Fig. 2.9). Using this vector, C. glutamicum 

was transformed to kanamycin resistance, indicating integration of the vector into the genome by 

homologous recombination. The sacB gene enables for selection of loss of vector in a second 

homologous recombination event, which can result either in the original wild-type genomic 

organisation or in clones deleted of mptB. Ninety clones exhibiting the desired phenotype of 

vector-loss (Kans, Sucr) were analysed by PCR but only one single colony was found to have Cg-

mptB excised, whereas the others resulted in a wild type genotype. The low number of 

recombinant knock outs indicates that the loss of Cg-mptB is apparently a disadvantage for cell 

viability, similar to that of previously observed mutants with altered mycolate  
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Fig. 2.9: Strategy to delete Cg-mptB using the deletion vector pK19mobsacB∆mptB. This vector carries 18 

nucleotides of the 5' end of Cg-mptB and 36 nucleotides of its 3' end thereby enabling the in-frame deletion of almost 

the entire Cg-mptB gene. The arrows marked PA and PB locate the primers used for the PCR analysis to confirm the 

absence of Cg-mptB. Distances are not drawn to scale. The results of the PCR analysis with the primer pair PA/PB 

are shown on the right. Amplification products obtained from the wild type (wt) were applied in the middle Lane and 

that of the deletion mutant (∆) in the left Lane. ‘St’ marks the standard, where the arrowheads are located at 1.5, 1 

and 0.5 kb.  

 

(Gande et al., 2004) or arabinogalactan biosynthesis (Alderwick et al., 2006a). The resulting 

clone was subsequently termed C. glutamicummptB and confirmed by PCR with different 

primer pairs to have Cg-mptB deleted, whereas controls with C. glutamicum wild type resulted in 

the expected larger amplification product (Fig. 2.9).  

 

In liquid culture, growth of C. glutamicummptB was very poor. Only when rich medium BHI 

was used a growth rate of 0.13 h-1 was obtained in comparison to wild type C. glutamicum 

growth rate of 0.31 h-1 (Mishra et al., 2007), and on the same medium supplemented with 500 

mM sorbitol (BHIS), the growth rate was 0.51 h-1, which is still lower than that of the wild type 

on this medium (0.70 h-1). C. glutamicummptB was transformed with pVWEx-Cg-mptB and the 



Chapter  2                                                                           Biosynthesis of Mannan Backbone 

 

72 
 

resultant complemented strain exhibited a growth rate of 0.66 h-1, almost superimposable to that 

of the wild type in BHIS medium. 

 

Due to the similarity of mptB with mptA, we wanted to exclude any possible interference and 

constructed a strain of C. glutamicum deficient in both mptB and mptA. For this purpose C. 

glutamicummptB was transformed with plasmid pK19mobsacBmptA (Mishra et al., 2007) and 

processed to afford the double mutant, C. glutamicummptBmptA. Analysis of C. 

glutamicummptB and C. glutamicummptBmptA showed a similar growth profile with a 

delayed lag-phase and slow growth-rate in comparison to wild type C. glutamicum. For further 

analysis of C. glutamicummptB and C. glutamicummptAmptB the strains were transformed 

with plasmid-encoded Cg-mptB, Cg-mptA, Mt-mptB and Ms-mptB.  

 

2.3.6 Polar lipid analysis of C. glutamicum and C. glutamicummptB 

 

Lyophilised cells were extracted using petroleum-ether and methanolic saline to initially recover 

apolar lipids. Further processing of the methanolic extract afforded the polar lipid fraction which 

was examined by 2D-TLC (Fig. 2.10). In both, the wild type C. glutamicum and C. 

glutamicummptB, Ac1PIM2 and Man1GlcAGroAc2 (Tatituri et al., 2007b) were visualised either 

by -naphthol/sulfuric acid (Fig. 2.10), 5% ethanolic molybdophosphoric acid or Dittmer and 

Lester reagent. In both C. glutamicum and C. glutamicummptB, no products could be observed 

which correspond to higher PIMs (i.e. Ac1PIM3 through to Ac1PIM6) or higher mannose variants 

of Man1GlcAGroAc2 (Tatituri et al., 2007b). The presence of only Ac1PIM2 and 

Man1GlcAGroAc2, and the inability to synthesise Cg-LAM, Cg-LM by C. glutamicummptB 
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Fig. 2.10: Analysis of polar lipids in C. glutamicum (A) and C. glutamicum∆mptB (B). The polar lipid extract was 

examined by 2D-TLC, using CHCl3/CH3OH/H2O (60:30:6, v/v/v) in the first direction and 

CHCl3/CH3COOH/CH3OH/H2O (40:25:3:6, v/v/v/v) in the second direction. Glycolipids were visualised by spraying 

plates with -naphthol/sulfuric acid, followed by gentle charring of the plates. Abbreviations: Gl-A, -D-

glucopyranosyluronic acid-(13)-glycerol; GMCM, glucose monocorynomycolate; TMCM, trehalose 

monocorynomycolate. 

 

demonstrated that MptB is involved in the early steps of (16) mannan core biosynthesis by 

extending the substrates Ac1PIM2 and Man1GlcAGroAc2.  

 

2.3.7 Chemical analysis of lipoglycans from C. glutamicum, C. glutamicummptB, C. 

glutamicummptBmptA and complemented strains  

 

Lipoglycans were extracted by refluxing delipidated cells in ethanol, followed by hot-phenol 

extraction, protease digestion and dialysis to remove impurities. The extracted lipoglycans were 

examined initially on 15 % SDS-PAGE (Fig. 2.11). Extracts from wild type C. glutamicum 

showed the presence of Cg-LAM and Cg-LM, while they were absent from C. 

glutamicummptB. Complementation of C. glutamicummptB by transformation with plasmid 
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Fig. 2.11: SDS-PAGE analysis of lipoglycans of C. glutamicum strains. Lipoglycans extracted from C. 

glutamicum, C. glutamicummptB and C. glutamicummptB pVWEx-Cg-mptB. The major bands represented by Cg-

LAM and Cg-LM are indicated. The four major bands represent glycoproteins of 180, 82, 42 and 18 kDa 

respectively. 

 

pVWEx-Cg-mptB restored the wild type phenotype (Fig. 2.11). In addition, transformation of C. 

glutamicummptB with plasmid pVWEx-Cg-mptA failed to restore the wild type phenotype. 

 

To study the in situ specificity of MptA and MptB, lipoglycans were extracted from C. 

glutamicum∆mptB∆mptA, and from the same strain carrying either pVWEx-Cg-mptB or pVWEx-

Cg-mptA and analysed by 15 % SDS-PAGE (Fig. 2.12). Extracts from C. 

glutamicum∆mptB∆mptA indicated that, as expected, no lipoglycans were present, whereas the 

presence of pVWEx-Cg-mptB resulted in formation of a truncated (t) version of Cg-LM, as 

shown previously. However, lipoglycan extracts from C. glutamicum∆mptB∆mptA carrying 

pVWEx-Cg-mptA were identical to that of C. glutamicum∆mptB∆mptA, indicating that MptA 

fails to substitute for MptB in the double mutant (Fig. 2.12). Since, pVWEx-Cg-mptA results in 
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Fig. 2.12: SDS-PAGE analysis of lipoglycans from C. glutamicum strains. Lipolglycans extracted from C. 

glutamicum, C. glutamicummptB, C. glutamicummptA, C. glutamicummptBmptA, C. glutamicummptBmptA 

pVWEx-Cg-mptB, and C. glutamicummptBmptA pVWEx-Cg-mptA. The major bands represented by Cg-LAM, 

Cg-LM, and Cg-t-LM are indicated. The four major bands represent glycoproteins of 180, 82, 42 and 18 kDa 

respectively. 

 

functional MptA this result shows that MptA is unable to substitute in vivo for MptB. 

 

Therefore, both MptA and MptB are distinct and MptB is involved in the initial steps of Cg-LAM 

and Cg-LM biosynthesis, prior to MptA. Furthermore, analysis of C. glutamicum∆mptB∆mptA 

carrying either pVWEx-Mt-mptB or pVWEx-Ms-mptB resulted in a complete lack of lipoglycan 

biosynthesis indicating that Mt-MptB and Ms-MptB does not function in vivo as the initial 

(16) mannopyranosyltransferase probably due to an inability to extend Ac1PIM2 and 

Man1GlcAGroAc2 by mannose residues as shown below through in vitro chase experiments.  
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2.3.8 In vitro incorporation of radiolabeled mannose from GDP-[14C]-Manp into membrane 

lipids utilising C. glutamicum, C. glutamicum∆mptB and complemented strains 

 

Incorporation of [14C]-Manp from GDP-[14C]-Manp into CHCl3/CH3OH (2:1) and 

CHCl3/CH3OH/H2O (10:10:3)-soluble lipids was examined using membrane/cell envelope 

extracts prepared from C. glutamicum as described previously utilising mycobacterial 

membrane/cell envelope fractions (Besra et al., 1997). TLC-autoradiography (Fig. 2.13 A, 1) of 

the CHCl3/CH3OH (2:1)-soluble lipids synthesised by wild type C. glutamicum membrane/cell 

envelope extracts contained as expected C50-PP-[14C]-M, [14C]-Man1GlcAGroAc2 and Ac1PI-

[14C]-M2. The identity of the three labeled lipids was established by (i) base treatment i.e. 

degradation of Ac1PI-[14C]-M2 and [14C]-Man1GlcAGroAc2 (Fig. 2.13 A, 2); (ii) addition of 

amphomycin, which specifically chelates polyprenyl phosphates in the presence of Ca2+ and thus 

inhibiting the transfer of Manp from GDP-Manp to polyprenyl carriers (Fig. 2.13 A, 3); and (iii) 

in comparison with known standards (Tatituri et al., 2007b). As expected from the analysis of 

whole cells C. glutamicummptB synthesised comparable levels of all three radiolabeled lipids 

using membrane/cell envelope extracts prepared from C. glutamicummptB (Fig. 2.13 A, 4). 

 

The above reaction mixtures were then further processed as described in the experimental 

procedures section to provide the CHCl3/CH3OH/H2O (10:10:3)-soluble lipids initially using 

membrane/cell envelope extracts prepared from C. glutamicum to provide [14C]-

mannooligosaccharides (Fig. 2.13 B, 1), which were further characterised by a series of 

degradation experiments. 
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Fig. 2.13: Incorporation of [14C]-Manp from GDP-[14C]-Manp into corynebacterial membrane/cell envelope 

lipids. (A) TLC-autoradiography of labeled CHCl3/CH3OH (2:1)-soluble lipids, C50-PP-[14C]-M, [14C]-

Man1GlcAGroAc2 and Ac1PI-[14C]-M2 using GDP-[14C]-Manp and membrane/cell envelope extracts from C. 

glutamicum and C. glutamicummptB. C. glutamicum CHCl3/CH3OH (2:1)-soluble lipids (Lane 1), base-treatment 

of CHCl3/CH3OH (2:1)-soluble lipids (Lane 2), amphomycin treatment (Lane 3) and C. glutamicummptB 

CHCl3/CH3OH (2:1)-soluble lipids (Lane 4). (B) Characterisation of CHCl3/CH3OH/H2O (10:10:3)-soluble lipids as 

α(16)-linear mannooligosaccharides. The insoluble pellet from the above reaction mixtures following extraction 

with CHCl3/CH3OH (2:1) were sequentially washed with 0.9 % NaCl in 50 % CH3OH, 50 % CH3OH and CH3OH, 

prior to extraction with CHCl3/CH3OH/H2O (10:10:3) and an aliquot (10%) taken for scintillation counting and the 

remaining product analysed by SDS-PAGE/autoradiography (left-panel inset). C. glutamicum (No. 1), amphomycin 

treatment (No. 2) and acetolysis treatment of CHCl3/CH3OH/H2O (10:10:3)-soluble lipids (No. 3), C. 

glutamicummptB (No. 4) and C. glutamicummptB pVWEx-Cg-mptB (No. 5) as described in the experimental 

procedures.  
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The [14C]-mannooligosaccharides were sensitive to acetolysis (Fig. 2.13 B, 3), thus establishing a 

core α(16)-linear mannan backbone within the CHCl3/CH3OH/H2O (10:10:3)-soluble lipids. In 

separate experiments the addition of amphomycin to block C50-PP-[14C]-M synthesis also 

inhibited the synthesis of the α(16)-linear mannan lipids demonstrating that the synthesis of 

these CHCl3/CH3OH/H2O (10:10:3)-soluble lipids is PPM dependent (Fig. 2.13 B, 2) and similar 

to the previously characterised in vitro synthesised mycobacterial products (Besra et al., 1997). 

SDS-PAGE and subsequent autoradiography of the dried gels demonstrated that the 

CHCl3/CH3OH/H2O (10:10:3)-soluble lipids (Fig. 2.13 B, 1) had slightly reduced mobility 

indicating that they were smaller in size (Fig. 2.13 B, left-panel inset), presumably due to their 

lack of α(12)-branching characteristic of Cg-LM (Tatituri et al., 2007b). As expected, synthesis 

of CHCl3/CH3OH/H2O (10:10:3)-soluble lipids using membranes from C. glutamicummptB was 

completely abolished (Fig. 2.13 B, 4). Furthermore, complementation with pVWEx-Cg-mptB 

restored synthesis of CHCl3/CH3OH/H2O (10:10:3)-soluble lipids (Fig. 2.13 B, 5). 

 

2.3.7 Chase of in situ labelled glycolipids into α(16)-linear Cg-LM utilising membranes  

 

Amphomycin treated wild type C. glutamicum membrane/cell envelope extracts were initially 

pulsed with GDP-[14C]-Manp during a short incubation period (15 min) which was shown earlier 

to inhibit the synthesis of the CHCl3/CH3OH/H2O (10:10:3)-soluble α(16)-linear [14C]-mannan 

lipids, but instead of extracting with CHCl3/CH3OH (2:1), the [14C]-Man-labeled membranes 

were re-harvested by ultracentrifugation at 100,000 x g, carefully washed and re-centrifuged  
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Fig. 2.14: Incorporation of in vitro in situ Ac1PI-[14C]-M2 and [14C]-Man1GlcAGroAc2 into α(16)-linear 

mannooligosaccharides with either C. glutamicum, C. glutamicummptB or C. glutamicummptB pVWEx-Cg-

mptB membrane preparations. Membranes were initially pre-treated with amphomycin, labelled using GDP-[14C]-

Manp, and was processed for different time intervals as described in the experimental procedures for CHCl3/CH3OH 

(2:1)-soluble lipids and analysed by TLC/autoradiography using CHCl3/CH3OH/NH4OH/H2O (65:25:0.4:3.6, 

v/v/v/v) (A) and CHCl3/CH3OH/H2O (10:10:3)-soluble lipids by SDS-PAGE/autoradiography (B). 
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twice using cold buffer, to remove unused GDP-[14C]-Manp. An aliquot of the [14C]-Man-

labelled membranes were extracted with CHCl3/CH3OH (2:1) and contained as expected solely 

Ac1PI-[14C]-M2 (3329 cpm) and [14C]-Man1GlcAGroAc2 (5474 cpm) at t = 0 chase time as 

determined by TLC-autoradiography and phosphorimaging (Fig. 2.14 A). The 

CHCl3/CH3OH/H2O (10:10:3)-soluble lipids at t=0 gave 226 cpm.  

 

The [14C]-Man-labeled membranes were then further incubated for 60 min following the addition 

of excess exogenous cold C50-PPM (Gurcha et al., 2002) prior to the standard extraction method 

to provide CHCl3/CH3OH (2:1) and CHCl3/CH3OH/H2O (10:10:3)-soluble lipids. The t = 60 

chase time revealed a loss of radioactivity from both Ac1PI-[14C]-M2 (1709 cpm) and [14C]-

Man1GlcAGroAc2 (2530 cpm) as determined by TLC-autoradiography and phosphorimaging, 

and incorporation into CHCl3/CH3OH/H2O (10:10:3)-soluble α(16)-linear [14C]-

mannoligosaccharide lipids (2895 cpm) (Fig. 2.14 B). The in vitro in situ chase experiment 

demonstrated that the α(16)-linear [14C]-mannoligosaccharide lipids synthesised were 

elongation products of both Ac1PI-[14C]-M2 and [14C]-Man1GlcAGroAc2.  

 

Similar experiments repeated with C. glutamicummptB in situ prepared [14C]-labeled 

membranes as above resulted in comparable products at t = 0 and t = 60 for CHCl3/CH3OH (2:1)-

soluble lipids (Ac1PI-[14C]-M2 [t = 0, 3345 cpm; t = 60, 2968 cpm] and [14C]-Man1GlcAGroAc2 

[t = 0, 5840 cpm; t = 60, 5025 cpm]) and a lack of the synthesis of α(16)-linear [14C]-

mannoligosaccharide lipids (240 cpm) from the elongation primers Ac1PI-[14C]-M2 and [14C]-

Man1GlcAGroAc2 following the ‘chase period’ (Fig. 2.14 A and B). Complementation of C. 

glutamicummptB by transformation with plasmid pVWEx-Cg-mptB resulted in Ac1PI-[14C]-M2 
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[t = 0, 3229 cpm; t = 60, 1725 cpm] and [14C]-Man1GlcAGroAc2 [t = 0, 5367 cpm; t = 60, 2550 

cpm]) and in vitro in situ synthesis of α(16)-linear [14C]-mannoligosaccharide lipids (2471 

cpm) to levels comparable to wild type C. glutamicum (Fig. 2.14 A and B). The data clearly 

demonstrates that Cg-MptB functions in vivo and in vitro as the initial α-

mannopyranosyltransferase, which extends Ac1PIM2 and Man1GlcAGroAc2. However, under the 

same in vitro in situ chase conditions, C. glutamicummptB pVWEx-Mt-mptB (or pVWEx-Ms-

mptB) failed to elongate the primers Ac1PI-[14C]-M2 and [14C]-Man1GlcAGroAc2 and restore 

synthesis of the α(16)-linear [14C]-mannoligosaccharides.  

 

In addition, experiments conducted with C. glutamicummptB pVWEx-Mt-mptB and C. 

glutamicummptB pVWEx-Ms-mptB and the addition of the exogenous primer Ac1PI-[14C]-M4 

isolated from a M. bovis BCG PimE mutant, also failed to restore the synthesis of the α(16)-

linear [14C]-mannoligosaccharides. 

 

2.3.8 In vitro analysis of (16) mannopyranosyltransferase activity  

 

Initial attempts to develop an in vitro assay using either purified recombinant expressed MptB, or 

E. coli membranes harbouring the protein, have thus far proved unsuccessful. Alternatively, we 

assessed the capacity of membrane preparations from M. smegmatis, C. glutamicum and its 

recombinant strains to catalyse (16) mannopyranosyltransferase activity in a previously 

defined acceptor assay utilising the neoglycolipid acceptor -D-Manp-(16)--D-Manp-O-C8 

and C50-PP-[14C]-M as a sugar donor (Brown et al., 2001). The TLC-autoradiography of products 

from in vitro assays when assayed with wild type C. glutamicum resulted in the formation of  
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Fig. 2.15: Analysis of products obtained in a cell free assay for detecting α(16)-mannopyranosyltransferase 

activity. TLC analysis of products obtained in a cell free assay for detecting (16)-mannopyranosyltransferase 

activity with membranes prepared from M. smegmatis, C. glutamicum, C. glutamicummptB, C. glutamicummptA, 

C. glutamicummptBmptA, C. glutamicummptBmptA pVWEx-Cg-mptB, and C. glutamicummptBmptA 

pVWEx-Cg-mptA.  

 

product X a trisaccharide, -D-[14C]-Manp-(16)--D-Manp-(16)--D-Manp-O-C8, and 

product Y a tetrasaccharide, -D-[14C]-Manp-(16)--D-Manp-(16)--D-Manp-(16)--D-

Manp-O-C8 (Fig. 2.15). These products co-migrated on TLC-autoradiography with the 

corresponding products previously chemically characterised and prepared using mycobacterial 

membranes, and were cleaved by acetolysis demonstrating that they were α(16)-linked [14C]-

Manp products (Fig. 2.15) (Brown et al., 1997; Brown et al., 2001). The intensity of the major 

product X, a trisaccharide -D-[14C]-Manp-(16)--D-Manp-(16)--D-Manp-O-C8, was 

consistently slightly reduced in the case of C. glutamicummptB (892174269 cpm) in 
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comparison to wild type C. glutamicum (923255017 cpm) (Fig. 2.15). This reduction in activity 

corresponded to the residual (16) mannopyranosyltransferase activity observed in C. 

glutamicummptA (2053604 cpm).  

 

These results suggested the presence of two (16) mannopyranosyltransferase activities 

utilising this neoglycolipid acceptor, catalysed by MptA and MptB, with the former more 

efficiently utilising the neoglycolipid acceptor as a substrate. Assays containing membrane 

preparations from C. glutamicummptBmptA showed no product formation on TLC, indicating 

a complete abrogation of both (16) mannopyranosyltransferase activities from C. glutamicum 

(Fig. 2.15). Analysis of the double mutant with pVWEx-Cg-mptB revealed a significant but weak 

band (2682940 cpm) corresponding to product X on TLC analysis, however, when 

complemented with pVWEx-Cg-mptA, a similar phenotype to that of C. glutamicummptB could 

be observed (806144135 cpm for X) albeit at a slower transfer rate. The data confirmed that 

NCgl1505 is an (16) mannopyranosyltransferase, however, the specific (16) 

mannopyranosyltransferase, activity is much lower in comparison to MptA, under the assay 

conditions utilising the neoglycolipid acceptor. 

 

To study the function of the mycobacterial MptB, we transformed the C. 

glutamicum∆mptB∆mptA double mutant with a plasmid containing either M. tuberculosis 

Rv1459c (pVWEx-Mt-mptB) or M. smegmatis MSMEG_3120 (pVWEx-Ms-mptB). Membrane 

preparations of these strains restored in vitro (16) mannopyranosyltransferase activity (Fig. 

2.16) by formation of the trisaccharide product X (Mt-MptB, 3159456 cpm; and Ms-MptB 

2949378 cpm) to a similar level to that of the isogenic strain with pVWEx-Cg-mptB showing 
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Fig. 2.16: Analysis of products obtained in a cell free assay for detecting α(16)-mannopyranosyltransferase 

from mycobacterial homologues. TLC analysis of products obtained in a cell free assay for detecting (16)-

mannopyranosyltransferase activity with membranes prepared from C. glutamicummptBmptA, C. 

glutamicummptBmptA pVWEx-Mt-mptB, and C. glutamicummptBmptA pVWEx-Ms-mptB. Assays were 

performed using the synthetic -D-Manp-(16)--D-Manp-O-C8 neoglycolipid acceptor in a cell free assay as 

described previously. 

 

that the M. tuberculosis and M. smegmatis gene(s) could restore activity in an in vitro cell free 

assay with the C. glutamicum double mutant.  

 

 

 

 



Chapter  2                                                                           Biosynthesis of Mannan Backbone 

 

85 
 

2.3.9 Mutational analysis of the M. smegmatis MptB 

 

Homologue of Rv1459c was deleted in M. smegmatis (MSMEG_3120) using specialised 

transduction, and polar lipid and lipoglycan content were analysed in the mutant strain (Mishra et 

al., 2008a). The mutant strain M. smegmatis∆mptB had a lipid content identical to the parental 

wild type strain M. smegmatis mc2155 (Fig. 2.17 A) and no change was observed in the polar 

lipid profile similar to C.glutamicum∆mptB. Surprisingly, lipoglycan profile of M. 

smegmatis∆mptB was also identical to wild type strain M. smegmatis mc2155 (Fig. 2.17 B), 

unlike C.glutamicum∆mptB where the synthesis of Cg-LM and Cg-LAM was abolished. These 

results suggested that Ms-MptB, unlike its corynebacterial counterpart, is redundant and it is 

likely that MptA or another unidentified α(1→6) mannopyranosyltransferase compensated for the 

loss of its function in the M. smegmatis∆mptB. 
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Fig. 2.17: Characterisation of a M. smegmatisΔmptB mutant. (A)  2D-TLC analysis of the [14C]-labelled (50,000 

cpm) polar lipids fraction from M. smegmatis (WT) and M. smegmatis∆mptB. (B) Lipoglycan analysis of wild type 

M. smegmatis and M. smegmatis∆mptB using SDS-PAGE and visualised using a Pro-Q emerald glycoprotein stain. 

The four major bands represent glycoproteins of 180, 82, 42 and18 kDa respectively. 
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2.4 Discussion 

 

Apart form belonging to the supragenic taxon Corynebacterineae, M. tuberculosis and C. 

glutamicum share common cell wall features and biosynthetic machinery. Many of the genes 

involved in M. tuberculosis cell wall biosynthesis have been shown essential for the growth, 

survival and pathogenicity of the bacillus (Belisle et al., 1997; Bhatt et al., 2005; Mills et al., 

2004; Movahedzadeh et al., 2004). Due to the essentiality of such genes in mycobacteria (Sassetti 

et al., 2003), we have previously demonstrated the inherent usefulness of C. glutamicum in the 

identification of genes involved in indispensable biochemical pathways (Alderwick et al., 2005; 

Alderwick et al., 2006b; Gande et al., 2004; Seidel et al., 2007a).  

 

In this study, we sought to characterise the role of few putative glycosyltransferases (Rv2174 and 

Rv1459c) belonging to the GT-C superfamily of glycosyltransferases (Liu & Mushegian, 2003) 

by virtue of genomic deletion of their orthologues (NCgl2093 and NCgl1505, respectively) in C. 

glutamicum. Herein, we present MptA (Rv2174) and MptB (Rv1459c) as PPM dependent 

(16) mannopyranosyltransferases, involved in mannan backbone synthesis of LM 

biosynthesis, which then serves as a template for further (12) branching by other -

mannopyranosyltransferases, presumably Rv2181 (Kaur et al., 2006). 

 

Our initial investigation of the extractable glycolipids from C. glutamicummptA highlighted no 

apparent change in the profiles compared to those from C. glutamicum, which indicated that 

MptA was not involved in PIMs or ManGlcAGroAc2 biosynthesis. This was not unsurprising, 

since PIMs and ManGlcAGroAc2 biosynthesis is completely unique to enzymes belonging to the 

GT-A/B glycosyltransferase family, which utilise GDP-Manp as a substrate (Liu & Mushegian, 
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2003). However, examination of lipoglycans from C. glutamicummptA afforded a complete loss 

of Cg-LM and Cg-LAM, and the appearance of a new smaller product (Cg-t-LM) as observed on 

a SDS-PAGE. 

 

Interestingly, complementation of C. glutamicummptA with a plasmid encoding Cg-mptA and 

Mt-mptA, restored the lipoglycan profiles to that of wild type C. glutamicum. Taken together with 

chemical analysis of Cg-t-LM, indicated that Cg-t-LM in C. glutamicummptA occurs as a result 

of inactivation of a core (16) mannopyranosyltransferase involved in assembly of the distal 

portion of LM, thereby rendering a substrate possessing reduced sites for branching sites. The 

enzymatic activity of NCgl2093 and Rv2174 were confirmed as bona fide (16) 

mannopyranosyltransferase in a specific neoglycolipid acceptor assay (Brown et al., 2001). 

 

The apparent residual glycosyltransferase activity in membranes extracted from C. 

glutamicummptA in the neoglycolipid assay could be attributed to another C50-PPM dependent 

GT-C mannopyranosyltransferase. This situation is entirely plausible since our evidence suggests 

that there are at least two (16) mannopyranosyltransferases, which utilise PPM as a substrate 

for glycosyl-transfer, inferring that both belong to the GT-C family of glycosyltransferases (Liu 

& Mushegian, 2003) and are therefore involved in LM-backbone synthesis. NCgl1505 in C. 

glutamicum showed the highest homology with NCgl2093 and Rv2174, and may be responsible 

for the residual activity in the neoglycolipid assay, thus potential (16) 

mannopyranosyltransferase, MptB. On that basis mptB from C. glutamicum was deleted in order 

to study its role in LM/LAM synthesis. 
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Our initial in vivo and in vitro studies of PIMs and Man1GlcAGroAc2 biosynthesis in C. 

glutamicum∆mptB highlighted no apparent change in lipid profiles, compared to those from wild 

type C. glutamicum. It is reasonable to conclude from the data that MptB is not involved in early 

PIM biosynthesis. However, due to absence of MptB, C. glutamicum∆mptB is unable to 

synthesise Cg-LAM and Cg-LM in vivo, which is in contrast to our earlier results on MptA, 

where a truncated Cg-LM species was synthesised (Mishra et al., 2007). Based on in vitro in situ 

chase experiments we found that Ac1PIM2 and Man1GlcAGroAc2 are acceptors for Cg-MptB and 

it is the first GT-C α-mannopyranosyltransferase committed to Cg-LM biosynthesis.  

 

These crucial observations, together with the presence of Ac1PIM2 and Man1GlcAGroAc2, 

completely supports the hypothesis that Cg-MptB mannosylates Ac1PIM2 and Man1GlcAGroAc2. 

Our previous residual (16) mannopyranosyltransferase activity in C. glutamicum∆mptA 

membrane assay can now be attributed to the presence of MptB, since upon its deletion in C. 

glutamicum, a partial depletion in (16) mannopyranosyltransferase activity is observed and a 

complete loss of activity is found upon deletion of both Cg-mptA and Cg-mptB. These data 

together with the in vivo analyses identifies MptB as a bona fide (16) 

mannopyranosyltransferase. Interestingly, (16) mannan extension is more complex in 

mycobacteria based on the evidence that Mt-MptB and Ms-MptB fail to complement the C. 

glutamicumΔmptB mutant and suggests a slightly different substrate specificity of the MptB 

orthologues of M. tuberculosis and M. smegmatis.  

 

Given the high degree of homology between the C. glutamicum and mycobacterial orthologues of 

MptB and the similar organisation of neighbouring genes in the two genera we expected deletion 
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of M. smegmatis mptB (MSMEG_3120) to have the same effect as that in C. glutamicum.  

However, surprisingly, the M. smegmatisΔmptB still synthesised LM and LAM indicating that 

another, yet unidentified α-mannopyranosyltransferase could substitute for MptB in the M. 

smegmatisΔmptB. It has been shown that a high degree of functional redundancy exists in key 

enzymes involved in mycobacterial cell wall assembly, for instance PimB and MgtA (Schaeffer 

et al., 1999, Tatituri et al., 2007, Lea-Smith et al., 2008, Mishra et al., 2008), PimC (Kremer et 

al., 2002), and EmbA and EmbB (Berg et al., 2007) in PIM/LM/LAM and AG biosynthesis, and 

the antigen 85 complex in mycolic acid biosynthesis (Puech et al., 2002). In this particular case 

the C. glutamicum mutant study enabled the assignment of function to the GT-C 

glycosyltransferase Rv1459c and NCgl1505, which would have otherwise not been possible if 

similar studies would have concentrated solely on mycobacterial species. 
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3. BIOGENESIS OF TRIACYLATED PHOSPHATIDYL-MYO-

INOSITOL DIMANNOSIDE (AC1PIM2) IN M. TUBERCULOSIS
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3.1 Introduction 

 
The current model of mycobacterial PIM biosynthesis is supported by biochemical and genetic 

studies, follows a linear pathway from PI  PIM2  PIM4  PIM6 (Besra & Brennan, 1997). In 

view of identification of genes involved in PIMs and LM/LAM biosynthesis, Schaeffer and 

colleagues (1999) proposed Rv0557 as an -D-mannose--(16)-phosphatidyl-myo-inositol-

mannopyranosyltransferase that transfers mannose from GDP-Manp to Ac1PIM1 to form 

Ac1PIM2 (Schaeffer et al., 1999). The study was based on a cell-free assay using GDP-[14C]-

Manp, Ac1PIM1, M. smegmatis membranes and/or partially purified recombinant Rv0557. On the 

basis of these in vitro studies, Rv0557 was assigned as Mt-PimB and in the synthesis of Ac1PIM2.  

 

However, on disruption of Rv0557 in M. tuberculosis, PIM biosynthesis remain unaffected 

(Torrells et al., 2008) suggesting either gene duplication or that Rv0557 performed another 

function in M. tuberculosis. Recently, it was demonstrated NCgl0452 of C. glutamicum 

(homologue of Rv0557), originally termed PimB and now termed MgtA (Tatituri et al., 2007b), 

primarily acts as an -mannopyranosyltransferase to add mannose to a novel glycolipid, 

GlcAGroAc2 and is involved in the synthesis of 1,2-di-O-C16/C18:1-(-D-mannopyranosyl)-

(14)-(-D-glucopyranosyluronicacid)-(13)-glycerol(ManGlcAGroAc2) (Tatituri et al., 

2007b). This study also highlighted the presence of a lipomannan, now termed Cg-LM-B, based 

on a GlcAGroAc2 anchor rather than a PI-anchor. These studies suggested the involvement of 

another -mannopyranosyltransferase in the synthesis of Ac1PIM2. 

 

In view of the identification for another enzyme, which might be responsible for the synthesis of 

Ac1PIM2 and PI-based LM and LAM in C. glutamicum and M. tuberculosis, we searched for 
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unknown glycosyltransferases using nucleotide-activated sugars. Amongst others we identified 

NCgl2106 in the genome of C. glutamicum with orthologues present in all Corynebacterineae 

including the genus Mycobacterium. In this study, we have examined an NCgl2106 null mutant 

of C. glutamicum and established that NCgl2106 is a phosphatidyl-myo-inositol monomannoside 

mannopyranosyltransferase exclusively involved in the synthesis of Ac1PIM2 from Ac1PIM1. 

Furthermore, with the use of a C. glutamicumpimB’mgtA double deletion mutant and 

expression of Rv0557 and Rv2188c coupled with in vitro enzyme assays we have clearly 

assigned the enzyme functions of Rv0557 and Rv2188c in terms of Man1GlcAGroAc2 and 

Ac1PIM2 synthesis, respectively.  

 

3.2 Materials and methods 

3.2.1 Strains and culture conditions 

 

The wild type C. glutamicum was grown on either the complex medium BHI or CGXII at 30 °C. 

The E. coli strain DH5αmcr was grown on LB at 37 °C. Kanamycin and ampicillin were used at a 

concentration of 25 or 50 µg/ml, wherever appropriate. Samples for lipid analysis were prepared 

by harvesting the cells at an optical density 600 nm of 10-15 followed by a saline wash and 

freeze-drying. 

 

3.2.2 Construction of plasmids and strains 

 

All mutant strains in C. glutamicum and their complimented strains were constructed at Institute 

for Biotechnology Research Centre, Juelich, Germany. To construct the deletion vector 

pK19mobsacB2106 crossover PCR was applied with primer pairs Nout2106/Nin2106 
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(Nout2106, AATCGGAGATCCGAGACCGGG; Nin2106, 

CCCATCCACTAAACTTAAACATTTTCGGGATGCAGACACAAAGA) (all primers in 5'-

3'direction) and Cout2106/Cin2106 (Cout2106, ACCCAGTTGTCAGCGCCTTGAG; Cin2106, 

TGTTTAAGTTTAGTGGATGGGCGGTTGACCAATATTTTGCAGAG) with C. glutamicum 

genomic DNA as template. Both amplified products were used in a second PCR with primer pairs 

Nout2106/Cout2106 to generate a 1025bp fragment consisting of sequences adjacent to 

NCgl2106, which was made blunt, phosphorylated and ligated with SmaI-cleaved pK19mobsacB. 

The chromosomal deletion of NCgl2106 was performed as described previously using two rounds 

of positive selection (Schafer et al., 1994), and its successful deletion verified by use of two 

different primer pairs. Plasmids were introduced into C. glutamicum by electroporation with 

selection to kanamycin resistance (25 µg/ml) on BHI. To enable the expression of NCgl2106 in 

the deletion mutant, NCgl2106 was amplified using the primer pair CGCGGATCCAAGGAG 

ATATAGATATGTCTGCATCCCGAAAAACTCTC and CGCGAATTCTCATCGTGGTTCA 

CTCTGC. The purified PCR fragment was digested with BamHI-EcoRI and ligated with 

pEKEx2 (Eikmanns et al., 1991). All cloned fragments were verified by sequencing. 

 

To enable expression of Rv2188c for complementation studies, primers Mt-Rv2188c-fw and Mt-

Rv2188c-rev were used together with M. tuberculosis H37Rv DNA as a template. The resulting 

fragment was purified and digested with BamHI and EcoRI and ligated with similarly treated 

pEKEx2 (Eikmanns et al., 1991) to result in pEKEx2-Mt-Rv2188c. This vector, as well as 

pEKEx2-Cg-pimB´, pEKEx3-Mt-mgtA and pEKEx3-Cg-mgtA were introduced into C. 

glutamicum via electroporation using 25 µg/ml kanamycin for primary selection of pEKE2-based 

vectors and 100 µg/ml spectinomycin for primary selection of pEKEx3 vectors. 
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To delete NCgl2106 in C. glutamicumΔmgtA, plasmid pK19mobsacBΔpimB´ was introduced by 

electroporation. One kanamycin resistant clone with vector integrated was selected for sucrose 

resistance as described (Schafer et al., 1994), and clones with loss of vector were assayed via 

PCR to assess whether they had lost mgtA during the second recombination event or whether the 

wild type situation was restored. Deletion clones were finally verified via PCR analysis with a 

different primer set than that used for construction, and all plasmids constructed were finally 

verified by sequencing. 

 

3.2.3 Extraction and biochemical analysis of glycolipids and lipoglycans  

 

Methodology covering extraction and biochemical analysis of lipids and lipoglycans with 2D-

TLC, SDS-PAGE, GC-MS, MALDI-TOF-MS and NMR are covered separately as part of 

General Materials and Methods in Chapter 5.  

 

3.2.4 Permethylation of Cg-LM-B prior to MALDI-TOF analysis 

 

Permethylation was performed using the sodium hydroxide procedure as described previously 

(Dell et al., 1993). MALDI-TOF and TOF/TOF MS data on permethylated samples were 

acquired in the positive ion mode (M+Na)+ using a 4800 (Applied Biosystems) mass 

spectrometer in the reflector mode with delayed extraction. The collision energy was set to 1 kV, 

and argon was used as collision gas for MS/MS data collection. Samples were dissolved in 

methanol, and 1 µl was mixed at a 1:1 ratio (v/v) with 2,5-dihydrobenzoic acid (20 mg/ml in 70 % 

methanol in water) as matrix.  
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3.2.5 GC-MS linkage analysis of Cg-LM-B 

 

Partially methylated alditol acetates were prepared from permethylated samples for gas 

chromatography–mass spectrometry (GC–MS) linkage analysis as described in Chapter 5 (Dell et 

al., 1993) and were analysed using a PerkinElmer Clarus 500 instrument fitted with a RTX-5 

column (30 m x 0.25-mm internal diameter, Restek Corp.) The sample was dissolved in hexane 

and injected onto the column at 65 °C. The column was maintained at this temperature for 1 min 

and then heated to 290 °C at a rate of 8 °C per min. 

 

3.2.6 In vitro analysis of glycolipid biosynthesis 

 

Reaction mixtures containing 0.25 µCi of GDP-[14C]Manp, 1 mM ATP, and membrane protein (1 

mg) from wild type  C. glutamicum, mutants and/or complemented strains in a final volume of 50 

µl were incubated at 37C for 30 min as described previously (Gibson et al., 2003). The reactions 

were terminated by the addition of CHCl3/CH3OH/H2O (4 ml, 10:10:3, v/v/v) followed by the 

addition of 1.75 ml of CHCl3 (1.75 ml) and H2O (0.75 ml). The reaction mixture was vortexed, 

centrifuged and the upper aqueous phase removed. The organic phase was washed three times 

with CHCl3/CH3OH/H2O
 (2 ml, 3:47:48, v/v/v), and the final organic extract dried under a stream 

of nitrogen. The resulting products were resuspended in 200 µl of CHCl3/CH3OH (2:1, v/v), and 

aliquots (20 µl) quantified by liquid scintillation counting using 5 ml of EcoScintA. Equivalent 

aliquots (20 µl) of labeled material were subjected to TLC using silica gel plates and developed 

in CHCl3/CH3OH/H2O/NH4OH (65:25:3.6:0.5, v/v/v/v). The products were visualised by 

phosphorimaging. 
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3.2.7 Expression, purification and in vitro characterisation of Cg-PimB’ 

 

Cg-PimB’ was over-expressed in E. coli BL21 (DE3). E. coli-pET16b-Cg-pimB’ was grown at 

30ºC in LB supplemented with ampicillin (100 μg/mL). The expression of Cg-pimB’ was induced 

by the addition of 0.5 mM isopropyl-β-D-thiogalactopyranose (IPTG) at an OD of 0.4-0.6 for 4 

hrs. Cells were harvested by centrifugation, washed with saline and stored at -20ºC until use. 

Cells were thawed on ice and resuspended in 30 mL of buffer B (50 mM, NaH2PO4 (pH 8.0), 300 

mM NaCl and 10 mM imidazole), supplemented with an EDTA-free protease cocktail tablet 

(Roche). The cell suspension was sonicated (12 µm amplitude, 20 s on, 40 s off for 10 cycles, at 

4 ºC) and the lysate centrifuged at 27000 x g for 30 minutes at 4C. The supernatant was passed 

through a pre-equilibrated (buffer B) Ni2+-charged His-Trap column (1 mL) (GE Healthcare). 

The column was subsequently washed with 50 mL of buffer B and the protein eluted with a 50-

300 mM gradient of imidazole with continuous monitoring using a UV spectrophotometer and 

further assessed using 12 % SDS-PAGE with coomassie blue staining. Fractions containing 

protein were dialysed against 20 mM Tris-HCl (pH 7.5), 10 mM NaCl, 10% glycerol and 1 mM 

DTT. After dialysis, proteins were concentrated to 3 mg/mL using a 10 kDa cut-off centriprep 

device (Millipore).  

 

Purified Cg-PimB’ was incubated with 0.25 µCi of GDP-[14C]-Manp, 1 mM ATP, and either 

extracted or purified polar lipids or Ac1PIM1 from C. glutamicumpimB’mgtA in a final volume 

of 50 µl at 37C for 30 min. The reactions were terminated and products extracted as described 

above The resulting Ac1PI-[14C]-M2 and [14C]-Man1GlcAGroAc2 products were subjected to 

TLC/autoradiography using silica gel plates developed in CHCl3:CH3OH:H2O:NH4OH 

(65:25:3.6:0.5, v/v/v/v) and the products visualised and quantified by phosphorimaging. 
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3.3 Results  

3.3.1 Construction and growth of C. glutamicumΔpimB 

 

We found that the gene product of NCgl0452 of C. glutamicum, respectively its orthologue 

Rv0557 in M. tuberculosis, originally termed PimB and now termed MgtA (Tatituri et al., 

2007b), primarily acts as an α-mannopyranosyltransferase to add Manp to GlcAGroAc2 (Tatituri 

et al., 2007b) and is involved in the synthesis of a novel lipomannan, now termed Cg-LM-B, 

based on a GlcAGroAc2 anchor rather than a PI-anchor. Further Characterisation of Cg-LM-B 

was hampered due to co-migration and co-elution following size exclusion chromatography with 

the PI-based Cg-LM-A (Tatituri et al., 2007b). To investigate the structure and function of Cg-

LM-B further we adopted a strategy based on the existence of two pathways to lipoglycan 

synthesis and to identify Cg-pimB involved in Ac1PIM2 synthesis whereby disruption would 

block Cg-LM-A and Cg-LAM synthesis while Cg-LM-B would be unaffected. We searched for 

unknown glycosyltransferases using nucleotide-activated sugars. Amongst others we identified 

NCgl2106 in the genome of C. glutamicum with orthologues present in all Corynebacterineae 

and deleted it from C. glutamicum (Fig. 3.1).   

 

The colony morphology of C. glutamicumpimB was somewhat different in comparison to wild 

type. The colonies were sticky and formed threads upon grasping with an inoculating loop similar 

to a lysed colony, indicating a cell wall related function of the gene product. C. 

glutamicumpimB was transformed with pEKEx2-Cg-pimB and pEKEx2-Mt-Rv2188c and the 

resultant complemented strain exhibited a growth rate similar to that of the wild type in CGXII 

medium. 
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Fig. 3.1: Inframe deletion mutant of pimB in C. glutamicum. Strategy to delete pimB by use of vector 

pK19mobsacBΔpimB  by two homologous recombination events with the wild type chromosome (Cg-WT). The 

deletion is demonstrated on the right via PCR using primer pairs P5/P6 showing the expected 1088 bp fragment for 

the deletion mutant in the Lane marked "Δ", and that of 2159 bp for the wild type marked "W". The Lane marked 

"St" is the standard consisting of BstEII-fragments of -DNA, with arrowheads positioned at 0.70, 1.37, 2.32, and 

3.68 kb. 

 

3.3.2 Chemical analysis of polar lipids and lipoglycans from C. glutamicumΔpimB     

 

Lyophilised cells were extracted using petroleum-ether and methanolic saline to recover apolar 

lipids. Further processing of the methanolic extract afforded the polar lipid fraction, which was 

examined by 2D-TLC. The extract from wild type C. glutamicum showed the presence of 

ManGlcAGroAc2, GlcAGroAc2 and Ac1PIM2, by -naphthol/sulfuric acid staining (Fig. 3.2 A). 

Surprisingly, while the synthesis of ManGlcAGroAc2 and GlcAGroAc2 remained unaffected the 

component corresponding to Ac1PIM2 identified by negative ion mode MALDI-TOF-MS at m/z 

1398 [M-H]- with the fatty acyl groups C16 and C18:1 (Tatituri et al., 2007b) was absent in C. 

glutamicumpimB with the appearance of a new product, which was sugar and phosphate 
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Fig. 3.2: Polar lipid profile of C. glutamicum, C. glutamicumΔpimB’ and C. glutamicumΔpimB’ pEKEx2-Cg-

pimB’. (A) TLC-analysis of PIM biosynthesis in strains; glycolipids were visualised by spraying plates with α-

naphthol/ sulfuric acid, followed by gentle charring of TLC plates. (B) Negative ion mode MALDI-TOF-MS of 

purified novel lipid product from C. glutamicumΔpimB’. Purified novel lipid was analysed on negative ion mode 

MALDI-TOF-MS as described by Tatituri et al. (2007b). 

 

positive by specific staining (Fig. 3.2 A). This predominant lipid spot was purified and 

corresponded to Ac1PIM1, which was confirmed by negative ion mode MALDI-TOF-MS 

analyses due to the characteristic ion at m/z 1236 (M-H)- (Fig. 3.2 B).  

 

Complementation of C. glutamicumpimB by pEKEx2-Cg-pimB restored the wild type 

phenotype (Fig. 3.2 A). Altogether, the data indicated that Ac1PIM1 in C. glutamicumpimB 



Chapter 3                                                                                                Biogenesis of Ac1PIM2 

 

101 
 

occurs possibly as a result of inactivation of a phosphatidyl-myo-inositol 

mannopyranosyltransferase, presumably which transfers a Manp residue from GDP-Manp to the 

6-position of Ac1PIM1. In addition, this data also shed further light on the acylation step in PIM 

biosynthesis in Corynebacterineae. The accumulation of Ac1PIM1 in C. glutamicumpimB 

showed that the acylation step (Kordulakova et al., 2003) precedes the second mannosylation step 

in PIM biosynthesis, and results in the formation of Ac1PIM2 (Schaeffer et al., 1999).  

 

Lipoglycans were extracted by refluxing delipidated cells in ethanol, followed by hot-phenol 

extraction, protease digestion and dialysis to remove impurities. The extracted lipoglycans were 

examined initially on 15 % SDS-PAGE (Fig. 3.3). Extracts from wild type C. glutamicum 

showed the presence of Cg-LAM, Cg-LM-A and Cg-LM-B (Tatituri et al., 2007b). As expected 

the lipoglycan extract from C. glutamicumpimB showed the absence of Cg-LAM and Cg-LM-

A, and the presence of a single species (Cg-LM-B) by chemical characterisation as described 

below. Complementation of C. glutamicumpimB by transformation with plasmid pEKEx2-Cg-

pimB restored the wild type phenotype of Cg-LAM, Cg-LM-A and Cg-LM-B (Fig. 3.3). As 

predicated, the inactivation of Cg-pimB abolished the synthesis of Cg-LAM and Cg-LM-A, and 

provided a strain that allowed the purification of Cg-LM-B for further chemical and functional 

characterisation. Cg-LM-B from C. glutamicumpimB and Cg-LM-A from C. glutamicummgtA 

(Tatituri et al., 2007b) were purified by HIC and size exclusion chromatography followed by 

their chemical analysis using mass spectrometry. 
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Fig. 3.3: Lipoglycan profile of C. glutamicum, C. glutamicumΔpimB’ and C. glutamicumΔpimB’ pEKEx2-Cg-

pimB’. Lipoglycan profiles of C. glutamicum strains were analysed using SDS-PAGE and visualised using a Pro-Q 

emerald glycoprotein stain. The major bands represented by Cg-LAM, Cg-LM-A, and Cg-LM-B are indicated. The 

four major standard bands indicated on the side of the gel represent glycoproteins of 180, 82, 42 and18 kDa, 

respectively. 

 
 

3.3.3 Analysis of Cg-LM-B by mass spectrometry     

 

The Cg-LM-B was permethylated prior to detailed mass spectrometric analysis. During the 

permethylation step the acyl groups from the lipoglycan are liberated and the glycerol hydroxyl 

groups are methylated. The MALDI-TOF MS profile of the permethylated sample in the positive 

mode showed no signals for ManGlcAGroAc2 (m/z 579) but, interestingly, a series of peaks 

(M+Na)+ corresponding to the addition of 4-22 hexose residues to the GlcAGroAc2 core structure 

(Fig. 3.4 A) were observed. In the lower mass region of the spectrum, signals consistent with the 
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4457.2 and 4865.6 with Hex12GlcAGroAc2 (m/z 2824.6) being most abundant (Fig. 3.4 A). The 

low abundance of signals attributable to components carrying an odd number (Hex11, 13, 15, 17, 

19 and 21) of hexoses (m/z 2620.5, 3028.7, 3436.9, 3849.0, 4252.2 and 4660.4), as compared to 

even numbered, suggests that the hexose polymer is branched rather than linear. In addition, there 

are also signals present in the MS spectrum attributable to hexose oligomers. This may result 

from partial degradation of the sample during preparation but could also be due to contamination.  

 

Each of the major signals in the spectrum was subjected to collision induced decomposition 

MS/MS (CID-MS/MS) analysis to establish their structures. For example, MS/MS spectra of the 

signal at m/z 2416, which has the composition Hex10GlcAGroAc2, showed peaks at m/z 2198, 

1994, 1585.6, 1381.5, 1177.5, 769.3 and 361 (Fig. 3.4 B) which are due to the loss of 1, 2, 4, 5, 6, 

8 and 10 hexose units from the molecular ion. The inset to Fig. 3.4 B shows the likely sequence 

that is consistent with this set of fragment ions. Furthermore, in order to confirm the nature of the 

hexose units and linkages, GC/MS analysis of partially methylated alditol acetates was carried 

out. This revealed the presence of t-Manp, 2-Manp, and 2,6-Manp in Cg-LM-B. The presence of 

t-Manp and 2,6-Manp convincingly establishes that the backbone of the oligomannans is heavily 

branched. The relative abundances of t-Manp (1.0), 6-Manp (0.5) and 2,6-Manp (0.98) are 

consistent with single mannose residues being appended at O-2 to the 6-linked mannosyl 

backbone. The glycosyl composition and nature of chemical linkages in Cg-LM-B are exactly 

similar to Cg-LM-A except the presence of a PI unit towards the reducing end of the Cg-LM-A 

instead of GlcAGroAc2 of Cg-LM-B.  
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Fig. 3.4: MALDI-TOF/TOF analysis of permethylated Cg-LM-B [M + Na+] ManGlcAGroAc2. (A) MS 

spectrum of derivatised Cg-LM-B. Unassigned peaks (*) are due to permethylation artifacts. (B) CID-MS/MS 

analysis of m/z 2416 (M+Na)+ Man10GlcAGroAc2. A possible structure and CID fragmentation pattern of peak m/z 

2416.4 is depicted in the cartoon representation, inset. Circle-mannose; diamond-glucuronic acid. 
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3.3.4 Construction and growth of C. glutamicumpimB´mgtA, C. glutamicumpimB´mgtA 

-pEKEx2-Rv2188c and C. glutamicumpimB´mgtA-pEKEx3-Rv0557  

 

Rv2188c and Rv0557 both belong to the GT-B family of glycosyltransferases (Liu and 

Mushegian), and in the CAZy classification system they are part of the subgroup GT4. Using 

MgtA as a query sequence in a blast comparison the next paralog among the 6 members of M. 

tuberculosis within the GT4 family is Rv2188c revealing the structural similarity of both 

proteins. Both proteins possess orthologs in C. glutamicum and the above genetic and 

biochemical studies confirmed that the orthologous proteins have identical functions (Tatituri et 

al., 2007b). When either pimB´or mgtA in C. glutamicum ATCC13032 was deleted, no reliable 

growth rate defect was observed. We therefore transformed C. glutamicumpimB´ with the 

deletion vector pK19mobsacBmgtA (Tatituri et al., 2007b) which resulted in Kanr, and after two 

rounds of positive selection small colonies on BHI plates were obtained.  

 

The mgtA locus was analysed via PCR and one of the 18 positive clones was identified as C. 

glutamicumpimB´mgtA.The mutant has a reduced growth rate of 0.32 h-1 as compared to that 

of the wild type with a growth rate of 0.43 h-1. As expected, plasmid encoded Cg-mgtA restored 

to some extent growth, as did Cg-pimB´, with the latter resulting in better growth restoration, and 

this might indicate that Cg-PimB´ is the more relevant to sustain the growth characteristics of the 

wild type. This is also in agreement with the fact that Cg-PimB´-derived LM-A and LAM is more 

abundant in C. glutamicum than the Cg-MgtA-derived LM-B (Tatituri et al., 2007b). Also Mt-

Rv0557 restored growth, whereas Mt-Rv2188c for unknown reasons was unable to reverse the 

growth effect, but is apparently expressed using 0.01 mM IPTG during growth.  
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3.3.5 In vivo glycolipid analysis of C. glutamicumpimB´mgtA, C.glutamicumpimB´mgtA 

pEKEx2-Rv2188c and C. glutamicumpimB´mgtA-pEKEx3-Rv0557  

 

Polar lipids containing PIMs and other glycolipids were extracted from C. glutamicum, C. 

glutamicumpimB´ C. glutamicummgtA, C. glutamicumpimB´mgtA, C. 

glutamicumpimB´mgtA-pEKEx2-Rv2188c and C. glutamicumpimB´mgtA-pEKEx3-Rv0557 

strains using an established chloroform-methanolic saline procedure (Dobson et al., 1985). 

Extracted lipids were examined by 2D-TLC and MALDI-TOF-MS. The lipid extracts from C. 

glutamicum possessed a typical profile of ManGlcAGroAc2, GlcAGroAc2, Ac1PIM2, trehalose 

monocorynomycolate (TMCM) and glucose monocorynomycolate (GMCM) by -

naphthol/sulfuric acid staining (Fig. 3.5). As shown previously the corresponding Ac1PIM2 

(negative ion mode MALDI-TOF-MS m/z 1398 [M-H]-, fatty acyl groups C16 and C18:1) and 

ManGlcAGroAc2 (Gl-X) (positive ion mode MALDI-TOF-MS m/z 977 [M-H+2Na]+, fatty acyl 

groups C16 and C18:1) (Tatituri et al., 2007b) were confirmed by mass spectrometry (Fig. 3.6).  

 

In addition, as reported above Ac1PIM2 and ManGlcAGroAc2 were completely absent in C. 

glutamicumpimB’ and C. glutamicummgtA, respectively. Lipid extracts from the C. 

glutamicumpimB’mgtA double knock out were found to be devoid of both Ac1PIM2 and 

ManGlcAGroAc2 (Fig. 3.5 and 3.6) with accumulation of Ac1PIM1 (negative ion mode MALDI-

TOF-MS m/z 1236 [M-H]-. Therefore, C. glutamicumpimB’mgtA was utilised to study the role 

of the orthologous Rv2188c and Rv0557 proteins. Plasmid-borne over-expression of Rv2188c in 

C. glutamicumpimB’mgtA restored the synthesis of Ac1PIM2 (Fig. 3.5, Fig. 3.6A), whilst 

ManGlcAGroAc2 was still absent, which suggests that Rv2188c is solely involved in the 
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Fig. 3.5: Glycolipid profiles of different strains of C. glutamicum. The polar lipid extracts were examined by 2D-

TLC on aluminum-backed plates of silica gel 60 F254, using CHCl3/CH3OH/H2O (60:30:6, v/v/v) in the first direction 

and CHCl3/CH3COOH/CH3OH/H2O (40:25:3:6, v/v/v/v) in the second direction. Glycolipids were visualised by 

spraying plates with α-naphthol/sulfuric acid, followed by gentle charring of the plates. 
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Fig. 3.6: MALDI-TOF MS analyses of glycolipids from different strains of C. glutamicum in negative- (A) and 

positive- (B) ion-mode. (A) The peaks observed are m/z 836 (M-H)-, [PI with C16/C18:1 fatty acyl groups]; m/z 998 

(M-H)-, [PIM1 with C16/C18:1 fatty acyl groups]; m/z 1236 (M-H)-, [Ac1PIM1 with 2C16/C18:1 fatty acyl groups]; and 

m/z 1,398 (M-H)-, [Ac1PIM2 with 2C16/C18:1 fatty acyl groups]. The peak m/z 748 was not attributable to any PIM 

species and, as such, may represent unidentified lipid species and/or plasticizer. (B) Positive-ion MALDI-TOF-MS 

spectrum of the cationized, sodiated precursor ion (M-H+2Na)+ of GlcAGroAc2 and ManGlcAGroAc2 at m/z 815 and 

m/z 977, respectively. 
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synthesis of Ac1PIM2. In contrast, plasmid-borne over-expression of Rv0557 in C. 

glutamicumpimB’mgtA restored the synthesis of only ManGlcAGroAc2 (Fig. 3.5, Fig.3.6B), 

which also suggests a specific role in ManGlcAGroAc2 synthesis (Tatituri et al., 2007b). 

Surprisingly, it did not complement the synthesis of Ac1PIM2 a function previously assigned 

using in vitro studies (Schaeffer et al., 1999).  

 

3.3.4 Chemical analysis of lipoglycans in C. glutamicumpimB´mgtA,  

C. glutamicumpimB´mgtA-pEKEx2-Rv2188c and C. glutamicumpimB´mgtA-pEKEx3-

Rv0557  

 

Lipoglycans were extracted by refluxing delipidated cells in 50% ethanol, followed by hot-phenol 

treatment, protease digestion and dialysis. The extracted lipoglycans were examined on 15% 

SDS-PAGE (Fig. 3.7) using a Pro-Q emerald glycoprotein stain. Extracts from C. glutamicum 

showed the presence of Cg-LAM and Cg-LM-A and Cg-LM-B (which co-migrate with Cg-LM-

A as previously shown (Tatituri et al. 2007b). The lipoglycan extract from C. glutamicumpimB’ 

showed the presence of a single species ManGlcAGroAc2 based Cg-LM-B, whilst C. 

glutamicummgtA showed the presence of PI based lipoglycans, Cg-LAM and Cg-LM-A. 

Interestingly, C. glutamicumpimB’mgtA was shown to be devoid of all three species of 

lipoglycans (Fig. 3.7). The lipoglycans from C. glutamicumpimB’mgtA-pEKEx2-Rv2188c 

were analysed and as expected the synthesis of PI-based Cg-LAM and Cg-LM-A was restored by 

Rv2188c supporting the in vivo lipid studies and the specific role of Rv2188c (Fig. 3.7).  
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Fig. 3.7: Lipoglycan profiles of different strains of C. glutamicum. Lipoglycans were analysed using SDS-PAGE 

and visualised using a Pro-Q emerald glycoprotein stain specific for carbohydrates. The three major bands 

represented by Cg-LAM, Cg-LM-A, and Cg-LM-B (which co-migrates with Cg-LM-A) are indicated. The 

glycoprotein molecular weight standards are provided on the right for comparison. The four major bands represent 

glycoproteins of 180, 82, 42, and 18 kDa, respectively. 

 

 

Similarly, C. glutamicumpimB’mgtA-pEKEx3-Rv0557 restored the synthesis of 

ManGlcAGroAc2 based Cg-LM-B, again illustrating the specific role of Rv0557 with respect to 

ManGlcAGroAc2 and Cg-LM-B synthesis. 
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3.3.5 Cell-free mannolipid biosynthesis 

 

Membrane preparations from wild type C. glutamicum synthesise Ac1PIM2 and ManGlcAGroAc2 

utilising endogenous acceptors and GDP-[14C]-Manp as a sugar donor as reported previously 

(Fig. 3.8 A) (Brown et al., 2001; Mishra et al., 2008a; Tatituri et al., 2007a; Tatituri et al., 

2007b). The TLC analysis of radio-labeled products from in vitro assays revealed the synthesis of 

PP-[14C]-M, Ac1PI-[14C]-M2 and [14C]-ManGlcAGroAc2 in accordance with previous studies 

using wild type C. glutamicum membranes (Fig. 3.8 B) (Mishra et al., 2008a). In assays 

performed with C. glutamicumpimB’ membranes, an additional minor species migrating 

between Ac1PI-[14C]-M2 and 14[C]-ManGlcAGroAc2 was observed and confirmed as PI-[14C]-M1 

as shown previously (Kordulakova et al., 2003). Surprisingly, a faint band corresponding to 

Ac1PIM2 was also detected, which may be due to a relaxed acceptor specificity of Cg-MgtA 

present in C. glutamicumpimB’. Assays utilising membrane preparations from C. 

glutamicummgtA synthesised Ac1PI-[14C]-M2, but surprisingly possessed a faint band 

corresponding to [14C]-ManGlcAGroAc2, possibly due to relaxed substrate specificity of Cg-

PimB’ present in membrane preparation of C. glutamicummgtA (Fig. 3.8 B). Interestingly, the 

synthesis of Ac1PI-[14C]-M2 and [14C]-ManGlcAGroAc2 was totally abrogated in assays with 

membranes prepared from C. glutamicumpimB’mgtA, (Fig. 3.8 B), whilst accumulation of 

Ac1PI-[14C]-M1 and PP-[14C]-M was observed.  

 

Similar results were also obtained using assays and membrane preparations from C. 

glutamicumpimB’mgtA-pEKEx2-Rv2188c (Fig. 3.8 B). Herein, Rv2188c showed substrate 

specificity towards Ac1PIM1 and also a weak recognition for the substrate GlcAGroAc2, resulting 
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Fig. 3.8: In vitro mannolipid biosynthesis. (A) Biosynthetic reaction scheme of products formed in in vitro assays 

utilising GDP-[14C]-Manp and corynebacterial membranes. Species represented in bold accumulate as reaction 

product in the assay. (B) TLC-autoradiography of synthesised mannolipids, using GDP-[14C]-Manp and membrane 

extracts from different strains of C. glutamicum.  Enzymatically synthesised products PP-[14C]-M, [14C]-Man-

GlcAGroAc2, Ac1PI-[14C]-M2, and PI-[14C]-M1 were isolated and subjected to TLC/autoradiography using 

CHCl3/CH3OH/NH4OH/H2O (65:25:0.4:3.6, v/v/v/v). 

 

in the synthesis of Ac1PI-[14C]-M2 and [14C]-ManGlcAGroAc2.Interestingly, and in contrast with 

the above studies of Rv2188c assays, membrane assays prepared from C. 
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glutamicumpimB’mgtA-pEKEx3-Rv0557 illustrated that Rv0557 possesses a broader relaxed 

substrate specificity as both Ac1PIM1 and GlcAGroAc2 were equally efficient substrates for the 

enzyme affording Ac1-[
14C]-PIM2 and [14C]-ManGlcAGroAc2 synthesis (Fig. 3.8 B). This would 

explain the previous assignment based on in vitro data that Rv0557 was involved in the synthesis 

of Ac1PIM2 and annotated as PimB (Schaeffer et al., 1999). 

 

3.3.6 Mannolipid synthesis using recombinant Cg-PimB’ 

 

Initial attempts to develop an in vitro assay using either purified recombinant expressed Rv2188c 

or Rv0557 have thus far proved unsuccessful. Therefore, their C. glutamicum orthologues were 

cloned, expressed and purified. Whilst, Cg-PimB’ (Rv2188c orthologue) was expressed as a 

soluble protein (Fig. 3.9 A) and shown to be active in an in vitro assay, Cg-MgtA resulted in an 

inactive protein. The activity of purified Cg-PimB’ was initially determined in a pre-defined in 

vitro assay utilising GDP-[14C]-Manp and purified polar lipid extracts from C. 

glutamicumpimB’mgtA which possess Ac1PIM1 and GlcAGroAc2.  

 

The resulting products from the assay involving Cg-PimB’ showed a high substrate specificity of 

the enzyme towards Ac1PIM1, and a relaxed specificity towards GlcAGroAc2 (Fig. 3.9 B). In 

addition, assay performed with highly purified Ac1PIM1 (Fig. 3.9 B, 2) resulted in the formation 

of Ac1PI-[14C]-M2, only. Altogether, the data supports the findings from the previous section and 

suggested the redundant features of these enzymes in vitro (Schaeffer et al., 1999). 
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Fig. 3.9: Mannolipid synthesis using recombinant Cg-PimB’. (A) Recombinant Cg-PimB’ was purified using Ni2+ 

affinity chromatography and purity determined on a 12% SDS-PAGE gel. (B) TLC-autoradiography of synthesised 

mannolipids, using GDP-[14C]-Manp and lipid extracts from C. glutamicum∆pimB∆mgtA (Lane 1) and purified 

Ac1PIM1 (Lane 2) with purified Cg-PimB’. Enzymatically synthesised products were isolated and subjected to 

TLC/autoradiography using CHCl3/CH3OH/NH4OH/H2O (65:25:0.4:3.6, v/v/v/v). 
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3.4 Discussion  

 
The gene product of NCgl0452 (initially termed pimB and now mgtA) of C. glutamicum, and 

orthologue of Rv0557 in M. tuberculosis, is responsible for the synthesis of glycolipid 

ManGlcAGroAc2 by the addition of a Manp unit to GlcAGroAc2 (Tatituri et al., 2007b). For the 

identification of the enzyme, which adds Manp to the 6-OH position of Ac1PIM1, to synthesise 

Ac1PIM2 (Schaeffer et al., 1999), we identified NCgl2106 in the genome of C. glutamicum with 

orthologues present in all Corynebacterineae. Our in vivo glycolipid and lipoglycan synthesis 

data suggested the correct in vivo functions of Rv2188c as an 

Ac1PIM1:mannopyranosyltransferase (originally termed Mt-PimB’) and Rv0557 as a 

GlcAGroAc2:mannopyranosyltransferase (originally termed Mt-PimB), which we have 

reassigned as Mt-PimB and Mt-MgtA, respectively, in M. tuberculosis. 

 

Furthermore, SDS-PAGE analysis of purified lipoglycans from C. glutamicumpimB showed the 

presence of a single species, which migrated akin to Cg-LM. Chemical characterisation of this 

novel species using MS-MS established it as an oligomer of hypermannosylated oligosaccharides 

linked to GlcAGroAc2. It was previously established that these glycosylated diacylglycerols 

function as precursors/anchors for hyperglycosylated variants, such as the lipomannans, as found 

in the case of dimannosyl diacylglycerols in Micrococcus and lipoteichoic acids (Pieringer 

(Pakkiri et al., 2004; Pakkiri & Waechter, 2005; Pieringer, 1989). These results also support the 

initial hypothesis of Tatituri et al. (2007b) that ManGlcAGroAc2 participates in the biosynthesis 

of a novel Cg-LM-like molecule and that the Cg-LM most likely consists of two components, a 

Cg-LM based on ManGlcAGroAc2 (Cg-LM-B) and a component akin to the characteristic 

mycobacterial PI-based LM (Cg-LM-A) (Tatituri et al., 2007b).  
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The α-D-mannose-α(1→6)-phosphatidyl-myo-inositol-mannosyltransferase activity of Rv0557 

reported by Schaeffer et al. (1999), and its participation in ManGlcAGroAc2 and Cg-LM-B 

biosynthesis, and the identification of NCgl2106 and its mycobacterial homologue Rv2188c as 

another α-D-mannose-α(1→6)-phosphatidyl-myo-inositol-mannosyltransferase has augmented 

ongoing confusion in the field (Schaeffer et al., 1999, Tatituri et al., 2007b). To solve this puzzle, 

we have generated a double knock out of C. glutamicum, deficient in Cg-pimB’ and Cg-mgtA, 

and subsequently over-expressed Rv2188c and Rv0557, individually to identify their true in vivo 

and in vitro activities.  

 

As expected C. glutamicumΔpimB’ΔmgtA mutant was devoid of Ac1PIM2 and ManGlcAGroAc2. 

The in vivo complementation of PimB activity was restored using plasmid borne copies of 

Rv2188c resulting in the synthesis of Ac1PIM2 and Cg-LM-A in C. glutamicumΔpimB’ΔmgtA. In 

addition, in vitro assays utilising membrane preparation from C. glutamicumΔpimB’ΔmgtA-

pVWEx2-Rv2188c and GDP-[14C]-Manp revealed the synthesis of Ac1PI-[14C]-M2. However, it 

also synthesises ManGlcAGroAc2 albeit with a lower efficiency, demonstrating that Rv2188c has 

a leaky substrate specificity towards GlcAGroAc2.  

 

Mannolipid synthesis utilising purified recombinant Cg-PimB’ has also shown similar activity 

like its homologue Rv2188c. The extractable lipid profile from C.glutamicumΔpimB’ΔmgtA-

pEKEx3-Rv0557 contained ManGlcAGroAc2, while no Ac1PIM2 was observed, suggesting that 

Rv0557 is a true α-mannosyl-glucopyranosyluronic acid transferase. However, in vitro assays 

utilising membrane preparations from C.glutamicumΔpimB’ΔmgtA-pEKEx3-Rv0557 possessed 

traces of Ac1PIM2 apart from ManGlcAGroAc2, which explains the previous interpretation of the 

Rv0557 activity as phosphatidyl-myo-inositol mannosidase, PimB (Schaeffer et al., 1999). 
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The presence of a similar branching pattern in LM-A (PI anchored) and LM-B (GlcAGroAc2 

anchored) suggests the involvement of similar enzyme machinery in the later stages of both of 

these pathways. However the presence of only PI anchored LAM and not GlcAGroAc2 anchored, 

increases the amount of complexity in lipoglycan biosynthesis in Corynebacterineae. It is quite 

interesting to observe the specificity of arabinofuranosyltransferases involved in LAM synthesis 

towards the reducing end of lipomannan as Cg-LM-A and Cg-LM-B differ only in the structure at 

their reducing termini. It also opens the possibility of strict regulation of arabinosylation engaged 

in the synthesis of Cg-LAM from Cg-LM-A and not from Cg-LM-B.  
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4. SYNTHESIS OF BRANCHING MANNAN AND ARABINAN 

RESIDUES OF LAM IN CORYNEBACTERINEAE 
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4.1 Introduction 
 

In the previous chapters, we have identified enzymes involved in the early and late stages of 

LM/LAM biosynthesis. We established that NCgl2106/Rv2188c is involved in the synthesis of 

Ac1PIM2, and NCgl1505/Rv1459c and NCgl2093/Rv2174 synthesise the proximal and distal 

α(1→6) mannan backbone in LM/LAM. However, enzymatic steps involved in the biosynthesis 

of mannan branching and arabinan domain of LAM are yet to be fully elucidated. Recently, Kaur 

et al. (2006) reported the involvement of Rv2181 in the synthesis of some if not all α(1→2)-

Manp units on the α(1→6) mannan backbone of LM/LAM (Kaur et al., 2006, Kaur et al., 2008). 

They also established that this enzyme had dual functionality; apart from α(1→2)-Manp 

branches, a characteristics of LM and the mannan backbone of LAM, it also adds the second or 

possibly third Manp unit onto mature LAM after Rv1635c adds the first Manp unit to give rise to 

Man2/Man3-LAM (Appelmelk et al., 2008, Kaur et al., 2008). However, the possibility of 

involvement of one more enzyme towards synthesis of α(1→2)-Manp units on the α(1→6) 

mannan backbone has remained an open question.  

 

In C. glutamicum, LM is further decorated by single α(1→2)-Araf units on the mannan backbone 

which results in mature Cg-LAM (Tatituri et al., 2007a). Whilst mycobacterial LM is branched 

by a long arabinan domain mainly composed of α(1→5)-Araf with linear, Ara-4 or branched Ara-

6 motifs (Chatterjee et al., 1993; McNeil et al., 1994). Therefore, in C. glutamicum a single 

arabinofuranosyltransferase activity is responsible for the entire arabinan, while in mycobacteria 

5-7 different arabinofuranosyltransferases are required for arabinan synthesis.  

 

In the current study we have used C. glutamicum to study the enzymes involved in the mannan 
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and arabinan branching of lipoglycans in Corynebacterineae. We have examined three different 

ORFs from C. glutamicum, which encode for putative GT-C glycosyltransferases based on 

homology alignment. The genes encoding for putative glycosyltransferases were disrupted and 

the cell wall phenotype of the mutant strains analysed. On the basis of the biochemical data we 

report that NCgl2100 and NCgl2097 act as α(1→2) mannopyranosyltransferases (MptC and 

MptD) and NCgl2096 as an α(1→2) arabinofuranosyltransferase (AftE) involved in LM/LAM 

biosynthesis in Corynebacterineae.  

 

4.2 Materials and methods  

4.2.1 Bacterial strains and growth conditions 

 

C. glutamicum and E. coli DH5mcr were grown in LB broth at 30°C and 37°C, respectively. 

The recombinant strains generated were grown on BHI and CGXII medium used for C. 

glutamicum. Kanamycin and ampicillin were used at a concentration of 50 g/ml for selection of 

recombinants. Samples for lipid analyzes were prepared by harvesting cells at an OD of 10-15, 

followed by a saline wash and freeze drying.  

 

4.2.2 Construction of plasmids and strains 

 

All mutant strains in C. glutamicum and their complimented strains were constructed at Institute 

for Biotechnology Research Centre, Juelich, Germany. To delete mptC (NCgl2100), mptD 

(NCgl2097), and aftE (NCgl2096), respectively, the deletion vectors pK19mobsacB-mptC, 

pK19mobsacB-mptD and pK19mobsacB-aftE were made. In each case cross-over PCR was 
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applied using genomic DNA as template and two different PCR´s with primer pairs AB and CD 

(Table 4.1). The resulting PCR product served as template for primer pairs AD. The PCR product 

contained 18 nucleotides (nt) of the 3´-end of the respective gene together with genomic 

upstream sequences, and 36 nt of the 5´-end together with genomic downstream sequences, thus 

theoretically resulting in a peptide with 6 amino acids of the amino-terminal end fused to 12 

amino acids of the carboxy-terminal end but leaving the entire region otherwise intact. All 

plasmids used in this work were confirmed by sequencing. Genes were deleted in the wild type of 

C. glutamicum by first introducing plasmids prepared from E. coli via electroporation into C. 

glutamicum and then selection for sucrose resistance in a procedure as described (Schäfer et al., 

1994). Chromosomal deletions were confirmed using primer pairs AD, as well as the additional 

new primer pairs EF hybridizing outside of the regions used for plasmid constructions. 

 

To construct pEKEx2-Mt-mptC, chromosomal DNA of M. tuberculosis served as template, and 

Rv2181 was amplified using primer pairs v2181-for and v2181-rev, the former providing the 

sequence CTGCAG as a ribosome binding site. The amplified product was treated with PstI and 

EcoRI and ligated with pEKEx2. Plasmid pEKEx2-Mt-mptC was transformed into 

electrocompetent cells of C. glutamicummptD to result in C. glutamicummptD pEKEx2-Mt-

mptD. 

 

4.2.3 Extraction and biochemical analysis of lipids and lipoglycans 

 

Methods covering extraction and biochemical analysis of lipids and lipoglycans with 2D-TLC, 

SDS-PAGE, GC-MS, MALDI-TOF-MS and NMR are covered separately as part of General 

materials and methods in Chapter 5.  
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Primer Sequences 
A2100 CGTTAAGCTTTGTGTGCTAACTGCGTAATACTCGCGAC 
B2100 CCCATCCACTAAACTTAAACATCACCGTGCATGAAAAATAGTGTATCC

G 
C2100 TGT TTA AGT TTA GTG GAT GGG  TGG TTA 

CTGCCGTATTTAGTTGTG 
D2100 GTTTGGATCCATACCGTAGTCAAATGCAGAGTCTTGAGC 
E2100 CATTTGTGCCAACAACACGTGGTCATATGCG 
F2100 GCGGATGCGATCACCGTCAACGC 
  
A2096 CGTT AAGCTT  TCG TGA CCG TCG AGC CTG AAT CC  
B2096 CCCATCCACTAAACTTAAACACTGCAACGAGGGAACCAC 
C2096 TGTTTAAGTTTAGTGGATGGGTGGTTACTGCCGTATTTAGTTGTGG 
D2096 GCATGGATCCCCGCTGCAATGCCAAGAACTG 
E2096 CCAAGGTATCTACTGAGGTCAAGCGCG 
F2096 GTAGTGAAATATCACCCATATCAAACGGCTGCG 
  
A2097 CGCTTCTAGAGGATCATTCCACAATTTCCTACCCTCAG 
B2097 CCCATCCACTAAACTTAAACAATGTGCTGTCTGGGGGTTC 
C2097 TGTTTAAGTTTAGTGGATGGGTTGGGTCTTGGGCTGAAAG 
D2097 GCGGGAATTCCAGGCGGAATCCACATTGAGTTC 
E2097 GTGATCATCGCAGTCGCAGTTGCTGC 
F2097 GCATGGGCCACGACAAGGTTCGC 
  
v2181-for GTGCTGCAGAAGGAGATATAGATATGAATTCGCCCTTGGTGGTCG

GG 
v2181-rev CACGGATCCTTAGACGGTCACGGTCAGGCTG 

  
Table 4.1: Primers used for plasmid and strain construction, respectively. Restriction sites are in bold, and 

overhangs required for hybridisation in the second PCR in italics. Primers are given in their 5´to 3´direction. 

 

 

4.3 Results 

4.3.1 Genome locus and structural features of MptC, MptD and AftE  

 

We previously identified the 1→6) mannosyltransferases MptA and MptB of C. glutamicum 

and M. tuberculosis (Mishra et al., 2007; Mishra et al., 2008a). These catalyse the 1→6)-Manp 

transfer to distal and proximal parts of the Cg-LM-A/B backbone, respectively. On search of 

further glycosyltransferases building the elaborated structures of Cg-LM-A/B and Cg-LAM, we 

inspected the genome of C. glutamicum for additional glycosyltransferases of the GT-C family 

(Liu and Mushegian, 2003). Within a 16 kb genomic region containing MptA, three further GT-C  
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Fig. 4.1: Relatedness α(1→2) and α(1→6) mannopyranosyltransferase. The sequences of proteins identified in 

this work were used, as well as the prior identified Mt-MtpC (Kaur et al., 2006; Kaur et al., 2008), MptA and MptB 

(Mishra et al., 2007, Mishra et al., 2008a), PimE (Morita et al., 2006), and Rv1635c (Appelmelk et al., 2007). The 

functions are not identified for Cg-MptC-D2, which represents the second half of the large fusion protein encoded by 

NCgl2100, and for Rv1508c, both sharing features of GT-C transferases. Sequences were aligned using CLUSTAL 

and the tree drawn using the Phylip program.  

 

transferases are located. These are NCgl2096 (Cg-AftE) and NCgl2097 (Cg-MptD) which are 

organised in tandem, as well as NCgl2100 (Cg-MptC). Furthermore, in several Mycobacterium 

species, a MptC orthologue is present close to MptA, which has been identified in M. 

tuberculosis as mannosyltransferase, Rv2181, of multiple function (Kaur et al., 2006; Kaur et al., 

2008). Although the detailed organisation of genes within the Corynebacterineae is different, the 

syntenic organisation of additional genes like a serine/threonine protein kinase (pknL), 

hypothetical proteins (NCgl2099, Rv2179c; NCgl2094 , Rv2175c), and 3-deoxy-7-

phosphoheptulonate synthase (aroG) is largely retained in the organisms inspected. 

 

The NCgl2100 encoded protein is a hydrophobic polytopic membrane protein of 812 amino acid 



Chapter 4                                                        Biogenesis of branching residues of LM/LAM 

 

124 
 

residues. The first half from 1-417 shares as much as 37% identity (55% similarity) with the 

mycobacterial Rv2181, and 38% identities (57% similarity) to Cg-MptD, whereas the second half 

has no counterpart in Mycobacterium species. The protein is apparently a fusion of two 

membrane proteins, or a result of a duplication event. Both Cg-MptD, Cg-MptC, and their 

orthologue Rv2181 with Mt-PimE have similar size, high degree of hydrophobic similarity, and 

share amino acid regions of high identity, thus suggesting a closely related function (Fig. 4.1). 

The NCgl2097 encoded Cg-MptD is a hydrophobic polytopic membrane protein of 436 amino 

acid residues with 11 TMH. After TMH #1 and #7 larger loop regions are present probably 

localized in the periplasm. Very similar structural characteristics are shared by the GT-C 

transferase, Mt-PimE, an α(1→2) mannosyltransferase known to add the 5th Manp residue to 

Ac1/Ac2PIM4 (Morita et al., 2006).The NCgl2096 encoded C. glutamicum-AftE consists of 412 

amino acid with 9 TMH. It has 2 large loops rich in negatively charged amino acids (6 Asp, 2 

Glu) with the first following TMH #1 as required for glycosyl linkage activity for known GT-C 

members (Seidel  et al., 2007b). 

 

4.3.2 Construction of deletion mutants and growth 

 

Construct pK19mobsacB-mptC was made containing 13 nt of the 3´-end of mptC together with 

genomic upstream sequences, and 36 nt of the 5´-end together with genomic downstream 

sequences. This non-replicative vector was used to transform C. glutamicum to Kanr indicating 

chromosomal integration. Sucr clones were selected in a second round of positive selection, 

indicating loss of the vector-bound sacB function (Schäfer et al., 1994). From 12 Kans and Sucr 

clones analysed via PCR, 7 had lost mptC, whereas in the remaining 5 the wild type phenotype 

was restored. One clone with deleted mptC was selected and referred as C. glutamicummptC. In 
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an analogous manner, pK19mobsacB-mptD and pK19mobsacB-aftE were made. They were 

used to select from the wild type by double cross-over events as described above for absence of 

the respective gene, eventually yielding C. glutamicummptD and C. glutamicumaftE. 

 

The mutants were inoculated in liquid BHI and CGXII and their growth pattern was studied. C. 

glutamicumaftE had a growth rate of 0.32±0.01 h-1 in comparison to 0.39±0.02 h-1 of wild type 

on CGXII. A slightly retarded growth was also observed for C. glutamicummptD (0.37±0.02  

h-1), whereas growth of C. glutamicummptC was indistinguishable from that of the wild type. A 

similar trend was seen on BHI medium, but the differences were even smaller. This illustrates 

that the genes are not vital for growth as we have seen for other glycosyltransferases involved in 

cell wall synthesis (Emb and AftA) (Alderwick et al., 2005; Alderwick et al., 2006b). 

Nevertheless, the presence of aftE is necessary to ensure optimal growth of C. glutamicum. 

 

4.3.2 Purification and general characteristics of lipoglycans 

 

Lipoglycans from wild-type C. glutamicum, C. glutamicum∆mptC, C. glutamicum∆mptD, and C. 

glutamicum∆aftE with complemented strains C. glutamicum∆mptC pVWEx-Cg-mptC, C. 

glutamicum∆mptD pVWEx-Cg-mptD and C. glutamicum∆aftE pVWEx-Cg-aftE were extracted 

from delipidated cells by ethanol/water extraction followed by hot-phenol water treatment and 

enzymatic degradation of contaminants. The crude lipoglycan extract was subjected to HIC for 

removal of glycans and further applied on gel permeation chromatography for separation of Cg-

LM-A/B and Cg-LAM. The extracted lipoglycans were examined for their size and mobility on  
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Fig. 4.2:  Lipoglycan profiles of wild-type and mutant strains of C. glutamicum. Lipoglycans were extracted 

from wild-type and mutants and analysed using SDS-PAGE and visualised using a Pro-Q emerald glycoprotein stain. 

Lipoglycan profiles from C. glutamicum∆mptC, (A); C. glutamicum∆mptD, (B); and C. glutamicum∆aftE; (C), are 

represented with standard molecular weight markers of glycoproteins of 180, 82, 42, and 18 kDa, respectively. In 

(A), (B) and (C), Lane WT, contains lipoglycans extracted from C. glutamicum; Lane 1, crude lipoglycans from 

mutant strains and Lane 2 and 3 have purified Cg-LAM and Cg-LM-A/B, respectively. The major bands represented 

by Cg-LAM and Cg-LM-A/B are indicated.  
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Fig. 4.3: MALDI-TOF-MS spectra of Cg-LM-A/B and Cg-LAM from different strains of C. glutamicum. Cg-

LM-A/B (A) and Cg-LAM (B) were purified from different strains and their MALDI-TOF-MS was recorded. 

MALDI-TOF-MS spectra were acquired in the linear negative mode with delayed extraction using 2,5-

dihydrobenzoic acid as a matrix. 
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15 % SDS-PAGE (Fig. 4.2). Extracts from wild type C. glutamicum showed the presence of Cg-

LM-A and Cg-LM-B (both co-migrate) and Cg-LAM, while lipoglycans from mutant strains, C. 

glutamicum∆mptC, C. glutamicum∆mptD and C. glutamicum∆aftE showed subtle differences in 

their migration on SDS-PAGE (Fig. 4.2).  

 

All three species of lipoglycans from C. glutamicum∆mptC, C. glutamicum∆mptD, and C. 

glutamicum∆aftE were different in their mobility on SDS-PAGE which directly suggested 

changes in their size and molecular weight in these mutants. Cg-LM-A, Cg-LM-B and Cg-LAM 

from all mutant strains migrated faster in comparison to wild-type C. glutamicum which implies 

that these lipoglycans were smaller in size and have low molecular weights. Furthermore, the 

molecular weight of the lipoglycans was investigated on MALDI-TOF-MS. The mass spectra of 

wild-type and mutant strains’ lipoglycans were summarised in Table 4.2.  

 

The Cg-LAM from wild-type C. glutamicum exhibited a broad unresolved peak centred at m/z 

15,000, indicating a molecular weight of approximately 15 kDa for the major molecular species 

of this lipoglycan (Fig. 4.3). Interestingly, Cg-LAM species from C. glutamicum∆mptC peaked at 

m/z 13,800, indicating a decrease of around 1.2 kDa for the mutant Cg-LAM isolated from C. 

glutamicum∆mptC as compared to the wild-type Cg-LAM (Fig. 4.3 B). In addition, Cg-LM-A/B 

from C. glutamicum∆mptC exhibited a broad unresolved peak centred at m/z 4,400, indicating a 

molecular weight of approximately 4.4 kDa, a decrease of 1.1 kDa in comparison to 5.5 kDa of 

Cg-LM-A/B from wild-type C. glutamicum. Similarly, Cg-LM-A/B and Cg-LAM from C. 

glutamicum∆mptD are centred around m/z 4,700 and 13,000, respectively (Fig. 4.3 A). The 

difference in size of all three lipoglycan species, including Cg-LM-A, Cg-LM-B and Cg-LAM 

suggested that there is a difference in a common component of all three strains.  
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The MALDI-TOF mass spectra of C. glutamicum∆aftE gave some surprising results in 

comparison to C. glutamicum∆mptC and C. glutamicum∆mptD mutants. The Cg-LAM from C. 

glutamicum∆aftE showed an unresolved peak which centred around m/z 13,000, similar to C. 

glutamicum∆mptC. However, Cg-LM-A/B from C. glutamicum∆aftE peaked around m/z 6,000, 

in comparison to 5.5 kDa of Cg-LM-A/B of wild-type C. glutamicum (Fig. 4.3 A, B). The 

presence of a similar Cg-LM-A/B and shorter Cg-LAM in C. glutamicum∆aftE in comparison to 

wild-type Cg-LM-A/B and Cg-LAM, suggested that AftE is involved in the synthesis of Cg-

LAM only.   

 

4.3.3 Glycosyl composition of purified lipoglycans  

 

Lipoglycans from C. glutamicum, C. glutamicum∆mptC, C. glutamicum∆mptD and C. 

glutamicum∆aftE were purified and separated as Cg-LM-A/B and Cg-LAM as described above. 

Purified lipoglycans were processed and converted into alditol acetates and their glycosyl 

composition was determined by GC (Fig. 4.4). The glycosyl composition of each lipoglycan 

species in all mutant strains is summarised in Table 4.2. GC analysis of mutant Cg-LM-A/B from 

C. glutamicum∆mptC and C. glutamicum∆mptD showed a relative decrease in amount of Manp 

in comparison to Manp content of Cg-LM-A/B from wild type C. glutamicum (Fig. 4.4 A).  

 

Furthermore, it revealed a molar ratio of Araf:Manp of 0.47:1.0 in Cg-LAM from wild type C. 

glutamicum. The mutant Cg-LAM from C. glutamicum∆mptC, C. glutamicum∆mptD yielded a 

significant reduction in Manp content concomitant with a relative increase in the amount of Araf 

(Fig. 4.4 B). The C. glutamicum∆mptC yielded a mutant Cg-LAM with an Araf:Manp ratio of 

0.7:1.0, while C. glutamicum∆mptD Cg-LAM has an Araf:Manp ratio of 0.54:1.0. This data  
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S. No. Strain Cg-LAM  
(MALDI-MS)  

kDa 

Cg-LM-A/B  
(MALDI-MS) 

kDa 

Sugar 
Analysis 

(Cg-LAM) 

Sugar 
Analysis 

(Cg-LM-A/B) 

Linkage Analysis 
(Cg-LAM) 

Linkage 
Analysis 

(Cg-LM-A/B) 
1 C. glutamicum 15 5.5 Araf and  

Manp 
Manp and 
Inositol 

- - 

2 C. glutamicum 

∆aftE 

13 6.0  
Araf 

missing 

    
Like WT 

t-Ara Missing and 
increased ratio of 
α(1→2)-Manp 

Increased 
α(1→2)-Manp 

3 C. glutamicum 

∆mptC 

13.8 4.4  
Reduced  

Manp 

-  
α(1→2)-Manp 

reduced 

α(1→2)-Manp 
reduced 

4 C. glutamicum 

∆mptD 

13 4.7  
Reduced 

Manp 

-  
α(1→2)-Manp 

reduced 

α(1→2)-Manp 
reduced 

 
Table 4.2: Summary of biochemical analysis of lipoglycans from different strains of C. glutamicum. The 

numbers given are in approximate values.  

 

suggested that both MptC and MptD are involved in the synthesis of mannan portion of Cg-LAM 

with MptA and MptB. Additionally, the higher Araf:Manp ratio in C. glutamicum∆mptC in 

comparison to C. glutamicum∆mptD suggested that MptC synthesises the majority of mannan in 

comparison to MptD.  

 

Surprisingly, the Manp content in Cg-LM-A/B from C. glutamicum∆aftE showed no apparent 

change, however, mutant Cg-LAM showed complete absence of an arabinan peak in GC analysis 

of alditol acetates (Fig. 4.4 A) suggesting the involvement of AftE in the synthesis of the 

arabinan branches in Cg-LAM of C. glutamicum. It also suggested that the arabinan branches in 

C. glutamicum Cg-LAM are entirely contributed by a single enzyme unlike mannan branches 

where more than one enzyme is required.  
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Fig. 4.4: Glycosyl compositional analysis of purified Cg-LM-A/B (A) and Cg-LAM (B) from different strains 

of C. glutamicum. Samples of individually purified lipoglycans were hydrolysed with 2M TFA, reduced and per-O-

acetylated and subjected to GC analysis.  

 

4.3.4 Glycosyl linkage of purified lipoglycans  

 

The glycosyl linkages present in the lipoglycans from wild-type and mutant strains of C. 

glutamicum were analysed on GC-MS by per-O-methylated alditol acetate derivatives prepared 

from purified lipoglycans. Cg-LM-A/B from C. glutamicum possessed a normal profile of 

glycosidic linkages corresponding to t-Manp, 6-Manp, 2-Manp, and 2,6-Manp (Fig. 4.5 A). 

However, relative ratios of different linkages in Cg-LM-A/B from C. glutamicum∆mptC and C. 

glutamicum∆mptD indicated changes in mannan domain in Cg-LM-A/B from these strains. The  
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Fig. 4.5: Glycosyl linkage analysis of Cg-LM-A/B (A) and Cg-LAM (B) from different strains of C. 

glutamicum. Per-O-methylated samples were hydrolysed using 2M trifluoroacetic acid, reduced and per-O-

acetylated. The resulting partially per-O-methylated, per-O-acetylated alditol acetates were analysed on GC-MS.  

 

relative abundance of t-Manp, 2-Manp, and 2,6-Manp were reduced with a concomitant increase 

in the abundance of 6-Manp in Cg-LM-A/B from these strains (Fig. 4.5 A). Similarly, per-O-

methylated alditol acetate derivatives of Cg-LAM from these strains showed a reduction in 

relative abundance of t-Manp, 2-Manp, and 2,6-Manp (Fig. 4.5 B).  

 

The complementation of C. glutamicum∆mptC and C. glutamicum∆mptD with pVWEx-Cg-mptC 

and pVWEx-Cg-mptD, respectively restored the wild-type phenotype in these strains. These data 

suggested that Cg-LM-A/B and Cg-LAM from C. glutamicum∆mptC and C. glutamicum∆mptD 

have reduced α(1→2)-Manp units, and MptC and MptD are involved in the synthesis of these 
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residues in Cg-LM-A/B and Cg-LAM in C. glutamicum. In contrast, GC-MS analysis of per-O-

methylated alditol acetate derivatives prepared from Cg- LM-A/B of C. glutamicum∆aftE showed 

no major differences in the relative abundance of t-Manp, 2-Manp, and 2,6-Manp. However, 

mutant Cg-LAM from C. glutamicum∆aftE was found to be completely devoid of t-Araf 

branching residues and possess a significant increase in amount of t-Manp, 2-Manp, 2,6-Manp, 

and 6-Manp. 

 

Complementation of C. glutamicum∆aftE with plasmid pVWEx-Cg-aftE containing Cg-aftE 

restored the glycosyl linkage profile to that of wild type C. glutamicum. These results 

demonstrated that NCgl2100 and NCgl2097 are involved in synthesis α(1→2)-Manp residues in 

Cg-LM-A/B and Cg-LAM, and NCgl2096 is involved in the synthesis of t-Araf residues in Cg-

LAM in C. glutamicum.  

 

4.3.5 Complementation of C. glutamicum∆mptC, C. glutamicum∆mptD, and C. 

glutamicum∆aftE with their mycobacterial homologues   

 

All three ORFs from C. glutamicum (NCgl2100, NCgl2097 and NCgl2096) were used as query 

sequences and aligned against M. tuberculosis genome in search of their homologues. NCgl2100 

or mptC showed 55% similarity to Rv2181 of M. tuberculosis, while NCgl2097 and NCgl2096 

showed 47.9% and 40.8%, respectively, similarity to Rv2181. A plasmid encoding Rv2181 was 

able to restore the wild-type phenotype in C. glutamicum∆mptC (Fig. 4.6). However, Rv2181 was 

quite specific for C. glutamicum∆mptC and unable to complement mutant phenotypes in C. 

glutamicum∆mptD and C. glutamicum∆aftE (Fig. 4.6). The data suggested that Rv2181 is a true  
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Fig. 4.6: Complementation of C. glutamicum∆mptC, C. glutamicum∆mptD, and C. glutamicum∆aftE with 

Rv2181. Lipoglycans were extracted and analysed using SDS-PAGE and visualised using a Pro-Q emerald 

glycoprotein stain. Lane WT, contains lipoglycans extracted from C. glutamicum; Lane 1, crude lipoglycans from C. 

glutamicum∆mptC; Lane 2, C. glutamicum∆mptC pVWEx-Mt-Rv2181; Lane 3, C. glutamicum∆mptD pVWEx-Mt-

Rv2181; and Lane 4, C. glutamicum∆aftEC pVWEx-Mt-Rv2181. The major bands represented by Cg-LAM and Cg-

LM-A/B are indicated.  

 

homologue of NCgl2100 and both encode for an α(1→2) mannopyranosyltransferase and it was 

concluded that MptC is involved in the synthesis of on α(1→2)-Manp branches of Cg-LM-A/B 

and Cg-LAM in Corynebacterineae.  
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4.4 Discussion  

 

Apart from sharing a similar cell wall architecture with M. tuberculosis, C. glutamicum also has 

similar genetic loci encoding for cell wall biogenesis. Furthermore, its usage in the study of 

essential genetic elements of M. tuberculosis, makes it an attractive model system for the 

functional genomics of M. tuberculosis (Alderwick et al., 2006a; Alderwick et al., 2006b). In 

addition, the non-pathogenic and fast growing nature of C. glutamicum has enabled its use as a 

suitable model for the identification and functional study of mycobacterial genes involved in 

mycolic acid, arabinogalactan, and LAM biosynthesis (Alderwick et al., 2005; Alderwick et al., 

2006a; Alderwick et al., 2007; Birch et al., 2008; Birch et al., 2009; Gande et al., 2004; Gande et 

al., 2007; Gibson et al., 2003; Mishra et al., 2007; Mishra et al., 2008a; Mishra et al., 2008b; 

Mishra et al., 2009; Seidel et al., 2007a; Seidel et al., 2007b; Tatituri et al., 2007a; Tatituri et al., 

2007b) 

 

Previously, we reported the identification of enzymes involved in the early and late stages of 

LM/LAM biosynthesis using C. glutamicum as a model system (Mishra et al., 2007; Mishra et 

al., 2008a; Mishra et al., 2008b; Mishra et al., 2009). It was established that MptA and MptB 

synthesised the distal and proximal α(1→6) mannan backbone of LM/LAM, respectively (Mishra 

et al., 2007; Mishra et al., 2008a). Herein, we have continued our earlier studies to identify genes 

required for the biosynthesis of the core structural elements of the mycobacterial lipoglycans by 

studying mutants of C. glutamicum and the orthologous genes and enzymes of M. tuberculosis.  

Herein, we have identified the genetic loci responsible for the synthesis of the mannan and 

arabinan branches of LM and LAM in Corynebacterineae. On the basis of our genetic and 

biochemical analysis of mutants in C. glutamicum deficient in putative glycosyltransferases, we 
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report NCgl2096 as a novel arabinofuranosyltransferase, AftE, which is involved in priming of 

mannan backbone of Cg-LM-A/B with singular t-Araf which results in the synthesis of the 

complete structure of Cg-LAM in C. glutamicum. Furthermore, NCgl2097 and NCgl2100 have 

been identified as two novel α(1→2)mannopyranosyltransferases, MptD and MptC, respectively. 

One of them adds α(1→2)-Manp residues to the proximal backbone of Cg-LM-A/B, whilst the 

other adds α(1→2)-Manp residues to the distal backbone of Cg-LM-A/B. 

 

SDS-PAGE and MALDI-TOF-MS analysis of all three lipoglycan species, including Cg-LM-A, 

Cg-LM-B and Cg-LAM from C. glutamicum∆mptC and C. glutamicum∆mptD suggested that 

there is a difference in a common component of all three species. These lipoglycans share a 

similar anchor motif with an α(1→6) mannan backbone primed with α(1→2)-Manp units. 2D-

TLC analysis supplemented with negative MALDI-TOF-MS of extracted glycolipids from the 

mutants have shown no difference in the precursors, and presence of MptA and MptB in these 

mutants negates the possibility of a change in the α(1→6) mannan backbone of these lipoglycans 

which left the possibility of a modification in the α(1→2)-Manp branches and suggested that 

MptC and MptD are involved in the synthesis of these α(1→2)-Manp units in these lipoglycans. 

In addition, glycosyl composition and linkage analysis suggested a reduction in the relative 

abundance of t-Manp, 2-Manp and 2,6-Manp with a concomitant increase in the abundance of 6-

Manp in Cg-LM-A/B and 6-Manp and t-Araf in Cg-LAM from these strains. The cumulative 

biochemical analysis of C. glutamicum∆mptC and C. glutamicum∆mptD suggested that MptC 

and MptD are involved in synthesis of α(1→2)-Manp units in Cg-LM-A/B and Cg-LAM in C. 

glutamicum.  
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Recently, Kaur et al. (2006; 2008) reported the involvement of Rv2181 in the synthesis of some 

if not all α(1→2)-Manp units on the α(1→6) mannan backbone of LM and LAM in mycobacteria 

(Kaur et al., 2006, Kaur et al., 2008). In addition, all three ORFs from C. glutamicum (NCgl2100, 

NCgl2097 and NCgl2096) showed maximum similarity with Rv2181 of M. tuberculosis. 

Therefore, a plasmid encoding Rv2181 was transformed in these mutants, which was able to 

restore the wild-type phenotype in C. glutamicum∆mptC, however, was unable to complement 

the mutant phenotypes in C. glutamicum∆mptD and C. glutamicum∆aftE. The data suggested that 

Rv2181 is a true homologue of NCgl2100 and both encode for 

α(1→2)mannopyranosyltransferase(s), and MptC is involved in the synthesis of the α(1→2)-

Manp branches of LM/LAM in Corynebacterineae. Herein, we propose MptD as a homologue of 

another unidentified α(1→2)mannopyranosyltransferase responsible for synthesis of the residual 

α(1→2)-Manp units in M. tuberculosis∆Rv2181 (Kaur et al. 2008).     

 

The number of α(1→2)-Manp residues in lipoglycans of C. glutamicum∆mptD is more in 

comparison to C. glutamicum∆mptC, which is due to presence of MptC in C. glutamicum∆mptD 

which suggests that MptC is enzymatically more active than MptD. One of the important 

questions in lipoglycan biosynthesis is the division of LM and LAM abundance in the cell wall. 

The separation of LM and LAM in C. glutamicum, biosynthetically occurs after half of the 

mannan backbone is primed with α(1→2)-Manp residues by one of the 

α(1→2)mannopyranosyltransferases, probably MptC. Thereafter, in case of LM synthesis, the 

second α(1→2)mannopyranosyltransferase MptD primes the rest of the backbone, while in case 

of LAM; MptD and AftE both decorate the mannan backbone with α(1→2)-Manp and t-Araf 

residues, respectively. The presence of two α(1→2)mannopyranosyltransferases, MptC and 

MptD, with different activities with two other α(1→6)mannopyranosyltransferases, MptA and 
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MptB, suggests the possibility of enzymatic complexes in lipoglycan biosynthesis similar to 

FAS-II in mycolic acid biosynthesis (Takayama et al., 2005; Bhatt et al., 2008). One of the 

α(1→2)mannopyranosyltransferases might be acting in complex with MptB, while other one with 

MptA. MptC might be the first priming enzyme which works in complex with MptB till PIM15-18 

or Cg-t-LM (Mishra et al., 2007). Thereafter, MptD takes over the priming in complex with 

MptA and gives a full length LM. Sequence and topology of MptC and MptD are quite similar to 

each other which supports the argument that both act on similar substrates (partial branched Cg-t-

LM) (Mishra et al., 2007), which indicates that they are involved in the synthesis of distal part of 

LM/LAM with MptA. 

 

The biochemical analysis of C. glutamicum∆aftE showed a Cg-LM-A/B similar to wild-type with 

a shorter mutant Cg-LAM. The glycosyl composition and linkage analysis of mutant Cg-LAM 

suggested the complete loss of arabinan or t-Araf from Cg-LAM. Absence of arabinan residues in 

this lipoglycan suggested it as a novel LM with higher α(1→2)-Manp units probably due to the 

action of MptC and MptD on branching sites created due to the absence of branched t-Araf 

residues. A comparison of the glycosyl linkage profile of the novel mutant lipoglycan from C. 

glutamicum∆aftE with Cg-LM-A/B from wild-type C. glutamicum, suggested it as a higher Cg-

LM-A/B with α(1→6) mannan backbone and highly decorated with α(1→2)-Manp unit. 
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5.1 Chemicals, reagents and enzymes 
 

All chemicals and solvents were purchased from Sigma-Aldrich (Dorset, UK), Bio- Rad (Ca, 

USA) and Fisher Chemicals (UK) unless otherwise stated, and were of AnalR grade or 

equivalent. Enzymes were obtained from Sigma-Aldrich (Dorset, UK) or Roche (Lewes, UK) and 

were of the highest grade available. 

 

5.2 Lipid extraction and analysis 

 

Polar and apolar lipids were extracted as described by Dobson et al. (1985). Briefly, 6 g of dry C. 

glutamicum cells were treated in 220 ml of methanolic saline (20 ml 0.3% NaCl and 200 ml 

CH3OH) and 220 ml of petroleum ether for 2 h (Dobson et al., 1985). The suspension was 

centrifuged and the upper layer containing apolar lipids was separated. The step was repeated 

twice. The two upper petroleum ether fractions were combined and dried. For polar lipids, 260 ml 

CHCl3/CH3OH/0.3% NaCl (9:10:3, v/v/v) was added to the lower aqueous phase and stirred for 4 

h. The mixture was filtered and the filter cake re-extracted twice with 85 ml of 

CHCl3/CH3OH/0.3% NaCl (5:10:4, v/v/v). Equal amounts of CHCl3 and 0.3% NaCl (145 ml 

each) were added to the combined filtrates and stirred for 1 h. The mixture was allowed to settle, 

and the lower layer containing the polar lipids recovered and dried. The polar lipid extract was 

examined by two dimensional thin-layer chromatography (2D-TLC) on aluminum backed plates 

of silica gel 60 F254 (Merck 5554), using CHCl3/CH3OH/H2O (65:25:4, v/v/v) in the first 

direction and CHCl3/CH3COOH/CH3OH/H2O (40:25:3:6, v/v/v/v) in the second direction. The 

thin-layer chromatographic plates sprayed with the appropriate staining solution to detect the 

presence of lipids, glycolipids or phospholipids as outlined below. 
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5.2.1 α-Naphthol-sulfuric acid (α-NAP) 

 

α-NAP was used for the detection of carbohydrate containing lipids. The spray solution was 

prepared from 6 g of α-napthol dissolved in 25 ml of sulfuric acid and 450 ml of ethanol (Dobson 

et al., 1985). Carbohydrate positive lipids were revealed by gentle charring of the plates with a 

heat gun until purple spots appeared which indicates the presence of carbohydrate moiety in the 

lipid. 

 

5.2.2 Phosphate stain 

 

The Dittmer and Lester reagent (Dittmer & Lester, 1964) was used for the detection of phosphate 

containing lipids with a modified procedure (Muthing & Radloff, 1998). Briefly, solution A was 

prepared from 40 g of molybdenum VI oxide dissolved in a 1 L of boiling sulfuric acid. Solution 

B contained 1.7 g of solid molybdenum dissolved into 0.5 L of solution A. Solutions A and B 

were then mixed with H2O to give a final mixture in the ratio of solution A:solution B:H2O, 

1:1:4. Phosphate positive lipids were revealed by spraying the plates which were then left to 

develop for ten min without charring revealing light blue spots on a white background.  

 

5.2.3 Molybdophosphoric acid (MPA) 

 

MPA was used for the detection of all lipids. Spray solution was prepared from 5% (w/v) 

ethanolic molbdophosphoric acid (Dobson et al., 1985). Lipid species were revealed by charring 

the plates with a heat gun.  
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5.3 Extraction and purification of lipoglycans 

 

Lipoglycans were extracted from delipidated cells as previously described (Ludwiczak et al., 

2001; Ludwiczak et al., 2002; Nigou et al., 1997). Briefly, cells were broken by sonication (MSE 

Soniprep 150, 12 micron amplitude, 60s ON, 90s OFF for 10 cycles, on ice) and the cell debris 

refluxed 5 times with 50% C2H5OH at 68°C, for 12 h intervals. The cell debris was removed by 

centrifugation and the supernatant containing lipoglycans, neutral glycans and proteins dried. 

This dried extract was then treated with hot phenol–H2O. The aqueous phase was dialyzed and 

dried, followed by extensive treatments with α-amylase, DNase, RNase chymotrypsin and 

trypsin. The fraction was dialyzed once again to remove residual impurities and enzymes.  

 

The crude lipoglycan extract was dried and resuspended in buffer A (50 mM ammonium acetate 

and 15% propan-1-ol) and subjected to Octyl Sepharose CL- 4B HIC (2.5 cm x 50 cm) (Leopold 

& Fischer, 1993). The column was washed initially with 4 column volumes of buffer A to ensure 

removal of neutral glycans followed by buffer B (50 mM ammonium acetate and 50% propan-1-

ol). The eluent was collected and concentrated to approximately 1 ml and precipitated using 5 ml 

of C2H5OH. The sample was dried using a Savant Speedvac and then resuspended in buffer C 

(0.2 M NaCl, 0.25% sodium deoxycholate (w/v), 1 mM EDTA and 10 mM Tris-HCl, pH 8) to a 

final concentration of 200 mg/ml.  

 

The sample was gently mixed and left to incubate for 48 h at room temperature. The sample was 

then loaded onto a 200 ml Sephacryl S-200 column previously equilibrated with buffer C. The 

sample was eluted with 400 ml of buffer C at a flow rate of 3 ml/h, collecting 1.5 ml fractions. 

The fractions were monitored by SDS-PAGE using either a silver stain utilizing periodic acid and 
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silver nitrate (Hunter et al., 1986) or a Pro-Q emerald glycoprotein stain and individual fractions 

pooled and dialyzed extensively against buffer D (10 mM Tris-HCl, pH 8, 0.2 M NaCl, 1 mM 

EDTA) for 72 h with frequent changes of buffer. The samples were further dialyzed against 

deionized water for 48 h with frequent changes of water, lyophilized and stored at - 20ºC. 

 

5.3.1 SDS-PAGE 

 

For the separation of lipoglycans and proteins SDS-polyacrylamide gel electrophoresis technique 

was used (Laemmli, 1970). Resolving gels of either 12% or 15% (w/v) acrylamide and a stacking 

gel of 6% were prepared and casted in the electrophoresis apparatus according to the 

manufacturer’s instructions. Lipoglycan samples (usually 5 -20 μg) were analysed on 15% 

polyacrylamide gels, while protein fractions (25 μg) were run on 12% polyacrylamide gels. The 

ingredients used to cast the resolving and stacking gels are given in Table 5.1 and 5.2.  

 

The running buffer was made up with 25mM Tris, 190mM glycine, and 4mM SDS. Lipoglycan 

samples were mixed with an appropriate amount of loading buffer (360mM Tris-HCl, pH 8.8, 9% 

(w/v) SDS, 0.9% (w/v) bromophenol blue, 15% (w/v) β-mercaptoethanol, and 30% glycerol) and 

boiled for 5 min before loading onto the gel. Pro-Q emerald glycoprotein stain (Invitrogen) was 

used for visualising the lipoglycan content in the samples as explained in the manufacturer’s 

handbook.  
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Ingredients Amount for 2 mini gels 

4 % Resolving gel buffer 3.75 ml 

Acrylamide/bis-Acrylamide/Water 11.25 ml 

TEMED (Sigma) 30 µl 

10 % Ammonium per sulphate 75 µl 

 

Table 5.1: Ingredients used to make resolving gel of 12 % SDS-PAGE. Resolving gel buffer: 1.5M Tris-HCl 

(Roche), 0.4% SDS (BDH) pH 8.8; The acrylamide/bis/water mix:. Acrylamide mix (Protogel):water (6ml/5.25ml).  

 

 
Ingredients Amount for 2 mini gels 

4 % Resolving gel buffer 1.25 ml 

Acrylamide/bis-Acrylamide 0.65 ml 

Water 3.05 ml 

TEMED (Sigma) 15 µl 

10 % Ammonium per sulphate 75 µl 

 

Table 5.2: Ingredients used to make stacking gel of 12 % SDS-PAGE. Stacking gel buffer: 0.5M Tris-HCl 

(Roche), 0.4% SDS (BDH) pH 6.8.  

 

5.3.2 Chromatography of lipoglycans 

 

All glass columns were purchased from Sigma (Dorset, UK) with a bed size of either 2.5 x 50 cm 

or 1.5 x 30 cm. The matrices (Octyl sepharose CL-4B and Sephacryl S-200) used were obtained 

from Sigma and used processed according to the manufacturers’ instructions. The 

chromatographic buffers used were filtered with Corning 0.22 μm CA (cellulose acetate) filter 

system and degassed with helium. 
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5.3.3 Dialysis of lipoglycans 

 

Dialysis of lipoglycans was performed using a low molecular weight cut off dialysis tubing, 

Spectra/Por membrane 6, MWCO 3,500 kDA, and PIMs on Spectra/Por membrane 6, MWCO 

1,000 kDA, purchased from Spectrum Labs, according to manufacturers instructions. 

 

5.4 Glycosyl compositional and linkage analysis  

 

Lipoglycans were hydrolyzed using 2M trifluoroacetic acid, reduced with NaB2H4, and the 

resultant alditols per-O-acetylated before examination by GC (Tatituri et al., 2007b). Glycosyl 

linkage analyses were performed as described previously (Tatituri et al., 2007b). Briefly, 

lipoglycan samples were per–O-methylated using dimethyl sulfinyl carbanion, hydrolysed using 

2M trifluoroacetic acid, reduced using NaB2H4 and per-O-acetylated. The resulting per-O-

methylated alditol acetates were solubilised in CHCl3 before analysis by gas 

chromatography/mass spectrometry (GC/MS) (Tatituri et al., 2007b). GC analysis was performed 

using a Thermoquest Trace GC 2000. Samples were injected in the split-less mode. The column 

used was a DB225 (Supelco). The oven was programmed to hold at an isothermal temperature of 

275 C for a run time of 15 min. GC/MS was carried out on a Finnigan Polaris/GCQ PlusTM. 

The column used was a BPX5 (Supleco). Injector temperature was set at 50ºC, held for 1 min and 

then increased to 110ºC at 20ºC/min. The oven was held at 110ºC then ramped to 290ºC at 

8ºC/min and held for 5 min to ensure all the products had eluted from the column. All the data 

were collected and analysed using Xcaliber (v.1.2) software.  
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5.5 MALDI-TOF-MS analysis 

 

The matrix used was 2,5-dihydroxybenzoic acid at a concentration of 10 µg/µl, in a mixture of 

water/ethanol (1:1, v/v), 0.1% trifluoroacetic acid. LM samples (0.5 µl) at a concentration of 10 

µg/µl, were mixed with 0.5 µl of the matrix solution.  Analyses were performed on a Voyager 

DE-STR MALDI-TOF instrument (PerSeptive Biosystems, Framingham, MA) using linear mode 

detection. Mass spectra were recorded in the negative mode using a 300 ns time delay with a grid 

voltage of 80% of full accelerating voltage (25 kV) and a guide wire voltage of 0.15%. The mass 

spectra were mass assigned using external calibration. 

 

5.6 NMR spectroscopy 

 

NMR spectra of LM samples were recorded on a Bruker DMX-500 equipped, with a double 

resonance (1H/X)-BBi z-gradient probe head. All samples were exchanged in D2O (D, 99.97% 

from Euriso-top, Saint-Aubin, France), with intermediate lyophilization, and then dissolved in 0.5 

ml D2O and analysed at 313K. The 1H and 13C NMR chemical shifts were referenced relative to 

internal acetone at 2.225 and 34.00 ppm, respectively. All the details concerning NMR sequences 

and experimental procedures were described previously (Gilleron et al., 1999; Gilleron et al., 

2000).
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Sudden upsurge in the number of cases of MDR- and XDR-TB, imposes a need for the 

identification of novel drug targets and development of active compounds against them. In this 

respect, the biosynthetic machinery of the mycobacterial cell wall (target for first line drugs) 

represents an attractive target. In this regard, we have experimentally characterised several 

glycosyltransferases involved in the biosynthesis of the mycobacterial cell wall of M. 

tuberculosis. Herein, we used C. glutamicum as a ‘a proof of principle’ to study the role of 

glycosyltransferases in the biosynthesis of LAM and related glycoconjugates. We have analysed 

several ORFs, which encode for putative glycosyltransferases from M. tuberculosis and deleted 

their respective orthologs in C. glutamicum. Complete biochemical characterisation of these 

mutant phenotypes have shown their role in the synthesis of PIMs and LM/LAM. Furthermore, 

mutants were complemented with their respective mycobacterial homologous to identify and 

characterise their functions. 

 

One of these ORFs, NCgl2093/Rv2174, categorised as a GT-C which utilises the polyprenyl 

based sugar donor, C50-PP-Manp, was identified to encode for an (16) mannosyltransferase 

(MptA) which is involved in the later stages of the biosynthesis of the (16) mannan core of 

LM and LAM (Fig. 6.1). The homologue of Rv1459c [MptB] in C. glutamicum was shown to be 

involved in the early stages of the biosynthesis of the (16) mannan core of LM and LAM. 

MptB accepts Ac1PIM2 as substrate and adds 10-13 Manp residues in a (16) fashion which is 

further extended by MptA (Fig. 6.1). The MptB in M. tuberculosis and M. smegmatis possess 

similar (16) mannosyltransferase activity, however, failed to complement the mutant 

phenotypes either in vivo or in vitro, which suggests a subtle substrate specificity for MptB in M. 

tuberculosis and M. smegmatis. Furthermore, Ac1PIM2 and/or Ac1PIM4 have been suggested as  
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Fig.6.1: Biosynthetic pathway of LM biogenesis in C. glutamicum and M. tuberculosis before (A) and after (B) 

this work. (A) Before this work PgsA, PimA, acyltransferase (Rv2611c) and MgtA have been shown to be involved 

in the synthesis of PIMs, while Rv2181 in the synthesis of α(1→2)-Manp units in LM/LAM. However, enzymes 

involved in the synthesis of α(1→6)-Manp backbone were not known and have been identified in this study (B). 

 

 

end products of the biosynthetic pathway on cytoplamic face and is later on flipped on the 

periplasmic side by an unidentified flippase.  

 

Interestingly, α(1→6) mannan extension is more complex in Mycobacterium based on the 

evidence that Mt-MptB and Ms-MptB fail to complement the C. glutamicumΔmptB mutant and 

suggests a slightly different substrate specificity of the MptB orthologues of M. tuberculosis and 

M. smegmatis. Redundency of Ms-MptB in M. smegmatisΔmptB, indicate another, yet 

unidentified, mannosyltransferase that may substitute for MptB in the mutant or MptA itself or 

substituting for the deficiency of MptB. Creation of an M. smegmatis strain devoid of MptA and 
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MptB may shed further light on this aspect. However, usage of the C. glutamicum mutants have 

enabled the assignment of function and activity to the GT-C glycosyltransferases NCgl1505 and 

Rv1459c, which would have otherwise not been possible if similar studies would have 

concentrated solely on mycobacterial species (Fig. 6.1). 

 

Disruption of NCgl2106 has shown that this gene is involved in the synthesis of Ac1PIM2 and 

subsequently, PI-based LM and LAM in C. glutamicum. The study also highlighted the synthesis 

of a glycolipid, Man--D-glucopyranosyluronic acid-(13)-glycerol (ManGlcAGroAc2) and 

ManGlcAGroAc2 based LM (Cg-LM-B) in C. glutamicum by MgtA (Rv0557). The M. 

tuberculosis homologue of NCgl2106 (Rv2188c) has been identified as a novel phosphatidyl-

myo-inositol mannosyltransferase, PimB and Rv0557 has been ruled out as a PimB candidate 

(Fig. 6.1 and Fig. 6.2). Herein, the use of C.glutamicumΔpimB’ΔmgtA mutant study enabled the 

assignment of true functions to mycobacterial glycosyltransferases Rv0557 and Rv2188c. 

Surprisingly, a lipoglycan similar to Cg-LM-B has not been identified in mycobacteria, and the 

precise role of Rv0557 in M. tuberculosis. However, it is possible that Rv0557 might supplement 

for ‘loss of function’ of Rv2188c, as suggested by our in vitro mannolipid synthesis study and 

recent studies (Torrelles et al., 2009). To identify the true role of Rv0557 in M. tuberculosis, we 

can either create conditional mutants in M. tuberculosis devoid of Rv0557 and Rv2188c or try to 

develop methods to fractionate polar lipids and lipoglycans from M. tuberculosis in search for 

such novel glycolipids.   
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Fig.6.2: Biosynthetic pathway of Cg-LAM biogenesis in C. glutamicum before (A) and after (B) this work. (A) 

Before this work, only MgtA has been characetrised, which was shown to be involved in the synthesis of a 

mannolipid that is not involved in the synthesis of Cg-LAM. (B) The entire pathway of Cg-LAM biogenesis has been 

characterised in this work by assigning functions to the five different ORFs (NCgl1505, NCgl2093, NCgl2096, 

NCgl2097 and NCgl2100) (B). 

 

Characterisation of three different ORFs from C. glutamicum encoding putative 

glycosyltransferases from GT-C family, has suggested their role in cell wall biogenesis. On the 

basis of biochemical analysis of mutants, NCgl2100 and NCgl2097 are identified as α(1→2) 

mannopyranosyltransferases (MptC and MptD), and NCgl2096 as an α(1→2) 

arabinofuranosyltransferase (AftE), involved in LM/LAM biosynthesis. Furthermore, 

complementation of mutant phenotypes with their mycobacterial homologues suggested that 

Rv2181 is a true functional homologue of NCgl2100 (Fig. 6.1 and Fig. 6.2) and involved in the 

synthesis of singular α(1→2)-Manp units of LM and LAM.  
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The function of these glycolipids and lipoglycans is still a controversial topic in mycobacterial 

research. In that regard, lipoglycans from these C. glutamicum mutant strains provide elegant 

substrates for immunological studies, which can shed further light on the role of these lipoglycans 

and host pathogen interactions. In addition, the generation of M. tuberculosis mutants deficient in 

the enzymes identified in this study may be utilised to study their functional role in mycobacteria.  

    

The entire reportire of enzymes involved in the biogenesis of PIMs and LM/LAM have almost 

been identified and some of them reperesent execellent drug targets. However, the participation 

of cytoplasmic and periplasmic biosynthetic machinary suggests the  involvement of active 

transport of cytoplamic content to the extracellular part. This requires an in-depth inspection of 

the biochemistry behind the transport of these glycolipids and identification of molecular 

components involved which can be utilised as novel drug targets. Similarly, the concept of host-

pathogen interaction involving PIMs and LM/LAM is still unexplored and therefore, further 

study is required utilsing these molecules, their receptors and interaction between them. PIMs and 

LM interact with Toll like receptor-2 and LAM interacts with Dendritic Cell-Specific 

Intercellular adhesion molecule-3-Grabbing Non-integrin, DC-SIGN and Mannose receptor 

(Briken et al., 2005). Study involving these molecular level interactions in which PIMs and 

LM/LAM could be co-crystalised with their respective receptors may shed further light on the 

molecular mechanism beneath host pathogen interactions. 
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